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Transverse-mode selection in single-longitudinal-mode lasers
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In this paper we analyze the transverse pattern-forming characteristics of a two-level and single-longitudinal-
mode laser. The corrections to the classical empty cavity modes due to pumping and losses are specifically
considered, leading to different excitation rates for the different transverse modes. The near-threshold excita-
tion rates provide a selection mechanism that is studied and compared to the results from numerical simulations
of the Maxwell-Bloch equations.

PACS numbegps): 42.60.Mi, 05.45+b

[. INTRODUCTION when some modes disappear and have no dynamical rel-
evance. Another difficulty when using the empty cavity
Lasers are among the most interesting devices found imodes is that one is not sure whether the mode shape is more
optics, due to their dynamics, on which many studies haver less the same as that of the empty cavity modes, or the
been based. In the last few years there has been an increasiPigmping and losses induce shape changes that affect the ac-
interest in transverse effects in the context of patterncuracy of the multimode expansion. Last, but not least, there
formation problemg1], in both passive2-6] and active IS no way of knowing which, if any, will be the dominating
systems[7—9]. The single-longitudinal-mode las¢8—10] mode in the dy_namlcs_W|thou_t numerlqally integrating the set
has been a useful laboratory to study transverse phenomef§ coupled ordinary differential equations for the mode am-
without the influence of other degrees of freedom. For thig®/Itudes. _ _
reason a lot of work has centered around this mathematical !N this paper, we try to address these questions by going a
model. The different approaches used to obtain informatiorf'€P Peyond the usual empty cavity mode expansion, trying
about the solutions of these equations include: exact sold® S€& what the effect of losses and pumping is in a first
tions (nonlinear plane-wave modglg11], direct numerical ~@PProximation. The results are in a very good agreement
simulations[12—17, reduction to simpler equatiori$4,18, with t.he numencal smulauons pf the partial differential
discrete model§19], and especially empty cavity mode ex- &duation and with physical experieni].
pansiong20-25. The philosophy behind the latter approach
is to expand the field inside the laser cavity on the basis of Il. STATEMENT OF THE GAIN-MODE PROBLEM
the empty cavity modes, which are known to have a clear . . .
physical relevance in many practical laser devices; i.e., the Th? starting pomt_for our analysis is th? ok
low Fresnel number systems tend to operate in a dynamicﬁqu""t'c.)nS for a polarlzgd two-level laser W'th. plane apd par-
regime where few modes compete, one of which may some"’-‘”el MIFFors In the rqtatlng wave, slowly varying amphtude,
times be selected. In any case a few degrees of freedom d single-longitudinal-mode approximations, which are
present in the dynamics usually corresponding to the las
modeq 24,26,27. With the words “laser mode” one usually )
refers to well-defined patterns having some similarities to the i_ I—AF+ _py—
. = o(F-P)=0, €y
shape of the empty cavity modes. When a few of these it 47
modes are considered in the mathematical expansion one can
find many different phenomena such as spontaneous symme- IP
try breaking[28], cooperative frequency lockini@9], cha- E+(1+i5)P—FD=0, 2
otic itinerancy[30,31], chaotic alternatiofi32], etc. This ap-
proach has some important limitations. In the first place it is
not possible to knova priori how many modes will be active dD

1
. . . . ) . X — 4 —r+ = * + * —
in a particular system. This information is obtained later, ar 7 D Z(F P+FP™) =0, ©
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wherey= vy, /vy, is the ratio between the depolarization time
of the radiation-induced material dipoleg (*) and the life- -7 tv(D-1r)=0.
time of the population inversiony( ). o=0¢/(2€7.),
o, measures the losses, including mirror coupling, interappysically it corresponds to the first stages of the laser ac-
transmission losses, aperture diffraction, e®=(w12 (o when the field is rising from zero in a small signal
—wc)/y, is the rescaled detuning between the matter trangneration regiménear-threshold regimeThe modes are so-
sition  frequency and the fast oscillation of the | tions with a stationary spatial structure. Thus, let us con-
field. r=ac/(oy,) is a rescaled pumping, i.e.«  giger during this first regime solutions with the particular
=w15|D15|°Ndo/(2€5f v, C) is the small signal gaind;,  time dependence
being the dipole moment of the transition aNdhe number
of atoms or molecules per unit volume in the active me- F(r,p)=F(p)e '?,
dium), andd, is the population inversion per atom or mol-
ecule induced by the pumping.

