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Theory of the two-photon micromaser: Linewidth

A. H. Toor} S.-Y. Zhu, and M. S. Zubaity
Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
(Received 19 May 1995

In this paper, we study the linewidth of a two-photon micromaser by using an exact Hamiltonian approach.
We consider a three-level atomic system interacting with a single-mode radiation field. The intermediate level
is considered to be off resonant with the field. In this model, under the large detuning limit, two-photon
transitions result. We calculate the linewidth of a two-photon micromaser and present results in the small and
large detuning limits. In the small detuning limit, single-photon behavior is evident, whereas in the large
detuning limit, true two-photon behavior is exhibited. We compare the results for the linewidth, under a large
detuning limit, with the results obtained by using a phenomenological, effective Hamiltonian approach. The
absence of the dynamic Stark shift in a phenomenological, effective Hamiltonian leads to qualitatively different
results in the two approaches.

PACS numbd(s): 84.40.1k

[. INTRODUCTION Hamiltonian approach and obtained results for the photon
statistics that were at variance with the results of Ref].

In a micromaser an atomic beam is injected in a Hgh- They considered a three-level atomic system in a cascade
microwave single-mode cavity. The atomic injection rate isconfiguration with the intermediate level arbitrarily detuned
kept low enough to ensure that there is just a single atonfrom the cavity field and derived the steady-state photon dis-
inside the cavity at one time. The experimental realization otribution function. They compared their results with the re-

a micromaser provides the simplest system for testing theults obtained from the two-photon phenomenological, effec-
predictions relating to atom-field interactiofts]. A number  tive Hamiltonian approach, without dynamic Stark shift.
of effects have been predicted in a micromaser, which inUnder the large detuning limit, they showed that the two
clude trapping states and the generalization of nonclassicalpproaches lead to the same results for the diagonal elements
states[2] of the radiation field, e.g., number and squeezedf the density operator. However, they pointed out that the
states. approaches based on the exact Hamiltonian and the phenom-

In addition to a large number of studies relating to theenological effective Hamiltonian lead to different results for
photon statistics of the radiation field inside a micromasethe off-diagonal elements of the density operator under this
[3], @ number of studies have also been done on the micrdimit. A similar difference between the two approaches is
maser spectrurfd—7]. Some interesting features that are dif- shown in the two-photon atom-field interactic®2] and non-
ferent from the usual Schawlow-Townes linewidth of the degenerate two-photon ladéi3]. The exact Hamiltonian ap-
laser have been predicted. For example, it has been fourgtoach has also been used to study some other aspects of
that the linewidth of a micromaser can decrease with thewo-photon processes, for example, the two-photon corre-
increase of thermal photon3]. lated emission laser and 4] phase-sensitive amplification

In this paper, we are interested in the linewidth of a two-[15]. The two-photon dressed-state laser has been experi-
photon micromaser. It is well known that, in the two-photonmentally demonstratefl6] in recent past. The correspond-
processes, the high degree of correlation between the emitténlg theory[17] for such a laser is based on the dressed-state
photon pairs leads to some interesting nonclassical effects ipicture, which includes the dynamic Stark shift.
quantum optics. The two-photon micromaser provides a In this paper, we extend the results of Rdfl] to calcu-
clean setup for studying the two-photon processes. A twolate the linewidth of a two-photon micromaser and study the
photon micromaser was operated by Breteal.[8] by using  effects of correlation among the emitted photon pairs. The
a niobium superconducting cavity wit@~10°, resonant at micromaser linewidth is determined by the decay of the off-
68.415 87 GHz. They exploited the two-photon degenerateliagonal elements of the field density operator. We use an
transition in rubidium atoms between the levelsSgpand  ansatz method that has been successfully used in the calcu-
39S,,, through intermediate level BY,, detuned from the lation of the linewidth of a laser and a single-photon micro-
cavity resonant mode. maser to calculate the linewidth of a two-photon micromaser.

