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In this paper, we study the linewidth of a two-photon micromaser by using an exact Hamiltonian approach.
We consider a three-level atomic system interacting with a single-mode radiation field. The intermediate level
is considered to be off resonant with the field. In this model, under the large detuning limit, two-photon
transitions result. We calculate the linewidth of a two-photon micromaser and present results in the small and
large detuning limits. In the small detuning limit, single-photon behavior is evident, whereas in the large
detuning limit, true two-photon behavior is exhibited. We compare the results for the linewidth, under a large
detuning limit, with the results obtained by using a phenomenological, effective Hamiltonian approach. The
absence of the dynamic Stark shift in a phenomenological, effective Hamiltonian leads to qualitatively different
results in the two approaches.

PACS number~s!: 84.40.Ik

I. INTRODUCTION

In a micromaser an atomic beam is injected in a high-Q
microwave single-mode cavity. The atomic injection rate is
kept low enough to ensure that there is just a single atom
inside the cavity at one time. The experimental realization of
a micromaser provides the simplest system for testing the
predictions relating to atom-field interactions@1#. A number
of effects have been predicted in a micromaser, which in-
clude trapping states and the generalization of nonclassical
states@2# of the radiation field, e.g., number and squeezed
states.

In addition to a large number of studies relating to the
photon statistics of the radiation field inside a micromaser
@3#, a number of studies have also been done on the micro-
maser spectrum@4–7#. Some interesting features that are dif-
ferent from the usual Schawlow-Townes linewidth of the
laser have been predicted. For example, it has been found
that the linewidth of a micromaser can decrease with the
increase of thermal photons@7#.

In this paper, we are interested in the linewidth of a two-
photon micromaser. It is well known that, in the two-photon
processes, the high degree of correlation between the emitted
photon pairs leads to some interesting nonclassical effects in
quantum optics. The two-photon micromaser provides a
clean setup for studying the two-photon processes. A two-
photon micromaser was operated by Bruneet al. @8# by using
a niobium superconducting cavity withQ'108, resonant at
68.415 87 GHz. They exploited the two-photon degenerate
transition in rubidium atoms between the levels 40S1/2 and
39S1/2 through intermediate level 39P3/2 detuned from the
cavity resonant mode.

A theory of two-photon micromaser was developed by
Brune, Raimond, and Haroche@9# and Davidovichet al.
@10#. Later Ashraf, Gea-Banacloche, and Zubairy@11# pre-
sented a theory of two-photon micromaser by using an exact

Hamiltonian approach and obtained results for the photon
statistics that were at variance with the results of Ref.@10#.
They considered a three-level atomic system in a cascade
configuration with the intermediate level arbitrarily detuned
from the cavity field and derived the steady-state photon dis-
tribution function. They compared their results with the re-
sults obtained from the two-photon phenomenological, effec-
tive Hamiltonian approach, without dynamic Stark shift.
Under the large detuning limit, they showed that the two
approaches lead to the same results for the diagonal elements
of the density operator. However, they pointed out that the
approaches based on the exact Hamiltonian and the phenom-
enological effective Hamiltonian lead to different results for
the off-diagonal elements of the density operator under this
limit. A similar difference between the two approaches is
shown in the two-photon atom-field interaction@12# and non-
degenerate two-photon laser@13#. The exact Hamiltonian ap-
proach has also been used to study some other aspects of
two-photon processes, for example, the two-photon corre-
lated emission laser and@14# phase-sensitive amplification
@15#. The two-photon dressed-state laser has been experi-
mentally demonstrated@16# in recent past. The correspond-
ing theory@17# for such a laser is based on the dressed-state
picture, which includes the dynamic Stark shift.

In this paper, we extend the results of Ref.@11# to calcu-
late the linewidth of a two-photon micromaser and study the
effects of correlation among the emitted photon pairs. The
micromaser linewidth is determined by the decay of the off-
diagonal elements of the field density operator. We use an
ansatz method that has been successfully used in the calcu-
lation of the linewidth of a laser and a single-photon micro-
maser to calculate the linewidth of a two-photon micromaser.
We analyze our results in the limits of small and large de-
tunings. In the small detuning limit, the two photons are
uncorrelated and we obtain a behavior similar to that ob-
tained in a single-photon micromaser. In the large detuning
limit, a true two-photon behavior is exhibited. We compare
the large detuning results with those obtained from a phe-
nomenological, effective Hamiltonian approach and show
that the two approaches lead to qualitatively different results.
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II. EXACT HAMILTONIAN APPROACH

Consider an ensemble of three-level atoms, in a cascade
configuration~see Fig. 1!, interacting with the single mode of
a radiation field inside a microwave cavity. The exact two-
photon resonance is assumed such that the intermediate level
ub& is detuned from the exact one-photon resonance, with the
detuning given by~see Fig. 1!

