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In this paper we analyze the transverse pattern-forming characteristics of a two-level and single-longitudinal-
mode laser. The corrections to the classical empty cavity modes due to pumping and losses are specifically
considered, leading to different excitation rates for the different transverse modes. The near-threshold excita-
tion rates provide a selection mechanism that is studied and compared to the results from numerical simulations
of the Maxwell-Bloch equations.

PACS number~s!: 42.60.Mi, 05.45.1b

I. INTRODUCTION

Lasers are among the most interesting devices found in
optics, due to their dynamics, on which many studies have
been based. In the last few years there has been an increasing
interest in transverse effects in the context of pattern-
formation problems@1#, in both passive@2–6# and active
systems@7–9#. The single-longitudinal-mode laser@8–10#
has been a useful laboratory to study transverse phenomena
without the influence of other degrees of freedom. For this
reason a lot of work has centered around this mathematical
model. The different approaches used to obtain information
about the solutions of these equations include: exact solu-
tions ~nonlinear plane-wave models! @11#, direct numerical
simulations@12–17#, reduction to simpler equations@14,18#,
discrete models@19#, and especially empty cavity mode ex-
pansions@20–25#. The philosophy behind the latter approach
is to expand the field inside the laser cavity on the basis of
the empty cavity modes, which are known to have a clear
physical relevance in many practical laser devices; i.e., the
low Fresnel number systems tend to operate in a dynamical
regime where few modes compete, one of which may some-
times be selected. In any case a few degrees of freedom are
present in the dynamics usually corresponding to the laser
modes@24,26,27#. With the words ‘‘laser mode’’ one usually
refers to well-defined patterns having some similarities to the
shape of the empty cavity modes. When a few of these
modes are considered in the mathematical expansion one can
find many different phenomena such as spontaneous symme-
try breaking@28#, cooperative frequency locking@29#, cha-
otic itinerancy@30,31#, chaotic alternation@32#, etc. This ap-
proach has some important limitations. In the first place it is
not possible to knowa priori how many modes will be active
in a particular system. This information is obtained later,

when some modes disappear and have no dynamical rel-
evance. Another difficulty when using the empty cavity
modes is that one is not sure whether the mode shape is more
or less the same as that of the empty cavity modes, or the
pumping and losses induce shape changes that affect the ac-
curacy of the multimode expansion. Last, but not least, there
is no way of knowing which, if any, will be the dominating
mode in the dynamics without numerically integrating the set
of coupled ordinary differential equations for the mode am-
plitudes.

In this paper, we try to address these questions by going a
step beyond the usual empty cavity mode expansion, trying
to see what the effect of losses and pumping is in a first
approximation. The results are in a very good agreement
with the numerical simulations of the partial differential
equation and with physical experience@24#.

II. STATEMENT OF THE GAIN-MODE PROBLEM

The starting point for our analysis is the Maxwell-Bloch
equations for a polarized two-level laser with plane and par-
allel mirrors in the rotating wave, slowly varying amplitude,
and single-longitudinal-mode approximations, which are
@10#
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DF1s~F2P!50, ~1!
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whereg5g i /g' is the ratio between the depolarization time
of the radiation-induced material dipoles (g'

21) and the life-
time of the population inversion (g i

21). s5sc /(2e0g'),
sc measures the losses, including mirror coupling, internal
transmission losses, aperture diffraction, etc.d5(v12
2vc)/g' is the rescaled detuning between the matter tran-
sition frequency and the fast oscillation of the
field. r5ac/(sg') is a rescaled pumping, i.e.,a
5v12uDW 12u2Nd0/(2e0\g'c) is the small signal gain (DW 12
being the dipole moment of the transition andN the number
of atoms or molecules per unit volume in the active me-
dium!, andd0 is the population inversion per atom or mol-
ecule induced by the pumping.
F 5pb2/(lL) is related to the Fresnel number

(F 5pF), b is the transverse radius of the resonator,l is
the wavelength of the light, andL is the resonator
length. The transverse rescaled variables arerW 5(j,h)
5(x,y)/(bAv), wherev5c/(Lg'), and the rescaled time
variable ist5g't.

Let us concentrate on the case whereuFu, uPu!1:

]F

]t
2

i

4F
DF1s~F2P!50, ~4!

