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Instabilities and dynamical pulsations are common features of solutions of a model that includes the material
variable dynamics for a laser with a polarization isotropic resonator and with a homogeneously broadened
j=1—j=0 transition. These resemble in some respects features found in third-order Lamb theories under
anisotropic conditions, such as splitting of the optical field into two relatively independent orthogonally
polarized modes with different optical frequencies. At higher intensities the amplitudes and frequencies of
these modes exhibit such strong coupling that a “two-mode” description loses its usefulness or effectiveness.
Various periodic attractors with strong intensity and polarization pulsations are found for moderate excitation
levels. Some of these attractors preserve the breaking of the polarization isotropy on average just as does any
linearly polarized solution. But in some cases the dynamics restore the polarization isotropy on average. We
also find other dynamical phenomena, including periodic and apparently chaotic states, often involving rapid
switching between long interludes of nearly constant polarization, and homoclinic behavior.

PACS numbes): 42.60.Mi, 42.65.Sf, 42.55.Lt

I. INTRODUCTION ity anisotropies in determining the final state or dynamical
behavior.

When a laser does not contain elements that constrain the This problem has been variously known as “a laser with a
electric field to a particular state of polarization, the vectornearly isotropic resonator’[1-3], “the Zeeman laser”
nature of the amplitude of the electromagnetic field enter§4—7], and “a two-mode laser’8], terms that as much as
into the dynamics. If the material variables also enter theanything else indicate a conceptual framework for interpre-
dynamics, then the vector nature of the material dipole motation of the results or for the formulation underlying the
ments also becomes important. Even when there are ineviheoretical approach and/or the intended application of the
table slight anisotropies in the cavity losses or differences iwork.
the cavity frequencies for fields of different polarization  The vector electric-field amplitude can always be repre-
states, the dynamical evolution of the vector character of theented by two scalar amplitudes of orthogonally polarized
electric field can be quite complicated. The dynamicallybasis vectors, and several different decompositions are pos-
evolving laser emission is not restricted only to the steadysible. But beyond the mathematical validity of such separa-
polarization state for which the system has the greatest gaitions, many treatments give greater physical significance to
or the least loss. them, concluding that the laser dynamics involves the inter-

For isotropic and nearly isotropic lasers, the degeneracygction of two nearly degenerate modes that have the same
of the angular-momentum states of the medium and the sizdengitudinal and transverse spatial patterns but differ in po-
of the decay rates of the intersublevel coherences and tHerization state, frequency, and amplitude. The evolution of
population differences relative to the decay rates of the popuhese modes has most often been described by two coupled
lations and of the electric-dipole moments play importantequations for the complex modal amplitudegically using
roles in the selection of the polarization state of the fieldthird-order Lamb theony with cross saturation coefficients
emitted by the laser. They contribute to a nonlinésatura-  depending on Doppler broadening of the medium, detunings,
tion induced preference of the medium for stable emissionand assumptions about the angular-momentum states of the
with linear or circular polarization. This material preferencemedium and various decay rates; see, for exanpl@,4—
can compete with or complement the preferences of the caw1].

A well-known, but often ignored, limitation of third-order
Lamb theories, despite the considerable success of these
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ables is adiabatically eliminated under the assumption thanodel for lasers tuned to resonance and with isotropic pa-
their decay rates are much larger than the field evolution rateameters. By keeping the dynamics of all of the material
an assumption not fully applicable to many lasers. Indeedyariables, we uncover a richer phenomenology of periodic
for many atomic gas lasers, far-infrared molecular gas laserpulsation phenomena, even lower instability thresholds than
solid-state lasers, and low-pressure mid-infrared moleculaihose found by Puccioret al, spontaneous selection of po-

gas lasers, the decay rate of the population variables is simi@fized eigenstates in the isotropic case, and dynamically in-
lar to or smaller than the cavity decay rate, making descripduced frequency splitting of the optical spectrum into or-

tions of the dynamics based on adiabatic elimination validhegonally polarized parts. o _
only very close to the lasing threshold. In another papdrl7] we explored the polarization switch-

Work including material variable dynamics has been rela-ir?g phenomenon that oceurs W.ith cavity det“”‘T]g for either
tively limited. Bakaevet al. [8] modeled dynamics in CO c!rcularly'or Imegrly polarized eigenstatédepending on re-
lasers by adiabatically eliminating the atomic dipole mo-s'dl.Jal a?lTotrr]ople)sand Web comp:r_ed thtgse res:JIts wnf;\ex-
ments but retaining variables for amplitudes of a spatial FoyP€nmental phénomena observed in noble-gas lasers. A more

rier expansion for the population inversishappropriate to complete generalizat!on of earlier considerat!ons of various
a standing-wave laser. Pucciatial.[13] included equations atomic decay. ra.tes in the context of equations S|m.|lar to
for dynamics of sublevel populations, atomic dipole mo_those of Ffuccmnet al. has recently been worked out6] in
ments, and quadrupole coherences between sublevels for iRgraIIeI with _the present work. : .

coherently pumped lasers, as, more recently, Vilaseca and The_remamder Of_ this paper is organ_lzed as follows. The
co-workers[14] did for optically pumped far-infrared lasers. modgl is presented in Sec. Il, an_d the q_rcularly and linearly
Others had earlier derived the appropriate formulas for thgolanzeq steady states af‘d their s_tab|l|ty a_naIyS|s areé pre-
dynamical evolution of these variablésee, for example, senteq in Sec. IIl. Numencal SOIUI'OQS for tlmg-dependent
[2,4,5,9,11,15 for incoherently pumped lasérsbut they behavior are presented in Sec. IV, while Sec. V is devoted to
used these formulas only to assess the coefficients in a r& summary and concluding remarks.