F=mb?/(AL) is related to the Fresnel number
(7#==F), b is the transverse radius of the resonatolis R
the wavelength of the light, and. is the resonator D=D(p),

length. The transverse rescaled variables 5Fe(§,7;)
=(x,y)/(b\/5), wherev=c/(Ly,), and the rescaled time Where(} is related to the slow oscillation transverse-mode

P(r,p)=P(p)e”'"", ®)

variable is7= v, t. frequency. For reasons to be clarified later it will be consid-
Let us concentrate on the case whig |P|<1: ered a complex number. We assume the validity of the re-
quirements,
oF_] AF+0o(F—P)=0 4
E 4_/,7 0-( )_ i ( ) |F(ﬁ)efiﬂr|<1, |P(ﬁ)efiﬂr|<1, (6)

and throughout the small-signal regime, we get the following

JP
—+(1+i6)P-FD= [ p
S-T(1+i16)P-FD=0, equation forF(p):

ior 1
AF+47 Q+io— ——— — F=0. 7
1-iQ+i6 14+ |F]2e @ " DT24+i(Q*—Q))/2(1-i1Q+i8)(1+iQ* —i6) 0

This is a nonlinear eigenvalue problem and a truly chal- F(T'E)ZF([;)e—ineKr,
lenging mathematical problem. Let us then concentrate on
the case where . .
P(7,p)=P(p)e"“7e"", (10)

2(1-iQ+i0)(1+i0*=i8)
e

Q*—Q)r
2+i(Q*—-Q) " ®

|F|?<

D=D(p).

Physically it corresponds to the first stages of the laser Th€ physical reason for the need to complexifys clear
action, when the field is rising from zero in a small signallf We go back to Egs.(1)—(3). Linearizing around

operation regiménear-threshold regimeUsing (8) the fol- F=P=0, _the resulting evolution eq_uation is linear but non-
lowing equation is found: conservative so that the solutions either explode or damp out

to zero depending on whether the loss or gain term domi-
) nates(this can be easily checked by computing the evolution
lar F=0 9 of the L2 norm of the field,| = [ f|F|2dxdy). This being the
1-iQ+ié ' case, the modes will either grow or decrease with time and
this behavior is not included in a reé).

This treatment will strictly be applicable when the effects
6f the nonlinearities are negligible, corresponding to the ap-
eproximation described irt8). The physical implications of
the results to be presented here will be discussed later. Equa-

tion (9) now reads

AF+47{ Q+iog—

To close the mathematical problem we need to set up th
reflecting type boundary conditions. This linear eigenvalu
problem has only comple® solutions, which is why a com-
plex Q) (Q=w+ik) was considered from the beginning.
The real part of() is related to the mode oscillation fre-
guency while its imaginary part means the field initial slope, ]
being positive if the field is amplified or negative if the field lor F=0. (11)

is damped. Then AF+aAA otixtio= 1+ k—i(w—9)
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The solutions of this problem in a sense contain more inforLet us now impose the transverse boundary conditions,

mation than the linear modes, which astatic objects and

which will correspond to totally reflecting lateral surfaces at

correspond to the limit of11) where both the pumping and x2+y2=b2 (p=1/\u=0). In the real lasers, the electric
dissipation are set to zero. From now on, these will be refield practically cancels out in the boundary region, because

ferred to as gain modes or simply modes.

there used to be high lossénd additionally low pumping,

For the sake of simplicity we will consider a uniform if any) in the near boundary region. From a practical view-

pumping profile in the transverse direction, i.e.constant.

point this is practically equal to having high losses in the

When using other pumping profiles, like the Gaussian profateral surfaces. Then, our boundary conditigotally re-

file, the thresholds and mode selection chatigeugh prob-
ably not essentigland the TEMy, structure is favored. This
fact has been recently analyzed[BS].

Ill. GROWTH RATES, MODE SELECTION,
AND NUMBER OF ACTIVE MODES

A. Calculation of the growth rates and oscillation frequencies
of the modes

flecting lateral surfacesis in agreement with the electric
field behavior. In the numerical simulations to be presented
later we have also included a space-dependent loss function,
with a sharp increase of the losses near the boundary.

