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We present a theoretical study of high-order harmonic generation by a slowly driven “Duffing” anharmonic
oscillator. The power spectra are shown to display a plateau of high harmonics, which ends up with a sharp
cutoff. The classical dynamics is analyzed with the adiabatic invariance theorem, which yields a simple
interpretation to this characteristic behavior. We compare with the quantum case by solving numerically the
time-dependent Schdinger equation, and outline the similarity between classical damping and quantum-
mechanical ionization processes. This allows us, in particular, to interpret the existence of intrinsic phases
between high harmonics and the driving field. We further discuss the implication of these relaxation processes
on the coherence of high harmonics, as well as the existence of interference processes yielding quasiresonant
structures in intensity dependences.

PACS numbse(s): 32.80 Rm, 42.65 Ky

I. INTRODUCTION merical calculations of Krauset al. [20]. have shown that
the single-atom cutoff, expressed in terms of photon energy,
High-order harmonic generation by noble gas atoms interscales as,+3U,, wherel , is the atomic ionization poten-
acting with intense laser pulses has become one of the majtigl, andU,, is the ponderomotive potential, equal to the av-
topics in multiphoton physics. Extremely high orders haveerage quiver energy of a free electron in the field. This scal-
been observed1,2], thus demonstrating the possibility to ing is valid in a strong-field and low-frequency limit such
generate coherent light pulses in the extreme ultraviolethat ionization takes place by a tunneling mechanism
(XUV) spectral region, with photon energies up to 160 eV.(y/I,/2U,<1). This was later explained by Kulander, Scha-
High-order harmonic generation can be used as compact arier, and Krausd21] and Corkum[22], in a two-step semi-
versatile XUV sources, of interest for instance in atomic andclassical model. Lewenstein and co-work§?8,24] subse-
molecular spectroscopy3]. Recent experimental studies quently recovered the same cutoff law and interpretation in a
have measured the characteristics of the harmonic beamguantum, analytical model, again valid in a strong-field,
angular distributions have been obtained by Peatross artdnnel-ionization limit. The experimental cutoff law actually
Meyerhofer[5], Tischet al.[4], and Salieeset al.[6]; tem-  depends on complex macroscopic parameters, for example,
poral [7] and spectral profile measuremen8 have also focusing conditions; taking these effects into account,
been reported. L'Huillier et al. [23] were able to confirm the single-atom
The theory of these highly nonlinear processes has been+3U, law. This semi-classical model therefore tends to
extensively developed over the past few years, to investigateecome a theoretical paradigm for high-order harmonic gen-
both the single-atom response, and propagation and phaseration.
matching phenomer{®]. Several methods have been used to It should be pointed out that all model atoms studied so
describe the atomic response. Most prominent among theder display the charasteristic response: decrease, plateau, and
are the integration of the time-dependent Sdimger equa- cutoff. However, they do not necessarily yield ther3U,,
tion (TDSE) for an atom in the single active electron ap- cutoff law. For instance, a different cutoff law is predicted in
proximation[10,11], and the solution of the coupled time- a two-level system, or in a slowly driven classical hydrogen
independent Floguet equations for hydrog&8]. A number  atom. The semiclassical model, while describing successfully
of simplified models have also been successfully consideredhe atomic response in a tunneling regime, obviously cannot
such as one-dimensional approximations in a soft-Coulomlaccount for the different scaling laws obtained in other mod-
potential[13,14, the integration of the equations of motion els. In contrast, the characteristic plateau-cutoff behavior
for a classical hydrogen systditb], and even cruder models seems to be a very common propefyodel independenbf
such as a two-level system in a strong fifld—19. the response of a nonlinear system strongly driven by a low-
The harmonic distribution presents a characteristic shapdrequency force. This apparent universality is not fully un-
consisting of a decrease for the first orders, followed by aerstood yet.
long plateau which ends up with a rather sharp cutoff. Nu- The purpose of this paper is to present a detailed analysis
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of high-order harmonic generation by an anharmonic oscilsypmitted to a strong |ow-frequency for&t): Eosin(wt)_
lator. The quartic anharmonic oscillator, or “Duffing” oscil- The potential can be written as

lator, seems to be indeed the simplest centrosymmetric non-

linear system, and as such is widely used as an introductive g v

model in nonlinear optics textbooK£5,26. We have re- V(X):7X2+ ZX41 1)
cently pointed out that the power spectrum of a classical

anharmonic oscillator, driven by a strong low-frequencyang corresponds to the sum of a harmonic oscillator poten-
force, also displays the typical plateau-cutoff behaV®f. g of characteristic frequenay,, and an anharmonic term,
The anharmonic oscillator presents several appealingy4/4. We chose to study only the confining case0. In-

properties, which make its study particularly worthy. A con-geeqd, we are interested in using very strong forcing fields
siderable amount of literature exists on the nonlinear dynamg | tor which all trajectories ionize almost instantaneously
ics of one-dimensional oscillatofsee, for instance, Nayfeh " the casey<0. The ratiow/ wy is considered to be of the
and Mook [28]), and on the particular case of time- ,qer of 1/10-1/20, corresponding to the typical ratio be-
dependent anharmonic oscillators. A recent review of thigyeen the photon energy of a low-frequency terawatt laser

field can be fognd i_n Boset al. [29].. Powerful methods of (neodymium glass or titanium sapphirand the ionization
analytical Hamiltonian mechanics, such as action-angle réRotential of a noble gas.

resentations, can be used to study the motion in this system. 11,4 equation of motion is

These methods allow us to give a simple interpretation of the

plateau-cutoff behavior, and to explain particufand also X+ T X+ wlx+ux3=Egsin(wt). 2
apparently universal properties of high-order harmonics,

such as the existence of intrinsic phases or of quantum intefye have considered here a damping téfm whose role
ferences. Moreover, the problem is well suited to a compariyj|| pe analyzed later. The parameters us&q (v, @, v,

son between the classical and quantum-mechanical casghdE,) are actually redundant. We can therefore rescale the
and, possibly, to propagation studigs. Our aim is Not to  time unit:t— w,t, which is equivalent to settingo=1. We

obtain realistic solutions for the single-atom response, angiij yse in the following these rescaled “atomic” units for all
the scaling laws obtained here are due to the specific propsarameters.

erties of the anharmonic oscillator Hamiltonian. We wish to'  gquation (2) cannot be solved analytically; the motion