duced(third-order Lambp model for the coupled field ampli-

Since the work of Puccioét al. [13] the importance of The equations for the model are developed following the
the material variables to the polarization dynamics has regearivation in[13] for a field decomposed into components

ceived a certain amount of renewed theoreticd,16,17  yhat are right and left circularly polarized interacting with a
and experimentd]18,19 interest. Puccionet al. found that  jiection of atoms with 4=1 upper level and =0 lower

when the laser cavity frequency was resonant with the matqg, o Analyses of the most general form of this kind of

rial transition frequency there could be a polarization statgn,qe| with anisotropic parameters are presented elsewhere
instability of linearly polarized solutions for relatively low [16,17). For simplicity of comparison withj13], we retain
values of the excitatiofinear the lasing threshaldThis in-  qir assumptions and their notation for the particular case of

stability occurs in the subspace of real variables, in whichgqironic conditions and resonance between the cavity and
one could focus consideration on the amplituft@sher than i rial transition frequencies:

phasey of the complex variables.

We extend their studies to the time-dependent dynamics dEgr/dt=— kEg+ kPg, (1a
in the full model, where the phases are necessary if one is to
find behavior that involves modes of two different frequen- dE_/dt=—kE_+«P_, (1b)
cies. This common form of experimentally observed behav-
ior is usually attributed to birefringendphase anisotropigs dPg/dt=—y, Pg+ 7y, ERDg+ v, E,C, (10)
but we find that it also exists in their model with isotropic
parameters above the threshold for the “amplitude” instabil- dP_/dt=—vy, P +y, E.D_ + 7y, ERC*, (1d)
ity.

The common explanations of nonsinusoidal pulsations in dC/dt= — y.C— (y,/4)[E} P+ EgP} ], (19
a polarized component and in the total intensity have been
given in terms of two coupled amplitude equations with dif- _ N * *
ferent cavity frequencies for the two modggving an Adler- dDg/dt==7(Dr= o)~ (7/2[ErPr+ErPR
type equation well known for nonlinearly coupled oscilla- +3(EFP +E P)], (1f)
tors). But since we demonstrate here that similar phenomena
arise when the material dynamics are included in the model dD, /dt=—y,(D_— o)~ (y,/2)[E} P_+E_P}
for an isotropic laser, it remains an open question as to
whether nonsinusoidal pulsations and total intensity pulsa- +3(ELXPr+ERPE)]. (19

tions are best explained by material variable dynaniics
option explored hepeor by coupled amplitude equations HereEg andE, are the slowly varying amplitudes of right
with phase anisotropies. By studying both isotropic and anand left circularly polarized components of the fields, with
isotropic models that include material variable dynamicsthe cavity lossPr andP, are the associated slowly varying
(without excluding or limiting the behaviaa priori to only  and suitably rescaled amplitudes of the dipole moment den-
coupled amplitude equationsve believe we can gain the sities interacting with those fields, witp their decay rate;
best possible understanding of the situation. Dr andD, are the associated population inversion densities,
In the present work, we investigate the predictions of they, is the decay rate of the population inversions, and is
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the excitation rateC represents the quadrupole coherence TABLE I. Critical pump values for additional zero eigenvalues
between than=1 and—1 sublevels of the upper level with for stability of linearly polarized steady-state solutions. Note that all
v, its decay rate. We assume that the reference carrier wav@early polarized solutions have two zero stability eigenvalues cor-
for the dipole moments and fields is resonant with the atomi¢esponding to the global phase of the complex amplitude and the
transitions. In the analysis that follows we take a renormalrientation of the electric-field vectdrelative phase of the complex
ized timer=7, ! and henceforth use the notatiany,, v to amplitudes of the left and right circularly polarized compongnts
denote the losses and interlevel decay and mixing rates im
proportion tovy, .

Following the approach taken by Pucciatial. and gen- Ye

Phase instability
thresholdoy,

Amplitude instability
thresholdo,

eral considerationfl1,16, we assume that the effect of col- .01 1.060 6 1.060 6
lisional broadening on the transition is to give unequal values  g11 1.0717 1.065 17
to y,, v, and y,. We fix the ratio ofy, to v, at 0.01, a 0.015 1.125 63 1.083 48
reasonable order of magnitude for pressure broadened atomic g g, 1.214 29 1.106 42
gas lasers. Given the relaxation mechanisms at work in gas 43 1.4639 11525
laser media, we further assume that realistic valuesof 0.05 2963 16 1.245 78
may range betweem, and y, . Indeed, we discover that the , 3.483 87 13403
polarization state dynamics depend critically on the value of 0'1 6'166 67 1'484 58
this parameter, and one might even use the comparison of 0'3 59'5 25308
numerical and experimental results to invert the model and ' '
determine an effective value of . 2'3 739'2 8561181 2

As detailed most clearly in the review by Lenstid] and
elsewhere[20,21], the effect of isotropic collisions on the
j=1 level permits separate relaxation rates for each of the
tensorial components of this subpart of the atomic density
mat)rix, which(_inﬁluges ar]sc(:jqflfa(the totgl _:,]uble\ll;lal pcl)pula— Dr=D =1+{y(c—1)/(3y.+y))}, ®
tion), a vector(including the difference in the sublevel popu- _ B
lations, and a quadrupoléncluding the sublevel coherence ICl=y(c=1)I(Byc+ ).

