
Polarization stability and dynamics in a model for a polarization-isotropic laser
that goes beyond third-order Lamb theory

N. B. Abraham,1,* ,§ M. D. Matlin,1,2,† and R. S. Gioggia3,‡
1Department of Physics, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, Pennsylvania 19010-2899

2Department of Chemistry and Physics, Rowan College of New Jersey, Glassboro, New Jersey 08028
3Department of Physics, Widener University, Chester, Pennsylvania 19013
~Received 13 March 1995; revised manuscript received 1 December 1995!

Instabilities and dynamical pulsations are common features of solutions of a model that includes the material
variable dynamics for a laser with a polarization isotropic resonator and with a homogeneously broadened
j51→ j50 transition. These resemble in some respects features found in third-order Lamb theories under
anisotropic conditions, such as splitting of the optical field into two relatively independent orthogonally
polarized modes with different optical frequencies. At higher intensities the amplitudes and frequencies of
these modes exhibit such strong coupling that a ‘‘two-mode’’ description loses its usefulness or effectiveness.
Various periodic attractors with strong intensity and polarization pulsations are found for moderate excitation
levels. Some of these attractors preserve the breaking of the polarization isotropy on average just as does any
linearly polarized solution. But in some cases the dynamics restore the polarization isotropy on average. We
also find other dynamical phenomena, including periodic and apparently chaotic states, often involving rapid
switching between long interludes of nearly constant polarization, and homoclinic behavior.

PACS number~s!: 42.60.Mi, 42.65.Sf, 42.55.Lt

I. INTRODUCTION

When a laser does not contain elements that constrain the
electric field to a particular state of polarization, the vector
nature of the amplitude of the electromagnetic field enters
into the dynamics. If the material variables also enter the
dynamics, then the vector nature of the material dipole mo-
ments also becomes important. Even when there are inevi-
table slight anisotropies in the cavity losses or differences in
the cavity frequencies for fields of different polarization
states, the dynamical evolution of the vector character of the
electric field can be quite complicated. The dynamically
evolving laser emission is not restricted only to the steady
polarization state for which the system has the greatest gain
or the least loss.

For isotropic and nearly isotropic lasers, the degeneracy
of the angular-momentum states of the medium and the sizes
of the decay rates of the intersublevel coherences and the
population differences relative to the decay rates of the popu-
lations and of the electric-dipole moments play important
roles in the selection of the polarization state of the field
emitted by the laser. They contribute to a nonlinear~satura-
tion induced! preference of the medium for stable emission
with linear or circular polarization. This material preference
can compete with or complement the preferences of the cav-

ity anisotropies in determining the final state or dynamical
behavior.

This problem has been variously known as ‘‘a laser with a
nearly isotropic resonator’’@1–3#, ‘‘the Zeeman laser’’
@4–7#, and ‘‘a two-mode laser’’@8#, terms that as much as
anything else indicate a conceptual framework for interpre-
tation of the results or for the formulation underlying the
theoretical approach and/or the intended application of the
work.

The vector electric-field amplitude can always be repre-
sented by two scalar amplitudes of orthogonally polarized
basis vectors, and several different decompositions are pos-
sible. But beyond the mathematical validity of such separa-
tions, many treatments give greater physical significance to
them, concluding that the laser dynamics involves the inter-
action of two nearly degenerate modes that have the same
longitudinal and transverse spatial patterns but differ in po-
larization state, frequency, and amplitude. The evolution of
these modes has most often been described by two coupled
equations for the complex modal amplitudes~typically using
third-order Lamb theory!, with cross saturation coefficients
depending on Doppler broadening of the medium, detunings,
and assumptions about the angular-momentum states of the
medium and various decay rates; see, for example,@1,2,4–
11#.

A well-known, but often ignored, limitation of third-order
Lamb theories, despite the considerable success of these
models, is that accuracies of 10% or better in predicting the
steady-state properties are possible only for excitations less
than 20% above the lasing threshold@12#. Relaxing this limi-
tation is one motivation of our present study as we examine
polarization dynamics phenomena. A further limitation of
both third-order Lamb theories and less approximate models
limited to amplitude equations more generally is that the
dynamical evolution of the atomic variables is neglected. In
almost all previous studies, the dynamics of the atomic vari-
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ables is adiabatically eliminated under the assumption that
their decay rates are much larger than the field evolution rate,
an assumption not fully applicable to many lasers. Indeed,
for many atomic gas lasers, far-infrared molecular gas lasers,
solid-state lasers, and low-pressure mid-infrared molecular
gas lasers, the decay rate of the population variables is simi-
lar to or smaller than the cavity decay rate, making descrip-
tions of the dynamics based on adiabatic elimination valid
only very close to the lasing threshold.

Work including material variable dynamics has been rela-
tively limited. Bakaevet al. @8# modeled dynamics in CO2
lasers by adiabatically eliminating the atomic dipole mo-
ments but retaining variables for amplitudes of a spatial Fou-
rier expansion for the population inversion~s! appropriate to
a standing-wave laser. Puccioniet al. @13# included equations
for dynamics of sublevel populations, atomic dipole mo-
ments, and quadrupole coherences between sublevels for in-
coherently pumped lasers, as, more recently, Vilaseca and
co-workers@14# did for optically pumped far-infrared lasers.
Others had earlier derived the appropriate formulas for the
dynamical evolution of these variables~see, for example,
@2,4,5,9,11,15# for incoherently pumped lasers!, but they
used these formulas only to assess the coefficients in a re-
duced~third-order Lamb! model for the coupled field ampli-
tudes.