D5v2~va2vb!5~vb2vc!2v, ~1!

wherev is the frequency of the resonant mode of the micro-
maser cavity. The frequencies associated with the atomic
levels ua&, ub&, anduc& areva , vb , andvc , respectively.
The technological developments in the recent past have
made it possible to achieve such an atomic configuration in
the Rydberg states of alkali metals@8#. Our system, forD50,
corresponds to two one-photon transitionsua&→ub& and
ub&→uc&. However, for sufficiently large values ofD, the
one-photon process is suppressed and the transition from
ua& to uc& acquires a two-photon character.

The Hamiltonian in the interaction picture under the
rotating-wave approximation for a system of a three-level
atom in cascade configuration interacting with a single mode
of a radiation field inside a cavity is

VI5\g1~aua&^bue2 iDt1a†ub&^aueiDt!

1\g2~aub&^cueiDt1a†uc&^bue2 iDt!, ~2!

whereg1 andg2 are the one-photon coupling constants cor-
responding to the atomic transitionsua&→ub& and
ub&→uc&, respectively. In a micromaser for a fixed length of
the cavity, the velocity of the atoms determines the duration
of the interaction time. Here we have assumed that the life-
times of all three atomic levels involved are much larger than
the interaction time. This justifies our ignoring the spontane-
ous decay to the other atomic levels, and the evolution of the
atom-field combined density operator becomes unitary.

In accordance with the standard procedure used in laser
theory, the difference between the field density operators af-
ter timet, divided by the average time interval between the
successive atoms, can be approximated by the differential
equation@11#

ṙn,m~ t !5an,mrn,m1bn21,m21rn21,m211dn22,m22rn22,m22

1cn11,m11rn11,m11 , ~3!

where

an,m5r a~Ca,nCa,m* 21!2
g

2
@2n̄b~n1m11!1n1m#,

~4!

bn,m5r aCb,n11Cb,m11* 1gn̄bA~n11!~m11!, ~5!

cn,m5g~ n̄b11!Anm, ~6!

dn,m5r aCc,n12Cc,m12* . ~7!

In writing Eq. ~3! the cavity-loss terms are added in the usual
way @18#. The cavity loss rate is denoted byg and n̄b is the
average number of thermal photons in thermal equilibrium.
The rate of injection of atoms is represented byr a . The
probability amplitudesCa,n , Cb,n , andCc,n can be written,
subject to the initial conditions that the atom and field are
decoupled and the atoms are injected in the upper stateua&,
as

Ca,n5
g1
2~n11!

bnan
2 hn~t!e2 i ~D/2!t11, ~8!

Cb,n1152 i
g1An11

bn
ei ~D/2!tsinbnt, ~9!

Cc,n125
g1g2A~n11!~n12!

bnan
2 hn~t!e2 i ~D/2!t. ~10!

In writing Eqs. ~8!–~10! the following quantities have been
introduced:

hn~t!5bncosbnt1 i
D

2
sinbnt2bne

i ~D/2!t, ~11!

and

an5Ag12~n11!1g2
2~n12!, ~12!

bn5S D2

4
1an

2D 1/2. ~13!

The photon statistics can be studied by settingn5m in
Eq. ~3!. In the steady state, the probability of findingn pho-
tons inside the cavity, i.e., the photon distribution function,
P(n)5rn,n , satisfies the following equation:

anP~n!1bn21P~n21!1cn11P~n11!1dn22P~n22!50,
~14!

wherean[an,n and so forth. Moreover, it can be shown that

an1bn1cn1dn50. ~15!

FIG. 1. Schematic diagram of the three-level atom interacting
with a single-mode radiation field. The exact two-photon resonance
is considered with arbitrary detuningD of the intermediate level
ub&.
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Then the steady-state photon distribution functionP(n) can
be written in terms of continued fractions

P~n!5P~0!)
r51

n
1

cr
Fbr211dr211

dr22cr21

~br221dr22!