C). The easiest way to incorporate the equilibration of theThis result is not affected by the value f since the popu-
sublevel populations is to rewrite the final two equations as 4ations are equal. In these cases the total output intehssty
sum and difference, witly, as the decay rate of the sum and 4¥c(o—1)/(3y.+ ), while the phase shift betweelir

a separatdlarge) decay ratey, for the difference in the andE_ (and the consequent phase shifts betwegrand P
populations, as discussed|ib6]. However, to limit the wide and for C) determines the particular linear polarization.
parameter range for our present Studies7 we take all the popa—here is an |nf|n|ty of solutions of this type with the relative
lation decay rates to be equal so that generally the system hf§ase betweekr andE, varying between 0 and72

a preferencefrom the character of the material saturation Note that wheny, =1y, the total output intensity for this
processesfor linearly polarized emission, with a strength State is the same as for the circularly polarized states above.

that depends on the magnitude of the parameter nafig. ~ However asy,—0, the intensity of the linearly polarized
solution goes to 0, while ag,— the intensity rises to &

—1)/3. Thus the linearly polarized state is more intense for
v.>>y; While the circularly polarized state is more intense for

Ye<MN-

|Erl =|EL|=|Prl=|PLI={2¥c(a—1)/(3y.+y)}*?

Ill. LINEARLY POLARIZED AND CIRCULARLY
POLARIZED STEADY STATES
AND THEIR STABILITY ANALYSIS

A. Steady-state solutions B. Stability analysis

For an isotropic cavity in resonance, Puccienial. [13] 1. Circularly polarized states

provide most of the needed information on the different pqr the circularly polarized states, it is natural to imagine
steady-state solutions of the problem. These are summarizgfy; since the population inversion of one transition is partly
here. unutilized, the corresponding gain remains more than the
(i) The off state loss. If this is true, the gain will quickly amplify any pertur-
C=Er=E_ =Pgr=P_.=0, Dr=D_=0. (2 bation that excites the orthogonal circularly polarized com-
(i) The circularly polarized states af@) right circular ponent. Hle[ncae ithis rehasonable to expect, asl obs.ekrved by Puc-
En=Po=(0—1)Y2 E =P, =C=0, Dg=1, cioni et al.[13], that these states are unstable with respect to
R=Pr=(0—1) Lot R the growth of the other state when they exabove thresh-
DL=(o+1)/2 (3 old) and this instability causes a change of the circularly
and (b) left circular polarized initial state towards elliptical polarization, perhaps
E,.=P =(0—1)¥2 Ef=Pg=C=0, D =1, ending as linearly polarized behavior if that state is stable.
Dr=(oc+1)/2. (4)

To verify this result and to compare our results with the
work of others, we consider the linear stability of the solu-

In these cases the total output intensity=|Eg|%+|E_|?) is

o—1. If y;#v, thenl=4y,(c—1)/(3y;+v,), with corre-

sponding changes in the values®f andDg.
(iii) The linearly polarized states

tion with right circularly polarized emission. The equations
that critically govern its stability are those for the left circu-
larly polarized field, the left circularly polarized atomic di-
pole moment, and the quadrupole coherendie active



53 POLARIZATION STABILITY AND DYNAMICS IN A MODE L. .. 3517

1.6
4
1.7 o=
1.8 )j/‘j
e

oy rr/
g 9
[
5 /D/
g -2
i
o

2.1
3 /]/

2.2

2.3 o

2.4

04 0.2 ) 0.2 0.4 0.6 0.8 1

Log (Pump-1)

FIG. 2. Pulsation frequency of linearly polarized components of
the time-dependent emission versus punfpr y.=0.01, for which
the total intensity remained constant.

In the domain of stability we have a situation that contra-
dicts the naive expectation. We have inversion that provides
amplification that exceeds the cavity losses on the transition
that is suppressed, but the stability of the operating single
polarized state indicates that there is absorption of any per-
turbation of that field. The more slowly decaying coherence
term provides a contribution to the overall dipole moment,
contributing absorption on the “off” transition as discussed
in [16].

The eigenvectors for the instability indicate that it repre-
sents the onset of the off circularly polarized field with
cod)t modulation of its electric fieldor with equally strong

FIG. 1. Schematics of the stability diagrams for linearly and optical Sldebar_1ds shifted b;zQ from the Steady-tstatg field
circularly polarized steady-state solutions in the phase space oqf the _other Clrculz_irly polarized compon_ent .W.h.ICh IS reso-
pumping parametes versus the decay rate of the coherengéor na_nt with the f';\tom|c? frequenicyThe resulting initial quu-
fixed values of the other parametefs) y/y, =0.01, x/y, =0.5, Ia_ttlons_ of the intensity of the off field and of the totgl inten-
y5= (b) y;>. LP and CP indicate regions of stable linearly Sity will be at frequency 2. However, as shown in our
polarized and circularly polarized steady-state solutions, respediumerical solutions, the final state that develops from this
tively. instability involves equal spectral power of the two circularly

polarized components with symmetric detunings from the
field, polarization, and population inversion have the usuahtomic resonance frequency.
stability of a single-mode laser with a scalar amplitude in a For the parameter values we will use generally for our
Maxwell-Bloch equation model and the steady state is stablgymerical solutions of Eqg1) (x=0.05, ,=0.01), the re-
in this subspace so long as<1+v. In addition, the left  gion of stable circularly polarized emission is relatively
circularly polarized inversion is stabJeThe remaining SiX gmall in values ofs, existing approximately for 100

linearized equations separate into two sets of three equations; gg The instability arises via a Hopf bifurcation and its
for the variables, , P, , andC* and their complex conju- frequency goes to zero as approaches,

gates, respectively. The result is a domain of stability for the While there is no physical reason to justify Settng v,

circularly polarized states only in the condition gf>y. since the decays of the amplitudes of the states due to spon-

