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We present a theoretical study of high-order harmonic generation by a slowly driven ‘‘Duffing’’ anharmonic
oscillator. The power spectra are shown to display a plateau of high harmonics, which ends up with a sharp
cutoff. The classical dynamics is analyzed with the adiabatic invariance theorem, which yields a simple
interpretation to this characteristic behavior. We compare with the quantum case by solving numerically the
time-dependent Schro¨dinger equation, and outline the similarity between classical damping and quantum-
mechanical ionization processes. This allows us, in particular, to interpret the existence of intrinsic phases
between high harmonics and the driving field. We further discuss the implication of these relaxation processes
on the coherence of high harmonics, as well as the existence of interference processes yielding quasiresonant
structures in intensity dependences.

PACS number~s!: 32.80 Rm, 42.65 Ky

I. INTRODUCTION

High-order harmonic generation by noble gas atoms inter-
acting with intense laser pulses has become one of the major
topics in multiphoton physics. Extremely high orders have
been observed@1,2#, thus demonstrating the possibility to
generate coherent light pulses in the extreme ultraviolet
~XUV ! spectral region, with photon energies up to 160 eV.
High-order harmonic generation can be used as compact and
versatile XUV sources, of interest for instance in atomic and
molecular spectroscopy@3#. Recent experimental studies
have measured the characteristics of the harmonic beams:
angular distributions have been obtained by Peatross and
Meyerhofer@5#, Tischet al. @4#, and Salie`reset al. @6#; tem-
poral @7# and spectral profile measurements@8# have also
been reported.

The theory of these highly nonlinear processes has been
extensively developed over the past few years, to investigate
both the single-atom response, and propagation and phase-
matching phenomena@9#. Several methods have been used to
describe the atomic response. Most prominent among these
are the integration of the time-dependent Schro¨dinger equa-
tion ~TDSE! for an atom in the single active electron ap-
proximation @10,11#, and the solution of the coupled time-
independent Floquet equations for hydrogen@12#. A number
of simplified models have also been successfully considered,
such as one-dimensional approximations in a soft-Coulomb
potential@13,14#, the integration of the equations of motion
for a classical hydrogen system@15#, and even cruder models
such as a two-level system in a strong field@16–19#.

The harmonic distribution presents a characteristic shape,
consisting of a decrease for the first orders, followed by a
long plateau which ends up with a rather sharp cutoff. Nu-

merical calculations of Krauseet al. @20#. have shown that
the single-atom cutoff, expressed in terms of photon energy,
scales asI p13Up , whereI p is the atomic ionization poten-
tial, andUp is the ponderomotive potential, equal to the av-
erage quiver energy of a free electron in the field. This scal-
ing is valid in a strong-field and low-frequency limit such
that ionization takes place by a tunneling mechanism
(AI p/2Up,1). This was later explained by Kulander, Scha-
fer, and Krause@21# and Corkum@22#, in a two-step semi-
classical model. Lewenstein and co-workers@23,24# subse-
quently recovered the same cutoff law and interpretation in a
quantum, analytical model, again valid in a strong-field,
tunnel-ionization limit. The experimental cutoff law actually
depends on complex macroscopic parameters, for example,
focusing conditions; taking these effects into account,
L’Huillier et al. @23# were able to confirm the single-atom
I p13Up law. This semi-classical model therefore tends to
become a theoretical paradigm for high-order harmonic gen-
eration.

It should be pointed out that all model atoms studied so
far display the charasteristic response: decrease, plateau, and
cutoff. However, they do not necessarily yield theI p13Up
cutoff law. For instance, a different cutoff law is predicted in
a two-level system, or in a slowly driven classical hydrogen
atom. The semiclassical model, while describing successfully
the atomic response in a tunneling regime, obviously cannot
account for the different scaling laws obtained in other mod-
els. In contrast, the characteristic plateau-cutoff behavior
seems to be a very common property~model independent! of
the response of a nonlinear system strongly driven by a low-
frequency force. This apparent universality is not fully un-
derstood yet.

The purpose of this paper is to present a detailed analysis
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of high-order harmonic generation by an anharmonic oscil-
lator. The quartic anharmonic oscillator, or ‘‘Duffing’’ oscil-
lator, seems to be indeed the simplest centrosymmetric non-
linear system, and as such is widely used as an introductive
model in nonlinear optics textbooks@25,26#. We have re-
cently pointed out that the power spectrum of a classical
anharmonic oscillator, driven by a strong low-frequency
force, also displays the typical plateau-cutoff behavior@27#.

The anharmonic oscillator presents several appealing
properties, which make its study particularly worthy. A con-
siderable amount of literature exists on the nonlinear dynam-
ics of one-dimensional oscillators~see, for instance, Nayfeh
and Mook @28#!, and on the particular case of time-
dependent anharmonic oscillators. A recent review of this
field can be found in Boseet al. @29#.. Powerful methods of
analytical Hamiltonian mechanics, such as action-angle rep-
resentations, can be used to study the motion in this system.
These methods allow us to give a simple interpretation of the
plateau-cutoff behavior, and to explain particular~and also
apparently universal! properties of high-order harmonics,
such as the existence of intrinsic phases or of quantum inter-
ferences. Moreover, the problem is well suited to a compari-
son between the classical and quantum-mechanical cases,
and, possibly, to propagation studies@5#. Our aim is not to
obtain realistic solutions for the single-atom response, and
the scaling laws obtained here are due to the specific prop-
erties of the anharmonic oscillator Hamiltonian. We wish to
show, however, that this very simple model may help to un-
derstand some aspects of high-order harmonic generation.

This article is organized as follows. We first study the
classical problem of an anharmonic oscillator subjected to a
low-frequency driving force. The existence of high-order
harmonics of the motion can be interpreted simply by taking
advantage of the adiabatic invariance theorem. We empha-
size the role of a small damping term in obtaining periodic
solutions. We then discuss the relevance of this problem to
the quantum-mechanical case, and proceed to study the
quantum-mechanical dynamics, by solving numerically the
time-dependent Schro¨dinger equation. We outline in particu-
lar the importance of ionization as an analog to the classical
damping force. The last part of this paper is devoted to the
investigation, within the anharmonic oscillator model, of
three puzzling properties of high-order harmonics. We first
address the problem of the intrinsic phases of high-order har-
monics relative to the driving field, which recently aroused
much interest because of their incidence on propagation ef-
fects. We then proceed to show how dynamical interference
effects arise in the model, and result in broad resonantlike
structures in the intensity dependences of high harmonics.
We emphasize a coherence problem for high harmonics, re-
lated to the existence of ‘‘hyper-Raman’’ peaks. We point out
that high-order harmonic generation is a dynamical process,
which does not follow instantaneously the variations of the
forcing field. We discuss the relevant time scales, and show
that in most cases, the coherence of the harmonics is main-
tained thanks to the ionization process.