1•••1
d0c1
b01d1

G , ~16!

whereP(0) is determined by the normalization condition.
The photon statistics in a two-photon micromaser has been
analyzed on the basis of this expression for the photon dis-
tribution function in Ref.@11#. In the next section we study
the linewidth of a two-photon micromaser using an ansatz
method attributable to Pedrotti, Scully, and Zubairy@19#.

III. THE LINEWIDTH OF A TWO-PHOTON
MICROMASER

The derivation of the linewidth requires a calculation of
the two-time correlation function of the electric field, i.e.,
^E2(t)E1(t1t)&. However, under the Markovian approxi-
mation, the quantum regression theorem implies that the time
dependence of the two-time correlation function
^E2(t)E1(t1t)& is identical to the time dependence of
^E2(t)&. Hence the derivation of̂E2(t)& is sufficient to
calculate the linewidth. Furthermore, this expectation value
is related to the off-diagonal elements of the field density
operation as

^E2~ t !&;~a†~ t !&5 (
n50

`

An11rn,n11~ t !. ~17!

Physically, this implies that the decay rate of the off-
diagonal density operatorrn,n11(t) corresponds to the si-
multaneous decay of the field, which is responsible for the
linewidth of the field. Our basic aim here is to determine the
decay rate ofrn,n11(t).

The equation of motion for the elements of the field den-
sity operator, i.e., Eq.~3!, can also be written in the form

ṙn
~k!5~an

~k!1bn
~k!1cn

~k!1dn
~k!!rn

~k!1bn21
~k! rn21

~k! 1cn11
~k! rn11

~k!

1dn22
~k! rn22

~k! 2~bn
~k!1cn

~k!1dn
~k!!rn

~k! . ~18!

In writing Eq. ~18! rn
(k) and an

(k) stand for rn,n1k and
an,n1k , respectively. At this point we suggest an ansatz for a
steady-state solution for the off-diagonal elements of the
field density operator, i.e., Eq.~18!, in analogy with the cor-
responding solution of the diagonal elements of the field den-
sity operator@11#, i.e.,

~bn
~k!1cn

~k!1dn
~k!!rn

~k!5bn21
~k! rn21

~k! 1dn22
~k! rn22

~k! 1cn11
~k! rn11

~k! .
~19!

The solution of Eq.~18! is then of the form

rn
~k!~ t !5e2Dn

~k!
~ t !rn

~k!~0!, ~20!

whereDn
(k)(t) is some unknown function ofn and t. On

substituting this solution forrn
(k)(t) into Eq. ~18! and using

Eq. ~19! we get

Ḋn
~k!~ t !5

1

2
mn

~k!1~bn
~k!1cn

~k!1dn
~k!!~12e2@Dn21

~k!
~ t !2Dn

~k!
~ t !#!

1cn11
~k!

rn11
~k! ~0!

rn
~k!~0!

~e2Dn21
~k!

~ t !2e2Dn11
~k!

~ t !!eDn
~k!

1dn22
~k!

rn22
~k! ~0!

rn
~k!~0!

~e2Dn21
~k!

~ t !2e2Dn22
~k!

~ t !!eDn
~k!
,

~21!

where

2 1
2mn

~k!5an
~k!1bn

~k!1cn
~k!1dn

~k! . ~22!

So far our analysis is exact. Now we assume that
Dn
(k)(t) is a slowly varying function ofn, which means that

uDn21
~k! ~ t !2Dn

~k!~ t !u!1, ~23!

and similarly uDn21
(k) (t)2Dn11

(k) (t)u and uDn21
(k) 2Dn22

(k) u are
much smaller than unity. Under this assumption Eq.~21!
yields

Dn
~k!~ t !> 1

2mn
~k!t. ~24!

It thus follows from Eq.~17! that

^a†~ t !&5 (
n50

`

An11 e2~1/2!mn
~1!trn

~1!~0!. ~25!

Next we assume thatmn
(1) is a slowly varying function of

n. We can then replacemn
(1) in Eq. ~25! by its mean value,

i.e.,

m[^mn
~1!&5 (

n50

`

mn
~1!P~n!, ~26!

where the photon distribution functionP(n) is given by Eq.
~16!. Under this approximation, the micromaser spectrum is
Lorentzian with the linewidth given by the real part ofm. An
identical expression for linewidth can be obtained by using a
factorization ansatz@20# or a London phase operator ap-
proach@7#.

A. The limit of small detuning

In this limit our model corresponds to the two one-photon
transitions, i.e.,ua&→ub& and ub&→uc&. The emission of the
two photons is not correlated but still both transitions are
influenced by the same cavity field.