This domain is bounded by the laser threshold from belovx{ o i
: : . ... taneous emission necessarily lead to decays of the coher-
and by a double Hopf bifurcation from above. The mStab”Ityences into which these amp};itudes may erBI/ter this choice

via the Hopf bifurcation is found above a critical valuemf i ; . . .
P @ provides a parameter region for the model in which the cir-

o, given by ) L
cularly polarized states are stable near threshold. This is of
0c=14+4y(k+1)(1+k+ y)/[2k%+ 2k particular interest since a preference for circularly polarized
emission has been noted experimentally for certain HeNe

ty(k=1=v)]. ®  |aser transitions, such as the=1—j=0 1.523um line

[4,9]. As shown elsewherg 6], if one includes in this model

a decay rate for the population differengeg that is larger
O%=2yk(k+1)(y,— Y {2k + 2K+ y(k—1— yc)}. than ¥, then the circularly polarized state is stable for
(7) v.< 73, giving a physically reasonable and accessible region

The Hopf bifurcation frequency is given by
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0.1 = 0.1 fomt sent combinations of parameters for which the
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e R Y turn out to be long-lived transients, while the ul-
0 O 0 < timate asymptotically stable solutions involve
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IH R two frequency-split circularly polarized modes
with constant intensitiesee the tejt Case(d) is
0.25 0.2 one for which the instability threshold occurs at
r the lasing thresholdr=1.0. Here y;=v,=0.01.
0.2 [ c) 02 Errant points indicate fast transients before the
. Ll trajectory settled onto the long-lived but slightly
0.1 0.15 | unstable attracting subset. Selected points spaced
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dicated on the axes by solid circles.
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defined byy, < y.<; that has similar phenomenology. It is
not easy to compare the results for different models in a

2. Linearly polarized states

For the polarization isotropic laser medium and laser cav-

simple way, but from the point of view of the third-order ity, the linearly polarized states form an infinite family of
Lamb theory cross saturation rates, the range we propose féplutions with arbitrary orientation of the vector of linear
y./, carries the ratio of the cross-saturation coefficients tdoolarization in the transverse plane. According to the analy-
the self-saturation coefficient from values favoring circularsis of Puccioniet al. [13], these states are unstable with re-
polarization to neutral coupling to values favoring linear po-spect to perturbations in the intensity difference of the circu-

larization.

larly polarized fields that preserve the total intensity. Thus
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additional dimensions for this phase space. But there are re-
ally only four more dimensions available to the dynamics as
the absolute(sum phase of the system retains the neutral
stability that is well known for autonomous optical systems.
(It is the noise-induced diffusion of this total phase that leads
to the linewidth of a traditional laser when projected as a
diffusion of the phase of the electric-field amplitude.

The four remaining phase variables have one negative ei-
genvalue that corresponds to the difference between the field
S and dipole phases. The eigenvalues for the angle of orienta-
°0 o - oo " o os tion (“the orientational phase)’ of the linearly polarized

' ' ' ‘ ' electric-field vector(given by the relative phase between the
e circularly polarized componenigthe relative phase between

FIG. 4. Maximum and minimum values of the time-dependentthe right and left circularly polarized dipole moments, and
solutions for the total intensity for different values of with the phase of the quadrupole coherence are given by
o=3.0.

~N © -
IS o N

Total Intensity
'Y
»

2.4

L NN A (Kt et D) A N[ yek+ Yot vi(— &l yo+3)1/12]=0.
these correspond to oscillations in the ellipticity of the emis- (kb yet DA yert yet v = wlyet3) ](11)

sion. The linearly polarized steady states are also always
unstable with a positive real eigenvalue wheg<wy, (or
ve<7v;, when y<y; [11,16]). When y.>vy,, for our case,
the instability occurs above a critical threshold valog

Evidently there is a second zero eigenvalire addition to
that associated with the sum of the phaseghich corre-
sponds to the neutral stability of the orientation of the lin-

given by early polarized state, and finally there may be yet a third zero
Ta=1+[(k+1)%+ y(x+1)]Byet y)/[267+ 2k eigenvalugsteady bifurcatiopnwhen
ey =l ® | =493k D)y (26— ye), (12

which is more accessible than the usual single-mode laser ] ] _ )
second thresholdin that it exists fork<1 and generally for ~Which can be written in terms of a pumping threshold, using
a lower value ofs), and with our parameters af=0.5 and  the expression fot in terms of the pumpr, as
v,=0.01 this can be writteffor y,<1) as
op=1+ye(k +D)Byet ) (26— v), (13
0,=~1+2.2653vy.+0.0)/[1.5-0.51y.]. 9

subject to the condition2> 1y, . Note that there is an asymp-
tote at which this instability threshold reaches infinity for
2k=v.. For example, fork=0.5 and y=0.01 we have
0,>1+150y(37,+0.00/(1—vy.). The linearly polarized

Q2=[2xy(0a=1)1(ye— YL (Bye+ m) (x+ v+ 1)1, steady-state solutions are unstable for values of | above

1 these thresholds.