A theory of two-photon micromaser was developed byWe analyze our results in the limits of small and large de-
Brune, Raimond, and Haroch®] and Davidovichetal. tunings. In the small detuning limit, the two photons are
[10]. Later Ashraf, Gea-Banacloche, and Zubditll] pre- uncorrelated and we obtain a behavior similar to that ob-
sented a theory of two-photon micromaser by using an exadhined in a single-photon micromaser. In the large detuning

limit, a true two-photon behavior is exhibited. We compare

the large detuning results with those obtained from a phe-

“Permanent address: Department of Electronics, Quaid-i-Azanmomenological, effective Hamiltonian approach and show
University, Islamabad 45320, Pakistan. that the two approaches lead to qualitatively different results.
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FIG. 1. Schematic diagram of the three-level atom interacting *
with a single-mode radiation field. The exact two-photon resonance dnm=raCen+2Ccms2- (7)
is considered with arbitrary detuningy of the intermediate level
|b). In writing Eq. (3) the cavity-loss terms are added in the usual
way [18]. The cavity loss rate is denoted hyandn,, is the
Il. EXACT HAMILTONIAN APPROACH average number of thermal photons in thermal equilibrium.

The rate of injection of atoms is represented Ry The

Consider an ensemble of three-level atoms, in a Cascadﬁrobabiliw amplitude<C, ,,, Cp, ,, andC,, can be written
. . . . . . . a,n: ns c,n '
configuration(see Fig. 1, interacting with the single mode of g et 5 the initial conditions that the atom and field are

a radiation field |n§|de a microwave cavity. _The exact two- coupled and the atoms are injected in the upper kiafe
photon resonance is assumed such that the intermediate le

|b) is detuned from the exact one-photon resonance, with the

. . Fig,
detuning given bysee Fig. 1 gi(n+1) v
an=— 5 2 M(7)e ( 27+1, (8)
A=w— (03— wp) = (wp— 0) — o, N ' Bnay,
wherew is the frequency of the resonant mode of the micro- JnF1
maser cavity. The frequencies associated with the atomic Cpne1=—i Lei<A’2)Tsinﬁnr, 9
levels|a), |b), and|c) arew,, wy,, andw,, respectively. ’ Bn
The technological developments in the recent past have
made it possible to achieve such an atomic configuration in 0192V(n+1)(n+2) i)
the Rydberg states of alkali metd8]. Our system, foA=0, Cen+2= a2 (7)€ . (10
n

corresponds to two one-photon transitiofe —|b) and
|b)—|c). However, for sufficiently large values df, the |, writing Egs. (8)—(10) the following quantities have been
one-photon process is suppressed and the transition frofoquced:
|a) to |c) acquires a two-photon character.
The Hamiltonian in the interaction picture under the A
rotating-wave approximation for a system of a three-level n(7)=BnCOB,7+i = sinB,7— B.e'AP7, (11
atom in cascade configuration interacting with a single mode 2
of a radiation field inside a cavity is

A A and
Vi=figy(ala)(ble” +ab)(ale’) 2 i
+hgy(alby(clet+alleble ™), (@) =GN gn+2) 2
whereg,; andg, are the one-photon coupling constants cor- B :(A_2+ o2 12 (13)
responding to the atomic transitionga)—|b) and "4 n

|b)—|c), respectively. In a micromaser for a fixed length of
the cavity, the velocity of the atoms determines the duration The photon statistics can be studied by settirgm in
of the interaction time. Here we have assumed that the lifeEq. (3). In the steady state, the probability of findingoho-
times of all three atomic levels involved are much larger thartons inside the cavity, i.e., the photon distribution function,
the interaction time. This justifies our ignoring the spontane(n)=p, , satisfies the following equation:
ous decay to the other atomic levels, and the evolution of the
atom-field combined density operator becomes unitary. a,P(n)+b, P(n-1)+c,1P(n+1)+d, »P(n—2)=0,

In accordance with the standard procedure used in laser (19
theory, the difference between the field density operators af-
ter time 7, divided by the average time interval between thewherea,=a, , and so forth. Moreover, it can be shown that
successive atoms, can be approximated by the differential
equation[11] a,+b,+c,+d,=0. (15
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Then the steady-state photon distribution functi®m) can 0 1 . o0
be written in terms of continued fractions Dy (t)zi,un + (b +cl+d(9)(1— e [PnmaW-Dr(0])
n
1 dr—2Cr—1 (0
- = _Gr2br-1 Pni1(0) Cw oM *)
P(n)_P(O)rﬂl c br‘1+df‘1+(br_2+dr_2) +cl, o) (e Pha(h _ g DY (1)) oD}
n
doCy (,(0)
— k k k
T e dy ) 19 +di, pn<k>2(0) (e Ph’1(0) g Pn2(0)er”,
Pn
where P(0) is determined by the normalization condition. (2D