In Fig. 2, the linewidth, i.e., the real part ofm, and the
mean number of photonŝn& are plotted versus the dimen-
sionless interaction timegt for n̄b50. The sharp dips in the
curve for the mean number of photons corresponds to the
trapping states@21#

gt5
2qp

A3
, q50,1,2,... . ~27!

It has been shown in Ref.@11# that these trapping states
correspond to the vacuum state, i.e.,u0&. However, for
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n b̄Þ0 even the vacuum state does not qualify for the trap-
ping state. In Fig. 3, the linewidth is plotted against the di-
mensionless interaction time forn̄b50 and 5. A comparison
of the linewidth for these two cases shows the reduction in
linewidth due to thermal photons in a certain region. A simi-
lar reduction in the linewidth due to thermal photons is
pointed out for the linewidth of the one-photon micromaser
@7#. However, the effects of thermal photons on the laser
linewidth are opposite. The smoothening of the dips corre-
sponding to the trapping states forn̄b50 can be seen due to
the presence of the thermal photons.

B. The limit of large detuning

In the limit of large detuning of the intermediate level
ub& with the cavity field mode, the probability of finding the
atom in the levelub& is almost zero@11,12#. Under this con-
dition our system corresponds to the true two-photon micro-
maser. The one-photon transitions become negligible~except
for the one-photon transitions introduced to incorporate the
effects of cavity loss! and the two-photon transitions become
the most dominant one.

Let us introduce the two-photon effective coupling con-
stant by takingg15g2[g, i.e.,

l5
g2

D
, ~28!

and define

e5
2l

D
~2n13!. ~29!

Then, under the large detuning limit, i.e.,

8
g2n

D2 !1, ~30!

bn , given by Eq.~13!, can be expanded as

bn'
D

2
1
g2

D
~2n13!. ~31!

The large detuning limit, i.e., Eq.~30!, further implies that
e!1. The coefficients of the field density operator equation,
i.e., Eqs~4!–~7!, for k51, reduce to the form

an
~1!5r aF n12

2n15
~e2 i ~2n15!lt21!1

n11

2n13
~ei ~2n13!lt21!

1
~n11!~n12!

~2n13!~2n15!
~ei ~2n13!lt21!~e2 i ~2n15!lt21!G

2
r

2
@4n̄b~n11!12n11#, ~32!

FIG. 2. Steady-state linewidth and average
number of photons vs the dimensionless interac-
tion time gt for the cascade micromaser, i.e.,
D50, with Nex[r a /g520 at zero temperature,
i.e., n̄b50.

FIG. 3. Steady-state linewidth of the cascade
micromaser, i.e.,D50, vs the dimensionless in-
teraction timegt for ~a! n̄b50 and~b!n̄b55. All
other parameters are the same as in Fig. 2.
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bn
~1!5gn̄bA~n11!~n12!, ~33!

cn
~1!5g~ n̄b11!An~n11!, ~34!

dn
~1!5r aF ~n12!A~n11!~n13!

~2n13!~2n15!
~ei ~2n13!lt21!

3~e2 i ~2n15!lt21!G . ~35!

In writing Eqs. ~32!–~35! we have ignored the terms of the
order e. The corresponding expression for the linewidth in
the large detuning limit is

m~t!52Re(
n50

` F r aH n12

2n15
~e2 i ~2n15!lt21!

1
n11

2n13
~ei ~2n13!lt21!

1
~n12!@~n11!1A~n11!~n13!#

~2n13!~2n15!
~ei ~2n13!lt21!

3~e2 i ~2n15!lt21!J 2gn̄b@2~n11!

2A~n11!~n12!2An~n21!#1g@An~n11!

2 1
2 ~2n11!#Grn,n~t!. ~36!

In Fig. 4, a comparison of the mean number of photons and
the linewidth is made by plotting them against the dimen-
sionless interaction timelt for D550g. It can be seen from
the figure that the linewidth is a periodic function of the
interaction timet like the mean number of photons@11# but
with a time periodp/l for the large values ofn. The devia-
tion from the perfect periodicity for the large values of the
interaction time is due to the fact that the expansion ofbn ,
i.e., Eq. ~31!, does not hold forbn as an argument of the
trigonometric function under the large detuning limit, i.e.,
Eq. ~30! @11,12#. The appropriate condition for the large de-
tuning limit to justify the expansion ofbn as an argument of
trigonometric function is

4n2F gD G2lt!1. ~37!