]P

]t
1~11 id!P2FD50,

]D

]t
1g~D2r !50.

Physically it corresponds to the first stages of the laser ac-
tion, when the field is rising from zero in a small signal
operation regime~near-threshold regime!. The modes are so-
lutions with a stationary spatial structure. Thus, let us con-
sider during this first regime solutions with the particular
time dependence

F~t,rW !5F~rW !e2 iVt,

P~t,rW !5P~rW !e2 iVt, ~5!

D5D~rW !,

whereV is related to the slow oscillation transverse-mode
frequency. For reasons to be clarified later it will be consid-
ered a complex number. We assume the validity of the re-
quirements,

uF~rW !e2 iVtu!1, uP~rW !e2 iVtu!1, ~6!

and throughout the small-signal regime, we get the following
equation forF~rW!:

DF14F H V1 is2
isr

12 iV1 id

1

11uFu2ei ~V*2V!t@21 i ~V*2V!#/2~12 iV1 id!~11 iV*2 id!
J F50. ~7!

This is a nonlinear eigenvalue problem and a truly chal-
lenging mathematical problem. Let us then concentrate on
the case where

uFu2!
2~12 iV1 id!~11 iV*2 id!

21 i ~V*2V!
e2 i ~V*2V!t. ~8!

Physically it corresponds to the first stages of the laser
action, when the field is rising from zero in a small signal
operation regime~near-threshold regime!. Using ~8! the fol-
lowing equation is found:

DF14F H V1 is2
isr

12 iV1 id J F50. ~9!

To close the mathematical problem we need to set up the
reflecting type boundary conditions. This linear eigenvalue
problem has only complexV solutions, which is why a com-
plex V (V5v1 ik) was considered from the beginning.
The real part ofV is related to the mode oscillation fre-
quency while its imaginary part means the field initial slope,
being positive if the field is amplified or negative if the field
is damped. Then

F~t,rW !5F~rW !e2 ivtekt,

P~t,rW !5P~rW !e2 ivtekt, ~10!

D5D~rW !.

The physical reason for the need to complexifyV is clear
if we go back to Eqs. ~1!–~3!. Linearizing around
F5P50, the resulting evolution equation is linear but non-
conservative so that the solutions either explode or damp out
to zero depending on whether the loss or gain term domi-
nates~this can be easily checked by computing the evolution
of theL2 norm of the field,I5** uFu2dxdy). This being the
case, the modes will either grow or decrease with time and
this behavior is not included in a realV.

This treatment will strictly be applicable when the effects
of the nonlinearities are negligible, corresponding to the ap-
proximation described in~8!. The physical implications of
the results to be presented here will be discussed later. Equa-
tion ~9! now reads

DF14F H v1 ik1 is2
isr

11k2 i ~v2d! J F50. ~11!
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The solutions of this problem in a sense contain more infor-
mation than the linear modes, which arestatic objects and
correspond to the limit of~11! where both the pumping and
dissipation are set to zero. From now on, these will be re-
ferred to as gain modes or simply modes.

For the sake of simplicity we will consider a uniform
pumping profile in the transverse direction, i.e.,r constant.
When using other pumping profiles, like the Gaussian pro-
file, the thresholds and mode selection change~though prob-
ably not essential! and the TEM00 structure is favored. This
fact has been recently analyzed in@33#.

III. GROWTH RATES, MODE SELECTION,
AND NUMBER OF ACTIVE MODES

A. Calculation of the growth rates and oscillation frequencies
of the modes

Since~11! is a linear equation, we can separate variables
in polar coordinates

F~rW !5F~r,u!5F~r!H~u!.

It is easily found that

H~u!5Aeimu1Be2 imu, m50,1,2, . . . ~12!

and

r2F91rF81~ar22m2!F50 S F8[
]F

]r D , ~13!

where

a54F H v1 ik1 is2
isr

11k2 i ~v2d! J .
Let us define the new~complex! variablez5rAa. The

resulting equation is the well-known Bessel equation~with a
complex variable!

z2F̈1zḞ1~z22m2!F50 S Ḟ[
]F

]z D . ~14!

The regular solutions of~12! are

F~z!5CJm~z!.

