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Anomalous diffusion and Levy walks in optical lattices
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We study theoretically the spatial diffusigtransport of two-level atoms in one- and two-dimensional
optical molasses derived from counterpropagating laser beams. We use both quantum Monte Carlo and semi-
classical methods to study the microscopic characteristics of the atomic motion and their effect on the mac-
roscopic behavior of the spatial distribution. We find that there exists a certain critical depth of the optical
potential below which the atomic trajectories showy.dights in space that last on a definite time sdalevy
walks). This behavior leads to a transition from Gaussian spatial diffusion to anomalous diffusion while
crossing this critical potential depth. We show that only atoms with very high momentum are responsible for
these Ley walks. This observation allows us to predict the critical parameters via a semiclassical Fokker-
Planck equation approach.

PACS numbe(s): 42.50.Vk, 32.80.Pj

[. INTRODUCTION therein. The basis is the quantum Monte Carlo wave func-
tion simulation with “spatially localizing quantum jumps”
Laser cooling of atoms can be achieved in optical molasas developed by Hollandt al. [8]. This simulation corre-
ses, where counterpropagating laser beams provide a damgponds to aspatially resolvedohotodetection of the sponta-
ing mechanism, and lead to the formation of optical potenneously emitted photon, and can be visualized as an “experi-
tials corresponding to a spatially varying ac Stark shift of thement with a Heisenberg microscope” where the atom
atomic ground statgd,2]. The generic model of laser cool- moving in the optical molasses is “continuously monitored
ing is an angular momentuth = 1 to J.= 12 transition driven through a lens” and the locus of spontaneously emitted pho-
by two Counterpropagating linearly p0|arized lasers with or-tons Is simulated. Each “observation” of a photon thus lo-
thogonal polarizations. For red laser detuning and low lasefalizes the atom with the accuracy of a laser wavelength, and
intensities the optical potentials corresponding to the twdn this sense we can give an operational definition to a quan-
ground states form an alternating pattern of optical bipotenfuM trajectory of an atom moving in space. It can be shown

tials U, _.1(2). Spontaneous emission causes transition&8] that an averaging over many realizations is equivalent to
9 - a solution of the standard master equation of laser cooling

between these potentials via optical pumping processes. Iy » The scheme has the significant numerical advantage
the semiclassical picture of Sisyphus coolf8gone consid-  hat each occurrence of a quantum jump localizes the atoms
ers an atom moving on one of these potential curves, and fqp gpace and we can allocate a relatively small dynamic grid
red laser detuning transitions to the other potential then occygy the atomic wave function to “follow” the motion of the
preferentially from the tops dfl _;/,(z) down to the valleys atom in space. A typical example for one of these simulated
of U,1(2), so that on the average the atomic motion istrajectories is depicted in Fig. 1. The upper part of Fig. 1
damped. Quantum mechanically, laser cooling can be undeshows the expectation value for the position of the Monte
stood as optical pumping between the quantized energy levGarlo wave function as a function of time. The lower plot
els (band structure in the periodic optical potentigl]. The  shows the total energy, i.e., kinetic plus potential, on the
temperatures achieved in experiments correspond to the asame time scale. We see that the trajectory consists of two
cumulation of atoms in the few lowest vibrational energyvery different types of motion. First, there are the more or
levels. Transitions between the vibrational states will manidess horizontal lines, where the atom is trapped in the wells
fest themselves as sidebar(@aman transitions due to opti- of the optical lattice, having an energy below the potential
cal pumping in atomic absorption and emission spedB&  barrier (indicated by the dashed line in Fig) ketween ad-
From the physical picture derived from this model it is clearjacent minima. The atom stays more or less in this well,
that laser cooling is intrinsically connected with a randomoccasionally shifting to the neighboring ones. But at some
walk of the atom(transport and spatial diffusigrin the op-  stage energy fluctuations due to spontaneous emissions allow
tical lattice. It is the purpose of this paper to present a theothe atom to accumulate enough energy to be sufficiently high
retical study of this spatial diffusion process. The final goalabove the barrief9]. It then takes off on a flight that can
is to give aphysicalexplanation for the divergence of the reach over many wavelengtligdicated by the shaded re-
spatial diffusion constant of &—3 atom in a lin_lin laser  gions in Fig. 3 until it is eventually trapped again.
configuration as predicted in a semiclassical Fokker-Planck This behavior is reminiscent of random walk processes
treatment by Hodappt al. [6]. with long flights, which have been studied in the mathemati-
We will start our discussion below with a fully quantum- cal literature under the name of e flights [10,11]. The
mechanical investigation of spatial diffusion -3 atoms  defining property of Ley flights is that the jump distance for
in a one-dimensiona(1D) optical molasses formed by a each consecutive step is drawn from a distribution whose
linl lin laser configurationisee Ref[7] and references cited variance diverges. In the context of laser cooling this type of
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the flight(i.e., the time it takes to completg does not enter.
If this dynamical aspect of the flights is included these pro-
cesses are named \newalksaccording to Ref[11].

In generalizing (1) the spatial diffusion ofdynamical
guantum systems can be characterized by the time evolution
of the squared widthl1]

AZ(1)?=(2%)— (2%}, 2

where(A), denotes—as usual—the quantum-mechanical ex-
pectation value for an arbitrary operatéyy

(A)=trg gA|W(1))(¥ (1)
=trs gA(t) [V (0))(V(0)] 3

in the Schrdinger and Heisenberg pictures, respectively.
Since we are dealing here with an “open system,” i.e., a
0 20 40 60 80 100 system(aton) that is coupled to a “bath”(quantized elec-
i/t tromagnetic field, we must trace over both system and bath.
Many physical systems show a time evolution of the spa-
tial distribution converging to a Gaussian,

FIG. 1. A “typical” trajectory of an atom in a 1D linlin op-
tical lattice with a potential depth dfl,=40Eg. The upper plot

shows the expectation value of the position for the stochastic wave W(x,t)~ ;exq —x%14D,t], (4
function as a function of timéin units of tg=Eg/#). The lower 3\/477th ‘

plot shows the corresponding total energy of the atom. The shaded

areas correspond to a motion of the atom above the barrier betweand thus are characterized in the above sense by

adjacent potential minima where the atom travels over many waveA z(t)?~2D,t. Throughout this paper we will denote asymp-

lengths. The regions left white correspond to below-barrier motiontotic expansions with a tilde. The long-time behavior of this

where the atom is trapped in the wells of the optical lattice. type of diffusion is solely described by ttepatial diffusion
constant O, which is defined by13]

behavior has been found in laser configurations that give rise

to velocity-selective dark statd42]. In this case the hey

character of the random process results from long waiting

times (when the atom is trapped in a momentum state close

to the dark state . A deviation from this linear behavior, i.eAZ(t)2~t”