show, however, that this very simple model may help to unyctyally becomes chaotic when the field strength is in-
derstand some aspects of high-order harmonic generation. creased, through a period-doubling mechanism. It should be
This article is organized as follows. We first study the syressed, however, that the present study is performed at field
classical problem of an anharmonic oscillator subjected t0 @trengths lower than the first bifurcation threshold, and there-
low-frequency driving force. The existence of high-orderfgre in a nonchaotic regime.
harmonics of the motion can be interpreted simply by taking |5 order to investigate the oscillator dynamics, we inte-
advantage of the adiabatic invariance theorem. We emph%}‘rate Eq.(2) numerically; we use standard fourth-order or
size the role of a small damping term in obtaining periodicyayiable-step Runge-Kutta algorithms. The latter method al-
solutions. We then discuss the relevance of this problem tgys ys to get any desired level of numerical accuracy, but
the quantum-mechanical case, and proceed to study th@quires longer computation times. We assume the “elec-
quantum-mechanical dynamics, by solving numerically th&ron” to be at rest at the origin at=0; the forcing field is
time-dependent Schdinger equation. We outline in particu- t,rned on linearly on several periodg =2m/w (optical
lar thr—; importance of ionization as an analqg to the classicaéyde), and is subsequently held at a fixed vafg
damping force. The last part of this paper is devoted to the” ajihough radiation by a classical electron depends on the
investigation, within the anharmonic oscillator model, of acceleratiork(t), we shall concentrate in the following on
three puzzling properties of high-order harmonics. We firsgy,o power spectrurX (w)|? of the positionx(t) (which can
address the problem of the intrinsic phases of high-order hag;e iqentified here with the dipole momgnthus following
monics relative to the driving field, which recently arousediye most common convention in high-order harmonic gen-
much interest because of their incidence on propagation efs;ation studie$9,16].
fects. We then proceed to show how dynamical interference Figures 1a) and 1b) (solid line) present typical spectra
effects aris'e in the model, and result in broad resonantlﬁk%btained forE,=10 and 5, respectively. They display the
structures in the intensity dependences of high harmoniCgyaracteristic behavior of high-order harmonic spectra: a
We emphasize a coherence problem for high harmonics, regeaqdy decrease for the first orders, followed by a long pla-
lated to the existence of *hyper-Raman” peaks. We point OUte o,y to a sharp cutoff. This behavior can be explained by
that high-order harmonic generation is a dynamical procesgy,ngjdering the variation of the electron positioas a func-
whigh dges not fo!low instantaneously_the variations of the;,, of time, which is shown in Fig. @) (solid line): the
forcing field. We discuss the relevant time scales, and showecron oscillates rapidly around a slowly varying central
that in most cases, the coherence of the harmonics is Maifygition. The forcing frequency is much smaller than the
tained thanks to the ionization process. atomic frequency. We can therefore distinguish two time
scales, one associated with the peridd of the low-
frequency forcing field, and the other with a peribg char-
acteristic of high frequency motion in the potential well. On
We first study the motion of a classical “electron” in a the latter time scale, the electron can be seen as freely oscil-
guartic confining anharmonic potentidbuffing oscillatoy, lating in a frozen potential:

II. DYNAMICS OF A DRIVEN CLASSICAL ANHARMONIC
OSCILLATOR
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FIG. 1. (a) Typical high-order harmonic spectrum from a clas-  FIG. 2. Time dependence of the electron traject@ylid line)
sical Duffing anharmonic oscillator. The parameters used ar@and of the bottom of the time-dependent potential Wedishe (a)
0=0.1, v=5, E;=10, I'=10. We use throughout rescaled for weak damping [=0.01) and (b) for strong damping
“atomic” units (a.u) (i.e., atomic units divided by the oscillator (I'=0.15>w). The other parameters correspond to those of Fig.
frequencyw,). (b) Comparison between the full harmonic spectrum 1(b). The inset shows the difference between the numerical results
obtained forEy=5 (solid line), and that of the high-frequency dis- (solid line) and the analytical results of E(0) (short-dashed line
placementsx (full dots), responsible for the harmonic platefaee
Eq. (6)]. which describes a free motion in a slowly varying harmonic
_ potential. This is a Hill equation, well known in the context
V'=V-E X, (3)  of celestial mechanics. The electron undergoes a quiver mo-
_ tion in this potential, with an instantaneous frequerey
with E =Egsin(wt). The average of the quiver motion can beThe minimum value of this frequency & ,=1, and the
|dent|f|_ed with the motion of the bottom of thg instantaneousmaximum one iSO ma= V1+30X35, Where Xy, is the
potential well, represented by the dashed line in Fi@).2  maximum excursion of the bottom of the potential well. It
Let us callx, the point representing the bottom of the poten-qgn pe approximated as,,= (Eq/v)Y for a strong enough

tial well, which obeys field E, [see Eq(4)]. We have therefore
3 =
X0+UX0 EOSIn(wt), (4) QmaX: \/mg (8)
and éx the deviation of the electron position from the bottom
of the well: The Fourier transforn§FT) of x(t) can be split into the
sum of the FT ofxy(t), whose components regularly de-
OX=X—Xp. (5)  crease with order, and that 6(t), whose components have

roughly equal amplitudes betweéh,, andQ ... The over-
all pattern of the spectrum is therefore interpreted as follows:
. 5 2 3 the steady decrease for the first orders corresponds to the
OX+(1+3uXp) OX+ (30X OX"+v Ox7) Fourier spectrum of the bottom of the potential well; the
=(—Xo—T'Xg) — T 8x. (6)  plateau is related to the electron motion in this time-
dependent well, at shifted atomic frequencies; the cutoff ba-
The two terms which are nonlinear ifx are of order sically corresponds to the highest such frequency.
6xIxo or less, and can therefore be neglected. Let us set Numerical results support this interpretation. The pre-
Q2=1+3vx3. The dominant terms in the left-hand side aredicted maximum frequencieQ n given by Eq.(8) corre-
of order Q25x, while those in the right-hand side are of SPond exactly to the numerical results for the cutoff
order w25x, with w<Q. As a result, we will not consider [Qmac5 and 4 in Fig. 1a) and 1b), respectively. Figure

the right-hand side in a first step, and will focus ourselves or-(b) also enables one to compare directly the power spectra
the homogeneous equation of x(t) and éx(t) (full circles). The high-frequency compo-

nents ofx(t) can indeed be identified to the spectrum of
X+ Q26x=0, (7) ox(t), which fits exactly the plateau structure.

The equation of motion fobx is
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One point stays unclear. Why is the “high-frequency” 10"
motion of 6x(t) periodic? In fact, the spectrum @k(t) in 0
general includes nonharmonic components, as shown by ~ 10
solving Eq.(7), describing the free motion afx. The sim- = 0!
plest method to obtain an analytical approximation to this S 10?
equation consists of performing a canonical transformation a_ 107
to use action-angle variable§, §). The generating function s 9

=
is 107

10 * * * *
Fo(x,0,t)= 19 t) Sx*tand 9 ° : o3 48

2(%,6,1)= 5 (1) ox7tand, © Frequency (a. u.)

so that the HamiltoniarH = (1/2)p5,+ (1/2)Q%(t) x* be- FIG. 3. Spectrum obtained from an undamped harmonic oscil-
comes lator [same conditions as Fig(d), except forl'=0]. The field is
switched on quasiadiabatically during 24 optical cycles by & sin
9F, 1, ramp.
K=1Q(t)+ —=1Q(t) + z sxtankQ ' (t). (10

ot 2

be explained by considering again E) for 6x. Its right-
We now take advantage of the quasiadiabaticity of the poterl@nd side includes a damping terml’dx, and a driving
tial variations: according to the adiabatic theorem, the actiof€™
| is essentially invariant. Assuming thatis a constant of
motion amounts to neglecting the slowly varying term
dF,/dt. The approximate solution irl (#) variables is then

e(t)=—Xo—I'Xo, (14

which can be interpreted as the sum of an inertia force, and
of damping of the low-frequency motion, acting as a force on

I=1o, 1D the high-frequency motion.
To obtain an analytical expression fox, we calculate
t .
o(t) = 00+f Q(7dr, (12) the retarded Green function for
0

SX+Q2?(t) 5x=8(t— 1), (15)

which vyields for 6x(t) =+/2I1/Qcos the following expres-

sion- which can easily be shown to be

G(rt) =0 for t<r (16)

@
oX(t)= WCO{ 0ot JOQ(T)dT) . (13

1 t
G(rt) =—sj Ndt’ for t>r.