Let us now impose the transverse boundary conditions,
which will correspond to totally reflecting lateral surfaces at
x21y25b2 (r51/Av[Q). In the real lasers, the electric
field practically cancels out in the boundary region, because
there used to be high losses~and additionally low pumping,
if any! in the near boundary region. From a practical view-
point this is practically equal to having high losses in the
lateral surfaces. Then, our boundary condition~totally re-
flecting lateral surfaces! is in agreement with the electric
field behavior. In the numerical simulations to be presented
later we have also included a space-dependent loss function,
with a sharp increase of the losses near the boundary.

The zero boundary condition implies thatJm(QAa)50.
But the zeros of this function are real numbers@34#, in fact
the real zeros of the Bessel functions (zmn),

zmn5QAa.

Sincea is a complex number (a5a11 ia2) the last equation
can also be written as

a15S zmn

Q D 2,
a250. ~15!

The last two equations allow us to determinev andk:

k1s2
sr ~11k!

~11k!21~v2d!2
50,

~16!

v1
sr ~v2d!

~11k!21~v2d!2
5

1

4F S zmn

Q D 2.
Let us define the new variables

G5v2d,

C52k111s.

The new equation forC is

C41@bmn
2 2~12s!224sr #C22~12s!2bmn

2 50,

wherebmn5(zmn /Q)2/(4F )2d. Solving this equation and
rewriting the solution in terms of the old variables, we find
the following expression for the solution:

k52
11s

2
1
1

2
A2S bmn

2 2~12s!224sr

2
D 1AS bmn

2 2~12s!224sr

2
D 21~12s!2bmn

2 . ~17!

The value of k ~15! can be used to calculate the oscillation frequency of each modemn using the expression
v5d1(11k)bmn /(2k111s) and the result is

v5d1H 11
12s

A2$@bmn
2 2~12s!224sr #/2%1A$@bmn

2 2~12s!224sr #/2%21~12s!2bmn
2 J bmn

2
. ~18!

It is then seen that the mode frequencies depend on boths andr , so that our approach provides additional information to
that given by the empty cavity theory, where the mode oscillation frequencies depend only on the geometrical characteristics
of the resonator and are not influenced by the parameters. The angular frequency is, of course, in units ofg' .
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B. Selection of amplified modes

Since the functionk ~17! contains the information on how the different spatial structures grow, it is interesting to analyze
it in more detail. In the first place, it is possible to find whichmnmode has the largestk. The maximum growth rate is given
by

dk

dbmn
5

1

2A2A
bmnF211

bmn
2 1~12s!224sr

A~bmn
2 1~12s!224sr !2116~12s!2sr

G50, ~19!

where

A52S bmn
2 2~12s!224sr

2 D 1AS bmn
2 2~12s!224sr

2 D 21~12s!2bmn
2 .

It is easy to see that the maximum corresponds tobmn50.
Thus the mode~if any! whose zero satisfies

d5
1

4F S zmn

Q D 2 ~bmn50! ~20!

will have an amplitude with the fastest amplitude increase,
and its oscillation frequency and rate of increase will be
equal to

v5d,
~21!

k52
11s

2
1AS 12s

2 D 21sr .

When none of the zeroszmn satisfies exactly~18!, but
there is one mode satifying (zmn /Q)2/(4F )2d5e with
small e, it is found that

v.d1
e

2 F11
12s

A~12s!214sr
G ,

~22!

k.2
11s

2
1AS 12s

2 D 21sr .

With this information for a given set of physical param-
eters we are able to determine which is the fastest growing
mode, and what the growing rates of the other ones are. The
modes with a positivek value grow exponentially, while the
modes whosek value is negative decrease. The decreasing
modes are not expected to contribute to the final asymptotic
state, so that determining thek sign of a mode, the relevant
modes can be predicteda priori. When only one mode has a
positivek value, it will probably be selected. After an initial
regime described by~9!, the electric field will contain mostly
this spatial mode. The parameters can be set up so that only
one mode is amplified, which means that Eq.~17! can be
very useful from the viewpoint of applications, where some-
times only one specific mode is desired.

It is also possible that several modes grow (k.0). In this
case the situation is more complicated because after the first
stages, all these modes can take part in the field dynamics.