A characteristic feature of vy-type random processes is (,,+ 1) defines anomalous diffusigtid]. In our context the
that the distribution of the total distance traveled aftsteps  exjstence of a spatial diffusion constant is best discussed by
does not approach a Gaussian in the limit-, i.e., the  yeexpressing5) in terms of the(symmetrized momentum
central limit theorenj10] is not applicable. Instead the limit ¢qrrelation functionsee Sec. Il C for details
distribution is given by a [ey law that possesses slowly

decaying wingg10]. As a consequence the asymptotic de- . 1t .
pendence of the width of this distribution on the step number D,= lim WJ'OdﬂD(T),p(t)%ym- (6)
n is given by e

D,=li 1dA“t2 5
z_tmia Z(t)”. 5

We will show that in the case of 1D linlin optical molasses
the momentum correlation function for fto 2 transition

decays with the characteristic law
where(z),, and (z), denote the expectation value for the
total distance and the total squared distances traveled after (p(t),p(t+ 7)) sym* T *, (7)
n steps of the random walk, respectively. Another remark-
able property is that the underlying microscopic prodess,  Where the critical parametex is related to the depth of the
the trajectory of the random wallshows longer and longer optical potentiall, by
“flights” the longer we observe the systethence the name
Lévy flights) and thus has a self-similéfracta)) nature[11]. _ i ﬁ _ § )
In other words, if we look at a trajectory like the one in Fig. K= 123 Er 2’
1 we will find that the total distance that the particle traveled
is dominated by a single flight, no matter on what time scalevith recoil energyEg=7%2k?/2M. For u>1 the integra6)
we look at the trajectory. converges and the diffusion constaf®) exists; below
As has been emphasized by Shlesinger, Zaslavsky, and=1—corresponding to a critical potential depth
Klafter [11], the elegant mathematics of weflights is not ~ U§"=61.Fg—there is a transition to anomalous diffusion.
directly applicable to the kinetic description of reBinami- Lévy walks are associated with atomic motion in the op-
cal processes. In the case ofweflights the time aspect of tical molasses far above the potential barrier. In this energy

Az(n)?=(2?),—(2)2~n? with y#1, (1)
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range a semiclassical description in terms of a Fokker-Planc&ulation of these correlation functions it is advantageous to
equation(FPE is appropriate and provides the basis for theuse the standard QMC technique ag@h Appendix A.
analytical description of these phenomena. Note, however,

that the FPE cannot be employed to describe the belOW bar' A. Basic equations for one-dimensional laser Coo"ng

rier motion (the localization regime Only for the special
case of alg= 3—Je=13 transition can one formulate a semi-
classical bipotential modévhich includes localization 14]

since in this case no Zeeman coherences exist between t .
ground states. tion. For details we refer to Reff4,7,20. In our 1D model

A final question studied in this paper is the existence of V€ conS|d§r a two-level iatom with ?] ZeP:]man sgpstrgcture
Lévy walks in 2D optical lattices. We will present results for corresponding to an angular momentdgrto J, transition in

two laser configurationgl5—17 based on FPE treatment for a laser config_ura_tion consisting of two cognte_rpropagating
a 3 to 3 atom that is verified by a semiclassical bipotentialIIght _beams_ with !mear and o_rf[hogonal polarizatigin.L lin).
simulation. In this configuration the positive frequency part of the elec-

tric field can be written as

Il. QUANTUM MECHANICAL TREATMENT Eg(z,t)zFE\/E[cos(kz)eJr+sin(kz)e_]e*“*’tt. (10)
OF SPATIAL DIFFUSION IN ONE DIMENSION

In this section we summarize and review the basic equa-
tions of one-dimensional laser cooling in order to identify the
Hgysical parameters in our model and to establish our nota-

¢ Here 2 is the light amplitude,w, and k denote the laser

In this section we will investigate the spatial diffusion o , X
atoms in an optical molasses in a fully quantum-mechanica{lrequency and wave vectog is the coordinate along the

framework. Due to the complexity of the underlying equa-'9ht Propagation axigwhich is also the quantization axis for
tions of motion we will restrict this treatment to one- the atom, ande. == (1/y2)(X=iy) are spherical unit vec-

dimensional laser configurations. tors. _ _ _ » _
After a brief review of the basic equations of 1D laser We are interested in laser intensities well below saturation

cooling we will solve these equations with the initial condi- So<<1, which give rise to the lowest temperatures corre-
tion that the atom is localized to a single well in the opticalSPONding to the largest ground-state ZpOngatllor;. The satura-
potential. It is in principle possible to calculate the time evo-tion parameter is defined asy=30(A%+3I%), with
lution of this system by using the standard quantum Montd2=2#d/% the Rabi frequencyd the dipole matrix element
Carlo (QMC) method as described in Refd,18). The key ~©n the outermost Zeeman transitibhy=J,—Me=Jc, I
feature of this simulation scheme is that the emisgloac-  the spontaneous decay rate, ahet w_— weq the laser de-
tion (and polarization of the photon is measured. We will tuning. Elimination of the excited-state manifold leads to the
therefore refer to the measurement that is simulated by thigeneralized optical Bloch equati¢@OBE) for the ground-
simulation method asngle resolved photon detectioBy  State density matriy(t), [7],

emitting a photon in a certain direction the atom receives a

momentum kick in the opposite direction. Formally, this kick : _ ! hovo— pht) + 2 f+ duK (oK™ (5
is transferred to the atom by applying the operator ﬁ( eitP~ PPer) LOE R ou(2)PKou(2).
. s 11
Kou(2)= VN (u)B,(2)e"""* 9

with the momentum kickor angle resolved photon detection
(see Sec. Il A for detai)sto the wave function. Unfortu- [8]) jump operators
nately, this simulation method leads to an unlimited spatial i
spreading of the stochastic wave function in the course of its K, u(2)=VN,(u)B (2)e %, 12
evolution since the application of the kick operat@sdoes
not reduce the spatial coherence length of the atomic wavand the non-Hermitian effective Hamiltonian
function. The angle resolved photon detection is therefore ~
not able to reduce the unavoidable spreading of the stochas- h _p
tic wave function during its coherent propagati@re., in e 2M
between the quantum jumjpsHence, storing the(dis- R
cretized wave function on a computer requires an everThe dipole operato(z) is given by
growing memory grid, which at some point will either lead
to memory problems or will render the propagation algo- S — _1\OA * (5
rithm inefficient[19]. A2 U=§0;il( D7 A€(2), a4

It is therefore desirable to avoid this spreading and we

have shown in Ref.8] that this can be achieved by simulat- where
ing a measurement of the emission locus of the spontaneous

@(A—'E)ff Z1¢. (13)
5 |2 N2) 7' (2).

photon instead of the emission direction. In Sec. Il B we will A = IMMIM.- 1ol IMIIM 15
briefly review this method and utilize it in order to study the v MeE,Mg [9gMg)(IgMg:101JeMe)(JeMe| - (15)
time evolution of an initially well localized cloud of nonin-

teracting atoms. denotes the atomic lowering operator involving the emission

In Sec. Il C we will use an alternative, indirect approachof a photon of polarizatiow and the space-dependent coef-
that makes use of a relation between the spatial diffusiofiicientse,(z) of the polarization vectors relate to the electric
constant and the momentum correlation function. For the calfield via
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. B B. Direct simulation of atomic motion using localizing

E (Z:t):50_0+1 €,(2)€ e 'th<§ |€g(Z)|2:1)- (16) quantum jumps

As already mentioned the key idea behind the method of
localizing quantum jumps is the simulation of a measure-
ment process for the emitted photons that gives us informa-
tion on the position of the atom. This can be visualized as
follows: instead of detecting the emission direction as in the
standard QMC approach we “look at the atom via an imag-
ing system” such as, e.g., a microscope lens and thereby
detect where the spontaneous photon came from. The math-
ematical implementation of a measurement process that can

The first two terms on the right-hand side of Efjl) corre-
spond to a time evolution due to the Hamiltoniagk, while
the last term describes the return of the atomic electron to th
ground state by optical pumping.