Since the work of Puccioniet al. @13# the importance of
the material variables to the polarization dynamics has re-
ceived a certain amount of renewed theoretical@14,16,17#
and experimental@18,19# interest. Puccioniet al. found that
when the laser cavity frequency was resonant with the mate-
rial transition frequency there could be a polarization state
instability of linearly polarized solutions for relatively low
values of the excitation~near the lasing threshold!. This in-
stability occurs in the subspace of real variables, in which
one could focus consideration on the amplitudes~rather than
phases! of the complex variables.

We extend their studies to the time-dependent dynamics
in the full model, where the phases are necessary if one is to
find behavior that involves modes of two different frequen-
cies. This common form of experimentally observed behav-
ior is usually attributed to birefringence~phase anisotropies!,
but we find that it also exists in their model with isotropic
parameters above the threshold for the ‘‘amplitude’’ instabil-
ity.

The common explanations of nonsinusoidal pulsations in
a polarized component and in the total intensity have been
given in terms of two coupled amplitude equations with dif-
ferent cavity frequencies for the two modes~giving an Adler-
type equation well known for nonlinearly coupled oscilla-
tors!. But since we demonstrate here that similar phenomena
arise when the material dynamics are included in the model
for an isotropic laser, it remains an open question as to
whether nonsinusoidal pulsations and total intensity pulsa-
tions are best explained by material variable dynamics~the
option explored here! or by coupled amplitude equations
with phase anisotropies. By studying both isotropic and an-
isotropic models that include material variable dynamics
~without excluding or limiting the behaviora priori to only
coupled amplitude equations! we believe we can gain the
best possible understanding of the situation.

In the present work, we investigate the predictions of the

model for lasers tuned to resonance and with isotropic pa-
rameters. By keeping the dynamics of all of the material
variables, we uncover a richer phenomenology of periodic
pulsation phenomena, even lower instability thresholds than
those found by Puccioniet al., spontaneous selection of po-
larized eigenstates in the isotropic case, and dynamically in-
duced frequency splitting of the optical spectrum into or-
thogonally polarized parts.

In another paper@17# we explored the polarization switch-
ing phenomenon that occurs with cavity detuning for either
circularly or linearly polarized eigenstates~depending on re-
sidual anisotropies! and we compared those results with ex-
perimental phenomena observed in noble-gas lasers. A more
complete generalization of earlier considerations of various
atomic decay rates in the context of equations similar to
those of Puccioniet al.has recently been worked out@16# in
parallel with the present work.

The remainder of this paper is organized as follows. The
model is presented in Sec. II, and the circularly and linearly
polarized steady states and their stability analysis are pre-
sented in Sec. III. Numerical solutions for time-dependent
behavior are presented in Sec. IV, while Sec. V is devoted to
a summary and concluding remarks.

II. MODEL

The equations for the model are developed following the
derivation in @13# for a field decomposed into components
that are right and left circularly polarized interacting with a
collection of atoms with aj51 upper level andj50 lower
level. Analyses of the most general form of this kind of
model with anisotropic parameters are presented elsewhere
@16,17#. For simplicity of comparison with@13#, we retain
their assumptions and their notation for the particular case of
isotropic conditions and resonance between the cavity and
material transition frequencies:

dER /dt52kER1kPR , ~1a!

dEL /dt52kEL1kPL , ~1b!

dPR /dt52g'PR1g'ERDR1g'ELC, ~1c!

dPL /dt52g'PL1g'ELDL1g'ERC* , ~1d!

dC/dt52gcC2~g i/4!@EL*PR1ERPL* #, ~1e!

dDR /dt52g i~DR2s!2~g i/2!@ER*PR1ERPR*

1 1
2 ~EL*PL1ELPL* !#, ~1f!

dDL /dt52g i~DL2s!2~g i/2!@EL*PL1ELPL*

1 1
2 ~ER*PR1ERPR* !#. ~1g!

HereER andEL are the slowly varying amplitudes of right
and left circularly polarized components of the fields, withk
the cavity loss;PR andPL are the associated slowly varying
and suitably rescaled amplitudes of the dipole moment den-
sities interacting with those fields, withg' their decay rate;
DR andDL are the associated population inversion densities,
gi is the decay rate of the population inversions, andgis is
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the excitation rate;C represents the quadrupole coherence
between them51 and21 sublevels of the upper level with
gc its decay rate. We assume that the reference carrier wave
for the dipole moments and fields is resonant with the atomic
transitions. In the analysis that follows we take a renormal-
ized timet5g'

t and henceforth use the notationk, gi , gc to
denote the losses and interlevel decay and mixing rates in
proportion tog' .

Following the approach taken by Puccioniet al. and gen-
eral considerations@11,16#, we assume that the effect of col-
lisional broadening on the transition is to give unequal values
to g' , gc , and gi . We fix the ratio ofgi to g' at 0.01, a
reasonable order of magnitude for pressure broadened atomic
gas lasers. Given the relaxation mechanisms at work in gas
laser media, we further assume that realistic values ofgc
may range betweengi andg' . Indeed, we discover that the
polarization state dynamics depend critically on the value of
this parameter, and one might even use the comparison of
numerical and experimental results to invert the model and
determine an effective value ofgc .

As detailed most clearly in the review by Lenstra@11# and
elsewhere@20,21#, the effect of isotropic collisions on the
j51 level permits separate relaxation rates for each of the
tensorial components of this subpart of the atomic density
matrix, which includes a scalar~the total sublevel popula-
tion!, a vector~including the difference in the sublevel popu-
lations!, and a quadrupole~including the sublevel coherence
C!. The easiest way to incorporate the equilibration of the
sublevel populations is to rewrite the final two equations as a
sum and difference, withgi as the decay rate of the sum and
a separate~larger! decay rategJ for the difference in the
populations, as discussed in@16#. However, to limit the wide
parameter range for our present studies, we take all the popu-
lation decay rates to be equal so that generally the system has
a preference~from the character of the material saturation
processes! for linearly polarized emission, with a strength
that depends on the magnitude of the parameter ratiogc/gi .