Let us analyze in more detail the shape ofk(bmn) in
order to find what modes are amplified.

In the limit of highzmn values~high-order modes! we find

lim
bmn→`

kmn5H 2s if s,1

21 if s>1,
~23!

so that very high order modes are damped. The zeros of
k(bmn) determine which modes are the last to be amplified:

b˜25~11s!2~r21!.

Thus, if bmn
2 ,b̃2 the modes grow and they decrease ex-

ponentially if the contrary is the case. The condition for a
mode to be amplified is then that

bmn
2 ,~11s!2~r21!.

If r,1, the inequality cannot be satisfied and all the modes
decrease. In the contrary case the modes grow. This has been
checked in the numerical calculations and means that the
threshold for the laser action isr51. Assuming then that
r.1,

U 1

4F S zmn

Q D 22dU,~11s!Ar21. ~24!

In general, this equation states that the modes whose zeros
(zmn) satisfy the inequality are amplified~with different rates

FIG. 1. Growth rates of the different modes for parameter val-
ues:r550, s50.5,F 51, Q51.0, andd510.0.
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as described above! and their participation in the asymptotic
dynamics can be important. Figure 1 shows the growth rates
for a particular set of parameter values. The modes under the
dashed line are damped. In this case, there are only eight
active modes.

If there is one mode, its zero satisfying Eq.~20!, then this
mode is the one with the highest growth rate. Let us then
denote it byzopt. The inequality~24! can be rewritten as

uzmn
2 2zopt

2 u,4F Q2~s11!Ar21. ~25!

C. Number of active modes

By applying the more general expression~24! we can es-
timate the number of modes that can oscillate in the resona-
tor. If d is smaller than (z00/Q)2/(4F ), bmn is always posi-
tive. Taking away the absolute value we find

zmn,QA4F @~11s!Ar211d#. ~26!

Since z0n.p(n13/4), n50,1,2, . . . themaximum value
of n that complies with the inequality is

nmax5
Q

pA4F @~11s!Ar211d#2
3

4

and the number of modes withm50 that can oscillate is
nmax11. Considering how the zeros values (zmn) are distrib-
uted in the different modes (mn), the total number of radial
structures oscillating in the resonator (Nrad) is

Nrad5~nmax11!1 (
j51

nmax

2@~nmax11!2 j #5~nmax11!2.

Since we have two angular structures corresponding to the
same value ofm the total number of modes is

Nmodes52Nrad21.S Q

p D 28F @~11s!Ar211d#.

For instance, whenr is large the number of active modes
can be very large, even when the Fresnel number is small. In
the limit of larger values, the number of modes is given by

Nmodes.S Q

p D 28F Ar ~11s!. ~27!

The number of modes that are amplified in the resonator
is proportional to the Fresnel number. It must be said that
these are the amplified modes and that this restriction has
nothing to do with the usual limit to the number of modes
that can oscillate in a passive cavity, which is related to the
geometrical considerations@35# . In particular, in the case of
a passive system the Fresnel number dependence is onF 2

while in our active system we have found a linear depen-
dence onF . A similar dependence~linear onF ) has been
found in @3# for a photorefractive oscillator.

D. Maximum transverse mode beating frequency

The maximum frequency that can be generated by trans-
verse mode beating is provided by the difference between the
more distant amplified modes in the transverse spectrum, i.e.,

Dv5v@bmn5~11s!Ar21#

2v@bmn52~11s!Ar21#

52Ar21.

IV. NUMERICAL RESULTS

In the previous sections we have obtained a series of for-
mulas for the modes that are excited in the cavity during the
initial regime. To what extent will the results hold when the
nonlinearities govern the dynamics? Since analytical treat-
ment of the nonlinear eigenvalue problem is not possible, the
only way to answer this question is to make numerical simu-
lations and to compare the results with the predictions for the
low signal regime. Our guess is that once the nonlinear state
is reached the modes initially excited will remain the active
laser modes and that the effect of the nonlinearity will be
mainly reduced to mix the amplitudes and induce multimode
oscillations, etc. In principle, it is also possible that the most
active mode is the only one surviving in the stationary state.

FIG. 2. Stationary pattern found forr512.4, g50.1, s50.1,
d5 5.78,F 5 1, andQ 5 0.5.