The presence of the thermal photons does not effect the
linewidth at small dimensionless interaction timeslt. How-
ever, the significant effects of thermal photons on the line-

FIG. 4. Steady-state linewidth and average
number of photons vs the dimensionless interac-
tion timelt for the two-photon micromaser, i.e.,
D550g, with Nex[r a /g520 at zero tempera-
ture, i.e,n̄b50.

FIG. 5. Steady-state linewidth of the two-
photon micromaser, i.e.,D550g, vs the dimen-
sionless interaction timelt for ~a! n̄b50 and~b!
n b̄55. All other parameters are the same as in
Fig. 4.
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width of the two-photon micromaser for larger values of in-
teraction time can be seen in Fig. 5.

IV. COMPARISON WITH THE PHENOMENOLOGICAL,
EFFECTIVE HAMILTONIAN APPROACH

In the phenomenological effective Hamiltonian, the
atomic levelsua& and uc& are coupled to the cavity field
mode through a two-photon coupling constant. The Hamil-
tonian in the interaction picture under the rotating-wave ap-
proximation is

VI5\l~ ua&^cua21a†2uc&^au!, ~38!

wherel is the effective two-photon coupling constant.
The coefficients of the differential equation for the off-

diagonal elements of the field density operator, i.e., Eq.~3!,
in the present case are modified as

an,m8 5r a~Ca,n8 Ca,m8* 21!2
g

2
@2n̄b~n1m11!1n1m#,

~39!

bn,m8 52gn̄bA~n11!~m11!, ~40!

cn,m8 5g~ n̄b11!Anm, ~41!

dn,m8 5r aCc,n128 Cc,m128* , ~42!

where the probability amplitudesCa,n8 andCc,n128 are given
by @11,12#

Ca,n8 5cos
bn8

2
t, ~43!

Cc,n128 52 i sin
bn8

2
t, ~44!

with

bn852lA~n11!~n12!. ~45!

The expression for the linewidth in this approach becomes

meff~t!52Re(
n50

`

„r a$cos@A~n11!~n12!

2A~n12!~n13!#lt21%2gn̄b@2~n11!

2A~n11!~n12!2An~n11!#1g@An~n11!

2 1
2 ~2n11!#…rn,n~t!. ~46!

We now compare the results of the linewidth obtained
from the exact Hamiltonian approach under large detuning
limit with that obtained from the phenomenological effective
Hamiltonian approach. In Fig. 6, the linewidth for the exact
Hamiltonian ~under large detuning limit! and phenomeno-
logical effective Hamiltonian approach are plotted for
n b̄50 andNex[r a /g520. The obvious difference can be
explained by looking at the two expressions, i.e., Eqs.~36!
and ~46!, for n@1. The expression for the linewidth in the
phenomenological effective Hamiltonian approach forn@1,
which meansbn8'l(2n13), can be written in the form

meff~t!52Re(
n50

`

$r a@
1
2 ~e22ilt11!eilt21#

2gn̄b@2~n11!2A~n11!~n12!2An~n11!#

1g@An~n11!2 1
2 ~2n11!#%rn,n~t!. ~47!

Similarly, the expression for the linewidth in the exact
Hamiltonian approach under large detuning limit reduces to
the following form forn@1:

m~t!52Re(
n50

`

$r a@
1
2 ~e22ilt11!21#2gn̄b@2~n11!

2A~n11!~n12!2An~n11!#1g@An~n11!

2 1
2 ~2n11!#%rn,n~t!. ~48!

Expressions~47! and ~48! for the linewidth are identical
apart from an additional phase factor, i.e.,eilt with the term
proportional tor a in the results for phenomenological effec-
tive Hamiltonian approach. It can be seen from the above
equations that the linewidth in both approaches is a periodic

FIG. 6. Steady-state linewidth of the two-
photon micromaser, i.e.,D550g, for Nex520 and
n b̄50 for ~a! the phenomenological, effective
Hamiltonian approach and~b! the exact Hamil-
tonian approach.
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function of t but with different periods. In the phenomeno-
logical effective Hamiltonian approach, the period is 2p/l
with a maximum value approximately equal to 2Nex. On the
other hand, in the exact Hamiltonian approach, the period is

p/l with the maximum value approximately equal toNex.
This difference is due to the additional phase factor, which is
the result of the neglect of Stark shift in the phenomenologi-
cal effective Hamiltonian approach.
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