III. LINEARLY POLARIZED AND CIRCULARLY
POLARIZED STEADY STATES

AND THEIR STABILITY ANALYSIS

A. Steady-state solutions

For an isotropic cavity in resonance, Puccioniet al. @13#
provide most of the needed information on the different
steady-state solutions of the problem. These are summarized
here.

~i! The off state

C5ER5EL5PR5PL50, DR5DL5s. ~2!

~ii ! The circularly polarized states are~a! right circular

ER5PR5~s21!1/2, EL5PL5C50, DR51,

DL5~s11!/2 ~3!

and ~b! left circular

EL5PL5~s21!1/2, ER5PR5C50, DL51,

DR5~s11!/2. ~4!

In these cases the total output intensityI ([uERu21uELu
2) is

s21. If gJÞgi then I54gJ(s21)/(3gJ1g i), with corre-
sponding changes in the values ofDL andDR .

~iii ! The linearly polarized states

uERu5uELu5uPRu5uPLu5$2gc~s21!/~3gc1g i!%1/2,
~5!DR5DL511$g i~s21!/~3gc1g i!%,

uCu5g i~s21!/~3gc1g i!.

This result is not affected by the value ofgJ since the popu-
lations are equal. In these cases the total output intensityI is
4gc(s21)/(3gc1g i), while the phase shift betweenER
andEL ~and the consequent phase shifts betweenPR andPL
and for C! determines the particular linear polarization.
There is an infinity of solutions of this type with the relative
phase betweenER andEL varying between 0 and 2p.

Note that whengc5gi the total output intensity for this
state is the same as for the circularly polarized states above.
However asgc→0, the intensity of the linearly polarized
solution goes to 0, while asgc→` the intensity rises to 4~s
21!/3. Thus the linearly polarized state is more intense for
gc.gi while the circularly polarized state is more intense for
gc,gi .

B. Stability analysis

1. Circularly polarized states

For the circularly polarized states, it is natural to imagine
that since the population inversion of one transition is partly
unutilized, the corresponding gain remains more than the
loss. If this is true, the gain will quickly amplify any pertur-
bation that excites the orthogonal circularly polarized com-
ponent. Hence it is reasonable to expect, as observed by Puc-
cioni et al. @13#, that these states are unstable with respect to
the growth of the other state when they exist~above thresh-
old! and this instability causes a change of the circularly
polarized initial state towards elliptical polarization, perhaps
ending as linearly polarized behavior if that state is stable.

To verify this result and to compare our results with the
work of others, we consider the linear stability of the solu-
tion with right circularly polarized emission. The equations
that critically govern its stability are those for the left circu-
larly polarized field, the left circularly polarized atomic di-
pole moment, and the quadrupole coherence.~The active

TABLE I. Critical pump values for additional zero eigenvalues
for stability of linearly polarized steady-state solutions. Note that all
linearly polarized solutions have two zero stability eigenvalues cor-
responding to the global phase of the complex amplitude and the
orientation of the electric-field vector~relative phase of the complex
amplitudes of the left and right circularly polarized components!.

gc

Phase instability
thresholdsp

Amplitude instability
thresholdsa

0.01 1.060 6 1.060 6
0.011 1.071 7 1.065 17
0.015 1.125 63 1.083 48
0.02 1.214 29 1.106 42
0.03 1.463 9 1.152 5
0.05 2.263 16 1.245 78
0.07 3.483 87 1.340 3
0.1 6.166 67 1.484 58
0.3 59.5 2.530 8
0.7 739.5 5.181 2
1.0 ` 8.01
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field, polarization, and population inversion have the usual
stability of a single-mode laser with a scalar amplitude in a
Maxwell-Bloch equation model and the steady state is stable
in this subspace so long ask,11gi . In addition, the left
circularly polarized inversion is stable.! The remaining six
linearized equations separate into two sets of three equations
for the variablesEL , PL , andC* and their complex conju-
gates, respectively. The result is a domain of stability for the
circularly polarized states only in the condition ofgi.gc .
This domain is bounded by the laser threshold from below
and by a double Hopf bifurcation from above. The instability
via the Hopf bifurcation is found above a critical value ofs,
sc , given by

sc5114gc~k11!~11k1gc!/@2k212k

1g i~k212gc!#. ~6!

The Hopf bifurcation frequency is given by

V252gck~k11!~g i2gc!/$2k212k1g i~k212gc!%.
~7!

In the domain of stability we have a situation that contra-
dicts the naive expectation. We have inversion that provides
amplification that exceeds the cavity losses on the transition
that is suppressed, but the stability of the operating single
polarized state indicates that there is absorption of any per-
turbation of that field. The more slowly decaying coherence
term provides a contribution to the overall dipole moment,
contributing absorption on the ‘‘off’’ transition as discussed
in @16#.

The eigenvectors for the instability indicate that it repre-
sents the onset of the off circularly polarized field with
cosVt modulation of its electric field~or with equally strong
optical sidebands shifted by6V from the steady-state field
of the other circularly polarized component which is reso-
nant with the atomic frequency!. The resulting initial modu-
lations of the intensity of the off field and of the total inten-
sity will be at frequency 2V. However, as shown in our
numerical solutions, the final state that develops from this
instability involves equal spectral power of the two circularly
polarized components with symmetric detunings from the
atomic resonance frequency.