Although Q(t) is periodic, cosf(2) is not. Its frequency (r0 \/Q(T)Q(t)sm( Lﬂ(t t ) a7
spectrum displays high-frequency peaks, but at frequencies
different from the harmonic ones. Where does the obvious
periodicity shown in Figs. 1 and 2 come from? In the absence of damping, the solution of E8).is

Numerical studies help in giving the answer to this ques- .
tion. First, we solve Eq(2) in the conditions of Fig. () :f
(v=5, Ex=10), but without dampingI{=0). The field is ox(t) o(p(T)G(T't)dT' 18

switched on fully adiabatically, by means of a long and

smooth ramp, before a constant field period, on which théamping can be simply introduced by writing the solution as
Fourier analysis is performed. The result is shown in Fig. 3.
As previously, the low-frequency part of the spectrum is
composed of decreasing harmonic peaks. However, the high-
frequency motion is only quasiperiodic; in addition to the

high-frequency harmonic peaks, the spectrum shows other \jqreqver, all frequency terms existing in the expression

series of peaks separated by.2Note that numerical prob- of G should be replaced by/QZ(t)—T'2/4. We shall not
Igms may occur herg: the .fourth-order Runge-Kutta alg9%yite down explicitly this unimportant change. Owing to the
rithm, which does not intrinsically conserve action, may Iee_‘dexistence of damping, the solution depends very little on the

to numerical artifacts, and in particular to an artificial peri-jniia| conditions, which allows us to write the final expres-
odicity. All our numerical results show nonharmorlso sion

called “hyper-Ramanj peaks. In contrast to some other

studies[17], using extremely long ramp durations actually 1 . (7) .

results in increased spurious peaks and noise. Sx(t)= f T :in( f Q(t’)dt’)e‘ T12(t=1 g 7.
In contrast, the introduction of even a very small damping VO(1) ) -=Q(7) T

forces the motion to converge to a periodic solution. This can (20

SX(t)= fot@(f)e(T,t)e*m*ﬂ’zdf. (19
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5x(t) is now periodic in a steady-state regime. The interpreclassical approximation has been studied in the case of time-
tation is simple: the high-frequency motion consists of peri-independent anharmonic oscillators by Brickmann and Rus-
odically driven and damped oscillations in the bottom of theseger[36] and Gerry[37], and, in the case of the time-
potential well. This behavior can also be observed numeridependent Morse oscillator, by Walker and Presf88].
cally: Fig. Ab) shows the variations with time of the dipole They conclude that the classical approximation may yield
x(t), in the same conditions of potential driving field ampli- good results, provided few high-lying levels are excited.
tude as in Fig. &), but with a much stronger damping term, It is obviously the second method, based on the TDVP,
such thatl'>w. The quiver motion seems to be excited Which is the most appropriate for relating classical and quan-
when the electron trajectory crosses the or@“f“ich corre- tum dynamics of the strongly driven anharmonic oscillator.
sponds to the maximal value dfx,), and gets rapidly This can be understood simply by considering a driven har-
damped, which results in an obvious periodicity #@x(t) monic oscillator. Its coherent stat@Saussian wave packets
[30]. A well-known result in Hamiltonian mechanics yields minimizing AxAp) follow exactly the classical equations of
an alternative and more rigorous way to understand this pénotion; this is due to the fact that the Hamiltonian has the
riodicity: a small amount of dissipation always turns stableform required to preserve cohereni@9,40. Classical dy-
periodic orbits into attractors, to which the motion relaxes.namics and quantum dynamics of coherent states are there-
For larger damping or very strong driving fields, some offore equivalent. This property naturally breaks down when
these attractors may become strange attractors, and the nR? anharmonic term is introduced in the potential. The pur-
tion gets chaotic in this system. The accuracy of the approxiPose of our study is to compare the classical and quantum-
mations used to derive Eqg?) and (20) can be checked by Mechanical dynamics of the anharmonic oscillator and to
comparing the analytical results to the numerical ones. Theynderstand the differences.
almost coincide, as shown by the inset in Fi¢g)2 To investigate the quantum-mechanical anharmonic oscil-
lator, we solve numerically the time-dependent Sditiger
equation for the Hamiltonian
IIl. DYNAMICS OF A QUANTUM DRIVEN ANHARMONIC

OSCILLATOR H=p2/2+ x2/2+ vx*/4— Ey(t)x sin(wt). (21)

We now come to the study of strongly driven quantum L .
anharmonic oscillators. Our goal is to compare results ob:rhe wave function is propagated by a standard three-point

tained in the classical and quantum-mechanical cases, and r?r?(la(c-iNt;Chtor:(sao'lr']hgrﬁggtglmc')r'mzri‘r:méelrc“;e;séo;‘s thbeelcr:]gnfpne;
particular to determine what features of the quantum spectr ¢ y fth teni Ig thl : f u i onfini ﬁ
have an essentially classical origin. It is therefore essential tE aracter of the potential, the wave function remains we

discuss, first, the nature of the relationship between the twi ocal[zed even when the f|el'd IS §trong. The interval to be
considered in the computations is therefore much smaller

systems. . . .
As far as we are aware, classical mechanics have be%ﬁan in the case of Coulomb-type potentials, which allows us

used in two different ways to get insights into the dynamics qth to perfor_m fa_st computations and 1o use small space
of strongly driven quantum systems. The first method ha§rld size and “m? implement. We .f'rSt determ_me the ground
been developed by Percival and co-workers, and is related t[%tatg wave flunct!on, by pr_opafgatlng the Sa:hrl;gler (_eqlufa—
the general theory of semiclassical approximations to quar}—!on mhc_omﬁ) ex time, starting from a.re?sorjfa e tria unﬁ-
tum mechanicgsee[31], and references thergirin this ap- on. This allows us to prevent humerical artifacts d_ue to the
proach, quantum expectation values are often approximatjyﬁer.ent _ground states_ of the continuous and dlscr_et|zed
by statistical averages over a microcanonical ensemble amiltonians{11]. The field strengttE(t) may be consid-

initial conditions. Several important studies were performeuered as slowly time dependent, to account for a smooth turn

recently in this framework, concerning harmonic generationOn of the field. We use either a linear or a’siamp, typically

: e _over five optical cycles or more.

t)r)c/)r?gcllgzzlrc?le%)%rg%? atof5], and stabilization in ultras Let us consjder first the simple case of an harmonic oscil-

The second method is derived from the time-dependerha_t_or' As mentioned be_fore, the expectation value of the po-
variational principle TDVP) [34]. The wave function is con- sition follows the classical equation:
strained to belong to a particular space of trial functions,
defined by a limited number of parameters. The partial dif-
ferential equations of motion describing the wave function
are then replaced by a set of coupled ordinary differential
eqguations, which can have a Hamiltonian form. This method;,
widely used in nuclear physics, has recently been applied to E
strong-field atomic physics by Horbatsch and Liaka$], __"=0 ; e
who studied the motion of an anisotropic Gaussian wave X 1—w7[sm(wt) w sin(t)]. 23
function in a three-dimensiondBD) Coulombic potential,
using 12-parameter trial functions. A cruder approximationThe motion consists of forced oscillations at frequensy
may be obtained by assuming that the wave function remainsombined with oscillations at the oscillator frequency
a Gaussian of fixed width, and taking as parameters the pasg=1, corresponding to a solution of the homogeneous part
sition expectation value, and its conjugate variable, or “mo-of Eq. (22). Note that the peak amplitude at the unperturbed
mentum,” which can then be shown to follow apparently oscillator frequencyX (wg) (with wy=1) depends on the
classical equations of motion. The validity of this kind of ramp chosen, and consequently on the whole past of the

X+ x=Ep(t)sin(wt). (22

Ln the case of a sudden turn on of the field, the solution may
e written as
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FIG. 4. Spectrum obtained from a quantum-mechanical anhar- g1 5. Anharmonic potential truncated to allow for ionization

monic oscillator =0.1,v =5, E;=8). The ramp is introduced on ¢ the wave function. The dashed line represents the instantaneous
24 optical cycles. potential due to the driving field.