The neutral stability of the orientation of the linearly po-
which has the basic structure of the relaxation oscillatiorlarized solutions appears even though there is more popula-
frequency of a single-mode claBslaser(the leading term in  tion inversion than the normal threshold value for exponen-
bracket$, but multiplied by a factor(y,—v), which may tial growth of the suppressed field. Despite the excess
reduce this frequency to nearly zero. In the limit of largeinversion there is neither net gain nor ldgs6]. The zero
homogeneous broadening ang>v, we see that this fre- eigenvalue for the relative phase of the fields means that
quency differs from the usual single-mode relaxation oscil-appropriate perturbations of the amplitude of the off linearly
lation frequency by2)*2. As a modulation of the ellipticity polarized field, the off dipole, or the imaginary part of the
of the solution, this instability causes, to higher order in thecoherenceC lead to a simple diffusive rotation of the lin-
perturbation, a corresponding intensity modulation at twicesarly polarized state in real space.
this frequency. In fact, both the intensities of the strong and Comparing these two thresholds we find that the “ampli-
weak linearly polarized components oscillate at twice thistude instability” (which modulates the ellipticifyalways oc-
frequency as well. curs at a lower value of the pump than the phase instability.

As we have noted in the discussion of the potential pheFor example, fork=0.5 and y=0.01 we have values as
nomena contained in the full 12 equations of the model, thershown in Table I. The two thresholds are very close over a
is also the possibility of phase instabilities that would corre-range of . less than 2, but for large values ofy, ap-
spond to phase modulations that might lead to either rotatioproachingx the phase instability threshold goes asymptoti-
of the linear polarization or modulation of the ellipticity. cally to infinity.

Phase instabilities might also lead to frequency splitting Paralleling the result for the stability of the circularly po-
(several frequencies in the optical spectjumn to the onset larized solutiong16], the introduction of a decay ratg (for

of a solution involving two differently(orthogonally polar-  the difference of th&k andL population differencesthat is
ized states with different optical frequencies. There are fivdarger thany, limits the domain of stability of the linearly

The frequency of the 100% amplitude modulation of the
orthogonally polarizedweak field in the vicinity of this
instability threshold is given by the expression
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polarized solutions ta/.> y;. This gives, within the model, 3. Summary of observations on the stability

a physically accessible region of circularly polarized emis- of these steady-state solutions

sion y,<y.<y; appropriate to describe some lasers. This At the laser threshold, there is a bifurcation of two circu-
comes about from a shift in the boundary for the amplitudelarly polarized solutions and an infinite set of linearly polar-
instabilities of the linearly polarized state, but there is nojzed solutions. Just above the threshold for laser generation,
shift in the instability condition for the phase instabilities, sothe circularly polarized states are both stafitee system is

the collision of these boundaries fory{=vy,=v,) is lost bistable when the output intensity for circularly polarized
when the collision takes place gt=y; with y;>v,. emission is greater than the output intensity for one of the



0.0256

0.02

Frequency

0.005 -

POLARIZATION STABILITY AND DYNAMICS IN A MODE L. .. 3521

0.015

0.1

0.2

Ye

0.3

04

05

FIG. 6. Pulsation frequency of IV and IH vg for ¢=3.0.

degenerate infinity of linearly polarized solutiofthis re-
quiresy, <y, wheny,=1y;, or y.<vy; more generally When
the linearly polarized output is greater than the circularlysults of stability analyses are summarized schematically in
polarized outpu(y.>7y, when y=1v;, or y.>y; more gen-
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erally) the linearly polarized emission is stakithough with
the possibility for diffusion of the orientation of the linear
polarization. This choice of the preferretable polariza-
tion basis is a form of the “maximum emission principle”
[22].

Elliptically polarized solutions, of arbitrary ellipticity, ex-
ist at the neutral stability boundary.=y, (or y.=y; more
generally. We have numerical evidence that these solutions,
if they exist off this boundary, are unstable.

The Hopf bifurcation—steady bifurcation collision that oc-
curs wheny.=vy; (which is heightened whew,=y.=v;,
as then there are simultaneously thiee0 eigenvaluegfor
the global phase, for the ellipticity, and for the orientation of
the major axis of the polarization ellipgazimuth]) has a
special feature. The frequency of the Hopf bifurcation goes
asymptotically to zero at the collision, making this a gener-
alized Takens-Boganov poifi23] with interesting dynamics
in the vicinity, as will be seen numerically. All of these re-

Fig. 1.

IL vs. IR

Q0.5 1 1.5 2 25 3 35 4
FIG. 7. Plots of IV vs IH and of IL vs IR for
0=3.0 as in Fig. 3 fory,=0.5, 0.3, 0.17, 0.165,
0.16, 0.15, 0.13, 0.1, 0.03, 0.015, 0.01, 0.00 for
(@—(l), respectively. Two of the family of lin-
( early polarized solutions are indicated on the axes
\ by arrows.
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IV. NUMERICAL RESULTS Casperson22], who found greater average emission for
FOR TIME-DEPENDENT SOLUTIONS time-dependent solutions than for steady states in a different
A. Method of solution laser system.