For the parameter values we will use generally for our
numerical solutions of Eqs.~1! ~k50.05, gi50.01!, the re-
gion of stable circularly polarized emission is relatively
small in values ofs, existing approximately for 1.0,s
,1.06. The instability arises via a Hopf bifurcation and its
frequency goes to zero asgc approachesgi .

While there is no physical reason to justify settinggi.gc ,
since the decays of the amplitudes of the states due to spon-
taneous emission necessarily lead to decays of the coher-
ences into which these amplitudes may enter, this choice
provides a parameter region for the model in which the cir-
cularly polarized states are stable near threshold. This is of
particular interest since a preference for circularly polarized
emission has been noted experimentally for certain HeNe
laser transitions, such as thej51→ j50 1.523-mm line
@4,9#. As shown elsewhere@16#, if one includes in this model
a decay rate for the population differencegJ that is larger
than gi , then the circularly polarized state is stable for
gc,gJ , giving a physically reasonable and accessible region

FIG. 1. Schematics of the stability diagrams for linearly and
circularly polarized steady-state solutions in the phase space of
pumping parameters versus the decay rate of the coherencegc for
fixed values of the other parameters:~a! gi/g'50.01, k/g'50.5,
gJ5gi ; ~b! gJ.gi . LP and CP indicate regions of stable linearly
polarized and circularly polarized steady-state solutions, respec-
tively.

FIG. 2. Pulsation frequency of linearly polarized components of
the time-dependent emission versus pumps for gc50.01, for which
the total intensity remained constant.
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defined byg i,gc,gJ that has similar phenomenology. It is
not easy to compare the results for different models in a
simple way, but from the point of view of the third-order
Lamb theory cross saturation rates, the range we propose for
gc/gi carries the ratio of the cross-saturation coefficients to
the self-saturation coefficient from values favoring circular
polarization to neutral coupling to values favoring linear po-
larization.

2. Linearly polarized states

For the polarization isotropic laser medium and laser cav-
ity, the linearly polarized states form an infinite family of
solutions with arbitrary orientation of the vector of linear
polarization in the transverse plane. According to the analy-
sis of Puccioniet al. @13#, these states are unstable with re-
spect to perturbations in the intensity difference of the circu-
larly polarized fields that preserve the total intensity. Thus

FIG. 3. Partial phase-space representations of
time-dependent solutions with plots of the inten-
sity of the vertically polarized component~IV !
versus the intensity of the horizontally polarized
component~IH! and the intensity of the left cir-
cularly polarized component~IL ! versus the in-
tensity of the right circularly polarized compo-
nent ~IR! for s51.1 andgc50.01 ~a!, 0.005~b!,
0.001 ~c!, and 0.00~d!. Cases~b! and ~c! repre-
sent combinations of parameters for which the
nearest stable steady state~at lower pump values!
is circularly polarized. The solutions shown here
turn out to be long-lived transients, while the ul-
timate asymptotically stable solutions involve
two frequency-split circularly polarized modes
with constant intensities~see the text!. Case~d! is
one for which the instability threshold occurs at
the lasing thresholds51.0. HeregJ5gi50.01.
Errant points indicate fast transients before the
trajectory settled onto the long-lived but slightly
unstable attracting subset. Selected points spaced
equally in time~approximately 10–20 points per
period! for approximately 50 periods are used to
construct each figure. The dashed nature of some
curves is an artifact of the sampling frequency for
the plotted points being nearly a harmonic of the
intensity pulsation frequency. Two of the family
of linearly polarized steady-state solutions are in-
dicated on the axes by solid circles.
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these correspond to oscillations in the ellipticity of the emis-
sion. The linearly polarized steady states are also always
unstable with a positive real eigenvalue whengc,gi ~or
gc,gJ , whengi,gJ @11,16#!. Whengc.gi , for our case,
the instability occurs above a critical threshold valuesa
given by

sa511@~k11!21g i~k11!#~3gc1g i!/@2k212k

1gc~k2g i21!#, ~8!

which is more accessible than the usual single-mode laser
second threshold~in that it exists fork,1 and generally for
a lower value ofs!, and with our parameters ofk50.5 and
gi50.01 this can be written~for gc,1! as

sa5;112.265~3gc10.01!/@1.520.51gc#. ~9!

The frequency of the 100% amplitude modulation of the
orthogonally polarized~weak! field in the vicinity of this
instability threshold is given by the expression

V25@2kg i~sa21!#~gc2g i!/@~3gc1g i!~k1g i11!#,
~10!

which has the basic structure of the relaxation oscillation
frequency of a single-mode class-B laser~the leading term in
brackets!, but multiplied by a factor~gc2gi!, which may
reduce this frequency to nearly zero. In the limit of large
homogeneous broadening andgc@gi we see that this fre-
quency differs from the usual single-mode relaxation oscil-
lation frequency by~13!

1/2. As a modulation of the ellipticity
of the solution, this instability causes, to higher order in the
perturbation, a corresponding intensity modulation at twice
this frequency. In fact, both the intensities of the strong and
weak linearly polarized components oscillate at twice this
frequency as well.

As we have noted in the discussion of the potential phe-
nomena contained in the full 12 equations of the model, there
is also the possibility of phase instabilities that would corre-
spond to phase modulations that might lead to either rotation
of the linear polarization or modulation of the ellipticity.
Phase instabilities might also lead to frequency splitting
~several frequencies in the optical spectrum! or to the onset
of a solution involving two differently~orthogonally! polar-
ized states with different optical frequencies. There are five

additional dimensions for this phase space. But there are re-
ally only four more dimensions available to the dynamics as
the absolute~sum! phase of the system retains the neutral
stability that is well known for autonomous optical systems.
~It is the noise-induced diffusion of this total phase that leads
to the linewidth of a traditional laser when projected as a
diffusion of the phase of the electric-field amplitude.!