pulse, whereas the peak amplitude depends only on the e since the truncation leval(x,) may be modified to ob-
field amplitudeE, in the steady-state regime. tain any desired ionization rate, for a given field strength. On
~ When a weak anharmonic term is included in the potenhe gther hand, two numerical difficulties may appear.

tial, weak and regularly decreasing odd harmonics appear. The first one originates from possible reflections of the
Moreover, satellite hyper-Raman peaks develop at frequenyaye function on the grid boundarifkl], which may create
cies wo=2pw around the atomic peak, whose frequencyspyrious harmonic peaks of extremely high order. Several
shifts from wo=1 t0 @y. New peaks develop as the anhar- methods exist to absorb the wave function before it reaches

monic term and the field strength are increased, extendingny boundary. We chose to use a complex potential, consist-
farther away from thév, peak. This phenomenon has also ing of a linear complex ramp:

been noticed by Bandaragé al.[15] on the classical hydro-

gen atom, as well as by b on several types of oscillators V(x)=V(x)(1+ialx—x4|) for |x|>[x], (26

[18]. Figure 4 presents a spectrum obtained Egr=8. In

order to switch on the driving field adiabatically, we used awith «<<0. The absorbing potential widtfrom x, to bound-

sir’ ramp with 24 optical cycles. The harmonic intensitiesary) and @ are chosen so that spurious harmonic peaks dis-

first decrease steadily with order, then stabilize in a plateaappear. A perfectly rigorous calculation would requixg| to

structure. However, the spectrum is blurred by a large numbe larger than the total excursi@yz=2eE/mw? of a free

ber of hyper-Raman peaks, about equal in amplitude to thelectron in the laser field. However, one important character-

harmonics. This spectrum is quite similar to that of Fig. 3,istic of the anharmonic oscillator is that high-order harmon-

obtained in a purely Hamiltonian classical case. Periodicityics are only generated for very large field strengths, of the

was then achieved through a small damping t€m It may  order of a few atomic units. A free electron excursion in

be worth trying to include an equivalent of this classicalthese conditions is several hundred times larger than the

damping in the quantum-mechanical system. width of the potential well. Such a huge grid cannot be con-
Many studies have aimed at obtaining nonconservativesidered numerically; we therefore restrict to be of the

guantum-mechanical systems; in particular, the damped haorder of 2;, which implies that any ionized electron is ab-

monic oscillator has drawn much attention.The most relevansorbed long before it has a chance to come back to the po-

scheme consists of coupling the oscillator to an external redential well. Consequently, the semiclassical scenario cannot

ervoir [41,42, to which the energy can flow. One possible happen here, and the high harmonics are only due to the

method in our case is to couple the system to a continuum adscillator dynamics, and not to field acceleration in the con-

electron states, i.e., to include an ionization pathway in théinuum. We checked that the calculated harmonic spectra

calculation. This is achieved by truncating the potential to avere independent of the value 0f (X,<Dgg).

limiting value: The second numerical problem results from the existence

5 of potential singularities at x,; . The Crank-Nicholson algo-

Xt v rithm is known to be very sensitive to discontinuities in one
V(x)=—=+-x* for < . =Y

) 2 "% Ixl<lxl. (24) of the potential derivatives. Indeed, our results depend

slightly on the interval between the potential truncation po-

x? sition x; and the neighboring grid points. However, this does

| v
V) =V(x)=~5+ ZXI4 for — x[>[x|. (29 not lead to any loss of generality concerning our analysis: all
features of spectra remain unchanged when this interval is
The new potential is represented in Fig. 5. Also indicatedvaried; only the relative amplitudes and phases of high-order
is the sum ofV(x) and the driving termEx=Eyx sin(wt).  harmonics can be slightly affected. Figur@gshows a typi-
Clearly, bound states may now be ionized, either by a singlecal spectrum obtained &,=10. A five-cycle linear ramp
photon (or multiphoton transition to the continuum, or by was used; the TDSE was then propagated over 40 cycles, the
tunneling through the barrier. This model is extremely versafourier transform being performed over the last eight cycles.
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(initial decreasg We explained previously that the classical
case describes the rapid motion of a particle in the slowly
varying potential well. The actiorf psddéx may be arbi-
trarily small, the trajectory of the electron remaining in the
vicinity of the bottom of the wellsee Fig. 2 The motion of
the latter leads to the low-frequency decreasing part of the
spectrum. The quantum case describes the position expecta-
tion value of a wave packet. The relevant action is higher, at
least of the order ofi/2 (1/2 in our unit$ according to the
. . Bohr-Sommerfeld theory. Let us consider one fixed time, for
1 2 3 4 instance when the field is maximum. The outer part of the
Frequency (a. u.) potential (i.e., the part lowered by the fields steeper than
the inner ongsee Fig. 5. This holds, of course, because of
N the confining anharmonic character of the potential, and
—_ (b) 1 would not be true for a harmonic oscillator. As a result, the
O 45t - center of the wave packet is displaced towards the field-free
g‘) center k=0) as compared to the bottom of the instanta-
2 0 eeesscenssns °® - neous well. This would also be true for the average position
2
2
o,

w

o
=]
T

L . o of a classical trajectory with the same actigime relationship
45 - 4 is straightforward in the first classical approximation de-
! ] scribed previously This attenuation gets larger when the
90k i difference between the softer and the steeper part of the po-
! —_ tential gets more pronounced. The low-frequency time varia-
tion of the quantum dipoléd,| is therefore less anharmonic
than that of the bottom of the well, so that the first few
harmonics display a steeper decrease in the quantum case
FIG. 6. (a) Spectrum obtained from a truncated anharmonic 0Sthan in the classical case.
cillator [same conditions as in Fig(d), E;=10]. (b) Correspond- We have interpreted the plateau as due to high-frequency
ing phases of the harmonics, refative to the driving field. motion in the well. Quantum mechanically, this motion must
involve excited states of the adiabatic Hamiltonian. The ac-
The potential truncation value was set so that the potentialon of these states is at least of/2, so that the softening
supports eight metastable excited states when the fielgffect just discussed should also occur, and be responsible for
reaches its peak value; this was checked with an autocorréhe cutoff deviation from Eq(8). Moreover, the damping
lation spectral metho@43]. Hyper-Raman peaks have been term in the classical equations of motion fqit) was shown
washed out. As in the classical case, the harmonics plateau{§ induce a periodic excitation term fafx(t) [Eq. (6)].

now clear. Note that the baCkgrOUnd noise is much smaller ||Th0ugh ionization p|ays the same role in the quantum case, it
these calculations than in most other computer simulationgs not strictly equivalent. As a result, there is actually no
This noise has been interpreted as due to populated higheason the intensity level of the high harmonics in the pla-
lying Rydberg states, which are dipole coupled to the groundeay should be exactly the same as in the classical case.
state[11]. The confining anharmonic potential presents the As a whole, what was understood as periodic excitation
peculiar property not to support any Rydberg series of stategnd damping of high-frequency motion in the classical case
since the energy separation between the excited states i8hould now be viewed as periodic excitation and ionization
creases continuously up the continuum threshold imposed byf excited states of the adiabatic Hamiltonian. The resulting
the truncation. As a result, there is no real need to CalCUlatgpectra are identical for a harmonic oscillator, but are in-
the spectra in the acceleration gauge, or in other more agyeasingly different as the anharmonic term becomes stron-
equate gaugeisll]. ger. Accounting for these expected limitations, the general
The parameters used in Figlagwere chosen to be iden- qualitative agreement between classical and quantum calcu-
tical to those of Fig. (8). The classical and gquantum- |ations remains quite remarkable, and indicates that the pla-
mechanical spectra can therefore be compared directly. Theau of harmonics displayed by the strongly driven quantum

general features are obviously similar, with the characteristignharmonic oscillator can largely be understood on a purely
decrease, plateau, and cutoff. In particular, the cutoff locatior|assical basis.

follows approximately Eq(8). This indicates that our classi-
cal analysis is still relevant in the quantum case. Several
differences are nevertheless clear. In the quantum case, the
initial decrease is steeper; moreover, the intensity and extent
of the plateau is reduced: it begins at slightly higher frequen-
cies and ends at slightly lower frequencies than in the clas- Several unexpected features have been noticed in previ-
sical case. These discrepancies can be understood along ths models of high-order harmonic generation that seem to
lines previously exposed, concerning the validity of classicabe as characteristic and universal as the plateau-cutoff struc-
approximations to quantum mechanics. ture. These features can be observed both in the classical and
We first consider the low-frequency part of the spectrumin the quantum-mechanical anharmonic oscillator models.