The zero boundary condition implies th#t(© \/E)zo.
But the zeros of this function are real numbgsd], in fact
the real zeros of the Bessel functiors,f),

Zmn= 0a.

Since(1)) is a linear equation, we can separate variables

in polar coordinates
F(p)=F(p,0)=F(p)H(0).

It is easily found that
H(0)=Ae™+Be '™,

m=0,12 ... (12)

and
JIF
p’F"+pF' +(ap?—m?)F=0 F’E%, (13
where

=47\ w+ik+i Lot
a=47 w+Ikt+lo— m .
Let us define the newcompley variablez=p\/5. The

resulting equation is the well-known Bessel equatieith a
complex variablg

V|
N| T

2%F +zF+ (22— m?)F =0 ('F ) (14)

The regular solutions ofl2) are

F(z)=CJy(2).

Sincea is a complex numbera(=a; +ia,) the last equation
can also be written as

2

_ Zmn

a=le )

a,=0. (15
The last two equations allow us to determineand «:
or(1+«k)
- 2 2=0,
(1+ k)*+(w—6)

or(w—295) 1 (zmn)2

K+ o

(16)

O T (w-072 4710
Let us define the new variables
I'=w—35,
V=2k+1+o0.
The new equation foW is
WAt Brn— (1= 0)?~4or W2~ (1-0)?B5,=0,

where 8= (Zmn! )%/ (4.7) — 6. Solving this equation and
rewriting the solution in terms of the old variables, we find
the following expression for the solution:

1+o 1\/_(Bfnn—<1—a>2—4ar

K=——F—"T754
2

2 2

) \/(ﬂ%n—u—o)z—wr
* 2

2
+(1-0)2B%,.

17

The value of k (15 can be used to calculate the oscillation frequency of each nmdeusing the expression

=6+ (14 k) Bnn/(2x+1+ o) and the result is

1-o0

(18

w=5+[ 1+

VA8 (1= 0)*= 4072} + {7 —(1-0)7— ot 11212+ (1— )25,

an
2 .

It is then seen that the mode frequencies depend ondathdr, so that our approach provides additional information to

that given by the empty cavity theory, where the mode oscillation frequencies depend only on the geometrical characteristics

of the resonator and are not influenced by the parameters. The angular frequency is, of course, inwnits of
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B. Selection of amplified modes

Since the function¢ (17) contains the information on how the different spatial structures grow, it is interesting to analyze
it in more detail. In the first place, it is possible to find whitin mode has the largegt The maximum growth rate is given

by

dx 1 Bfnn+(1—0')2—4a'r
_d,B = Bmn =1+ 2 2 2 2 =0, (19)
mn 2\2A V(BZ +(1—0)2—4or)2+16(1— o) 20T
where
2 2 2 2 2
—(1-o0)“—4or —(1—-o0)“—4or
Ao |Pmn=179) +\/ Binn” (1~ ) +(1-0)?Bon
2 2
|
It is easy to see that the maximum correspond®tg=0. In the limit of highz,,, values(high-order modéeswe find
Thus the modéif any) whose zero satisfies
i —o Iif o<1 23
L (Zmn)* M KmnT| 1 if o=1
o= E(@) (Bmn=0) (20) Bmn—

so that very high order modes are damped. The zeros of

will have an amplitude with the fastest amplitude increase,.(g 3 determine which modes are the last to be amplified:
and its oscillation frequency and rate of increase will be

equal to B 2=(1+0)3r—1).

=35, Thus, if Bfnn<E2 the modes grow and they decrease ex-
(21) ponentially if the contrary is the case. The condition for a

1+o 1-0\? mode to be amplified is then that
K=— > + > +or.

B2, <(1+0)3(r—1).

When none of the zeroz,,, satisfies exactly(18), but ) ) o
there is one mode satifyingz,/0®)%(4.7)— =€ with I <1, the inequality cannot be satisfied and all the modes
small e, it is found that decrease. In the contrary case the modes grow. This has been

checked in the numerical calculations and means that the
threshold for the laser action is=1. Assuming then that

€ 1-0o
w=06+—-| 1+ ———|, r>1,
2 \/(1—0')2+40'r

(22) 1 (Zpn)?
1+ o 1—0g\2 ﬁ —4|<(1+o0)yr—1. (24)
K=— 5 + 5 +or.