The Hermitian part oh.4 governs the coherent 1D mo-
tion of a particle in the periodic optical potential

R oA be interpreted in this way is given by the following unitary
U(2)=-——27(2), (17 transformation of the angle resolved jump operaf@is
K eimu)\lz

as given by the ac Stark shift of the various Zeeman subleWom(2)=| du——K,(2)(m=0,+1,+2,...), (19
els. In the following, we will refer tdJ,=—3s,2A as the _k V2k

potential depth, which we usually give in units of the recaoil
energy Er=7%wg=7%%k?/2M. Since our laser configuration
involves nowr-polarized light component, this coherent evo-
lution couples only states that are connected by.ao_
Raman transition, i.e., states whalk, differ by two. The
anti-Hermitian part in13) leads to a damping due to optical
pumping with yo=1s,I" the optical pumping rate between
the ground-state levels. The operat@®s(2)=A,~'(2) in
the jump operator$12) describe a Raman transition, corre-
sponding to absorption of a laser photo@) followed by
spontaneous emission of a photok,§ with light polariza-
tion ¢=0,=1. The angular distributions of spontaneously
emitted photons with polarizatiom are given by

where the discrete index corresponds to the detection po-
sition z=m\/2 of the photon. Fron(19) and(12) we readily
see that the spatial dependence of the jump operators
J,m(2) is given by the product of the Raman transition op-
eratorsB_(z) (which are periodic with periodh) and the
Fourier transform of the angular distribution functions for
spontaneous emissidw,(u). It is easy to check by explic-
itly calculating these Fourier transforms that the latter factor
is similar to a sinkz)/z function. The effect of applying the
new jump operatorsl,(z) to a wave function is thus a
reduction of the coherence lengtie., the spatial width of
the wave packetto something on the order of the wave-
length of the emitted photofin compliance with the Heisen-
berg uncertainty principle This results in the localization of

3 ) the atom around the detection locus of the emitted photon.
No(u)= @[1_(11”‘) IB Another important property of the jump operatds,(2) is
that they can be generated from a single one,Jsg{z), by
the translation

3
N.q(u)= @[1+(u/k)2]. (18 i m
ng(Z)=Jgo(Z— 7) (20

As is shown in Ref[18], a solution of(11) can be calcu-

lated by simulating stochastic trajectories that correspond tg y inverting Eq.(19),

a coherent evolution of the atomic wave function, which is o imuA/2
interrupted at random times by the emission of spontaneous Kou(2)= J,m(2), (21)
photons. The density matrix at a certain time is then recov- m=0+Tx2,... 2k

ered by averaging over many of these trajectories. This ap- o
proach is called quantum Monte Carlo wave-function simu-and inserting it inta11) we get the transformed GOBE,
lations. A pictorial view of this method is to consider the

bath of quantized electromagnetic field modes as being used _ i—(h —phl)

as a meter to continuously monitor the atom. Each time a P= 7 3 \NefiP ™ Plleft

photon is detected in the bath we can calculate the back

action that this emission has had on the atom. By doing this 12 3 (53" (3 29
the evolution of the density matrip(t) in the GOBE is yoo=§o;¢1 m=0,§l,... om(2)PIon(2). - (22)

replaced by an average over pure-state trajectories that cor-

respond to stochastically chosen photon emission times ardote that the physical content of the GOBE is of course not
decay channel¢for example, emission direction and polar- altered by this transformation. The conclusions drawn from
ization of the photon The numerical advantage of dealing this representation are therefore necessarily identical to the
with wave functions instead of density matrices is evidentones derived in Eq11). However, this new form leads to a
since the dimension of a wave function is proportional to thesimulation scheme for the problem at hand that is much more
numberN of basis state@n our case the number of points of efficient than the angle resolved detection approach.

a discretized spatial gridwhereas the density matrix scales  The procedure for calculating the trajectory corresponding
asN? (see also the discussion in RET)). to the simulation of a certain measurement record
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(o1mq,0om,,03mg, .. .) for thepolarization and emission

loci of consecutive spontaneous photons and the subsequent
averaging over many different measurement records can be
summarized as follows.

(i) Initial condition. Any initial atomic density matrix
p(t=0) can be decomposed into a sum of projectors onto
pure states, i.ep(t=0)=Z=,p,|®,)(P,|. We choose one
of the pure stated,) as the initial condition for our sto-
chastic trajectory according to the distributipp. For the
simulations in this subsection we start by definition with the |
atom in a pure statp(t=0)=|Py)(P|, where|d,) corre- 0 .
sponds to an atomic wave function that is localized to a -40
single quantum well in the optical potential.

(i) Propagation We propagate the wave function
|@(t)) according to the effective Schiimger equation

05

p(z.2)

40

FIG. 2. Spatial distribution folly=200Eg and y,=3wg at

d timest=0, 50Qw;*, and 100@5*. The initial condition corre-
i% a|<l>(t)> =heg| D(1)). (23 sponds to an atom confined to a single well in the optical potentials.
The arrows indicate the FWHM used for the calculation of the

. . -~ . tial diffusi tant.
This is a multicomponent Schdinger equation that does not spatial diiiusion constan

preserve the norm due to the anti-Hermitian parthgf.
Note that this coherent propagation is not affected by th
transformation(19). Introduction.