} . . Here in a typical numerical result, the intensities of the
_For our numerical solutions the equations were solveqinear and circularly polarized components of the field oscil-
with a fourth-order Runge-Kutta integration routine with a e sinusoidally and out of phase with different percentage
fixed time step taken to be small enough to give convergeny, g ations, though those percentage modulations could be
SO'(;J“O_”S' For the studies reported here we will take0.5 varied by perturbations or changes in the initial conditions.
and %=0.01. This is one of several indications that the dynamical laser
operation has been established as a combination of two op-
tical fields of orthogonal polarization statéshich are typi-

For v.=7,=0.01, where both the ellipticity and the orien- cally elliptically polarized with different optical frequencies.
tation of the major axis of the polarization stdtes well as  The constancy of the amplitudes of the selected polarization
the global phase of the complex amplitiidee free to dif- basis states is reflected in the sinusoidaat frequency
fuse (have zero eigenvalug®ven in the “stable” steady nature of the intensity pulsations of a different polarized
state, there is the amplitude instability threshold for time-component of the emission. The ellipticity of these chosen
dependent dynamical solutions at a pump vals€l.06. The states depends sensitively on the initial conditions and any
time-dependent solutions have a constant total inteXeitgr ~ perturbations. The pulsation frequency in the unstable range
a wide range of pump parameters explorethough this of parameters is shown in Fig. 2, where it is plotted against
value exceeds the common value of the intensity of any othe degree to which the pump paramdigris above thresh-
the steady-state solutions. This corresponds to a further geoid for laser action. This clearly indicates that the pulsation
eralization of the maximum emission principle, as noted byfrequency(which is the splitting between the two strongest

B. Results for the “neutral stability case”
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components in the optical spectrum of the fieddows as the the phase ofC, as noted for steady states in Sec. Ill A. The
square root of the excess pump over threshold, just like arientation of the linearly polarized states can be perturbed
Rabi frequency or a relaxation oscillation frequency in aarbitrarily by phase shifts in the fields, the dipoles, and the
“classB” laser and just like the characteristic frequencies of coherenceC and continuous noise causes diffusive motion of
the complex conjugate eigenvalues found in the stabilitthe orientation of this linearly polarized state.
analysis of Sec Il B, even though for these parameters there To explore the regions of parameter space others have
are no complex conjugate eigenvalues at threshold. Thigpserved to be unstable or time dependent, we note that
splitting of the frequencies qf the two modes is al_so reminisyyhen o=1.1, the amplitude instability threshold has been
cent of the behavior of multimode dye lasers, which spontag,ossed for values 0%, <0.018. To try to understand the
neously select two modder narrow groups of modgsepa- dynamics through a partial representation in phase space, we
ra]}tehd by a factor that growi prohpokrﬂor;ally to the square "0k how examples of the variation of the intensities of linearly
of the excess pump over threshgie—-24. polarized and circularly polarized components in plots for
v.=<0.02 in Fig. 3. In this zone we see instabilities involving
both the relative intensities of the two modes and a fre-
To better understand this behavior, we first study it inquency splitting of the sort studied by Grossman and Yao
more detail as a function of, and detuning near the lasing [27].
threshold(for o=1.1). These cases should be readily compa- For 7,<0.01=1v; we find long transients in the form of
rable to solutions found for third-order Lamb theory, exceptpulsations in both the total intensity and in the polarized
that third-order Lamb theory does not allow for the ampli- intensities, with the system dwelling for relatively long times
tude instability for a polarization isotropic laser. For valuesin each of the two circularly polarized unstable states
of vy.=0.02, the output is stable linearly polarized behavior(though with growing or decaying intensjtyollowed by a
at the resonance frequency of the cavity and the materiahore rapid switching to the other circularly polarized state.
transition. Solutions with different orientations of their linear The dwell time becomes longer agis reduced to zero. For
polarization are easily excited by shifts in the relative phasesuch low values ofy, the linearly polarized steady-state so-
of the fields and polarizations and the corresponding shift ofutions have nearly disappeared in a collapse onto the un-

C. Results for pumping near threshold
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stable off solution. Generally the trajectories evidently avoidnature of the pulsations in the total intensity for several dif-
the proximity of the unstable steady-state solutidireearly  ferent characteristic regions and in the intensities of the lin-
or circularly polarized that are indicated. However, after early and circularly polarized components of the output, in
long evolution on the type of weakly unstable and charactertime as well as in certain phase-space projections. Figure 6
istic attractors shown in Figs.(8—3(d) the solutions settle gives the variation of the pulsing frequency of the linearly
onto two circularly polarized modes with symmetrically de- polarized components of the intensity versys. For
tuned optical frequencies. The resulting total intensity is con-, <~0.15, the total intensity pulses at twice the frequency
stant, while the intensities of vertically and horizontally po- of the pulsations of the intensities of linearly polarized com-
larized components are 100% modulated at the begf,nents while fory,>~0.17 the total intensity has the same
frequency[28]. Because the splitting frequency is mUCh.’Eulsation frequency as the intensities of the polarized com-

S o ok et i oo et st oo For vale o.near 0.1, th inensiy pusatons
yp ' re quite large and rather more irregular. Figure 7 shows

the orientation of the polarization vector rotates in time, just ariations of the intensities of orthogonally bolarized com-
as would be expected from Zeeman splitting of the magnetié/ e rinog y P
onents of the emission for a wide range of valuegaf

sublevels from an applied magnetic field. In this case the® Th p : q : f behavi funct
splitting is a spontaneous consequence of the dynalr@&s of ere are four primary domains ot behavior as a function
-

. ) _ (i) For low v, (near and below 0.0the behavior is simi-
D. Higher pump levels: Strong output fields lar to that found fory,=0.01 ato=1.1 (see Fig. 3 that is,