The photon statistics in a two-photon micromaser has been
analyzed on the basis of this expression for the photon disvhere
tribution function in Ref[11]. In the next section we study
the linewidth of a two-photon micromaser using an ansatz
method attributable to Pedrotti, Scully, and Zubditg].

1= a1 b4 4 g0 22

So far our analysis is exact. Now we assume that

i, THE LINEWIDTH OF A TWO-PHOTON D((t) is a slowly varying function of, which means that

MICROMASER |D$1k_)1(t)—D§1k)(t)|<1, (23)
The derivation of the linewidth requires a calculation of o ® ) ) )

the two-time correlation function of the electric field, i.e., and similarly D2, (t) —Dy?,(t)| and [Dy2, —Dy?,| are
(E~(t)E*(t+7)). However, under the Markovian approxi- much smaller than unity. Under this assumption E2f)
mation, the quantum regression theorem implies that the timgields
dependence of the two-time correlation function
(E"(t)E"(t+ 7)) is identical to the time dependence of
(E™(t)). Hence the derivation ofE™(t)) is sufficient to
calculate the linewidth. Furthermore, this expectation valu

DI (t)=2ulFt. (24)

elt thus follows from Eq.(17) that

is related to the off-diagonal elements of the field density o W
operation as (a'(t))= Eo Vn+1 e M2ua 1), (25)
n=
(E-())~(a"(t))=2, yn+1pnnsa(t). 17 Next we assume that{ is a slowly varying function of
n=0

n. We can then replacg " in Eq. (25 by its mean value,

Physically, this implies that the decay rate of the off- -8
diagonal density operatqs, . (t) corresponds to the si- o
multaneous decay of the field, which is responsible for the =(, D\ Mp(n 26
linewidth of the field. Our basic aim here is to determine the u= i) nZO #n PN (26)
decay rate opp g 1(t). . o

The equation of motion for the elements of the field den-Where the photon distribution functida(n) is given by Eq.

sity operator, i.e., Eq:3), can also be written in the form  (16). Under this approximation, the micromaser spectrum is
Lorentzian with the linewidth given by the real part@f An

p=(al¥+bl) + ¢l 4 gk k) 4 pk p 4 ek p0) identical expression for linewidth can be obtained by using a
© 091 00 1 2 (10 factorization ansat£20] or a London phase operator ap-
+dylopnl o= (by ey +dy)py” (18 proach[7].

In writing Eq. (18) p¥ and al® stand for p, .y and

an n+k, respectively. At this point we suggest an ansatz for a o
steady-state solution for the off-diagonal elements of the In this limit our model corresponds to the two one-photon
field density operator, i.e., EL8), in analogy with the cor-  transitions, i.e.|a)—[b) and|b)— |c). The emission of the
responding solution of the diagonal elements of the field dentWo photons is not correlated but still both transitions are

A. The limit of small detuning

sity operatof11], i.e., influenced by the same cavity field.
In Fig. 2, the linewidth, i.e., the real part ¢f, and the
(bW + ¢4 gy pl =) 00 1 g 004 gl 50 mean number of photon@) are plotted versus the dimen-

(190  sionless interaction timgr for n,=0. The sharp dips in the

) ) curve for the mean number of photons corresponds to the
The solution of Eq(18) is then of the form trapping state§21]

K1) =P, 20 2qm
Pn (1) Pn (0), (20 gTZ%, q=0,12... . 27)
where D®(t) is some unknown function of andt. On
substituting this solution fop{(t) into Eq.(18) and using It has been shown in Refl1l] that these trapping states
Eq. (19 we get correspond to the vacuum state, i.¢0). However, for
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FIG. 2. Steady-state linewidth and average
number of photons vs the dimensionless interac-
tion time g7 for the cascade micromaser, i.e.,
A=0, with Ng,=r,/y=20 at zero temperature,