1 Freqzuency3 (a. uj

IV. DYNAMICAL SINGLE-ATOM PHASE AND
COHERENCE EFFECTS
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A. Intrinsic phases of high-order harmonics

[ ]
~}
<

It recently became clear that high harmonics may be com-
pletely out of phase from the laser. This was first noticed in
the TDSE calculations of Kulander and Schafer, and clarified
in the tunneling limit by the model of Lewensted al.[24].
These relative, or intrinsic, phases actually exist in tradi-
tional nonlinear optics: it suffices to introduce a finite life-
time to an intermediate state in the standard perturbative ex-
pression for a hyperpolarizability to obtain a complex result.
The resulting phase remains, however, small, except in a

25F(a) T'=0au.
o [ X ] ® o
;ooo.ooooooo o0 o *

—_—
= AND W
S hS

(=1

P P S T T T T

4

w

2 3
Frequency (a. u.)

225 ::(b') I'=0.01au.

phase (degrees) phase (degrees)

quasi-resonant situation, and is independent of intensity. In g A E
contrast, the intrinsic phases of high harmonics as observed 9 £ ]
in numerical_simulations exist for any laser frequency, and 43 eecsces® e’ o o ]
are strongly intensity dependent. 45 F .
Two major physical issues are related to these intrinsic 00— i : ; : ; . ; 5
phases. The first one concerns a possible generation of at- o~ Frequency (a. u.)
tosecond pulses of light, by a suitable recombination of se- 82—
lected harmonics. In the Appendix, we detail this idea, and & 22 H(c) I'=01au. e ]
briefly present propagation calculations showing how both T isE ..°° ® . ]
intrinsic and propagation-induced phases strongly inhibit the Q 90F . o .
creation of such short pulses. The second issue deals with = 4(5) o eee® E
macroscopic propagation effects for high harmonics. Several i o ° ]
authors recently noticed that these intrinsic phases may cause -90 0 : ; : ; : ; : ; —
a severe distortion of the harmonic wave front modifying the Frequency (a. u.)

angular distribution[5,44,43, and may play an important

role in the phase-matching procdgs]. FIG. 7. Intrinsic phases of the harmonics in the conditions of

In the _semiclassical model, the intrins_ic phas_es arise fr_on'}ig. 1(b), for different damping constant&) no damping{l) weak
propagation in the continuum: the classical action of motlondamping.(c) strong damping.

yields the corresponding phase. A simple heuristic way to
understand the origin of those phases is to notice that there j
an intensity-dependent time delay between tunnel ionizatiorgt
and return to the ionic core.

The existence of intrinsic phases is also quite clear in th
anharmonic oscillator model. Figuréb) presents the phases
correspondjng to the quantum spectrum displaygq in Figrence relations between the harmonic amplitudgg27].
6(a), and Figs. 7a)—7(c) those obtained in the conditions of Assuming that the motion is periodic
Fig. (b). In all cases, the lowest harmonics in the steadily '
decreasing part of the potential are in phase with the driving +o
field. In contrast, the harmonics of the plateau are out of d(t)=, dqeiq““, (27)
phase, in an apparently random way. It should be remem- -
bered here that the plateau in the classical case starts at lower
frequenciesabout the 15th harmonidhan in the quantum and considering that the strongest harmonic peak is by far
case. that at the fundamental frequency, then one gets the simple

This behavior can be easily understood along the linegecurrence relation
exposed in the first part of this paper. The low harmonics in

ases shown in Fig.(@ actually display a rather regular
havior. At the transition between the decrease and the pla-
teau, they follow approximately a quadratic dependence on
e harmonic frequency.

These features can be demonstrated using simple recur-

the decreasing part of the spectrum arise from the low- _ w§+igl —g?w?
frequency displacement of the bottom of the well, which is dg-otdgi2=| 2+4 3vd21 dg - (28)

of course perfectly in phase with the laser. The plateau har-
monics correspond to rapid motion within the well. There is\y,n .= this recurrence remains in the real domain. and

no a priori reason the high- and the low-frequency motion,[he only allowed phases are 0 and WhenT #0, then the

shoould be in [:ihase.t' that the d . tant h hases between the harmonics at the beginning of the plateau
ne may also notice that the damping constant has a m.s-re related to first order by

jor incidence on the phases in the classical case. This i
illustrated in Fig. 7, which presents harmonic phases ob-

tained with different damping constarjtso damping in Fig. argdq+2) —2argdgy) +argdy_,) =
7(a); weak damping in Fig. (b); strong damping in Fig.

7(c)], but otherwise identical conditions. In the purely

Hamiltonian case, all phases are almost equal to 0 or 180%hich explains the approximately quadratic behavior ob-
deviations from these two values become significant forserved in Fig. {c). Note that this method is very close to that
weak damping, and there is a significant phase variatioproposed by Plaja and Roso-Franc¥] and Kaplan and
from order to order in the case of strong damping. TheShkolnikov[19].

4qr 0g
3vd?’ 9
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multiphoton regime. A similar behavior has also been pre-
dicted by Kaplan and Shkolnikov in a two-level systgtd)].

The previous arguments do not imply, however, that all
E structures can only be due to interferences; the Floquet cal-
culations of Smith and Potvliege49] indeed show very
clearly both multiphoton resonances, appearing as series of
8 sharp peaks when atomic states come into resonance, and
broader interference oscillations. It can be shown by simple
analytical argument§48] that thin spatial structures in the
medium polarization, such as those due to multiphoton reso-
nances, do not survive phase matching. Steplike patterns ob-
3 served in experimental intensity dependend¢d¥] may

] therefore be due to thegbroad interference effects. How-

0 50 100 150 5 200 250 ever, this would deserve a more detailed theoretical study,
Driving intensity I=E, (a. u.) including both single-atom response and propagation, which
goes beyond the scope of the present paper.
FIG. 8. Intensity dependences of the harmonic intenjsity?, It may seem puzzling that a simptéassicalmodel should

for harmonics 5, 19, 29, 39, in the classical anharmonic oscillatorpredict an effect analogous tpuantum-mechanicahterfer-
ences. This essentially stems from the fact that the anhar-

In conclusion. the anharmonic oscillator model explainsmonic oscillator nonlinear equations could be replaced in the

simply why the plateau harmoni¢and only thosgare out of a_Ldiabatic approximation_ by Ii_near equ_ati(_)ns, _describing a
phase with the laser. In a purely Hamiltonian, or weak cj(,:m]ppme—dependent harmonic oscillator. This linearity allows us

ing, situation, the harmonics can only have phases close to {§ Make use of the superposition principle, just as in quantum

or 7. In all models (perturbation theory, semiclassical Mechanics. ,
model, anharmonic oscillatprthe intrinsic phases may get  1ne difference between the cutoff and plateau regions, for

arbitrary values when a strong coupling to a continuum i 9iven harmonic, is particularly clear in this model: the
introduced. even in nonresonant conditions. harmonic first increases very steeply, up to the intensity at
which the cutoff, given by Eq(8), reaches the harmonic

frequency(or, in other words, at which the harmonic reaches
B. Interference effects the plateau regign Then, the harmonic increases rather
cdlowly (Idgl ~|Eq|*®). Once again, this feature seems to be
present in any model of high-order harmonic generation, and
was demonstrated experimentall§]. Remarkably, the es-
sential characteristics of high-order harmonic generation by
real atoms can be reproduced and explained in this extremely
simple, almost naive, model of a classical anharmonic oscil-
lator.