We next explore the behavior of the system in resonancévo orthogonal elliptically polarized solutions of different
for the pump parameter=3.0 where the steady-state solu- frequencies, which lead to out of phase pulsations of either
tions are almost always unstable except fgrlarger than pair of right and left circularly polarizedor vertically and
about 0.5. By raising,, above 0.01=1y,), the total intensity  horizontally polarizegl intensities and no pulsations in the
begins to pulse. Figure 4 shows the upper and lower boundstal intensity. Note that fo. =0, the two states are exactly
of the total intensity pulsations versts. Figure 5 shows the circularly polarizedconstant circularly polarized intensities,
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FIG. 8. Plots of the real electric-field vector
Re(E,) vs ReE,) with a carrier frequency of
about & for ¢=3.0 and different values ofy
[0.5, 0.3, 0.17, 0.165, 0.16, 0.15, 0.1, 0.03, 0.01,
0.0 for (a)—(j), respectively. Polarization isot-
ropy is evidently restored on average after suffi-
ciently long times for the conditions afd)—(h)
and(j). [With the carrier frequency added, purely
linearly polarized emission of constant amplitude
would give a line through the origin as fda),
circularly polarized emission of constant ampli-
tude would give a circle centered at the origin,
and elliptically polarized emission of constant
amplitude would give an ellipse centered at the
origin. Points are taken as for other time series at
10-20 points per period of the intensity modula-
tions for 40—50 periods.
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100% modulated linearly polarized intensities, constant totaérage intensitie¢l ,;)/(l\) is about 25. For,=0.2 the hori-
intensity) as found atc=1.1 for y,<0.01. zontal mode has about a 25% modulation and the ratio of the

(i) For v, between 0.015 and 0.15, there are pulsations inwo average intensities is about 17.
the total intensity with a dominant frequency that is twice the In between the second and third regions of different be-
dominant frequency of the pulsations of the polarized intenhavior, neary,=0.16, we see a destabilization of the simple,
sities. The partial phase-space portraits of these periodic aksymmetric periodic oscillations found for highgss. Here
tractors are symmetric in the intensities of orthogonally po-the trajectories pass near the point of zero total intensity. In
larized eigenstates. the phase plots of IV vs IH in Fig. 7 we see evidence of two

It may be that the special dynamics in these first twounstable nearly linearly polarized attractors, ellipses near the
regions arise from the strong phase dynanfasswell as the vertical and horizontal axes, which are “glued” together to
amplitude dynamigsthat are induced by the instability of form the more elaborate attractor. The total intensity pulsa-
phase eigenvalues as well as the amplitude eigenvalues. tion frequency, which was equal to the pulsation frequencies

(iii) For y, between 0.17 and 0.4, the pulsations are in theof the linearly polarized components for larger valuesof
vicinity of a linearly polarized steady-state solution with shifts to being double the frequency of the intensity pulsa-
modulation of both the total intensity and the tip angle of thetions of polarized components for lower values gf. We
polarization state. see the abruptness of this transition in Fig. 6.

(iv) For v, higher than 0.4, the pulsations cease and the At y,=0.165 the apparently complex behavior seen in the
laser operates with a linearly polarized output at an intensitylot of the linearly polarized intensities masks a periodic
of about 2.66, as predicted for these steady-state solutions pulsation evident in the IL vs IR plots in Fig. 7 that repeats
this range ofy, . These linearly polarized solutions are stableafter every two pulses in the circularly polarized intensities.
in this case, except for their neutral stability with regard toln this case the dynamics causes a rotation of the orientation
orientational diffusion. of the linearly polarized states that does not necessarily give

The bifurcation from the stable horizontally polarized so-a rational ratio between the rotation rate and the pulsation
lution to the time-dependent solution ggis decreased from rate. The trajectory spends long times alternately in left or
the stable single-mode region represe(ftem numerical right circularly polarized emission with changing intensity
studieg the onset of a weak vertically polarized field at two before switching to the other polarization state relatively rap-
symmetrically detuned optical frequenci@s, equivalently, idly. In the Poincaresphere representation this involves long
at the resonant carrier frequency with 100% modulation ofresidency along the polar axis.
the amplitud¢ This instability initially does not lead to For y,=0.16 the sustained pulsations and phase portraits
modulation of the total intensityat least not to the same seem to indicate a truly chaotic behavior, as is evident in the
order of perturbation Instead it represents a modulation of scatter of points which do not settle onto an attracting subset
the ellipticity of the solution. in the plots of both linearly and circularly polarized intensi-

As the vertically polarized component grows stronger inties in Fig. {e). For lower values ofy,~0.14—0.145, where
amplitude for lower values o, the once second-order dis- the trajectories approach tt{6,0) unstable fixed point in a
turbance of the total intensity becomes clearer as a modul&ind of homoclinic trajectory, the speed of the trajectory and
tion at twice the frequency of modulation of the vertically the corresponding frequency of the orbisge Fig. & slows
polarized amplitude. The total intensity, the horizontally po-to near zero, as expected.
larized intensity, and the vertically polarized intensity all os- In the third and fourth regions of behavior our attractors
cillate at twice the modulation frequency of the vertically (linearly polarized or modulated solutionare states that
polarized amplitude, as is evident in Fig. 5 fge=0.3. Inthe  have broken the cylindrical symmetry of the equations. How-
12-dimensional phase space this corresponds to the birth ofever, in the first two regions the cylindrical symmetry that
simple limit cycle of constant intensity that subsequently de-was broken for the steady-state solutions is restored by the
forms, having two oscillations on the surface of a small torusdynamics on average9]. This restoration of the symmetry
for each revolution. From the point of view of the Poincareis indicated by the plots in Fig. 8 of the real electric-field
sphere, the motion of the state vector is an oscillation altervector in real space and of the orientational angle of this
nately above and below the equatorial plane in a kind oflectric-field vector in time. A small carrier frequency has
figure-8 shaped trajectory. been selected so that circularly polarized behavior is not fro-