20 H

10 i.e., n,=0.
0 t
0 3 6 9 12 15 18 21 24 27 30
gt

n ,#0 even the vacuum state does not qualify for the trapand define
ping state. In Fig. 3, the linewidth is plotted against the di-
mensionless interaction time fog,=0 and 5. A comparison = 2—)\(2n+3) 29
of the linewidth for these two cases shows the reduction in A ‘

linewidth due to thermal photons in a certain region. A simi- S
lar reduction in the linewidth due to thermal photons isThen, under the large detuning limit, i.e.,

pointed out for the linewidth of the one-photon micromaser 5
[7]. However, the effects of thermal photons on the laser gn
. . . ) . 8——<1, (30)
linewidth are opposite. The smoothening of the dips corre- A
sponding to the trapping states fof=0 can be seen due to )
the presence of the thermal photons. Bn, given by Eq.(13), can be expanded as
- . A ¢
B. The limit of large detuning B~ E_|_ X(2n+3)_ (3D

In the limit of large detuning of the intermediate level
|b) with the cavity field mode, the probability of finding the The large detuning limit, i.e., Eq30), further implies that
atom in the leve|b) is almost zerq11,12. Under this con-  e<1. The coefficients of the field density operator equation,
dition our system corresponds to the true two-photon microi.e., Eqs(4)—(7), for k=1, reduce to the form
maser. The one-photon transitions become negligiteept
for the one-photon transitions introduced to incorporate the ,, N+2  onesns n+1
effects of cavity lossand the two-photon transitions become & ~'a 2n+5 (e —D+ 2n+3
the most dominant one.

(ei(2n+3))\7_ 1)

Let us introduce the two-photon effective coupling con- N (n+1)(n+2) {20+ INr_ ) -i2nHENT_
stant by takingg;=g,=g, i.e., (2n+3)(2n+5) (e )(e 0
92 r__
)\:K’ (289 —§[4nb(n+ 1)+2n+1], (32

20

FIG. 3. Steady-state linewidth of the cascade
micromaser, i.e.A=0, vs the dimensionless in-
teraction timeg for (a) n,=0 and(b)n,=5. All
other parameters are the same as in Fig. 2.

n(10 +

gt
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FIG. 4. Steady-state linewidth and average
number of photons vs the dimensionless interac-
tion time A\ 7 for the two-photon micromaser, i.e.,
A=50g, with Ng=r,/y=20 at zero tempera-
ture, i.e,n,=0.

o 3 6 9 12 16 18
AT

b{Y= ynp\(n+1)(n+2),
cV=y(ny+1)Yn(n+1),
(n+2)y(n+1)( n+3 oi(2n+3ns_

(2n+3)(2n+5)

dgl): la 1)

><(e i(2n+5)\7__ l) )

21

(33

(34

(39

27 30

—J(n+1)(n+2)—n(n—1)]+y[ yn(n+1)
_%(2n+1)] Pn,n(T)- (36)

In Fig. 4, a comparison of the mean number of photons and
the linewidth is made by plotting them against the dimen-
sionless interaction timer for A=50g. It can be seen from
the figure that the linewidth is a periodic function of the
interaction timer like the mean number of photoh%1] but
with a time perioda/\ for the large values of. The devia-

In writing Egs. (32)—(35) we have ignored the terms of the tion from the perfect periodicity for the large values of the
order e. The corresponding expression for the linewidth ininteraction time is due to the fact that the expansioBgf

the large detuning limit is

+2
al2n+5

=—Re2

N n+1
2n+3

(n+2)[ n+1)++(n+1)(n+3) ]

(2n+3)(2n+5)

(e—i(2n+5))\7_ 1)

i(2n+3)\7_ 1)

(e

x<ei<2”+5>“—1>] —yng[2(n+1)

|(2n+3))\

T__ 1)

i.e., Eq.(31), does not hold forB, as an argument of the
trigonometric function under the large detuning limit, i.e.,
Eqg. (30) [11,12. The appropriate condition for the large de-
tuning limit to justify the expansion g8, as an argument of
trigonometric function is

4n? g

A NT<l. (37)

The presence of the thermal photons does not effect the
linewidth at small dimensionless interaction times How-
ever, the significant effects of thermal photons on the line-

20

NN

w10 +

FIG. 5. Steady-state linewidth of the two-
photon micromaser, i.eA=50g, vs the dimen-
sionless interaction timer for (a) n,=0 and(b)

n ,=5. All other parameters are the same as in
Fig. 4.