II. DYNAMICS OF A DRIVEN CLASSICAL ANHARMONIC
OSCILLATOR

We first study the motion of a classical ‘‘electron’’ in a
quartic confining anharmonic potential~Duffing oscillator!,

submitted to a strong low-frequency forceE(t)5E0sin(vt).
The potential can be written as

V~x!5
v0
2

2
x21

v
4
x4, ~1!

and corresponds to the sum of a harmonic oscillator poten-
tial, of characteristic frequencyv0 , and an anharmonic term,
vx4/4. We chose to study only the confining casev.0. In-
deed, we are interested in using very strong forcing fields
E0 , for which all trajectories ionize almost instantaneously
in the casev,0. The ratiov/v0 is considered to be of the
order of 1/10–1/20, corresponding to the typical ratio be-
tween the photon energy of a low-frequency terawatt laser
~neodymium glass or titanium sapphire!, and the ionization
potential of a noble gas.

The equation of motion is

ẍ1G ẋ1v0
2x1vx35E0sin~vt !. ~2!

We have considered here a damping termG ẋ, whose role
will be analyzed later. The parameters used (G, v0 , v, v,
andE0) are actually redundant. We can therefore rescale the
time unit: t→v0t, which is equivalent to settingv051. We
will use in the following these rescaled ‘‘atomic’’ units for all
parameters.

Equation ~2! cannot be solved analytically; the motion
actually becomes chaotic when the field strength is in-
creased, through a period-doubling mechanism. It should be
stressed, however, that the present study is performed at field
strengths lower than the first bifurcation threshold, and there-
fore in a nonchaotic regime.

In order to investigate the oscillator dynamics, we inte-
grate Eq.~2! numerically; we use standard fourth-order or
variable-step Runge-Kutta algorithms. The latter method al-
lows us to get any desired level of numerical accuracy, but
requires longer computation times. We assume the ‘‘elec-
tron’’ to be at rest at the origin att50; the forcing field is
turned on linearly on several periodsTL52p/v ~optical
cycle!, and is subsequently held at a fixed valueE0 .

Although radiation by a classical electron depends on the
accelerationẍ(t), we shall concentrate in the following on
the power spectrumux̃ (v)u2 of the positionx(t) ~which can
be identified here with the dipole moment!, thus following
the most common convention in high-order harmonic gen-
eration studies@9,16#.

Figures 1~a! and 1~b! ~solid line! present typical spectra
obtained forE0510 and 5, respectively. They display the
characteristic behavior of high-order harmonic spectra: a
steady decrease for the first orders, followed by a long pla-
teau up to a sharp cutoff. This behavior can be explained by
considering the variation of the electron positionx as a func-
tion of time, which is shown in Fig. 2~a! ~solid line!: the
electron oscillates rapidly around a slowly varying central
position. The forcing frequencyv is much smaller than the
atomic frequency. We can therefore distinguish two time
scales, one associated with the periodTL of the low-
frequency forcing field, and the other with a periodTat char-
acteristic of high frequency motion in the potential well. On
the latter time scale, the electron can be seen as freely oscil-
lating in a frozen potential:
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V85V2Ẽ x , ~3!

with Ẽ 5E0sin(vt). The average of the quiver motion can be
identified with the motion of the bottom of the instantaneous
potential well, represented by the dashed line in Fig. 2~a!.
Let us callx0 the point representing the bottom of the poten-
tial well, which obeys

x01vx0
35E0sin~vt !, ~4!

anddx the deviation of the electron position from the bottom
of the well:

dx5x2x0 . ~5!

The equation of motion fordx is

d ẍ1~113vx0
2!dx1~3vx0dx

21vdx3!

5~2 ẍ02G ẋ0!2Gd ẋ. ~6!

The two terms which are nonlinear indx are of order
dx/x0 or less, and can therefore be neglected. Let us set
V25113vx0

2 . The dominant terms in the left-hand side are
of order V2dx, while those in the right-hand side are of
orderv2dx, with v!V. As a result, we will not consider
the right-hand side in a first step, and will focus ourselves on
the homogeneous equation

d ẍ1V2dx50, ~7!

which describes a free motion in a slowly varying harmonic
potential. This is a Hill equation, well known in the context
of celestial mechanics. The electron undergoes a quiver mo-
tion in this potential, with an instantaneous frequencyV.
The minimum value of this frequency isVmin51, and the
maximum one isVmax5A113vxmax

2 , where xmax is the
maximum excursion of the bottom of the potential well. It
can be approximated asxmax.(E0 /v)

1/3 for a strong enough
field E0 @see Eq.~4!#. We have therefore

Vmax5A113v1/3E0
2/3. ~8!

The Fourier transform~FT! of x(t) can be split into the
sum of the FT ofx0(t), whose components regularly de-
crease with order, and that ofdx(t), whose components have
roughly equal amplitudes betweenVmin andVmax. The over-
all pattern of the spectrum is therefore interpreted as follows:
the steady decrease for the first orders corresponds to the
Fourier spectrum of the bottom of the potential well; the
plateau is related to the electron motion in this time-
dependent well, at shifted atomic frequencies; the cutoff ba-
sically corresponds to the highest such frequency.

Numerical results support this interpretation. The pre-
dicted maximum frequenciesVmax given by Eq.~8! corre-
spond exactly to the numerical results for the cutoff
@Vmax.5 and 4 in Fig. 1~a! and 1~b!, respectively#. Figure
1~b! also enables one to compare directly the power spectra
of x(t) anddx(t) ~full circles!. The high-frequency compo-
nents ofx(t) can indeed be identified to the spectrum of
dx(t), which fits exactly the plateau structure.

FIG. 1. ~a! Typical high-order harmonic spectrum from a clas-
sical Duffing anharmonic oscillator. The parameters used are
v50.1, v55, E0510, G510. We use throughout rescaled
‘‘atomic’’ units ~a.u.! ~i.e., atomic units divided by the oscillator
frequencyv0). ~b! Comparison between the full harmonic spectrum
obtained forE055 ~solid line!, and that of the high-frequency dis-
placementdx ~full dots!, responsible for the harmonic plateau@see
Eq. ~6!#.