_ In order to determ|_ne the timg~ for the next quantum By averaging over many of these trajectoriesually sev-
jump we draw a uniform random numberg[oél] and  gra) hundred thousandwe recover the smooth spreading of
propagate|®(t)) until the squared normf®(t™)[* drops  he atomic density matrix as depicted in Fig. 2. Following
below this random number. _ the experimental procedure in RE8], we calculate the spa-
(iii) Quantum jump As soon as we reach the time for the 5| giffusion constant from the time derivative of the squared
next quantum jump we have to choose a decay channel fq(y| \yidth at half maximumA gy of the spatial distribu-
the spontaneous photon. In the case of the localizing quanjon More precisely, this means that we calculate the evolu-
tum jumps this amounts to choosing the polarizaioand o of the diagonal of the atomic density mat(izp(t)|z)
emission locusn\/2 according to the distribution (usually up tot=1000wxY) and plot the squared FWHM as
_= 5 —\\[12 a function of time(cf. Fig. 3. This function converges in the
p(or,m) =Clom(2)| D), 29 case of a Gaussian diffusion after a certain initial transient
whereT is some normalization constant. The wave function(that depends critically on the system parameters linear
after the jump/®(t*)) is then given by behavior and we can (_:alculate the spatial diffusion constant
from the slope of the linear asymptote:

linL lin optical molasses. The basic features of the trajecto-
fies as illustrated in Fig. 1 have already been discussed in the

o Jom(D|O(17)) 1 dA pyvam(t)?
D(thyy= —em T 25 B . FWHM
=5 B 29 D= 15 M g

(iv) Averaging.After the jump we proceed with step) and
repeat the procedure until we reach the final propagation X 10°
time t. We then use the resulting wave functiph(t)) in 2.5 -
order to improve the expectation value

B |<I><t)><<1>(t>|>>
”“)‘<< or |- 8

Finally, we repeat the whole procedure starting wijhuntil
the prediction forp(t) is sufficiently converged.

We already mentioned that every time we apply one of
the new jump operators to the atom we collapse its wave
function to the detection location of the spontaneous photon
with a width corresponding to the wavelength of the photon.
It is apparent that the repeated application of localizing jump
operators enables us to store the wave function on a fixed-
size spatial grid that we allocate dynamically to follow the
atom[19]. FIG. 3. Time dependence df-yw(t)? for a deep and a rather

We have used this approach in order to simulate the timghallow optical potential depth. Note thAtgyuu(t)? for the deep
evolution of an initially well localized atom in a 1D potential converges faster to a linear asymptote.

(27)

Arwrm(®’

U, =400 E,

0 100 200 300 400 500 600 700
t/ts
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FIG. 4. Spatial diffusion constant versus potential depth. The 2/

solid line shows the result of the semiclassical Fokker-Planck
theory of Ref.[6] (y,=1.8750wg). The filled circles and squares
were calculated using a localizing quantum jumplQMC Tethod for FiG. 5. Spatial distribution on a logarithmic scale for
a_J_g=3fJe:4tranS|t|on W|thy0_=3wR and a.]_gzg—_>Je=_§tran-_ Uo=75g and y,=1.875g at times t=0, 2500;{1' and
sition with y,=1.8750g, respectively. A semiclassical bipotential 50q,, 1 'A Gaussian fit to the final distribution is indicated by the
simulation forJy= 3—Je= 3 give results virtually identical to the y55n-dotted line.

full quantum treatment for this transition. The experimental points
(open circles were taken from Ref[6] and correspond to the

Fy=3 to Fy=4 transition of83Rb with for variousyy's. between neighboring minima as they travel from one well to

the other. Since atoms are very efficiently cooled in an opti-
The behavior of the diffusion constant as a function of thecal molasses only a few percent of the particles have large
potential depthU,, is plotted in Fig. 4 for a3— 3 transition ~ enough energies to do daf. Ref. [8]). This localization
(solid squaresand a 3-4 transition (solid circles, and effect is—by assumption—not included in the semiclassical
compared with a semiclassical Fokker-Planck theory for &P approach used in Rd6] and hence particles with arbi-
1 — 32 transition ignoring the localization of atoms in the trarily small momenta contribute to the spatial diffusion. We
optical potential well§6] (solid line). A semiclassical bipo- Wwill give a simple extension of the theory used in Rf]
tential simulation fodd,=—J,= § (which includes localiza- that is able to account for this effect in Sec.[8ee Eq(53)].

tion but is based on a semiclassi¢at expansioi give re- A decrease of the spatial diffusion constant is found as we
sults virtually identical to the full quantum treatment for go to the 3—4 transition(corresponding, for example, to the
13 Zeeman substructure GPRb used in the experiment in Ref.

For the sake of completeness we have also included ex6]). In Ref. [8] we show that this can be explained by the
perimental data for thE ;=3 toF ;=4 transition of®*Rb[6]  fact that the number of atoms whose energies are larger than
(light open circles However, we would like to caution the the barrier between adjacent adiabatic minima is five times
reader not to compare them directly with the actual resultéower for a 3—4 transition than for &— 3 transition. In
depicted in Fig. 4. This is for two reasons: firstly, the experi-addition the light shift potential for 3:4 atoms is compli-
ment was set up in a six-beam 3D configuration whose lightated by the existence of Raman coherences between differ-
shift potentials cannot be compared directly with the 1D op-ent Zeeman sublevels. In order to travel to the neighboring
tical potentials used in this sectigsee also Sec. IV in which well the atom has to adiabatically follow the avoided cross-
we discuss the effect on the potential when going to higheings in the adiabatic potentials8]. Whether it is able to
dimensions Secondly and more important, phase fluctua-proceed to the neighboring well or is reflected back depends
tions of the six laser beams lead to a temporal variation ofery much on how fast it approaches these crossings. This
the topography of the potential, producing potential hillsexplains the strong suppression of spatial diffusion for this
where potential minima might have been a certain time betransition as compared to the- 2 case.
fore. A behavior like that would strongly reduce the local- In addition, according to Fig. 4 the QMC simulations do
ization of atoms in the moving potential minima and hencenot show the divergence of the spatial diffusion constant in
aid to the spatial diffusion. It is for this reason that a semi-the FP theory at a potential depth of E35[6], even though
classical approach that neglects localizati6his appropri- all curves exhibit a pronounced increase of the diffusion con-
ate to describe the atoms. In order to visualize this we havetant asU, decreases. However, we find that we run into
plotted the experimental data in Fig. 4 as light open circlessevere convergence problems with the quantum Monte Carlo

The first apparent feature of Fig. 4 is that the predictionamethod when we loweld ; below approximately 68z. The
for the diffusion of the semiclassical Fokker-Planck treat-lowest potential depth for the QMC curves in Fig. 4 is
ment (which ignores localization and trapping of atoms in Uy=75ER and the corresponding time evolution of the spa-
the wells of the optical potentiabnd the full quantum cal- tial distribution 3— 3 transition at various time steps is
culation for the samé— 2 transition deviate substantially. given in Fig. 5.