We now examine the dependence of harmonic amplitud
as a function of intensity. We focus here on the analysis o
the classical case.

Equation (20) implies that the motion at timé results
from a linear superposition of oscillations, excited previously
over a time range of the order ofl1l/ The Fourier compo-
nentd, of the dipole at frequencyw can therefore also be
analyzed as a sum of components excited at different times,
and consequently modulated by phase factors -ekpufAt)

(At denoting the time between two excitatipn¥ any pa- In this last part, we would like to come back to our pre-
rameter of the problem is changed, then the relative weightgious discussion on the importance of damping and ioniza-
of these components should vary, so that one may expedbn, as well as the presence of hyper-Raman peaks in the
interference effects to occur. As an example, Fig. 8 presentsbsence of these relaxation processes. It could be argued that
the intensity (=E2) dependence o|qu|2 for harmonics 5, these additional peaks are of no importance to high harmon-
19, 29, and 39. The curves indeed display very clear oscillaics, since the frequencies are different anyway. We wish to
tions. A simple way to check our interpretation consists inemphasize that the existence of these spurious peaks is
increasing the damping terin to values larger thaw, thus  symptomatic of a coherence problem for the high harmonics.
limiting the excitation duration to less than an optical period; One sometimes considers that hyper-Raman peaks can be
in such conditions, interference effects are bound to be drgrevented by an extremely gradual, fully adiabatic, switch on
matically reduced. Numerical tests show that all oscillationsof the forcing field, without having to take relaxation pro-
are indeed washed out. cesses into account. In the important example of the har-

These results can be compared with those from othemonic oscillator, simple analytical calculations show that the
studies. It seems that all quantum models for high-order harntensity of the “atomic” peak indeed tends to zero as the
monic generation yield this kind of oscillations. They areramp duration tends to infinity. We performed a thorough
particularly clear in the work of Krause, Schafer, and Ku-series of attempts to switch on the forcing field very gradu-
lander[11], and were even shown to exist experimentallyally, on several tens of optical cycles. We were unable to
[47]. In the tunneling regime for the atomic resporngd], obtain pure harmonic spectra without introducing relaxation
these oscillations were interpreted as interferences betweeénto the model. In all cases, the resulting spectrum displays
electron wave functions following different classical trajec- hyper-Raman peaks. Their intensity is high for very short
tories. Note, however, that such oscillations already exist in @aamps (almost sudden turn on of the figJdas well as for

C. Dynamical coherence effects
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frequencies varying with intensity during the pulse. On the

0
101 oo ot 3 other hand, harmonics can clearly be distinguished in Fig.
510 i No damping L 9(b), in spite of a still important background. Other, more
107 3 rigorous, methods used to compute the emission spectra also
~ 107 1 yield hyper-Raman and/or background ndiS&].
= 10* 5 We have shown how the hyper-Raman peaks depend criti-
]0 -5 i 1 cally on how the field is switched on. One may wondg(oif
ko b in which conditiong the harmonics themselves are affected
7 | ‘ ! L. i i 3 by the characteristics of the field turn on. To understand this,
10 2 3 4 5 we have performed systematic calculations, in the classical
Frequency (a. u.) case, using the standard method where the field is switched
10° —r . . . : on by a ramp and subsequently held fixed. The harmonics
L ' i, ' ' were calculated right after the end of the ramp, for different
g 10 'f Small damping (I'=0.01 a.u) 1 ramp durations. The first harmonics, which correspond to the
< 3 initial decrease in the spectrum, do not depend on the ramp
3 shape or duration. This seems logical, since these harmonics
1 are interpreted as the Fourier components of the motion of
] the bottom of the potential well, which depends only on the

instantaneous field intensity. The intensities and phases of
the plateau harmonics appear to be highly sensitive to the
1 2 3 4 5 ramp parameters when the duration of the ramp is less than
Frequency (a. u.) 1/T'. They are, however, independent of the turn-on param-
eters for longer ramp durations. This shows that it does not
FIG. 9. Classical spectrum obtained from a realistic Gaussiaieally make sense to compute a harmonic spectrum for ex-
pulse(full width at half maximum of 128 optical cyclgs(a) with- ~ tremely weak damping, for which I&T,. As shown in
out damping, andb) in weak damping conditionsl{=0.01). Sec. Il, the high-frequency motion is due to oscillations ex-
cited over a time range of IL/ It seems therefore inevitable
very long ramps. The ramp duration in Fig. 4 was actuallythat the system requires times of the order df id adapt to
chosen in order to minimize the intensity of these peaks. any field variation and reach a stationary state, resulting in a
The dependence of the hyper-Raman peaks on the lengtionverged value for the harmonic complex amplitude.
of the ramp can be understood on simple grounds, both in the Similar results are also obtained in the quantum-
classical and the quantum case. In the classical cas€28qg. mechanical case, and can be interpreted along the line pro-
shows that the motion depends on the previous values of thgosed in[50], using a Flogquet analysis. Lak,(t) be the
field on a time interval of the order of 1/ If the damping ground Floquet state and,(t) another Floquet state with
constant is set to zero, then the motion depends on the wholyuasienergies and widths,, y, andE,, y,, respectively.
past of the pulse, including turn on. In the quantum case, th&he wave function reads
hyper-Raman peaks were interpreted byebdil8] and by
Millack and Maquet[50] as frequency beats between the P(t)=c,e E17 1P (1) + c e B2 172 (1),
ground Floquet state and one of the higher Floquet states. (31
The quasienergies are intensity dependent, and therefore so
are the hyper-Raman frequencies. The excited Floquet statghich yields the dipole moment
can be populated by an avoided crossing in the course of the
field turn on[51], which explains that these hyper-Raman (t)=|c,|2e~2"1{(d(t)|d|P4(1))
peaks actually increase when the ramp is too long.
In Fig. 9, we show two spectra calculated in the classical +col2e™ 272D ,(1)]d|D,(1))

case, using a realistic pulse envelope: _ —i(E.—
9 P P +2e~ (2R ¢yc8 e E1EDY P, (1)|d] (1)),

E(t)= Eosimwt)sinz(_lzft), (30 (32)
p

Sinced(t) and®d,(t) are periodic, the first two terms in the
where T,=128(27/w) denotes the pulse duration at half right-hand side in Eq(32) contain the harmonics, whereas
intensity. The Fourier transform is performed over the entirethe cross terms yield the hyper-Raman lines. The occurrence
pulse. No damping is considered in Fig@® whereas a of such lines in harmonic spectra means therefore that at
weak damping {'=0.01) was introduced in the calculation least one excited Floguet state was populated by an avoided
for Fig. 9b). Both spectra are much noisier than with the crossing during the field turn on. The periodic partdgt)
standard procedure, consisting of a ramp and a constant fietlen consists of the contribution of the ground Floguet state
plateau, which explains why the former method has bee(t), plus that ofd®,(t) which decays on a time scale of
rarely used in the numerical calculations of high-order har-l/y,. This implies that converge@de., turn-on independent
monics[13,52. In Fig. 9a), the plateau harmonics are com- harmonics cannot be obtained before the system has relaxed
pletely swallowed in a very large background noise, whichto its ground Floquet state, i.e., when the hyper-Raman lines
we may interpret as a superposition of hyper-Raman peaks ¢fave disappeared. We are therefore led to introduce a new
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characteristic timél'y, which corresponds essentially to the ization, which is usually considered as a competing process

decay time of the Floquet state,. One usually has to high-harmonic generation, actually plays an important role
in the high-harmonic generation process, by rapidly deplet-

T <Ty4<T,, (33 ing the excited Floquet states in a dynamical regime, thus

granting the coherence of high harmonics in most realistic

whereT =27/ is the optical cycle duration, and, de-
notes again the pulse duration. In that casetémeporal lo-
cality holds, in the sense that the atomic polarization follows
“instantaneously” the laser field excitation, with the usual V. CONCLUSION
coherence properties. However, one might consider cases for
which

situations.