The four remaining phase variables have one negative ei-
genvalue that corresponds to the difference between the field
and dipole phases. The eigenvalues for the angle of orienta-
tion ~‘‘the orientational phase’’! of the linearly polarized
electric-field vector~given by the relative phase between the
circularly polarized components!, the relative phase between
the right and left circularly polarized dipole moments, and
the phase of the quadrupole coherence are given by

l31l2~k1gc11!1l@gck1gc1g i~2k/gc1
1
2 !I /2#50.

~11!

Evidently there is a second zero eigenvalue~in addition to
that associated with the sum of the phases!, which corre-
sponds to the neutral stability of the orientation of the lin-
early polarized state, and finally there may be yet a third zero
eigenvalue~steady bifurcation! when

I54gc
2~k11!/g i~2k2gc!, ~12!

which can be written in terms of a pumping threshold, using
the expression forI in terms of the pumps, as

sp511gc~k11!~3gc1g i!/g i~2k2gc!, ~13!

subject to the condition 2k.gc . Note that there is an asymp-
tote at which this instability threshold reaches infinity for
2k5gc . For example, fork50.5 and gi50.01 we have
sp.11150gc(3gc10.01)/(12gc). The linearly polarized
steady-state solutions are unstable for values ofs or I above
these thresholds.

The neutral stability of the orientation of the linearly po-
larized solutions appears even though there is more popula-
tion inversion than the normal threshold value for exponen-
tial growth of the suppressed field. Despite the excess
inversion there is neither net gain nor loss@16#. The zero
eigenvalue for the relative phase of the fields means that
appropriate perturbations of the amplitude of the off linearly
polarized field, the off dipole, or the imaginary part of the
coherenceC lead to a simple diffusive rotation of the lin-
early polarized state in real space.

Comparing these two thresholds we find that the ‘‘ampli-
tude instability’’ ~which modulates the ellipticity! always oc-
curs at a lower value of the pump than the phase instability.
For example, fork50.5 andgi50.01 we have values as
shown in Table I. The two thresholds are very close over a
range ofgc less than 2gi , but for large values ofgc ap-
proachingk the phase instability threshold goes asymptoti-
cally to infinity.

Paralleling the result for the stability of the circularly po-
larized solutions@16#, the introduction of a decay rategJ ~for
the difference of theR andL population differences! that is
larger thangi limits the domain of stability of the linearly

FIG. 4. Maximum and minimum values of the time-dependent
solutions for the total intensity for different values ofgc with
s53.0.
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polarized solutions togc.gJ . This gives, within the model,
a physically accessible region of circularly polarized emis-
sion g i,gc,gJ appropriate to describe some lasers. This
comes about from a shift in the boundary for the amplitude
instabilities of the linearly polarized state, but there is no
shift in the instability condition for the phase instabilities, so
the collision of these boundaries for (gc5g i5gJ) is lost
when the collision takes place atgc5gJ with gJ.gi .

3. Summary of observations on the stability
of these steady-state solutions

At the laser threshold, there is a bifurcation of two circu-
larly polarized solutions and an infinite set of linearly polar-
ized solutions. Just above the threshold for laser generation,
the circularly polarized states are both stable~the system is
bistable! when the output intensity for circularly polarized
emission is greater than the output intensity for one of the

FIG. 5. Intensity time series fors53.0. Plots in the left-hand column give the total intensity~solid line!, the intensity of vertically
polarized component~dashed line!, and the intensity of horizontally polarized component~dotted line!. Plots in the right-hand column give
IL ~dashed line! and IR ~dotted line!. Time is in units ofg'

21 . Values ofgc are ~a! 0.3, ~b! 0.16, and~c! 0.13.
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degenerate infinity of linearly polarized solutions~this re-
quiresgc,gi whengi5gJ , orgc,gJ more generally!. When
the linearly polarized output is greater than the circularly
polarized output~gc.gi whengi5gJ , or gc.gJ more gen-

erally! the linearly polarized emission is stable~though with
the possibility for diffusion of the orientation of the linear
polarization!. This choice of the preferred~stable! polariza-
tion basis is a form of the ‘‘maximum emission principle’’
@22#.

Elliptically polarized solutions, of arbitrary ellipticity, ex-
ist at the neutral stability boundarygc5gi ~or gc5gJ more
generally!. We have numerical evidence that these solutions,
if they exist off this boundary, are unstable.

The Hopf bifurcation–steady bifurcation collision that oc-
curs whengc5gJ „which is heightened wheng i5gc5gJ ,
as then there are simultaneously threel50 eigenvalues@for
the global phase, for the ellipticity, and for the orientation of
the major axis of the polarization ellipse~azimuth!#… has a
special feature. The frequency of the Hopf bifurcation goes
asymptotically to zero at the collision, making this a gener-
alized Takens-Boganov point@23# with interesting dynamics
in the vicinity, as will be seen numerically. All of these re-
sults of stability analyses are summarized schematically in
Fig. 1.

FIG. 6. Pulsation frequency of IV and IH vsgc for s53.0.

FIG. 7. Plots of IV vs IH and of IL vs IR for
s53.0 as in Fig. 3 forgc50.5, 0.3, 0.17, 0.165,
0.16, 0.15, 0.13, 0.1, 0.03, 0.015, 0.01, 0.00 for
~a!–~l!, respectively. Two of the family of lin-
early polarized solutions are indicated on the axes
by arrows.
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IV. NUMERICAL RESULTS
FOR TIME-DEPENDENT SOLUTIONS

A. Method of solution

For our numerical solutions the equations were solved
with a fourth-order Runge-Kutta integration routine with a
fixed time step taken to be small enough to give convergent
solutions. For the studies reported here we will takek50.5
andgi50.01.