In general, this equation states that the modes whose zeros

With this information for a given set of physical param- (zny) Satisfy the inequality are amplifigavith different rates
eters we are able to determine which is the fastest growing
mode, and what the growing rates of the other ones are. The 5
modes with a positiv value grow exponentially, while the
modes whosec value is negative decrease. The decreasing
modes are not expected to contribute to the final asymptotic
state, so that determining thesign of a mode, the relevant
modes can be predictedpriori. When only one mode has a
positive k value, it will probably be selected. After an initial
regime described b§9), the electric field will contain mostly
this spatial mode. The parameters can be set up so that only
one mode is amplified, which means that Efj7) can be
very useful from the viewpoint of applications, where some-

times only one specific mode is desired. _5 L
It is also possible that several modes grovex0). In this -40 -20 0 20 40
case the situation is more complicated because after the first Bon
stages, all these modes can take part in the field dynamics.
Let us analyze in more detail the shape k({8 in FIG. 1. Growth rates of the different modes for parameter val-

order to find what modes are amplified. ues:r=50,0=0.5,7=1,®=1.0, ands=10.0.
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as described aboyand their participation in the asymptotic

dynamics can be important. Figure 1 shows the growth rates
for a particular set of parameter values. The modes under the
dashed line are damped. In this case, there are only eight

CALDERON, PEREZ-GARCIA, MARTIN, AND GUERRA

IX,Y)

active modes.
If there is one mode, its zero satisfying Eg0), then this

mode is the one with the highest growth rate. Let us then

denote it byz,,.. The inequality(24) can be rewritten as

|z 2opd <470 (g +1)\r —1. (25)

C. Number of active modes

By applying the more general expressi@4) we can es-

/ )

/ ’

,{ \\ \\
';Tr"][” I ) $
ARG
il

timate the number of modes that can oscillate in the resona-

tor. If & is smaller thanZoy/©)?/(4.7), Bmnis always posi-
tive. Taking away the absolute value we find

Znn<O®\47[(1+0) r—1+ 5]

(26)

Since zg,=mw(n+3/4), n=0,1,2 ... the maximum value
of n that complies with the inequality is

0 3
Nmax=—47 [(1+0) r=1+ 6]~ 7

and the number of modes witm=0 that can oscillate is
Nmaxt 1. Considering how the zeros values, () are distrib-
uted in the different modest(n), the total number of radial
structures oscillating in the resonatady,{y) is

nmax

Nrag= (Nmaxt 1) + ]2::1 2[(Nmaxt 1) = 1= (Nmaxt 1)2-

FIG. 2. Stationary pattern found faor=12.4, y=0.1, 0=0.1,
6= 5.78,7 = 1, and® = 0.5.

D. Maximum transverse mode beating frequency

The maximum frequency that can be generated by trans-
verse mode beating is provided by the difference between the
more distant amplified modes in the transverse spectrum, i.e.,

Av=o[Bn=(1+0)\r—1]
— o[ Bmp=—(1+0)yr—1]
=2yr—1.

IV. NUMERICAL RESULTS

In the previous sections we have obtained a series of for-
mulas for the modes that are excited in the cavity during the
initial regime. To what extent will the results hold when the
nonlinearities govern the dynamics? Since analytical treat-
ment of the nonlinear eigenvalue problem is not possible, the
only way to answer this question is to make numerical simu-

same value ofmn the total number of modes is

® 2
0 87 (1+ o)\ r—1+4].

O
v

Nmodes™ 2Nrag— 1=

For instance, when is large the number of active modes

can be very large, even when the Fresnel number is small. In
the limit of larger values, the number of modes is given by

Q) 2
Nmodes:() 87\r(1+0). (27)

The number of modes that are amplified in the resonator
is proportional to the Fresnel number. It must be said that
these are the amplified modes and that this restriction has
nothing to do with the usual limit to the number of modes
that can oscillate in a passive cavity, which is related to the

geometrical consideratiori85] . In particular, in the case of
a passive system the Fresnel number dependence .ig%on

low signal regime. Our guess is that once the nonlinear state
is reached the modes initially excited will remain the active
laser modes and that the effect of the nonlinearity will be
mainly reduced to mix the amplitudes and induce multimode
oscillations, etc. In principle, it is also possible that the most
active mode is the only one surviving in the stationary state.