AT

27 30
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45

(b)
30

FIG. 6. Steady-state linewidth of the two-

n® photon micromaser, i.eA=50g, for N.,= 20 and
n ,=0 for (a) the phenomenological, effective
15+ Hamiltonian approach antb) the exact Hamil-

tonian approach.

AT

width of the two-photon micromaser for larger values of in- *
teraction time can be seen in Fig. 5. Mei(T)=— Rez (ro{cog V(n+1)(n+2)
n=0
IV. COMPARISON WITH THE PHENOMENOLOGICAL, —J(n+2)(n+3)]A7—1}— yny[2(n+1)

EFFECTIVE HAMILTONIAN APPROACH

—VJ(n+1)(n+2)—yn(n+1)]+ nn+1
In the phenomenological effective Hamiltonian, the Ve ! )= 1+ AL )

atomic levels|a) and |c) are coupled to the cavity field —3(2n+1)Dppn(7). (46)
mode through a two-photon coupling constant. The Hamil-
tonian in the interaction picture under the rotating-wave ap- We now compare the results of the linewidth obtained

proximation is from the exact Hamiltonian approach under large detuning
limit with that obtained from the phenomenological effective
V,=%\(|a)(c|a?+a'?c){(al), (38)  Hamiltonian approach. In Fig. 6, the linewidth for the exact
Hamiltonian (under large detuning limitand phenomeno-
where\ is the effective two-photon coupling constant. logical effective Hamiltonian approach are plotted for

The coefficients of the differential equation for the off- = =0 andN.=r,/y=20. The obvious difference can be
diagonal elements of the field density operator, i.e., BY.  explained by looking at the two expressions, i.e., H§)

in the present case are modified as and (46), for n>1. The expression for the linewidth in the
phenomenological effective Hamiltonian approach risrl,
aﬁ,m:ra(cé,ncé*m—l)_ %[Zn_b(n+m+l)+n+m], which meansB,~\(2n+3), can be written in the form
(39) - _ _
pen(7)=—Re2, {ra[3(e"? "+ 1)et 1]
bp.m=—YNpV(N+1)(M+1), (40) n=e
1) —yng[2(n+1)=(n+1)(n+2)—yn(n+1)]
Com=Y(Np+1)ynm, (41)
+9[Vn(n+1)=2(2n+ 1) ppn( 7). (47)
dnm="aCe¢n+2Ccms2: (42

Similarly, the expression for the linewidth in the exact
where the probability amplitude8., , andC/, ., , are given Hamiltonian approach under large detuning limit reduces to

by [11,12 the following form forn>1:
i b =—Re>, {r3(e"?*"+1)—1]—-yn[2(n+1
Cin=C0S—" 7, (43 u(7) e {ralz(e”“*+1)—1]—yn,[2(n+1)
' —VJ(n+1)(n+2)—yn(n+1)]+ y[Yn(n+1)
’ i aipln
Cen+p=—1sin 2 (44) —3(2n+ 1)} ppn( 7). (48
with Expressions(47) and (48) for the linewidth are identical
apart from an additional phase factor, i@)\” with the term
Br=2x(n+1)(n+2). (45) proportional tor, in the results for phenomenological effec-

tive Hamiltonian approach. It can be seen from the above
The expression for the linewidth in this approach becomes equations that the linewidth in both approaches is a periodic
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function of 7 but with different periods. In the phenomeno- /\ with the maximum value approximately equal Ng,.
logical effective Hamiltonian approach, the period i8/R  This difference is due to the additional phase factor, which is
with a maximum value approximately equal tblg.. On the the result of the neglect of Stark shift in the phenomenologi-
other hand, in the exact Hamiltonian approach, the period isal effective Hamiltonian approach.
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