B. Results for the ‘‘neutral stability case’’

For gc5gi50.01, where both the ellipticity and the orien-
tation of the major axis of the polarization state~as well as
the global phase of the complex amplitude! are free to dif-
fuse ~have zero eigenvalues! even in the ‘‘stable’’ steady
state, there is the amplitude instability threshold for time-
dependent dynamical solutions at a pump values51.06. The
time-dependent solutions have a constant total intensity~over
a wide range of pump parameters explored!, though this
value exceeds the common value of the intensity of any of
the steady-state solutions. This corresponds to a further gen-
eralization of the maximum emission principle, as noted by

Casperson@22#, who found greater average emission for
time-dependent solutions than for steady states in a different
laser system.

Here in a typical numerical result, the intensities of the
linear and circularly polarized components of the field oscil-
late sinusoidally and out of phase with different percentage
modulations, though those percentage modulations could be
varied by perturbations or changes in the initial conditions.
This is one of several indications that the dynamical laser
operation has been established as a combination of two op-
tical fields of orthogonal polarization states~which are typi-
cally elliptically polarized! with different optical frequencies.
The constancy of the amplitudes of the selected polarization
basis states is reflected in the sinusoidal~beat frequency!
nature of the intensity pulsations of a different polarized
component of the emission. The ellipticity of these chosen
states depends sensitively on the initial conditions and any
perturbations. The pulsation frequency in the unstable range
of parameters is shown in Fig. 2, where it is plotted against
the degree to which the pump parameter~s! is above thresh-
old for laser action. This clearly indicates that the pulsation
frequency~which is the splitting between the two strongest

FIG. 7. ~Continued!.
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components in the optical spectrum of the field! grows as the
square root of the excess pump over threshold, just like a
Rabi frequency or a relaxation oscillation frequency in a
‘‘classB’’ laser and just like the characteristic frequencies of
the complex conjugate eigenvalues found in the stability
analysis of Sec III B, even though for these parameters there
are no complex conjugate eigenvalues at threshold. This
splitting of the frequencies of the two modes is also reminis-
cent of the behavior of multimode dye lasers, which sponta-
neously select two modes~or narrow groups of modes! sepa-
rated by a factor that grows proportionally to the square root
of the excess pump over threshold@24–26#.

C. Results for pumping near threshold

To better understand this behavior, we first study it in
more detail as a function ofgc and detuning near the lasing
threshold~for s51.1!. These cases should be readily compa-
rable to solutions found for third-order Lamb theory, except
that third-order Lamb theory does not allow for the ampli-
tude instability for a polarization isotropic laser. For values
of gc>0.02, the output is stable linearly polarized behavior
at the resonance frequency of the cavity and the material
transition. Solutions with different orientations of their linear
polarization are easily excited by shifts in the relative phase
of the fields and polarizations and the corresponding shift of

the phase ofC, as noted for steady states in Sec. III A. The
orientation of the linearly polarized states can be perturbed
arbitrarily by phase shifts in the fields, the dipoles, and the
coherenceC and continuous noise causes diffusive motion of
the orientation of this linearly polarized state.

To explore the regions of parameter space others have
observed to be unstable or time dependent, we note that
when s51.1, the amplitude instability threshold has been
crossed for values ofgc<0.018. To try to understand the
dynamics through a partial representation in phase space, we
show examples of the variation of the intensities of linearly
polarized and circularly polarized components in plots for
gc<0.02 in Fig. 3. In this zone we see instabilities involving
both the relative intensities of the two modes and a fre-
quency splitting of the sort studied by Grossman and Yao
@27#.

For gc,0.015gi we find long transients in the form of
pulsations in both the total intensity and in the polarized
intensities, with the system dwelling for relatively long times
in each of the two circularly polarized unstable states
~though with growing or decaying intensity! followed by a
more rapid switching to the other circularly polarized state.
The dwell time becomes longer asgc is reduced to zero. For
such low values ofgc the linearly polarized steady-state so-
lutions have nearly disappeared in a collapse onto the un-

FIG. 7. ~Continued!.
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stable off solution. Generally the trajectories evidently avoid
the proximity of the unstable steady-state solutions~linearly
or circularly polarized! that are indicated. However, after
long evolution on the type of weakly unstable and character-
istic attractors shown in Figs. 3~b!–3~d! the solutions settle
onto two circularly polarized modes with symmetrically de-
tuned optical frequencies. The resulting total intensity is con-
stant, while the intensities of vertically and horizontally po-
larized components are 100% modulated at the beat
frequency @28#. Because the splitting frequency is much
smaller than the overall optical frequency, this is a state in
which at each instant the emission is linearly polarized, but
the orientation of the polarization vector rotates in time, just
as would be expected from Zeeman splitting of the magnetic
sublevels from an applied magnetic field. In this case the
splitting is a spontaneous consequence of the dynamics@28#.

D. Higher pump levels: Strong output fields

We next explore the behavior of the system in resonance
for the pump parameters53.0 where the steady-state solu-
tions are almost always unstable except forgc larger than
about 0.5. By raisinggc above 0.01~5gi!, the total intensity
begins to pulse. Figure 4 shows the upper and lower bounds
of the total intensity pulsations versusgc . Figure 5 shows the

nature of the pulsations in the total intensity for several dif-
ferent characteristic regions and in the intensities of the lin-
early and circularly polarized components of the output, in
time as well as in certain phase-space projections. Figure 6
gives the variation of the pulsing frequency of the linearly
polarized components of the intensity versusgc . For
gc,;0.15, the total intensity pulses at twice the frequency
of the pulsations of the intensities of linearly polarized com-
ponents, while forgc.;0.17 the total intensity has the same
pulsation frequency as the intensities of the polarized com-
ponents. For values ofgc near 0.16, the intensity pulsations
are quite large and rather more irregular. Figure 7 shows
variations of the intensities of orthogonally polarized com-
ponents of the emission for a wide range of values ofgc .