Returning to the birth of this instability ay.=0.4, the zen in angle but rotates clockwise or counterclockwise de-
vertically polarized intensity is nearly zero and the horizon-pending on whether the solution is right or left circularly
tally polarized intensity and the total intensity weakly pulse.polarized. This carrier frequency causes constant amplitude
Since the modulation is very weak here, we can see clearlgolutions of circular polarization to trace out circles in real
the infinitesimal effects just above the bifurcation threshold space(with a slope in the orientation angle versus tjraed
The strong horizontally polarized component operates on avcauses constant amplitude solutions of linear polarization to
erage with an optical frequency given by the cavity fre-trace out lines through the origin at fixed orientation angles
guency (with a weak frequency and phase modulatjon (with jumps of 7 rad in the orientational phase
while the vertically polarized component operates at two op- As a final note, we point out that the dynamical pulsations
tical frequencies that are detuned by abauit.01. that have a particular linear polarization on average are sus-

As v, is reduced below 0.4 the operation remains pre-ceptible to perturbationgor diffusion in the presence of
dominantly linearly polarized, though the amplitude of thenoise of the orientation of the major axis of their polariza-
pulsations increases. For.=0.3 the pulsations are about tion ellipse. An illustration of this is given in Fig. 9, where
10% of the horizontal intensity and the ratio of the two av-only the initial conditions have been changed. Figufe) 9
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is that we show that the fully developed time-dependent dy-

‘ 1 ) namics of their model contains not only amplitude modula-

3.5 L. a AAAAA , tions, as indicated by the primary bifurcation phenomenon

: that they reported, but also spontaneous splitting of the opti-
3 ,’ ; 2 cal frequencies of the two modes and strong phase modula-

| : tion as well. Already one might infer that, since 100% am-
o5 i /;7 plitude modulation of a field that is initially zero means the
/o / 7 _ creation of two sidebands. Appreciating that the linearly po-
> 5 [ ye / 3 § | larized strong field has arbitrary orientation, one should not
J / be surprised at a dynamical mixing of the strong resonant

15 / / : field and the orthogonally polarized sidebands to create two

/ / strong fields of nearly orthogonal polarization, both of which
1 / e are detuned from resonance. Once the amplitude pulsations
/ of both fields are strong, the likelihood is enhanced of fre-
0.5 f f guency dynamics as the two fields compete for stronger gain
on resonance.
0 We have demonstrated that even with perfect symmetry
0 05 1 15 2 25 3 35 4 (isotropy) in the parameter space and perfect resonance be-
IH tween the cavity and the material frequencies, the dynamical
coupling of the vector field and the medium can split the
field into two modes with different polarization states and
different frequencieqor give the strong mode two weak
2 5 3 5 5 sidebands having the orthogonal polarization and different
b) optical frequencies Furthermore, the fully developed dy-
1.5 : : : namics give dramatic amplitude and frequency modulations
to the fields. These are features that do not appear in coupled
1 amplitude(third-order Lamb theorymodels without the ad-
dition of anisotropies.

0.5 4 We believe that this model, when considered in the ex-
;_l; ég panded parameter space, provides an adequate structure of
s 1 : nonlinear interactions to extend the usual third-order Lamb
o 5 theory to stronger fields and higher values of the pump. We

-0.5 il believe it can be useful as the first step in considering models

that can more completely model the polarization preferences
-1 2 \ and dynamics of lasers with nearly isotropic cavities. Adjust-
: 3 ments in the parameterg. and y; permit consideration of
1.5 lasers that have linearly polarized, circularly polarized, or
arbitrarily polarized emission in the pump parameter range
-2 : that gives time-independent solutions. In this way, one has
2 15 -1 05 0 05 1 15 2 an initial indication of possible behavior in lasers with other
Re{Eh} j—1]' transitions, since, at the level of third-order Lamb ap-

) ) ) ) ~proximations, this model can emulate different strengths of
FIG. 9. () Plots of the intensity of the vertically polarized emis- hjs material saturation preference for linearly or circularly

sion versus the intensity of the horlzor!tally_ polarlzgq emission forpolarized emission. The strengths of these self- and cross-
solutions withy,=0.3 ando=3.0, but with different initial condi-

. ) saturation coefficients are specifically evaluated for near-
tions. (b) Plots of the Re,) vs ReEy) for the same solutions. P N )
These show how perturbations induce diffusion of the major axi threshold operation ifi6]. Investigation of whether the pre

orientation with respect to the center @ of the major axis of the ?égggnazlrgpgturgzmgr?:avl\)/:ltlr?eesx fé)rrimtehnetge Wﬁiiez arroe ri{’:lnte
average polarization state. g p , pprop

values are taken for the different decay rates, will be a natu-

shows the intensities of the linearly polarized componentsf@l extension of the present work.

while Fig. 9b) shows the evolution of the real part of the _ The results of stability analyses presented here are also a
vector electric field. In each case the dynamics is essentiallffrst step along the study of the response of such lasers to
the same on the Poincasphere, but the projections are dif- echnical and intrinsic noise and of the subtleties of the laser

ferent. In the presence of continuous noise there would bnewidths, correlated noises, intensity fluctuations, and
diffusion among a whole family of these states. phase sensitive noise in the presence of material variable

dynamics. Even below the threshold for dynamical instabili-
ties these phenomena will be strongly affected by eigenval-
ues with small real parts. This should enliven and enlarge the

A critical feature of these results relative to the consider-considerations represented by the studies reporteld 9h
ation of this model by Puccioni, Tratnik, Sipe, and Opp8]  and their extensiong28].

V. SUMMARY
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