We have proposed in this paper a detailed analysis of
high-order harmonic generation in strongly driven Duffing
T <T,=Ty. (34)  oscillators, from both classical and quantum-mechanical
point of view. Our primary purpose was to determine the
In this case, the coherence properties of the harmonic emisonditions for which high harmonics arise, and to unravel
sion may be deteriorated. Indeed, atoms located at differeriheir origin.
places in the focal volume may be submitted, at one time, to Classically, we have shown that the low-frequency char-
the same local intensity, but with differefiocal) past history  acter of the driving field allows analysis of the motion by
of the laser field. This results in different populations for themeans of the adiabatic invariance theorem. Two time scales
Floguet states, and hence different amplitudes and phases foan indeed be distinguished, one associated to the low-
the harmonic emissiohsee Eq.(32)]. A rigorous study of frequency displacement of the bottom of the well, and the
coherence effects induced by the breakdown of the temporaither to the high-frequency motion within the well. This du-
locality is far beyond the scope of the present paper: it wouldality results in a splitting of the harmonic spectrum into two
actually require simultaneously solving the TDSE for all regions, namely, the initial decrease and the plateau. The
points in the focal volume and the Maxwell equations ofcutoff appears naturally as the highest characteristic fre-
propagation. Some attempts have nevertheless already begnency of the potential, modified by a strong quasistatic
performed in that directioh54]. field. This kind of scaling is very close to that proposed by
These considerations explain simply why the harmonidBandarageet al. [15] for the classical hydrogen atom. We
amplitudes are usually computeafter the hyper-Raman pointed out that a small damping term should be introduced,
peaks have decayed. It is also worthwhile to notice that ionso that the motion may relax to a stable periodic orbit.
Quantum mechanically, we have demonstrated that a pure
harmonic spectrum can also be obtained, provided an ioniza-

z1 tion pathway is allowed. General features of the quantum
= spectrum were shown to be similar to those of the classical
€ one. Differences arising from the quantum nature of the
> model, due to deviation from the harmonic oscillator case,
iz were nevertheless observed and analyzed. Our analysis also
20 : . A explains why the plateau harmonic peaks and the hyper-
o 2 3 4 5 6 Raman peaks always span the same frequency range. This
= time (femtoseconds) point still stimulates theoretical intereg5].
Eqafb T Ty T T T T The very simplicity of the model makes it possible to
= discuss a number of other characteristic properties of high-
E order harmonics. In particular, we show how intrinsic phases
= and interference effects arise in the model. Finally, we em-
g phasize that high-order harmonic generation is a dynamical
E , AL \ ) process, whose response tifig is linked to the ionization
1 2 3 4 5 6 process.

time (femtoseconds) Finally, we would like to stress that the present model
T T T T T T could profitably be used for pedagogical purposes. It is in-
§ deed quite remarkable that the same simple model that usu-
= ally helps students to understand the basics of nonlinear op-
) tics (second- and third-order harmonic generatioan also
2 be used to illustrate and get important insights into the phys-
£ ics of high-order harmonic generation, which is one of the
E . 2 3 1 5 s latest and most striking “exotic” phenomena in atomic and

time (femtoseconds) optical physics.

FIG. 10. Intensity of the electric field corresponding to the co- ACKNOWLEDGMENTS
herent sum of harmonics 7—21 in xenon irradiated by k66laser
light. (a) assuming constant phases and amplitud@staking into We would like to thank K. C. Kulander, M. Lewenstein,

account realistic single-atom dipole momefgse tex, (c) includ-  A. Maquet, D. Richards, P. Saties, and K. J. Schafer for
ing propagation effects. numerous and fruitful discussions. We also thank K. C. Ku-
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lander and K. J. Schafer for providing the single-atom datghases. The pulse duration derived from &) is approxi-

used in the calculations of the Appendix. mately equal to 40 attoseconds.
However, this attractive idea relies on the assumption that
APPENDIX A all the harmonics have the same phase. Figuf®)ilshows

A recurrent theme concerms the possibility of using hi hthe result of a calculation adding the harmonic field complex
P Y g nig amplitudes (from the seventh to the 23lstat 5x 10

harmonics to generate extremely short pulses of light. Sev- _ . . .
g y b 9 cm 2 for a single xenon atom, obtained by solving the

eral physicists have indeed noticed that the characteristic plél—v

teau of high harmonics is very similar to the spectrum of at|me-dependent Schdinger equation[10]. The regularity

mode-locked multimode laséB6], or of phase-locked laser disPlayed in Fig. 1@ has disappeared: the well-defined
oscillators[57], and suggested therefore the following idea.PUISes have split into more numerous sharp temporal struc-
Suppose one is able to get rid of the first few harmonicgures. If one m_cludes also the effect of propagation in a_lthm
(decreasing part of the spectryrand of the last oneutoff nonhngar medlunﬁ9], th_en these_ structures brpaden, as illus-
region, and to keep only the plateau harmonics through SeT_rated in F_|g. 1Qc). In _thls case, i.e., ata relatively low laser
lection by adequate filters. If the harmonics are all in phaselntensity, in the “multiphoton” regime, the plateau does not
then the addition of the electric fields would lead to a train ofP€have as a mode-locked laser, but rather as a multimode
ultrashort pulses, separated by one half period of the fundd@ser, with sharp and indeed very short substructures. One
mental. The duration of each pulse is given by the inverse ofight speculate on the possibility of selecting an appropriate

the frequency range of the selected harmonics: number of harmonic¢approximately in phageor to bring
them back in phase. A more detailed investigation of this
1 problem for harmonic generation in the tunneling regime

Tpulse = ( omin) (A1) will be presented elsewhef&9]. It should be stressed that

this scheme to generatains of subfemtosecond pulses
Let us consider as an example the case of a xenon atoshould not be confused with an idea recently proposed by
irradiated by 1.06um laser light. We show in Fig. 18 the  Ivanov et al. [58] that uses the large sensitivity of the high-
temporal structure resulting from the addition of the seventtharmonic generation efficiency to the laser field degree of
to 21st harmonics, assumed to have equal amplitudes arelliptical polarization to produce a single attosecond pulse.

[1] A. L'Huillier and Ph. Balcou, Phys. Rev. Leff0, 774(1993. [12] R. M. Potvliege and R. Shakeshaft, Phys. Rev4@ 3061
[2] J. J. Macklin, J. D. Kmetec, and C. L. Gordon lll, Phys. Rev. (1989.