The presence of potential hills that separate the various po- The numerical convergence problems mentioned result
tential wells necessitates that atoms must have a certainom the marked non-Gaussian wings that are clearly visible
minimum kinetic energy in order to overcome the barrierin the logarithmic plot. These wings become less pronounced
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as we propagate the density matrix to larger times, but pre-
vail for longer and longer as we lower the potential depth
towards approximately @) (cf. also Fig. 3. Slowly decay-
ing parts of the spatial distribution are a typical feature of
anomalous diffusion and are thus a strong indication that the
character of the atomic motion undergoes a characteristic
change as we reach the critical value of the potential depth.
It is the purpose of the subsequent sections to examine the
physical mechanisms that lead to this change in behavior and
to quantitatively predict its critical parameters.

c,(t) /0K

C. Momentum correlation functions

In the Introduction we mentioned that the momentum cor- 0 ' 2'0
relation function is a powerful tool to investigate the problem
of the divergence of the spatial diffusion constant for an t'YO
atom in an optical molasses, as first encountered in [Réf.
In order to prove this let us first derive a relation between the
spatial diffusion constant and the momentum correlatiortﬁ

40 60 80

FIG. 6. Stationary momentum correlation functiin units of
k)?] vs time[in units of optical pumping timdsfor y,=3wg.

function. . . . . . The solid lines correspond to the full quantum-mechanical treat-
As discussed in the Introduction, the spatial diffusion con-pent(quantum Monte Carlo methpdescribed in Appendix A. The
stant is defined by13] dashed lines correspond ta# * fit wherec was fitted ands was
D, = limD,(1), 28) calculated according to the semiclassical treatment of Sec. lIl.
t—oo
Cp(t)=1im (p(T),p(T+1))sym- (39
with Toe
d . 5 We thus find the above-mentioned relation,
2Dz(t)E&Az(t) . (29
1 ©
Interchanging the differentiation and the trace and using the DZ:WJO d7cy(t), (39
reflection symmetry of our problemwhich leads to
(2)1=(2)o=const) we can rewrite this as between the spatial diffusion constddj and the time inte-
. gral over the momentum correlation functiog(t). It is now
D,(t)=(2(t),z(t))sym> (300 obvious that a divergence of the spatial diffusion constant is

o _ related to a divergence of the time integral of the momentum
where we have used the definition for the symmetrized tWoggrrelation function. This means that if a certain threshold
time expectation value exists at which the spatial diffusion behavior switches from

Gaussian to anomalous diffusion, then the long time behav-
(A(1),B(7)sym= H(AMB(7) +(B(DAM)].  (3D) ¥

ior of the momentum correlation function must switch from
. . _l .

The time derivative of the position operator is easy to evalulniégrable(decaying faster than ") to nonintegrable(de-

ate since we are working in a dipole approximation and“®

ying slower thar~1).
therefore the momentum operator only enters the Hamil- N the following we will restrict ourselves to 53 tran-
tonian through the kinetic termp?/2M. We find

sition. A generalization to more complicated transitions is
straightforward. The results of QMC simulations are shown

2(t)=p(t)/M and therefore in Fig. 6. It is worth mentioning here that in order to calcu-
late these correlation functions we had to use a momentum
. 1t . , - - :
2(t)=2(0)+ _j dr p(7). (32  9grid that is considerably larger than the one we used in order
M Jo to calculate the steady-state momentum distribution in the

molasseg7]. For this kind of simulation a momentum grid
Inserting this into(29) we find covering the rangg— 64% k, 644 k] gives excellent results. In
1 1 order to produce Fig. 6 we had to use a grid twice as large.
— =5 A A A As will be shown below this is necessary due to the fact that
D)= 57 (2(0).P(t))symt WJodT<p(7)'p(t)>sym' 33 the slowly decaying tails of the momentum correlation func-
tion are made by high-momentum patrticles.
The first term on the right-hand side is the correlation of the The solid lines in Fig. 6 correspond to the momentum
momentum with the initial position and is thus a function correlation function as calculated with the rigorous quantum-
that decays to zero for large times. The second term incomechanical method described in Appendix A. We chose two
porates the correlation of the atomic momentum at time different potential depths, which are both below the thresh-
with the momentum at earlier timesand thus converges for old for Gaussian diffusion as predicted in Rgf]. However,
larget to the stationary momentum correlation function as the analysis in the forthcoming section will show we
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rather have to expect this divergence to occur at a somewh#te critical exponenj, and to calculate the asymptotic be-
lower Uy, namely, 61.Eg. Therefore the two potential havior of the distribution of flight distances for very long
depths correspond to above B9 and below (5&g) the flights.

Gaussian diffusion threshold. The oscillating behavior of the

momentum correlation function for small times is due to Ill. SEMICLASSICAL TREATMENT USING

oscillations of the atom in the light shift potential. Due to the FOKKER-PLANCK EQUATIONS

randomness of the momentum kick imposed on the atom by

spontaneously emitted photons the momentum decorrelates As mentioned in Sec. !I C the charactepsﬂcs of the d|ffg-
and the correlation function decreases to zero. sion are shaped by particles that are flying over large dis-

Two observations can be made from Fia. 6. Firstl thetances and that therefore have an energy well above the bar-
9. ©. y: rier between neighboring potential wells. These particles can

correlation function for the shallow potential is larger thanb ; - ;
e well described using Fokker-Planck equati¢@1,
the one for the deeper potential, indicating that the diffusior’tSee also Sec. IV g quatiga1,3

constani(in case it existgis at least larger. This confirms the
trend for small potential depths that we have seen in Fig. 4.
Secondly, & ™ # fit to the plots indicates that the correlation
function for U,=85E decays approximately as?, being In this section we will model the atoms in the molasses by
integrable, whereas the correlation function fog=50E,  the standarq Kramers equation to describe 1D laser gooling
decays approximately as ®5 being nonintegrable. How- Of atoms with a._ngé_—de:_% Zeeman substructure in a
ever, the results of Fig. 6 are numerical in nature and it idin- lin laser configuration(Sisyphus coolingunder the as-
difficult to establish whether the correlation functions al- SUMPtion of negligible spatial modulati¢a4,2]]
ready reveal their asymptotic long-time behavior, which we D
assumed as our justification forta* fit. The correlation o+ azM)W(z,p,t)zap{[—F(p)+D(p)ap]W(z,p,t)},
functions might still be decaying, for example, exponentially (36)
for timesty,>80 in which case they would both be inte-
grable. with the force

In summary, we find that the increase of the spatial diffu-
sion constant when going to smaller potential depths can be ap
seen in the momentum correlation function as slowly decay- FP) =372 37
A . : ; : 1+(p/pe)
ing tails. We also find numerical evidence that there exists a
certain valueU§" below whichc,(t) decreases so slowly and the momentum diffusion coefficient
that the spatial diffusion constant diverges, indicating the
onset of an anomalous diffusion behavior. 2

A direct consequence of long momentum correlations is D(p)=D.+ W (38)
that the atom retains its momentum state for a rather long ¢
time. This in return corresponds to a motion over a largeThe choice for the coefficients, D;, andD, varies in the
distance. A look at the trajectory in Fig. 1 immediately con-literature. We use the following set that differs from the one
firms this: the distance that the atom travésid therefore used in Ref[6] (which is actually the reason why our pre-
the spatial diffusioh is dominated by these long flights diction for the diffusion threshold differs from the one found
whereas those parts of the trajectory where the atom ithere:
trapped in the potential wells do not contribute significantly.
Mathematically this means that the position of the atom after Pe 2 v 2hlsg