I{X,Y)

<
W]

4l

/
W
/]
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/ // Jivay, 1IN _“,\\,!lé’!is"m\

SN
il
L

while in our active system we have found a linear depen-

dence onZ. A similar dependencdinear on.”) has been
found in[3] for a photorefractive oscillator.

FIG. 3. Stationary pattern found far=60.0, y=0.1, 0=0.1,
o= 7.61,7 = 4, and® = 0.5.
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FIG. 5. Stationary state for parameter values: 3, y = 0.1,
oc=01,6=367,.7 =4, and® = 0.5.

the good behavior of the numerical scheme.

We will now focus our interest on the long-term asymp-
totic solution, where the nonlinearities can be important.

First of all the equations with parametars= 12.4,y =
01,0 =0.1,6 = 578,77 = 1, and® = 0.5 have been
integrated. In this situation Eq15) predicts that then = 0,
n = 0 mode is much more amplified than the other ones. The
numerical result for the stationary profile is shown in Fig. 2,
this being clearly a 00 structure.

Second, we have integrated the equations with parameters
r =60.0,y=0.1,06 =0.1,6 = 7.61,.7 = 4,and® = 0.5.
The theoretical prediction is that te = 0, n = 1 mode,
having a zero at a given radial distance before the one on the
border and radial symmetry, is the most amplified one. The
numerical result for the stationary pattern is shown in Fig. 3
and is in agreement with our prediction. We have checked
that this behavior is not exclusive for this parameter combi-
nation but is also predicted and found for= 45,r = 20,
andr = 2.

Finally, when the parameters are sette 15.0,y = 0.1,
o=0.1,6 = 3.65,.7 = 4, and® = 0.5, we predict that the
Y most excited mode is the one with = 1 andn = 0 (which

has a zero at the origirand other modes have near excitation
rates. The numerical result shows that during the initial stage

FIG. 4. Different spatial profiles found for=15.0, y=0.1,  this mode is selecteffFig. 4a)] but then others such as the
0=0.1,06=3.65.7 = 4,and® = 0.5.(a) 7= 3.0,(b) 7= 7.0,(c) ~ Q0 appear, initiating a competition with some intermediate
7= 14.0. steps[Figs. 4b) and 4c)] and ultimately behaving periodi-

cally with time (multimode oscillation regime

This could occur when the gain of one mode is much higher In this case we also checked a parameter combination
than the gain of the rest of the modes. where the only mode with a positive growth rate is the one

To check these conjectures we have numerically intewithm =1, n=0(r =3,y =0.1,0 = 0.1, § = 3.67,
grated the single-longitudinal-mode Maxwell-Bloch equa-.# = 4, and® = 0.5). In the asymptotic state only this mode
tions using a very efficient full multigrid implementation of a appeargFig. 5 and there are no tracks of mode competition.
linear finite-difference scheml3,17,38. The gain profile All this evidence indicates that the theoretical predictions
was flat inside the integration region and the losses are su@re good, not only in the initial regime where the approxi-
denly increased from zero to a very high value in the boundmations are valid, but also in the stationary behavior.
ary region so that an effective limitation to the solution to the
region of interest is obtained. The initial condition for the
field was either flat or Gaussian with radial symmetry.

Generally speaking in the initial regime, where the ana- In this study we have extended the much used empty cav-
lytical treatment is accurate, the numerical solutions reity theory to include in a first approximation the effect of the
semble the predicted behavior, the most excited mode beinlgsses and the pumping, which are present in the laser sys-
the one predicted theoretically as should be expected frortem, so that not only geometrical considerations are made.

IX,Y)
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Our model allows us to predict what modes will increase,pared with numerical simulation results and a very good
what their growth rates and oscillation frequencies will be,agreement is found.
and how many modes are expected to coexist in the multi- We are preparing an experiment with a single longitudinal
mode regimes. In the latter case a linear dependence in thH@O, laser, which will be a real test bed for our theoretical
Fresnel number is predicted, which is caused by the selectioand numerical predictions.
mechanism different from purely geometrical considerations.
It_must be said that our approach is not expected_ to be ACKNOWLEDGMENTS
applicable beyond the low Fresnel numkiand low gain
regions, which is where multimode expansions make sense This work has been partially supported by the “Plan Gen-
[19,24,31. eral de Promocio del Conocimiento” under Project No.
Some of the predictions of our model have been comPB92-0798.
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