FIG. 2. Time dependence of the electron trajectory~solid line!
and of the bottom of the time-dependent potential well~dashes!, ~a!
for weak damping (G50.01) and ~b! for strong damping
(G50.15.v). The other parameters correspond to those of Fig.
1~b!. The inset shows the difference between the numerical results
~solid line! and the analytical results of Eq.~20! ~short-dashed line!.
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One point stays unclear. Why is the ‘‘high-frequency’’
motion of dx(t) periodic? In fact, the spectrum ofdx(t) in
general includes nonharmonic components, as shown by
solving Eq.~7!, describing the free motion ofdx. The sim-
plest method to obtain an analytical approximation to this
equation consists of performing a canonical transformation
to use action-angle variables (I ,u). The generating function
is

F2~x,u,t !5
1

2
V~ t !dx2tanu, ~9!

so that the HamiltonianH5(1/2)pdx
2 1(1/2)V2(t)dx2 be-

comes

K5IV~ t !1
]F2

]t
5IV~ t !1

1

2
dx2tanuV8~ t !. ~10!

We now take advantage of the quasiadiabaticity of the poten-
tial variations: according to the adiabatic theorem, the action
I is essentially invariant. Assuming thatI is a constant of
motion amounts to neglecting the slowly varying term
]F2 /]t. The approximate solution in (I ,u) variables is then

I5I 0 , ~11!

u~ t !5u01E
0

t

V~t!dt, ~12!

which yields for dx(t)5A2I /Vcosu the following expres-
sion:

dx~ t !5
A2I

AV~ t !
cosS u01E

0

t

V~t!dt D . ~13!

Although V(t) is periodic, cos(*V) is not. Its frequency
spectrum displays high-frequency peaks, but at frequencies
different from the harmonic ones. Where does the obvious
periodicity shown in Figs. 1 and 2 come from?

Numerical studies help in giving the answer to this ques-
tion. First, we solve Eq.~2! in the conditions of Fig. 1~a!
(v55, E0510), but without damping (G50). The field is
switched on fully adiabatically, by means of a long and
smooth ramp, before a constant field period, on which the
Fourier analysis is performed. The result is shown in Fig. 3.
As previously, the low-frequency part of the spectrum is
composed of decreasing harmonic peaks. However, the high-
frequency motion is only quasiperiodic; in addition to the
high-frequency harmonic peaks, the spectrum shows other
series of peaks separated by 2v. Note that numerical prob-
lems may occur here: the fourth-order Runge-Kutta algo-
rithm, which does not intrinsically conserve action, may lead
to numerical artifacts, and in particular to an artificial peri-
odicity. All our numerical results show nonharmonic~also
called ‘‘hyper-Raman’’! peaks. In contrast to some other
studies@17#, using extremely long ramp durations actually
results in increased spurious peaks and noise.

In contrast, the introduction of even a very small damping
forces the motion to converge to a periodic solution. This can

be explained by considering again Eq.~6! for dx. Its right-
hand side includes a damping term2Gd ẋ, and a driving
term

w~ t !52 ẍ02G ẋ0 , ~14!

which can be interpreted as the sum of an inertia force, and
of damping of the low-frequency motion, acting as a force on
the high-frequency motion.

To obtain an analytical expression fordx, we calculate
the retarded Green function for

d ẍ1V2~ t !dx5d~ t2t!, ~15!

which can easily be shown to be

G~t,t ! 50 for t,t ~16!

G~t,t ! 5
1

AV~t!V~ t !
sinS E

t

t

V~ t8!dt8D for t.t.
~17!

In the absence of damping, the solution of Eq.~6! is

dx~ t !5E
0

t

w~t!G~t,t !dt. ~18!

Damping can be simply introduced by writing the solution as

dx~ t !5E
0

t

w~t!G~t,t !e2G~ t2t!/2dt. ~19!

Moreover, all frequency terms existing in the expression
of G should be replaced byAV2(t)2G2/4. We shall not
write down explicitly this unimportant change. Owing to the
existence of damping, the solution depends very little on the
initial conditions, which allows us to write the final expres-
sion

dx~ t !5
1

AV~ t !
E

2`

t w~t!

AV~t!
sinS E

t

t

V~ t8!dt8D e2 G/2 ~ t2t!dt.

~20!

FIG. 3. Spectrum obtained from an undamped harmonic oscil-
lator @same conditions as Fig. 1~a!, except forG50#. The field is
switched on quasiadiabatically during 24 optical cycles by a sin2

ramp.
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dx(t) is now periodic in a steady-state regime. The interpre-
tation is simple: the high-frequency motion consists of peri-
odically driven and damped oscillations in the bottom of the
potential well. This behavior can also be observed numeri-
cally: Fig. 2~b! shows the variations with time of the dipole
x(t), in the same conditions of potential driving field ampli-
tude as in Fig. 2~a!, but with a much stronger damping term,
such thatG.v. The quiver motion seems to be excited
when the electron trajectory crosses the origin~which corre-
sponds to the maximal value ofG ẋ0), and gets rapidly
damped, which results in an obvious periodicity fordx(t)
@30#. A well-known result in Hamiltonian mechanics yields
an alternative and more rigorous way to understand this pe-
riodicity: a small amount of dissipation always turns stable
periodic orbits into attractors, to which the motion relaxes.
For larger damping or very strong driving fields, some of
these attractors may become strange attractors, and the mo-
tion gets chaotic in this system. The accuracy of the approxi-
mations used to derive Eqs.~4! and ~20! can be checked by
comparing the analytical results to the numerical ones. They
almost coincide, as shown by the inset in Fig. 2~a!.

III. DYNAMICS OF A QUANTUM DRIVEN ANHARMONIC
OSCILLATOR

We now come to the study of strongly driven quantum
anharmonic oscillators. Our goal is to compare results ob-
tained in the classical and quantum-mechanical cases, and in
particular to determine what features of the quantum spectra
have an essentially classical origin. It is therefore essential to
discuss, first, the nature of the relationship between the two
systems.

As far as we are aware, classical mechanics have been
used in two different ways to get insights into the dynamics
of strongly driven quantum systems. The first method has
been developed by Percival and co-workers, and is related to
the general theory of semiclassical approximations to quan-
tum mechanics~see@31#, and references therein!. In this ap-
proach, quantum expectation values are often approximated
by statistical averages over a microcanonical ensemble of
initial conditions. Several important studies were performed
recently in this framework, concerning harmonic generation
by a classical hydrogen atom@15#, and stabilization in ultras-
trong laser fields@32,33#.