A. Kramers equations for the atomic motion above barrier

finishing its nth flight is a random variable that is equal to Ak 9 w_R_ 9 4ER’ (39
the sum of independef@nd identical random variables cor-

responding to the flight distance of thé¢th flights a U |A|

(j=1, ... n). Whether the resulting distribution of this ran- on :371_70 =67 (40)
dom variablg(i.e., the shape of the atomic cloud the limit

t—o is Qayss?an or f0||OYVS a'_lw law depends critically D, 82y, 41Ts,

on the distribution of the flight distances and flight times. To —_—— == (41)
be more specific, it depends on the asymptotic behavior of (hk)*wr 45 wg 90 wg

these distribution functiong10] for large distances and )

times, respectively. D, Uo _#iAlso [A] 42

During the flight period the energy of the atom is well (k) ’wg hyoER Er T
above the maxima of the optical potentials so that it sees
these potentials only in an averaged way. This allows us t@his choice of parameters nicely reproduces the momentum
use a very simple semiclassical picture in order to study thelistribution that we find from the quantum Monte Carlo
characteristics of these flights. In the following section wesimulations. Especially the behavior of the wings of this dis-
will use this simple approach in order to justify the afore-tribution is predicted very accurately.
mentioned asymptotic behavior of the momentum correlation From a mathematical point of view it is advantageous to
function[i.e., c,(t) ~ct™* ast—=], to derive a relation for generalize the Kramers equati¢86) to
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O+ B)W(z t)=a{[ — F(p)+D1d,]W(z,p,t)} C, ()~ P2~ 3W(p,) m2n=3) t~
t ZM 1p! p p 19%p vpi ’ p pa S pa aﬂ4u+lM(M+1)r(M+2) ’

(43 (50)

where the momentum diffusion coefficidDy is independent where the critical exponent is given by
of p and the forcd-(p) is antisymmetric and has the asymp-
totic behavior a 3

h=32D, "2 (5D

1
F(p)——alp for p— oo, (44)

In order to get rid of the artificially introduced approximation
(49) we perform the limitp,—c and thus recover the origi-
nal problem(46). It is easy to check usin@7) and(44) that
the first two factors go to a constant in this limit. We there-
fore find that the asymptotic behavior of the momentum cor-
relation function for(46) is proportional tot™* with a pro-
portionality constant that depends on the detailed form of the
force F(p). In contrast to thaty depends only on the ratio

but is otherwise not explicitly specified. We would like to
note that Eq(36) is indeed covered by E¢43) even though
we assume aonstantmomentum diffusion coefficierid, in

Eq. (43), whereasD(p) is explicity momentum dependent
in Eq. (36). This is due to the fact that one can eliminate the
p dependence of the momentum diffusion coeffici€s)
according to Ref[13] without changing the asymptotic be-

havior of F(p). :
The reason for the generalizatiofB) is that—as will turn gég)l and therefore only on the large momentum behavior of

out later—only atoms with very large momenta are respon- It is now easy to see that Gaussian spatial diffusion is

S'b.le for th? asymptotic expansion of the momentum COM®6und whenevep>1 and that the spatial diffusion constant
lation function for large times.

. . : . diverges(anomalous diffusionif u<1. Using the expres-
(42';'.he explicit form of the coefficient is derived from Eq. sions(45) we can write

5 U, 3

a 4 U 1 sih|A|T -> Z0_ =
_ 4 Yoro_ 1 sofla (45) K= 123E, 2

(ﬁk)sz B 2_7 ERwR B a ERwR '

(52

and find the threshold for Gaussian diffusion at
B. Momentum correlation function U§"=61.ER, as already mentioned in the previous section.

In this subsection we are interested in the long-time bell\lc’te th‘z‘t this number is only valid for an atom withlg=
havior of the momentum correlation function of the particlesz—Je=32 Z€emann substructure in a 1D lifin laser con-
described by43). It is convenient to eliminate the depen-  figuration. S .
dence by integrating over spa¢assuming that the spatial Ve are now able to revisit Fig. 6 in order to check how

distribution drops off sufficiently fast as—). We thereby ~the prediction for the long-time behavior of the momentum
get the one-dimensional Fokker-Planck equation correlation function derived in this section compares with the

full quantum-mechanical treatment of Sec. Il C. We have
IW(p,t)=d,[ —F(p)W(p,t) ]+ Dlaf)W(p,t), (46) now not only a justification for & # fit to the graphs in Fig.
6, but we are also able to relgteto the potential depth. For

which has the stationary solution the parameters given in this figure we find that 0.533 for
5 the shallow potential angd = 1.96 for the deep one. We have
W(p)=Ne [0deF (/D (47) fitted the proportionality constaftvhich we cannot calculate
with a semiclassical treatmerdnd the resulting graphs are
whereN is some normalization constant. shown as dashed lines in Fig. 6. The good agreement indi-
The stationary momentum correlation function {d6) is  cates that the diffusion threshold exists in the full quantum-
given by[13] mechanical system and is not only an artifact of a semiclas-
sical treatment.
cp(t)=f dp pwp,t). (48 )

C. Distribution of flight distance and Levy walks
wherew(p,t) obeys the Fokker-Planck equatidf6) with Up to now we have shown that there exists a critical po-
initial conditionw(p,0)=pW(p). tential depth below which the spatial diffusion constant di-

In order to calculate the asymptotic expansioregfft) as  verges, indicating that the diffusive behavior of our system
t—o we first approximate the forcé(p) by shows a transition from Gaussian to anomalous. We already
mentioned in the Introduction that this transition is caused by
F(p), |pl<pa a substantial change of the character of the microscopic mo-

Fa(p)=1 _ alp, |p|>pa (49 tion of the atoms in the molasses. The characterization of this

motion will be the main concern of the rest of this section.
where p, is chosen sufficiently large in order to make the We found so far that the decision between Gaussian and
error small[which is always possible due {d4)]. As will be  anomalous diffusion is made by atoms that wander high up
shown in Appendix B such a force leads to a momentunin momentum space, thereby flying over a large distance. It
correlation function having the asymptotic expansion seems therefore worthwhile to study the distribution of this



3418 S. MARKSTEINER, K. ELLI

—— ——
[0)] .
g trapped | free
o atoms
w
3
£
Q 8]
2 T -op
w :
1 1 1 L 1 ] 1
momentum |
c "-J;':
S g
= (x.p)
4]
Q
Pd_ |
\:3 L~
momentum

FIG. 7. Schematic plot illustrating the distribution of flight dis-
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Z—124. This definition of the distribution of flight distances is
a very appealing one, but leads to a DirAdistribution
aroundz=z, meaning thafny particle immediately crosses
po again[22]. In order to get nontrivial results we have to
lower the threshold for the second crossing by a small but
finite value. This is depicted in the lower part of Fig. 7.