There are four primary domains of behavior as a function
of gc .

~i! For low gc ~near and below 0.01! the behavior is simi-
lar to that found forgc50.01 ats51.1 ~see Fig. 3!, that is,
two orthogonal elliptically polarized solutions of different
frequencies, which lead to out of phase pulsations of either
pair of right and left circularly polarized~or vertically and
horizontally polarized! intensities and no pulsations in the
total intensity. Note that forgc50, the two states are exactly
circularly polarized~constant circularly polarized intensities,

FIG. 7. ~Continued!.
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FIG. 8. Plots of the real electric-field vector
Re(Ey) vs Re(Ex) with a carrier frequency of
about 1

50 for s53.0 and different values ofgc
@0.5, 0.3, 0.17, 0.165, 0.16, 0.15, 0.1, 0.03, 0.01,
0.0 for ~a!–~j!, respectively#. Polarization isot-
ropy is evidently restored on average after suffi-
ciently long times for the conditions of~d!–~h!
and~j!. @With the carrier frequency added, purely
linearly polarized emission of constant amplitude
would give a line through the origin as for~a!,
circularly polarized emission of constant ampli-
tude would give a circle centered at the origin,
and elliptically polarized emission of constant
amplitude would give an ellipse centered at the
origin. Points are taken as for other time series at
10–20 points per period of the intensity modula-
tions for 40–50 periods.#
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100% modulated linearly polarized intensities, constant total
intensity! as found ats51.1 for gc,0.01.

~ii ! For gc between 0.015 and 0.15, there are pulsations in
the total intensity with a dominant frequency that is twice the
dominant frequency of the pulsations of the polarized inten-
sities. The partial phase-space portraits of these periodic at-
tractors are symmetric in the intensities of orthogonally po-
larized eigenstates.

It may be that the special dynamics in these first two
regions arise from the strong phase dynamics~as well as the
amplitude dynamics! that are induced by the instability of
phase eigenvalues as well as the amplitude eigenvalues.

~iii ! Forgc between 0.17 and 0.4, the pulsations are in the
vicinity of a linearly polarized steady-state solution with
modulation of both the total intensity and the tip angle of the
polarization state.

~iv! For gc higher than 0.4, the pulsations cease and the
laser operates with a linearly polarized output at an intensity
of about 2.66, as predicted for these steady-state solutions in
this range ofgc . These linearly polarized solutions are stable
in this case, except for their neutral stability with regard to
orientational diffusion.

The bifurcation from the stable horizontally polarized so-
lution to the time-dependent solution asgc is decreased from
the stable single-mode region represents~from numerical
studies! the onset of a weak vertically polarized field at two
symmetrically detuned optical frequencies~or, equivalently,
at the resonant carrier frequency with 100% modulation of
the amplitude!. This instability initially does not lead to
modulation of the total intensity~at least not to the same
order of perturbation!. Instead it represents a modulation of
the ellipticity of the solution.

As the vertically polarized component grows stronger in
amplitude for lower values ofgc the once second-order dis-
turbance of the total intensity becomes clearer as a modula-
tion at twice the frequency of modulation of the vertically
polarized amplitude. The total intensity, the horizontally po-
larized intensity, and the vertically polarized intensity all os-
cillate at twice the modulation frequency of the vertically
polarized amplitude, as is evident in Fig. 5 forgc50.3. In the
12-dimensional phase space this corresponds to the birth of a
simple limit cycle of constant intensity that subsequently de-
forms, having two oscillations on the surface of a small torus
for each revolution. From the point of view of the Poincare´
sphere, the motion of the state vector is an oscillation alter-
nately above and below the equatorial plane in a kind of
figure-8 shaped trajectory.

Returning to the birth of this instability atgc50.4, the
vertically polarized intensity is nearly zero and the horizon-
tally polarized intensity and the total intensity weakly pulse.
Since the modulation is very weak here, we can see clearly
the infinitesimal effects just above the bifurcation threshold.
The strong horizontally polarized component operates on av-
erage with an optical frequency given by the cavity fre-
quency ~with a weak frequency and phase modulation!,
while the vertically polarized component operates at two op-
tical frequencies that are detuned by about60.01.

As gc is reduced below 0.4 the operation remains pre-
dominantly linearly polarized, though the amplitude of the
pulsations increases. Forgc50.3 the pulsations are about
10% of the horizontal intensity and the ratio of the two av-

erage intensitieŝI H&/^I V& is about 25. Forgc50.2 the hori-
zontal mode has about a 25% modulation and the ratio of the
two average intensities is about 17.

In between the second and third regions of different be-
havior, neargc50.16, we see a destabilization of the simple,
asymmetric periodic oscillations found for highergc’s. Here
the trajectories pass near the point of zero total intensity. In
the phase plots of IV vs IH in Fig. 7 we see evidence of two
unstable nearly linearly polarized attractors, ellipses near the
vertical and horizontal axes, which are ‘‘glued’’ together to
form the more elaborate attractor. The total intensity pulsa-
tion frequency, which was equal to the pulsation frequencies
of the linearly polarized components for larger values ofgc ,
shifts to being double the frequency of the intensity pulsa-
tions of polarized components for lower values ofgc . We
see the abruptness of this transition in Fig. 6.