The second method is derived from the time-dependent
variational principle~TDVP! @34#. The wave function is con-
strained to belong to a particular space of trial functions,
defined by a limited number of parameters. The partial dif-
ferential equations of motion describing the wave function
are then replaced by a set of coupled ordinary differential
equations, which can have a Hamiltonian form. This method,
widely used in nuclear physics, has recently been applied to
strong-field atomic physics by Horbatsch and Liakos@35#,
who studied the motion of an anisotropic Gaussian wave
function in a three-dimensional~3D! Coulombic potential,
using 12-parameter trial functions. A cruder approximation
may be obtained by assuming that the wave function remains
a Gaussian of fixed width, and taking as parameters the po-
sition expectation value, and its conjugate variable, or ‘‘mo-
mentum,’’ which can then be shown to follow apparently
classical equations of motion. The validity of this kind of

classical approximation has been studied in the case of time-
independent anharmonic oscillators by Brickmann and Rus-
seger @36# and Gerry @37#, and, in the case of the time-
dependent Morse oscillator, by Walker and Preston@38#.
They conclude that the classical approximation may yield
good results, provided few high-lying levels are excited.

It is obviously the second method, based on the TDVP,
which is the most appropriate for relating classical and quan-
tum dynamics of the strongly driven anharmonic oscillator.
This can be understood simply by considering a driven har-
monic oscillator. Its coherent states~Gaussian wave packets
minimizing DxDp) follow exactly the classical equations of
motion; this is due to the fact that the Hamiltonian has the
form required to preserve coherence@39,40#. Classical dy-
namics and quantum dynamics of coherent states are there-
fore equivalent. This property naturally breaks down when
an anharmonic term is introduced in the potential. The pur-
pose of our study is to compare the classical and quantum-
mechanical dynamics of the anharmonic oscillator and to
understand the differences.

To investigate the quantum-mechanical anharmonic oscil-
lator, we solve numerically the time-dependent Schro¨dinger
equation for the Hamiltonian

H5p2/21x2/21vx4/42E0~ t !x sin~vt !. ~21!

The wave function is propagated by a standard three-point
Crank-Nicholson algorithm, matrix inversions being per-
formed by the Thomas algorithm. Because of the confining
character of the potential, the wave function remains well
localized even when the field is strong. The interval to be
considered in the computations is therefore much smaller
than in the case of Coulomb-type potentials, which allows us
both to perform fast computations and to use small space
grid size and time implement. We first determine the ground
state wave function, by propagating the Schro¨dinger equa-
tion in complex time, starting from a reasonable trial func-
tion. This allows us to prevent numerical artifacts due to the
different ground states of the continuous and discretized
Hamiltonians@11#. The field strengthE0(t) may be consid-
ered as slowly time dependent, to account for a smooth turn
on of the field. We use either a linear or a sin2 ramp, typically
over five optical cycles or more.

Let us consider first the simple case of an harmonic oscil-
lator. As mentioned before, the expectation value of the po-
sition follows the classical equation:

ẍ1x5E0~ t !sin~vt !. ~22!

In the case of a sudden turn on of the field, the solution may
be written as

x~ t !5
E0

12v2 @sin~vt !2v sin~ t !#. ~23!

The motion consists of forced oscillations at frequencyv,
combined with oscillations at the oscillator frequency
v051, corresponding to a solution of the homogeneous part
of Eq. ~22!. Note that the peak amplitude at the unperturbed
oscillator frequencyx̃ (v0) ~with v051) depends on the
ramp chosen, and consequently on the whole past of the
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pulse, whereas thev peak amplitude depends only on the
field amplitudeE0 in the steady-state regime.

When a weak anharmonic term is included in the poten-
tial, weak and regularly decreasing odd harmonics appear.
Moreover, satellite hyper-Raman peaks develop at frequen-
cies ṽ062pv around the atomic peak, whose frequency
shifts fromv051 to ṽ0 . New peaks develop as the anhar-
monic term and the field strength are increased, extending
farther away from theṽ0 peak. This phenomenon has also
been noticed by Bandarageet al. @15# on the classical hydro-
gen atom, as well as by Taı¨eb on several types of oscillators
@18#. Figure 4 presents a spectrum obtained forE058. In
order to switch on the driving field adiabatically, we used a
sin2 ramp with 24 optical cycles. The harmonic intensities
first decrease steadily with order, then stabilize in a plateau
structure. However, the spectrum is blurred by a large num-
ber of hyper-Raman peaks, about equal in amplitude to the
harmonics. This spectrum is quite similar to that of Fig. 3,
obtained in a purely Hamiltonian classical case. Periodicity
was then achieved through a small damping termG ẋ. It may
be worth trying to include an equivalent of this classical
damping in the quantum-mechanical system.

Many studies have aimed at obtaining nonconservative
quantum-mechanical systems; in particular, the damped har-
monic oscillator has drawn much attention.The most relevant
scheme consists of coupling the oscillator to an external res-
ervoir @41,42#, to which the energy can flow. One possible
method in our case is to couple the system to a continuum of
electron states, i.e., to include an ionization pathway in the
calculation. This is achieved by truncating the potential to a
limiting value:

V~x!5
x2

2
1
v
4
x4 for uxu,uxl u, ~24!

V~x!5V~xl !5
xl
2

2
1
v
4
xl
4 for xu.uxl u. ~25!

The new potential is represented in Fig. 5. Also indicated
is the sum ofV(x) and the driving termEx5E0x sin(vt).
Clearly, bound states may now be ionized, either by a single-
photon ~or multiphoton! transition to the continuum, or by
tunneling through the barrier. This model is extremely versa-

tile, since the truncation levelV(xl) may be modified to ob-
tain any desired ionization rate, for a given field strength. On
the other hand, two numerical difficulties may appear.

The first one originates from possible reflections of the
wave function on the grid boundaries@11#, which may create
spurious harmonic peaks of extremely high order. Several
methods exist to absorb the wave function before it reaches
any boundary. We chose to use a complex potential, consist-
ing of a linear complex ramp:

V~x!5V~xl !~11 iaux2xau! for uxu.uxau, ~26!

with a,0. The absorbing potential width~from xa to bound-
ary! anda are chosen so that spurious harmonic peaks dis-
appear. A perfectly rigorous calculation would requireuxau to
be larger than the total excursionDFE52eE/mv2 of a free
electron in the laser field. However, one important character-
istic of the anharmonic oscillator is that high-order harmon-
ics are only generated for very large field strengths, of the
order of a few atomic units. A free electron excursion in
these conditions is several hundred times larger than the
width of the potential well. Such a huge grid cannot be con-
sidered numerically; we therefore restrictxa to be of the
order of 2xl , which implies that any ionized electron is ab-
sorbed long before it has a chance to come back to the po-
tential well. Consequently, the semiclassical scenario cannot
happen here, and the high harmonics are only due to the
oscillator dynamics, and not to field acceleration in the con-
tinuum. We checked that the calculated harmonic spectra
were independent of the value ofxa (xa!DFE).