Lett. 70, 766 (1993. [13] J. H. Eberly, Q. Su, and J. Javanainen, Phys. Rev. 62t881
[3] Ph. Balcou, P. Salies, K. S. Budil, T. Ditmire, M. Perry, and (1989.
A. LHuillier, Z. Phys. D 34, 107 (1995. [14] V. C. Reed and K. Burnett, Phys. Rev.4&, 424 (1992.
[4] J. W. G. Tisch, R. A. Smith, J. E. Muffett, M. Ciarroca, J. P. [15] G. Bandarage, A. Maquet, T. Mis, R. Taeb, V. Vaniard, and
Marangos, and M. H. R. Hutchinson, Phys. Rev49 R28 J. Cooper, Phys. Rev. A6, 380(1992.
(1994. [16] B. Sundaram and P. W. Milonni, Phys. Rev44 6571(1990.
[5] J. Peatross and D. D. Meyerhofer, Phys. Revs1 R906 [17] L. Plaja and L. Roso-Franco, J. Opt. Soc. Am.93 2210
(1995. (1992.
[6] P. Saliges, T. Ditmire, K. S. Budil, M. D. Perry, and A. [18] R. Taeb, these de doctorat, Universiteierre et Marie Curie,
L'Huillier, J. Phys. B27, L217 (1994. 1993 (unpublishegl
[7] M. E. Faldon, M. H. R. Hutchinson, J. P. Marangos, J. E.[19] A. E. Kaplan and P. L. Shkolnikov, Phys. Rev.4®, 1275
Muffett, R. A. Smith, J. W. G. Tisch, and C.-G. Wahlstrom, J. (1994.
Opt. Soc. Am. B9, 2094 (1992; T. Starczewski, J. Larsson, [20] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev.
C.-G. Wahlstion, J. W. G. Tisch, R. A. Smith, J. E. Muffett, Lett. 68, 3535(1992.
and M. H. R. Hutchinson, J. Phys. B, 3291(1994. [21] K. C. Kulander, K. J. Schafer, and J. L. KrausePimceedings
[8] C.-G. Wahlstien, J. Larsson, A. Persson, T. Starczewski, S. of the Super-Intense Laser-Atom Physics Il Workshap.
Svanberg, P. Salies, Ph. Balcou, and A. L'Huillier, Phys. Rev. 316 of NATO Advanced Study Institute, Series B: Physds
A 48, 4709(1993. ited by B. Piraux(Plenum Press, New York, 1993

[9] A. L'Huillier, L. A. Lompre, G. Mainfray, and C. Manus, in [22] P. B. Corkum, Phys. Rev. Letf1, 1994(1993.
Atoms in Intense Radiation Fieldddvances in Atomic, Mo-  [23] A. LHuillier, M. Lewenstein, P. Saliges, Ph. Balcou, M.
lecular, and Optical Physics, Suppl. 1, edited by M. Gavrila Ivanov, J. Larsson, and C.-G. Wahlstip Phys. Rev. A48,

(Academic Press, New York, 1992 R3433(1993.

[10] K. C. Kulander, K. J. Schafer, and J. F. Krause Aitoms in [24] M. Lewenstein, Ph. Balcou, M. Y. lvanov, A. L'Huillier, and P.
Intense Radiation FieldAdvances in Atomic, Molecular, and Corkum, Phys. Rev. 49, 2117(1994).
Optical Physics, Suppl. 1, edited by M. GavrilAcademic  [25] N. Bloembergen,introduction to Non-Linear OpticgBen-
Press, New York, 1992 jamin, New York, 1965

[11] J. L. Krause, K.J. Schafer, and K.C. Kulander, Phys. RedA6A  [26] Y. R. Shen, The Principles of Non-Linear OpticéWiley-
4998(1992. Interscience, New York, 1984



3468 PH. BALCOU, ANNE L'HUILLIER, AND D. ESCANDE 53

[27] A. L’Huillier, Ph. Balcou, K. J. Schafer, and K. C. Kulander, [44] J. Muffett, C.-G. Wahlstrm, and M. H. Hutchinson, J. Phys. B

in Coherence Phenomena in Atoms and MolecudATO 27, 5693(1994.
Workshop, edited by A. D. Bandrauk and A. C. Wallgge-  [45] J. Peatross, M. V. Fedorov, and K. C. Kulander, J. Opt. Soc.
num Press, New York, 1991 Am. B 12, 863(1995.
[28] A. Nayfeh and M. MookNonlinear OscillationgWiley, New  [46] P. Saliees, Anne L'Huillier, and M. Lewenstein, Phys. Rev.
York, 1979. Lett. 75, 3776(1995.
[29] S. K. Bose, U. B. Dubey, and N. Varna, Fortschr. PI8. [47] Ph. Balcou and A. L’Huillier, Phys. Rev. A7, 1447(1993.
761 (1989. [48] Ph. Balcou, thee de doctorat, Universitierre et Marie Curie,
[30] W. S. Loud, J. Math. Phys34, 173 (1955. 1993 (unpublished

[49] P. Smith and R. M. Potvliege, iRroceedings of the Super-
Intense Laser-Atom Physics Il Workshofol. 316 of NATO
Advanced Study Institute, Series B: Physiedited by B.
Piraux (Plenum Press, New York, 1993

. . . . [50] T. Millack and A. Maquet, J. Mod. Op#0, 2161(1993.

[33] M. Gajda, J. Grochmalicki, M. Lewenstein, and K. Rzazewsk|,[51] T. Millack, in Proceedings of the Super-Intense Laser-Atom

Phys. Rev. A46, 1638(1992. . ] Physics Il WorkshopVol 316 of NATO Advanced Study In-
[34] P. Kramer and M. Saraceno, iGeometry of the Time- stitute, Series B: Physid®Ref. [21]).

Dependent Variational Principle in Quantum Mechaniesl- [52] S. C. Rae, X. Chen, and K. Burnett, Phys. Rev5@ 1946
ited by J. Ehlers, K. Hepp, R. Kippenhahn, H. A. Weiden- (1994,

muller, and J. Z. Hartz, Lecture Notes in Physics Vol. 140 [53] F. I. Gauthey, C. H. Keitel, P. L. Knight, and A. Maquet, Phys.

[31] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics
(Springer-Verlag, New York, 1990

[32] F. Benvenuto, G. Casati, and D. L. Shepelyanski, Phys. Rev. A
45, 7670(1992.

(Springer-Verlag, Berlin, 1991 Rev. A52, 525(1995.
[35] M. Horbatsch and J.K. Liakos, Phys. Rev4& 2019(1992.  [54] K. Burnett and S. C. Rae, iRroceedings of the Super-Intense
[36] J. Brickmann and P. Russeger, J. Chem. Pity$744(1981. Laser-Atom Physics Il Workshpp/ol. 316 of NATO Ad-
[37] C. C. Gerry, Phys. Lett. A46, 363(1990. vanced Study Institute Series B: PhysiBef. [21]).
[38] R. B. Walker and R. K. Preston, J. Chem. Phg§g, 2017 [55] G. Compagno, K. Dietz, and F. Persico, J. Phy9B 4779
(1977. (1994).
[39] R. J. Glauber, Phys. Let21, 650(1966. [56] S. E. Harris, J. J. Macklin, and T. W. "Hsch, Opt. Commun.
[40] D. Stoler, Phys. Revi1, 3033(1975. 100, 487 (1993; G. Farkas and C. Toth, Phys. Lett. 268
[41] R. Benguria and M. Kac, Phys. Rev. Let6, 1 (1981)). 447 (1992.

[42] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbétmy- [57] T. W. Hansch, Opt. Commurf2, 71 (1990.
cessus d’Interaction entre Photons et Atom{€NRS-inter-  [58] M. Yu. Ilvanov, P. B. Corkum, T. Zuo, and A. Bandrauk, Phys.
editions, Paris, 1988 Rev. Lett.75, 2933(1995.

[43] M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys.[59] P. Antoine, A. L'Huillier, and M. Lewensteifprivate commu-
47, 412(1982. nication.