As will be shown in Appendix C the distribution of flight
distances(or—as it is mathematically called—the distribu-
tion of first exit point$ for our problem has the asymptotic
expansion

1 (3v+1)" pg'—p*
Tre(Z,p,Zo,pO)~@ F(V) (Z_ZO)V+1

(59

with a critical parametew that is related to the potential
depth via

a

1 10U, 1

~3D, 3 369Ex ' 3’ (56)

14

tances. The upper plot shows the momentum dependence of the

cooling force. The lower plot shows some stochastic trajectories in

phase space. Atoms are supposed to be trafgetitherefore inert

as soon as their momentum falls below a certain threstiofii-
cated by the dashed linbut are allowed to wander in space if their
momentum is above threshold. Note that the starting point of al

trajectories has a slightly larger momentum than the trapping mo

mentum in order to produce nontrivial first-exit-point distributions.

flight distance under the following assumptiori$) Atoms
with a momentum below a certain threshalg are trapped
in the optical potential wells and do not wander arout.
Atoms that(in the course of their random wallcross this
threshold from below start to wander around in both momen

tum and position space, until they cross the threshold agai

(this time from abovewhich results in their capture. During
this phase of their random walk the atoms see only the a
ymptotic part of the force, i.eF(p)=~ — a/p. This situation
is sketched in the upper part of Fig. 7.

This model is a generalization of the Kramers equatio
(43) that can be accounted for by replacing

p
O Wz pt) | = afo(PW(zZp D] (53
with the velocity function
0, [pl<po
= 54
v(P) {p/M, [pl>po 59

We thus find that the distribution of flight distances pos-
sess both first and second moments #0f2 whereas the
second moment ceases to exist below2. This threshold
Foincides with the threshold for Gaussian diffusion predicted
In Sec. lll B and one is tempted to assign the onset of
anomalous diffusion to the existence ofvyeflights in the
atomic trajectories. Indeed, the trajectories show the self-
similarity mentioned in the Introduction, i.e., the domination
by single, rare events that is typical for \eflights. How-
ever, since the system studied here is intrinsically a dynami-
cal one we also have to consider the time it takes the atom to
finish this long flight. We have calculated the parameter
range in which the first and second moment of the distribu-
tion of the flight times existsee Appendix [Dand the result

ds shown in Fig. 8.

We find that above the Gaussian diffusion threshold
w=1 (which for the case of d;=3—J.=3 atom in a 1D

AinLlin laser configuration is at)S"=61.5R) both the dis-

tribution of flight distances and of flight durations possess
finite expectation values and variances for th@sat inde-
pendenkt random variables, leading to a Gaussian type of
diffusion. Below this threshold we find a regime <€Qu
<1) for which the distribution of flight times still possess
finite first and second moments, but the distribution of flight
distances has an infinite variance. The anomalous diffusion
in this regime is indeed caused byJewalks that take a
finite time (i.e., last on a certain time scal@ hese flights are
thus very close to what is mathematically defined asylLe

where the cutoff for spatial motion occurs whenever the ki-flights.

netic energy is less than the maximum of the potential, i.e.

p3/2M =4Uy/3. We have used this generalization of the

, Below this we find a regime (& v<3) in which also the
variance of the flight times ceases to exist. We thus encoun-

Kramers equation to calculate spatial diffusion constant folter the situation in which the atoms showMyewalks that are

lowing the procedure given in Rdi6] and found a suppres-

in some sense longer than the ones mentioned béiiora

sion of the diffusion by a factor of 2—3 as compared to thefractal sense they are closer to a one-dimensional trajectory

original Kramers equatiof43).

[11]), but that at the same time last for arbitrarily long times.

However, in the rest of this section we are only interestedrhis situation corresponds to aweflight in both space and
in the distribution of the flight distances and therefore in thetime. Interestingly, this regime coincides with the one where

motion of the atoms above the threshplgl This amounts to

no expectation value for the kinetic energy of the atoms ex-

calculating the probability of an atom that crosses the threshists.

old py at a certain positior, to exist through the, line for
the first time at pointz, the distance of the flight being

Below this regime the expectation value for the flight dis-
tance diverges and eventually also the first moment of the
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—3/2<u<l a>1 10
Momentum correlation function Momentum correlation
not integrable function integrable
Anomalous diffusion Gaussian diffusion
No 1
1/3<v<1 l<v<?2 v>2 o
No expectation value No value for variance First and second moment ~
of flight distance of flight distance of flight distance exist :_,\
o
S
v <2/ 23 <v<4/3 v 4/3 0.1
N;’af:ficf"' No value for variance First and second moment
flight time of flight times of flight time exist
. 0.01
a
o< =<1 @ 1< =<3
o<t 1<p<z|' D 253 1 10 100 10° 10*
No No No kinetic
stationary . energy First and second moment of stationary
expectation
momentum | o or [p] | exPect. momentum distribution exist R
distribution value
1 1 I
0 1 2 3 4 5 [ ; ; ;
FIG. 9. Numerical calculation of the momentum correlation
o . . . .
) function without(1) and with(2) Doppler correction Eq(57). The

dash-dotted line gives the asymptotic behavior as calculated in Sec.
Il B. ParametersU,="50Eg, yo=10wg, ap=10 "wg’.
FIG. 8. A map of the various regimes of nonexistence of the first
and second moments of several distribution functions discussed ifyre effectively cuts off the momentum correlation function.
the text as a function of the parametelD, . The uppermost block | grder to demonstrate this we have numerically calculated

corresponds to the moments of the momentum correlation functionﬂ,]e momentum correlation function of E¢36) with the
(Sec. Il B). The two block below that corresponds to the distribu- modified force

tion of flight distance and flight times, respectively. The last block
(set apart frqm _the_othersglves the moments of the stationary FPoPPe p) =F(p) — app, (57)
momentum distribution. The shaded region corresponds to the re-

gime where no variance of the flight distance exists, but the distri;

where the first-order expansion of the Doppler Force is given
bution of flight times possesses both first and second moments. by P bp 9

flight time ceases to exist leading to a nonexistence of a 128 hyg

stationary momentum distributiaithe molasses is heating ApOR="g" T2 (58
0

D. Influence of Doppler forces: Truncation of the Levy walks The result is shown in a double-logarithmic plot in Fig. 9.

In the last subsection we would like to discuss whetherThe upper solid curve corresponds to neglecting Doppler
the Levy walks found above can be observed experimentallyforces. After a short transient on the order of approximately
As mentioned before the experiment of Ré] is not really 10t the momentum correlation function reaches its asymp-
suited for reasons already stated. However, one could thintotic behaviorct™#, which is indicated by the dashed-dotted
of an experimental setup very similar to the one used thereifine. The lower curve corresponds to the correlation function
that tries to resolve the non-Gaussian wirfgs., the Ley  with the first-order Doppler correction included. The initial
distribution of the spatial distribution. This approach has totransient is more or less identical, however, the correlation
face several experimental challenges: firstly, the relativdunction follows thect™* only for a certain timgwhich is
phase of the various laser beams needs to be stabilized vefgr the parameters used in Fig. 9 approximatelytkDOFor
precisely in order to produce a time-independent optical polarger times the correlation functions drop considerably
tential. Secondly and more important, the experiment musfaster. This results in the effect that the initially noninte-
be set in a detuning regime in which Doppler forces can bayrable correlation functions are now rendered integrable. We
neglected on the time scale of the experiment. This is due toecover a Gaussian type of diffusion where the originalyLe
the following effect. In the previous discussion we have aswalks (which in the idealized semiclassical model caused the
sumed a cooling force that decays @is' with increasing anomalous diffusionare effectively truncated as soon as
momentum. The occurrence of \ne walks results exactly they try to fly beyond a certain critical distanf23]. The
from this behavior. But in a realistic situation a force with point at which this cutoff is effective and thus the time scale
this behavior exists only in a momentum regime, where then which the diffusion is anomalous depends very much on
atoms have a negligible Doppler shift. This is an importantthe detuning that one is using in the experiment, larger de-
assumption made during the adiabatic elimination of the extunings leading to a later truncation of the correlation func-
cited state, which was used throughout this paper. Howevetion and therefore to a larger spatial diffusion constant. But
since the long-time behavior of the momentum correlatioron the other hand it could be exactly this kind of effect that
function is made by faster and faster particles they will atmight lead to an indirect experiment that is able to detect the
some stage violate this assumption and they will start td-évy flights.
experience the strong Doppler force. This force prevents Another experiment that one can think of is ttiedirect)
them from climbing higher in momentum space and theredetection of the Ley flights due to their influence on the