The second numerical problem results from the existence
of potential singularities at6xl . The Crank-Nicholson algo-
rithm is known to be very sensitive to discontinuities in one
of the potential derivatives. Indeed, our results depend
slightly on the interval between the potential truncation po-
sition xl and the neighboring grid points. However, this does
not lead to any loss of generality concerning our analysis: all
features of spectra remain unchanged when this interval is
varied; only the relative amplitudes and phases of high-order
harmonics can be slightly affected. Figure 6~a! shows a typi-
cal spectrum obtained atE0510. A five-cycle linear ramp
was used; the TDSE was then propagated over 40 cycles, the
Fourier transform being performed over the last eight cycles.

FIG. 4. Spectrum obtained from a quantum-mechanical anhar-
monic oscillator (v50.1, v55,E058). The ramp is introduced on
24 optical cycles.

FIG. 5. Anharmonic potential truncated to allow for ionization
of the wave function. The dashed line represents the instantaneous
potential due to the driving field.
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The potential truncation value was set so that the potential
supports eight metastable excited states when the field
reaches its peak value; this was checked with an autocorre-
lation spectral method@43#. Hyper-Raman peaks have been
washed out. As in the classical case, the harmonics plateau is
now clear. Note that the background noise is much smaller in
these calculations than in most other computer simulations.
This noise has been interpreted as due to populated high-
lying Rydberg states, which are dipole coupled to the ground
state@11#. The confining anharmonic potential presents the
peculiar property not to support any Rydberg series of states,
since the energy separation between the excited states in-
creases continuously up the continuum threshold imposed by
the truncation. As a result, there is no real need to calculate
the spectra in the acceleration gauge, or in other more ad-
equate gauges@11#.

The parameters used in Fig. 6~a! were chosen to be iden-
tical to those of Fig. 1~a!. The classical and quantum-
mechanical spectra can therefore be compared directly. The
general features are obviously similar, with the characteristic
decrease, plateau, and cutoff. In particular, the cutoff location
follows approximately Eq.~8!. This indicates that our classi-
cal analysis is still relevant in the quantum case. Several
differences are nevertheless clear. In the quantum case, the
initial decrease is steeper; moreover, the intensity and extent
of the plateau is reduced: it begins at slightly higher frequen-
cies and ends at slightly lower frequencies than in the clas-
sical case. These discrepancies can be understood along the
lines previously exposed, concerning the validity of classical
approximations to quantum mechanics.

We first consider the low-frequency part of the spectrum

~initial decrease!. We explained previously that the classical
case describes the rapid motion of a particle in the slowly
varying potential well. The action*pdxddx may be arbi-
trarily small, the trajectory of the electron remaining in the
vicinity of the bottom of the well~see Fig. 2!. The motion of
the latter leads to the low-frequency decreasing part of the
spectrum. The quantum case describes the position expecta-
tion value of a wave packet. The relevant action is higher, at
least of the order of\/2 (1/2 in our units! according to the
Bohr-Sommerfeld theory. Let us consider one fixed time, for
instance when the field is maximum. The outer part of the
potential~i.e., the part lowered by the field! is steeper than
the inner one~see Fig. 5!. This holds, of course, because of
the confining anharmonic character of the potential, and
would not be true for a harmonic oscillator. As a result, the
center of the wave packet is displaced towards the field-free
center (x50) as compared to the bottom of the instanta-
neous well. This would also be true for the average position
of a classical trajectory with the same action~the relationship
is straightforward in the first classical approximation de-
scribed previously!. This attenuation gets larger when the
difference between the softer and the steeper part of the po-
tential gets more pronounced. The low-frequency time varia-
tion of the quantum dipoleudqu is therefore less anharmonic
than that of the bottom of the well, so that the first few
harmonics display a steeper decrease in the quantum case
than in the classical case.

We have interpreted the plateau as due to high-frequency
motion in the well. Quantum mechanically, this motion must
involve excited states of the adiabatic Hamiltonian. The ac-
tion of these states is at least of 3\/2, so that the softening
effect just discussed should also occur, and be responsible for
the cutoff deviation from Eq.~8!. Moreover, the damping
term in the classical equations of motion forx(t) was shown
to induce a periodic excitation term fordx(t) @Eq. ~6!#.
Though ionization plays the same role in the quantum case, it
is not strictly equivalent. As a result, there is actually no
reason the intensity level of the high harmonics in the pla-
teau should be exactly the same as in the classical case.

As a whole, what was understood as periodic excitation
and damping of high-frequency motion in the classical case
should now be viewed as periodic excitation and ionization
of excited states of the adiabatic Hamiltonian. The resulting
spectra are identical for a harmonic oscillator, but are in-
creasingly different as the anharmonic term becomes stron-
ger. Accounting for these expected limitations, the general
qualitative agreement between classical and quantum calcu-
lations remains quite remarkable, and indicates that the pla-
teau of harmonics displayed by the strongly driven quantum
anharmonic oscillator can largely be understood on a purely
classical basis.

IV. DYNAMICAL SINGLE-ATOM PHASE AND
COHERENCE EFFECTS

Several unexpected features have been noticed in previ-
ous models of high-order harmonic generation that seem to
be as characteristic and universal as the plateau-cutoff struc-
ture. These features can be observed both in the classical and
in the quantum-mechanical anharmonic oscillator models.

FIG. 6. ~a! Spectrum obtained from a truncated anharmonic os-
cillator @same conditions as in Fig. 1~a!, E0510#. ~b! Correspond-
ing phases of the harmonics, relative to the driving field.
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A. Intrinsic phases of high-order harmonics

It recently became clear that high harmonics may be com-
pletely out of phase from the laser. This was first noticed in
the TDSE calculations of Kulander and Schafer, and clarified
in the tunneling limit by the model of Lewensteinet al. @24#.
These relative, or intrinsic, phases actually exist in tradi-
tional nonlinear optics: it suffices to introduce a finite life-
time to an intermediate state in the standard perturbative ex-
pression for a hyperpolarizability to obtain a complex result.
The resulting phase remains, however, small, except in a
quasi-resonant situation, and is independent of intensity. In
contrast, the intrinsic phases of high harmonics as observed
in numerical simulations exist for any laser frequency, and
are strongly intensity dependent.