FIG. 3. Stationary pattern found forr560.0, g50.1, s50.1,
d5 7.61,F 5 4, andQ 5 0.5.
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This could occur when the gain of one mode is much higher
than the gain of the rest of the modes.

To check these conjectures we have numerically inte-
grated the single-longitudinal-mode Maxwell-Bloch equa-
tions using a very efficient full multigrid implementation of a
linear finite-difference scheme@13,17,36#. The gain profile
was flat inside the integration region and the losses are sud-
denly increased from zero to a very high value in the bound-
ary region so that an effective limitation to the solution to the
region of interest is obtained. The initial condition for the
field was either flat or Gaussian with radial symmetry.

Generally speaking in the initial regime, where the ana-
lytical treatment is accurate, the numerical solutions re-
semble the predicted behavior, the most excited mode being
the one predicted theoretically as should be expected from

the good behavior of the numerical scheme.
We will now focus our interest on the long-term asymp-

totic solution, where the nonlinearities can be important.
First of all the equations with parametersr 5 12.4,g 5

0.1, s 5 0.1, d 5 5.78,F 5 1, andQ 5 0.5 have been
integrated. In this situation Eq.~15! predicts that them 5 0,
n 5 0 mode is much more amplified than the other ones. The
numerical result for the stationary profile is shown in Fig. 2,
this being clearly a 00 structure.

Second, we have integrated the equations with parameters
r 5 60.0,g 5 0.1,s 5 0.1,d 5 7.61,F 5 4, andQ 5 0.5.
The theoretical prediction is that them 5 0, n 5 1 mode,
having a zero at a given radial distance before the one on the
border and radial symmetry, is the most amplified one. The
numerical result for the stationary pattern is shown in Fig. 3
and is in agreement with our prediction. We have checked
that this behavior is not exclusive for this parameter combi-
nation but is also predicted and found forr 5 45, r 5 20,
and r 5 2.

Finally, when the parameters are set tor 5 15.0,g 5 0.1,
s 5 0.1,d 5 3.65,F 5 4, andQ 5 0.5, we predict that the
most excited mode is the one withm 5 1 andn 5 0 ~which
has a zero at the origin! and other modes have near excitation
rates. The numerical result shows that during the initial stage
this mode is selected@Fig. 4~a!# but then others such as the
00 appear, initiating a competition with some intermediate
steps@Figs. 4~b! and 4~c!# and ultimately behaving periodi-
cally with time ~multimode oscillation regime!.

In this case we also checked a parameter combination
where the only mode with a positive growth rate is the one
with m 5 1, n 5 0 (r 5 3, g 5 0.1, s 5 0.1, d 5 3.67,
F 5 4, andQ 5 0.5!. In the asymptotic state only this mode
appears~Fig. 5! and there are no tracks of mode competition.

All this evidence indicates that the theoretical predictions
are good, not only in the initial regime where the approxi-
mations are valid, but also in the stationary behavior.

V. CONCLUSIONS

In this study we have extended the much used empty cav-
ity theory to include in a first approximation the effect of the
losses and the pumping, which are present in the laser sys-
tem, so that not only geometrical considerations are made.

FIG. 4. Different spatial profiles found forr515.0, g50.1,
s50.1,d5 3.65,F 5 4, andQ 5 0.5. ~a! t5 3.0, ~b! t5 7.0, ~c!
t5 14.0.

FIG. 5. Stationary state for parameter values:r 5 3, g 5 0.1,
s 5 0.1, d 5 3.67,F 5 4, andQ 5 0.5.
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Our model allows us to predict what modes will increase,
what their growth rates and oscillation frequencies will be,
and how many modes are expected to coexist in the multi-
mode regimes. In the latter case a linear dependence in the
Fresnel number is predicted, which is caused by the selection
mechanism different from purely geometrical considerations.

It must be said that our approach is not expected to be
applicable beyond the low Fresnel number~and low gain!
regions, which is where multimode expansions make sense
@19,24,37#.

Some of the predictions of our model have been com-

pared with numerical simulation results and a very good
agreement is found.

We are preparing an experiment with a single longitudinal
CO2 laser, which will be a real test bed for our theoretical
and numerical predictions.
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