At gc50.165 the apparently complex behavior seen in the
plot of the linearly polarized intensities masks a periodic
pulsation evident in the IL vs IR plots in Fig. 7 that repeats
after every two pulses in the circularly polarized intensities.
In this case the dynamics causes a rotation of the orientation
of the linearly polarized states that does not necessarily give
a rational ratio between the rotation rate and the pulsation
rate. The trajectory spends long times alternately in left or
right circularly polarized emission with changing intensity
before switching to the other polarization state relatively rap-
idly. In the Poincare´ sphere representation this involves long
residency along the polar axis.

For gc50.16 the sustained pulsations and phase portraits
seem to indicate a truly chaotic behavior, as is evident in the
scatter of points which do not settle onto an attracting subset
in the plots of both linearly and circularly polarized intensi-
ties in Fig. 7~e!. For lower values ofgc;0.14–0.145, where
the trajectories approach the~0,0! unstable fixed point in a
kind of homoclinic trajectory, the speed of the trajectory and
the corresponding frequency of the orbits~see Fig. 6! slows
to near zero, as expected.

In the third and fourth regions of behavior our attractors
~linearly polarized or modulated solutions! are states that
have broken the cylindrical symmetry of the equations. How-
ever, in the first two regions the cylindrical symmetry that
was broken for the steady-state solutions is restored by the
dynamics on average@29#. This restoration of the symmetry
is indicated by the plots in Fig. 8 of the real electric-field
vector in real space and of the orientational angle of this
electric-field vector in time. A small carrier frequency has
been selected so that circularly polarized behavior is not fro-
zen in angle but rotates clockwise or counterclockwise de-
pending on whether the solution is right or left circularly
polarized. This carrier frequency causes constant amplitude
solutions of circular polarization to trace out circles in real
space~with a slope in the orientation angle versus time! and
causes constant amplitude solutions of linear polarization to
trace out lines through the origin at fixed orientation angles
~with jumps ofp rad in the orientational phase!.

As a final note, we point out that the dynamical pulsations
that have a particular linear polarization on average are sus-
ceptible to perturbations~or diffusion in the presence of
noise! of the orientation of the major axis of their polariza-
tion ellipse. An illustration of this is given in Fig. 9, where
only the initial conditions have been changed. Figure 9~a!
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shows the intensities of the linearly polarized components,
while Fig. 9~b! shows the evolution of the real part of the
vector electric field. In each case the dynamics is essentially
the same on the Poincare´ sphere, but the projections are dif-
ferent. In the presence of continuous noise there would be
diffusion among a whole family of these states.

V. SUMMARY

A critical feature of these results relative to the consider-
ation of this model by Puccioni, Tratnik, Sipe, and Oppo@13#

is that we show that the fully developed time-dependent dy-
namics of their model contains not only amplitude modula-
tions, as indicated by the primary bifurcation phenomenon
that they reported, but also spontaneous splitting of the opti-
cal frequencies of the two modes and strong phase modula-
tion as well. Already one might infer that, since 100% am-
plitude modulation of a field that is initially zero means the
creation of two sidebands. Appreciating that the linearly po-
larized strong field has arbitrary orientation, one should not
be surprised at a dynamical mixing of the strong resonant
field and the orthogonally polarized sidebands to create two
strong fields of nearly orthogonal polarization, both of which
are detuned from resonance. Once the amplitude pulsations
of both fields are strong, the likelihood is enhanced of fre-
quency dynamics as the two fields compete for stronger gain
on resonance.

We have demonstrated that even with perfect symmetry
~isotropy! in the parameter space and perfect resonance be-
tween the cavity and the material frequencies, the dynamical
coupling of the vector field and the medium can split the
field into two modes with different polarization states and
different frequencies~or give the strong mode two weak
sidebands having the orthogonal polarization and different
optical frequencies!. Furthermore, the fully developed dy-
namics give dramatic amplitude and frequency modulations
to the fields. These are features that do not appear in coupled
amplitude~third-order Lamb theory! models without the ad-
dition of anisotropies.

We believe that this model, when considered in the ex-
panded parameter space, provides an adequate structure of
nonlinear interactions to extend the usual third-order Lamb
theory to stronger fields and higher values of the pump. We
believe it can be useful as the first step in considering models
that can more completely model the polarization preferences
and dynamics of lasers with nearly isotropic cavities. Adjust-
ments in the parametersgc and gJ permit consideration of
lasers that have linearly polarized, circularly polarized, or
arbitrarily polarized emission in the pump parameter range
that gives time-independent solutions. In this way, one has
an initial indication of possible behavior in lasers with other
j→ j 8 transitions, since, at the level of third-order Lamb ap-
proximations, this model can emulate different strengths of
this material saturation preference for linearly or circularly
polarized emission. The strengths of these self- and cross-
saturation coefficients are specifically evaluated for near-
threshold operation in@16#. Investigation of whether the pre-
dicted amplitude instabilities for these cases are in
reasonable agreement with experiments, when appropriate
values are taken for the different decay rates, will be a natu-
ral extension of the present work.

The results of stability analyses presented here are also a
first step along the study of the response of such lasers to
technical and intrinsic noise and of the subtleties of the laser
linewidths, correlated noises, intensity fluctuations, and
phase sensitive noise in the presence of material variable
dynamics. Even below the threshold for dynamical instabili-
ties these phenomena will be strongly affected by eigenval-
ues with small real parts. This should enliven and enlarge the
considerations represented by the studies reported in@19#
and their extensions@28#.

FIG. 9. ~a! Plots of the intensity of the vertically polarized emis-
sion versus the intensity of the horizontally polarized emission for
solutions withgc50.3 ands53.0, but with different initial condi-
tions. ~b! Plots of the Re(Ev) vs Re(EH) for the same solutions.
These show how perturbations induce diffusion of the major axis
orientation with respect to the center of~b! of the major axis of the
average polarization state.
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