Two major physical issues are related to these intrinsic
phases. The first one concerns a possible generation of at-
tosecond pulses of light, by a suitable recombination of se-
lected harmonics. In the Appendix, we detail this idea, and
briefly present propagation calculations showing how both
intrinsic and propagation-induced phases strongly inhibit the
creation of such short pulses. The second issue deals with
macroscopic propagation effects for high harmonics. Several
authors recently noticed that these intrinsic phases may cause
a severe distortion of the harmonic wave front modifying the
angular distribution@5,44,45#, and may play an important
role in the phase-matching process@46#.

In the semiclassical model, the intrinsic phases arise from
propagation in the continuum: the classical action of motion
yields the corresponding phase. A simple heuristic way to
understand the origin of those phases is to notice that there is
an intensity-dependent time delay between tunnel ionization
and return to the ionic core.

The existence of intrinsic phases is also quite clear in the
anharmonic oscillator model. Figure 6~b! presents the phases
corresponding to the quantum spectrum displayed in Fig.
6~a!, and Figs. 7~a!–7~c! those obtained in the conditions of
Fig. 1~b!. In all cases, the lowest harmonics in the steadily
decreasing part of the potential are in phase with the driving
field. In contrast, the harmonics of the plateau are out of
phase, in an apparently random way. It should be remem-
bered here that the plateau in the classical case starts at lower
frequencies~about the 15th harmonic! than in the quantum
case.

This behavior can be easily understood along the lines
exposed in the first part of this paper. The low harmonics in
the decreasing part of the spectrum arise from the low-
frequency displacement of the bottom of the well, which is
of course perfectly in phase with the laser. The plateau har-
monics correspond to rapid motion within the well. There is
no a priori reason the high- and the low-frequency motion
should be in phase.

One may also notice that the damping constant has a ma-
jor incidence on the phases in the classical case. This is
illustrated in Fig. 7, which presents harmonic phases ob-
tained with different damping constants@no damping in Fig.
7~a!; weak damping in Fig. 7~b!; strong damping in Fig.
7~c!#, but otherwise identical conditions. In the purely
Hamiltonian case, all phases are almost equal to 0 or 180°;
deviations from these two values become significant for
weak damping, and there is a significant phase variation
from order to order in the case of strong damping. The

phases shown in Fig. 7~c! actually display a rather regular
behavior. At the transition between the decrease and the pla-
teau, they follow approximately a quadratic dependence on
the harmonic frequency.

These features can be demonstrated using simple recur-
rence relations between the harmonic amplitudesdq @27#.
Assuming that the motion is periodic,

d~ t !5(
2`

1`

dqe
iqvt, ~27!

and considering that the strongest harmonic peak is by far
that at the fundamental frequency, then one gets the simple
recurrence relation

dq221dq125S 214
v0
21 iqG2q2v2

3vd1
2 D dq . ~28!

WhenG50, this recurrence remains in the real domain, and
the only allowed phases are 0 andp. WhenGÞ0, then the
phases between the harmonics at the beginning of the plateau
are related to first order by

arg~dq12!22arg~dq!1arg~dq22!5
4qG

3vd1
2 , ~29!

which explains the approximately quadratic behavior ob-
served in Fig. 7~c!. Note that this method is very close to that
proposed by Plaja and Roso-Franco@17# and Kaplan and
Shkolnikov @19#.

FIG. 7. Intrinsic phases of the harmonics in the conditions of
Fig. 1~b!, for different damping constants.~a! no damping;~b! weak
damping;~c! strong damping.
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In conclusion, the anharmonic oscillator model explains
simply why the plateau harmonics~and only those! are out of
phase with the laser. In a purely Hamiltonian, or weak damp-
ing, situation, the harmonics can only have phases close to 0
or p. In all models ~perturbation theory, semiclassical
model, anharmonic oscillator!, the intrinsic phases may get
arbitrary values when a strong coupling to a continuum is
introduced, even in nonresonant conditions.

B. Interference effects

We now examine the dependence of harmonic amplitudes
as a function of intensity. We focus here on the analysis of
the classical case.

Equation ~20! implies that the motion at timet results
from a linear superposition of oscillations, excited previously
over a time range of the order of 1/G. The Fourier compo-
nentdq of the dipole at frequencyqv can therefore also be
analyzed as a sum of components excited at different times,
and consequently modulated by phase factors exp(2iqvDt)
(Dt denoting the time between two excitations!. If any pa-
rameter of the problem is changed, then the relative weights
of these components should vary, so that one may expect
interference effects to occur. As an example, Fig. 8 presents
the intensity (I5E0

2) dependence ofudqu2 for harmonics 5,
19, 29, and 39. The curves indeed display very clear oscilla-
tions. A simple way to check our interpretation consists in
increasing the damping termG to values larger thanv, thus
limiting the excitation duration to less than an optical period;
in such conditions, interference effects are bound to be dra-
matically reduced. Numerical tests show that all oscillations
are indeed washed out.

These results can be compared with those from other
studies. It seems that all quantum models for high-order har-
monic generation yield this kind of oscillations. They are
particularly clear in the work of Krause, Schafer, and Ku-
lander @11#, and were even shown to exist experimentally
@47#. In the tunneling regime for the atomic response@24#,
these oscillations were interpreted as interferences between
electron wave functions following different classical trajec-
tories. Note, however, that such oscillations already exist in a

multiphoton regime. A similar behavior has also been pre-
dicted by Kaplan and Shkolnikov in a two-level system@19#.
The previous arguments do not imply, however, that all
structures can only be due to interferences; the Floquet cal-
culations of Smith and Potvliege@49# indeed show very
clearly both multiphoton resonances, appearing as series of
sharp peaks when atomic states come into resonance, and
broader interference oscillations. It can be shown by simple
analytical arguments@48# that thin spatial structures in the
medium polarization, such as those due to multiphoton reso-
nances, do not survive phase matching. Steplike patterns ob-
served in experimental intensity dependences@47# may
therefore be due to these~broad! interference effects. How-
ever, this would deserve a more detailed theoretical study,
including both single-atom response and propagation, which
goes beyond the scope of the present paper.

It may seem puzzling that a simpleclassicalmodel should
predict an effect analogous toquantum-mechanicalinterfer-
ences. This essentially stems from the fact that the anhar-
monic oscillator nonlinear equations could be replaced in the
adiabatic approximation by linear equations, describing a
time-dependent harmonic oscillator. This linearity allows us
to make use of the superposition principle, just as in quantum
mechanics.

The difference between the cutoff and plateau regions, for
a given harmonic, is particularly clear in this model: the
harmonic first increases very steeply, up to the intensity at
which the cutoff, given by Eq.~8!, reaches the harmonic
frequency~or, in other words, at which the harmonic reaches
the plateau region!. Then, the harmonic increases rather
slowly (udqu;uE0u1/3). Once again, this feature seems to be
present in any model of high-order harmonic generation, and
was demonstrated experimentally@8#. Remarkably, the es-
sential characteristics of high-order harmonic generation by
real atoms can be reproduced and explained in this extremely
simple, almost naive, model of a classical anharmonic oscil-
lator.

C. Dynamical coherence effects

In this last part, we would like to come back to our pre-
vious discussion on the importance of damping and ioniza-
tion, as well as the presence of hyper-Raman peaks in the
absence of these relaxation processes. It could be argued that
these additional peaks are of no importance to high harmon-
ics, since the frequencies are different anyway. We wish to
emphasize that the existence of these spurious peaks is
symptomatic of a coherence problem for the high harmonics.

One sometimes considers that hyper-Raman peaks can be
prevented by an extremely gradual, fully adiabatic, switch on
of the forcing field, without having to take relaxation pro-
cesses into account. In the important example of the har-
monic oscillator, simple analytical calculations show that the
intensity of the ‘‘atomic’’ peak indeed tends to zero as the
ramp duration tends to infinity. We performed a thorough
series of attempts to switch on the forcing field very gradu-
ally, on several tens of optical cycles. We were unable to
obtain pure harmonic spectra without introducing relaxation
into the model. In all cases, the resulting spectrum displays
hyper-Raman peaks. Their intensity is high for very short
ramps~almost sudden turn on of the field!, as well as for

FIG. 8. Intensity dependences of the harmonic intensityudqu2,
for harmonics 5, 19, 29, 39, in the classical anharmonic oscillator.
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very long ramps. The ramp duration in Fig. 4 was actually
chosen in order to minimize the intensity of these peaks.

The dependence of the hyper-Raman peaks on the length
of the ramp can be understood on simple grounds, both in the
classical and the quantum case. In the classical case, Eq.~20!
shows that the motion depends on the previous values of the
field on a time interval of the order of 1/G. If the damping
constant is set to zero, then the motion depends on the whole
past of the pulse, including turn on. In the quantum case, the
hyper-Raman peaks were interpreted by Taı¨eb @18# and by
Millack and Maquet@50# as frequency beats between the
ground Floquet state and one of the higher Floquet states.
The quasienergies are intensity dependent, and therefore so
are the hyper-Raman frequencies. The excited Floquet state
can be populated by an avoided crossing in the course of the
field turn on @51#, which explains that these hyper-Raman
peaks actually increase when the ramp is too long.

In Fig. 9, we show two spectra calculated in the classical
case, using a realistic pulse envelope:

E~ t !5E0sin~vt !sin2S 2tTpD , ~30!

where Tp5128(2p/v) denotes the pulse duration at half
intensity. The Fourier transform is performed over the entire
pulse. No damping is considered in Fig. 9~a!, whereas a
weak damping (G50.01) was introduced in the calculation
for Fig. 9~b!. Both spectra are much noisier than with the
standard procedure, consisting of a ramp and a constant field
plateau, which explains why the former method has been
rarely used in the numerical calculations of high-order har-
monics@13,52#. In Fig. 9~a!, the plateau harmonics are com-
pletely swallowed in a very large background noise, which
we may interpret as a superposition of hyper-Raman peaks of

frequencies varying with intensity during the pulse. On the
other hand, harmonics can clearly be distinguished in Fig.
9~b!, in spite of a still important background. Other, more
rigorous, methods used to compute the emission spectra also
yield hyper-Raman and/or background noise@53#.

We have shown how the hyper-Raman peaks depend criti-
cally on how the field is switched on. One may wonder if~or
in which conditions! the harmonics themselves are affected
by the characteristics of the field turn on. To understand this,
we have performed systematic calculations, in the classical
case, using the standard method where the field is switched
on by a ramp and subsequently held fixed. The harmonics
were calculated right after the end of the ramp, for different
ramp durations. The first harmonics, which correspond to the
initial decrease in the spectrum, do not depend on the ramp
shape or duration. This seems logical, since these harmonics
are interpreted as the Fourier components of the motion of
the bottom of the potential well, which depends only on the
instantaneous field intensity. The intensities and phases of
the plateau harmonics appear to be highly sensitive to the
ramp parameters when the duration of the ramp is less than
1/G. They are, however, independent of the turn-on param-
eters for longer ramp durations. This shows that it does not
really make sense to compute a harmonic spectrum for ex-
tremely weak damping, for which 1/G.Tp . As shown in
Sec. II, the high-frequency motion is due to oscillations ex-
cited over a time range of 1/G. It seems therefore inevitable
that the system requires times of the order of 1/G to adapt to
any field variation and reach a stationary state, resulting in a
converged value for the harmonic complex amplitude.

Similar results are also obtained in the quantum-
mechanical case, and can be interpreted along the line pro-
posed in@50#, using a Floquet analysis. LetF1(t) be the
ground Floquet state andF2(t) another Floquet state with
quasienergies and widthsE1 , g1 andE2 , g2 , respectively.
The wave function reads

C~ t !5c1e
2 i ~E12 ig1!tF1~ t !1c2e

2 i ~E22 ig2!tF2~ t !,
~31!

which yields the dipole moment

d~ t!5uc1u2e22g1t^F1~ t !uduF1~ t !&

1uc2u2e22g2t^F2~ t !uduF2~ t !&

12e2~g11g2!tRe@c1c2* e
2 i ~E12E2!t^F1~ t !uduF2~ t !&#.

~32!

SinceF1(t) andF2(t) are periodic, the first two terms in the
right-hand side in Eq.~32! contain the harmonics, whereas
the cross terms yield the hyper-Raman lines. The occurrence
of such lines in harmonic spectra means therefore that at
least one excited Floquet state was populated by an avoided
crossing during the field turn on. The periodic part ofd(t)
then consists of the contribution of the ground Floquet state
F1(t), plus that ofF2(t) which decays on a time scale of
1/g2 . This implies that converged~i.e., turn-on independent!
harmonics cannot be obtained before the system has relaxed
to its ground Floquet state, i.e., when the hyper-Raman lines
have disappeared. We are therefore led to introduce a new

FIG. 9. Classical spectrum obtained from a realistic Gaussian
pulse~full width at half maximum of 128 optical cycles!, ~a! with-
out damping, and~b! in weak damping conditions (G50.01).
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characteristic timeTd , which corresponds essentially to the
decay time of the Floquet stateF2 . One usually has

TL,Td!Tp , ~33!

whereTL52p/v is the optical cycle duration, andTp de-
notes again the pulse duration. In that case thetemporal lo-
cality holds, in the sense that the atomic polarization follows
‘‘instantaneously’’ the laser field excitation, with the usual
coherence properties. However, one might consider cases for
which

TL!Tp.Td . ~34!

In this case, the coherence properties of the harmonic emis-
sion may be deteriorated. Indeed, atoms located at different
places in the focal volume may be submitted, at one time, to
the same local intensity, but with different~local! past history
of the laser field. This results in different populations for the
Floquet states, and hence different amplitudes and phases for
the harmonic emission@see Eq.~32!#. A rigorous study of
coherence effects induced by the breakdown of the temporal
locality is far beyond the scope of the present paper: it would
actually require simultaneously solving the TDSE for all
points in the focal volume and the Maxwell equations of
propagation. Some attempts have nevertheless already been
performed in that direction@54#.

These considerations explain simply why the harmonic
amplitudes are usually computedafter the hyper-Raman
peaks have decayed. It is also worthwhile to notice that ion-

ization, which is usually considered as a competing process
to high-harmonic generation, actually plays an important role
in the high-harmonic generation process, by rapidly deplet-
ing the excited Floquet states in a dynamical regime, thus
granting the coherence of high harmonics in most realistic
situations.

V. CONCLUSION

We have proposed in this paper a detailed analysis of
high-order harmonic generation in strongly driven Duffing
oscillators, from both classical and quantum-mechanical
point of view. Our primary purpose was to determine the
conditions for which high harmonics arise, and to unravel
their origin.

Classically, we have shown that the low-frequency char-
acter of the driving field allows analysis of the motion by
means of the adiabatic invariance theorem. Two time scales
can indeed be distinguished, one associated to the low-
frequency displacement of the bottom of the well, and the
other to the high-frequency motion within the well. This du-
ality results in a splitting of the harmonic spectrum into two
regions, namely, the initial decrease and the plateau. The
cutoff appears naturally as the highest characteristic fre-
quency of the potential, modified by a strong quasistatic
field. This kind of scaling is very close to that proposed by
Bandarageet al. @15# for the classical hydrogen atom. We
pointed out that a small damping term should be introduced,
so that the motion may relax to a stable periodic orbit.

Quantum mechanically, we have demonstrated that a pure
harmonic spectrum can also be obtained, provided an ioniza-
tion pathway is allowed. General features of the quantum
spectrum were shown to be similar to those of the classical
one. Differences arising from the quantum nature of the
model, due to deviation from the harmonic oscillator case,
were nevertheless observed and analyzed. Our analysis also
explains why the plateau harmonic peaks and the hyper-
Raman peaks always span the same frequency range. This
point still stimulates theoretical interest@55#.

The very simplicity of the model makes it possible to
discuss a number of other characteristic properties of high-
order harmonics. In particular, we show how intrinsic phases
and interference effects arise in the model. Finally, we em-
phasize that high-order harmonic generation is a dynamical
process, whose response timeTd is linked to the ionization
process.

Finally, we would like to stress that the present model
could profitably be used for pedagogical purposes. It is in-
deed quite remarkable that the same simple model that usu-
ally helps students to understand the basics of nonlinear op-
tics ~second- and third-order harmonic generation! can also
be used to illustrate and get important insights into the phys-
ics of high-order harmonic generation, which is one of the
latest and most striking ‘‘exotic’’ phenomena in atomic and
optical physics.
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APPENDIX A

A recurrent theme concerns the possibility of using high
harmonics to generate extremely short pulses of light. Sev-
eral physicists have indeed noticed that the characteristic pla-
teau of high harmonics is very similar to the spectrum of a
mode-locked multimode laser@56#, or of phase-locked laser
oscillators@57#, and suggested therefore the following idea.
Suppose one is able to get rid of the first few harmonics
~decreasing part of the spectrum!, and of the last ones~cutoff
region!, and to keep only the plateau harmonics through se-
lection by adequate filters. If the harmonics are all in phase,
then the addition of the electric fields would lead to a train of
ultrashort pulses, separated by one half period of the funda-
mental. The duration of each pulse is given by the inverse of
the frequency range of the selected harmonics:

tpulse.
1

~vmax2vmin!
. ~A1!

Let us consider as an example the case of a xenon atom
irradiated by 1.06mm laser light. We show in Fig. 10~a! the
temporal structure resulting from the addition of the seventh
to 21st harmonics, assumed to have equal amplitudes and

phases. The pulse duration derived from Eq.~A1! is approxi-
mately equal to 40 attoseconds.

However, this attractive idea relies on the assumption that
all the harmonics have the same phase. Figure 10~b! shows
the result of a calculation adding the harmonic field complex
amplitudes ~from the seventh to the 21st! at 531013

W cm22 for a single xenon atom, obtained by solving the
time-dependent Schro¨dinger equation@10#. The regularity
displayed in Fig. 10~a! has disappeared: the well-defined
pulses have split into more numerous sharp temporal struc-
tures. If one includes also the effect of propagation in a thin
nonlinear medium@9#, then these structures broaden, as illus-
trated in Fig. 10~c!. In this case, i.e., at a relatively low laser
intensity, in the ‘‘multiphoton’’ regime, the plateau does not
behave as a mode-locked laser, but rather as a multimode
laser, with sharp and indeed very short substructures. One
might speculate on the possibility of selecting an appropriate
number of harmonics~approximately in phase! or to bring
them back in phase. A more detailed investigation of this
problem for harmonic generation in the tunneling regime
will be presented elsewhere@59#. It should be stressed that
this scheme to generatetrains of subfemtosecond pulses
should not be confused with an idea recently proposed by
Ivanov et al. @58# that uses the large sensitivity of the high-
harmonic generation efficiency to the laser field degree of
elliptical polarization to produce a single attosecond pulse.
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