3420 S. MARKSTEINER, K. ELLINGER, AND P. ZOLLER 53

narrow central feature in the weak probe absorption spectrurarden, we get a bipotential equation for the two components
due to recoil-induced resonandexl|. of the Wigner operatofthe ground-state coherences vahish

IV. TWO-DIMENSIONAL OPTICAL LATTICES

In this section we will present a semiclassical examination 9 + Ly Vx} fo(x,p,t)=(* |t,%'<°>ng(x,p,t)| +)
of two two-dimensional laser configurations in order to study t M
whether the Ley walks that we found in the one- + (=] ZDW(x,p,0)] )
dimensional case also show up in higher-dimensional molas- T e R
ses. As we will show this behavior does indeed exist but +(=+ 2%2>ng(x,p,t)|t>,

there are also some new features depending on the laser

fields used to set up the optical molasses These new effects

compete with the ey walks and can in certain caséss,

e.g., in the second case studied belmverpower them and . i ,

lead to a completely new type of long-time behavior. with f.(x,p,t) denoting the diagonal components of the
These new effects come from a property that is commorYV!9ner operator

to all higher-dimensional molasses: The laser field has no

rotational symmetry and therefore the light force which the

atom experiences depends crucially on the direction in which f (X, 1) = (= Wgg(X,p,0)[ ). (65)

the atom propagates. This can lead to a very different behav-

ior for particles that propagate into a certain direction as

compared to atoms that propagate into a slightly differenffhe explicit form for the right-hand side of E¢64) for

direction. This anisotropy of the atomic motion along certainelectric fields of the form Eq62) can be found in Appendix

channels can for some geometries establish an important lo& For semiclassical center-of-mass motion Efl) can be

mechanism for optical molasses in higher dimensions. turned into a Fokker-Planck equation for the Wigner func-
The master equation we consider for two-dimensional Sition W(x,p,t) by adiabatic elimination of the internal de-

syphus cooling can be written in the forfexcited states grees of freedon2].

have been adiabatically eliminajed

(64)

) i Yo . _
o= %(heﬁpgg_ pgghgﬁ)+ z 5 dQ, N, (n) A. Two crossed linear polarized laser beams
o0’ =0+ The first laser configuration we consider consists of two
X[B (;()e—ikn-i]p [BT,()A()eikn-i] (59 cross linear polarized lasers propagating in xhandy di-
7 99" rections, respectively with a phase differenge This con-
with effective Hamiltonian figuration was used in the 2D experiments of Ré&b|. The
R positive frequency part of the electric field is given by
P2  #s ry . . .
hei= pr + 70 A—i 5) AR (X) (60) EC)(x)=2¢ [cogkx)e,+ €' Pcogky)e].  (66)
and angular distributions for the spontaneously emitted pho- ) o ] ) ] )
tons The atomic motion is defined with respect to the optical bi-
potential
No’o”(n)zg(‘sao”_nj—na’) (61)
with ny=cog6) and n. =5(1/y/2)sin(he™'*. We consider 8U,
electric fields with a positive frequency part of the form U.(xy)=— T[co§(kx)+ cos(ky)
El,'=“[S(x)e; +C(x)e_]. (62 + sin( ¢)cog kx)cog ky)]. 67)

This guarantees that no ground-state coherences are build up

in a ;—3 optical transition. These configurations are thusag discussed in Ref16] the spatial pattern of the light po-
assumed to consist of laser fields with polarizations concengyization is analogous to the one-dimensional lin molas-
trated in a plane perpendicular to some given direc8pn  ses discussed in the previous sections if one chooses a phase
We entirely restrict our discussion onza- 3 optical transi-  ghjft of $=90°. In this case there exists a 2D array of
tion in the following. The optical potentia) (x) can be writ-  strajght lines parallel to the axis where the light exhibits

ten in the form circular polarization with alternating sign and continuously
_ 1 RV 2 2 changes to linear polarization when one moves away from
V() == 3Uod[+){+ [+ =)= [HISHF+[COI] these locations. We will therefore restrict the following

—2Uo{|+ W H[ISX) [P+ =W —[C(x)|?. (63 analysis to this case. Th_e above-barrier motion is fully deter-
mined by the semiclassical theofywe have again neglected
After transforming the master equation into the Wigner pic-the Doppler cooling mechanism in the adiabatic elimination
ture, and subsequent expansion in orderslofup to second of the excited statgs
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g p d d An expansion in powers of d/reveals the leading behav-
(E+a~&)W(x,p,t)——%[F(p)W(x,p,t)] ior
32yU + -
g2 __94Yo%0 ] & ey+ex €
"’_2 ?[DiiW(X,p,t)]. (V) 27 |vxtvy vx—vy €9
i=xy JPi

(68) if the atomic velocity isnot in the vicinity of the channels
vy=vy andv,= —v,. This expansion of the force for atoms

In the one-dimensional case we have observed that the chawith large atomic velocities shows an anisotropy with a di-
acter of the above-barrier motion, which dominates the spavergence as one goes towards the chanwglsv, and
tial diffusion of an initially localized wave packet, is entirely v,=—v,, which are—in contrast to the next case—not
determined by the large-momentum behavior of the semialigned with the incident laser beams but lay symmetrically
classical cooling force. It is therefore natural to calculate an between thenfcf. Fig. 10. In the vicinity of the channel
similar expansion of the force in two dimensions, keeping ink|v,—v,|< v, the semiclassical force can be expanded for

mind anisotropic effects. N EXZY
|
32y0Uo [ &~ g k¥ (vx—v,)? ete 128y5/81
F(V)~-— — 7 v 1- 2 2 o2 |[ (70
Ux— Uy 256yp/81+ K (vy—vy)°  vxtuy 256y5/81+k“(vx—vy)
|

which clearly shows that the force in the chanfehose 97y,(fk)? 91yo(hik)?
width is proportional toyy/k) is always cooling, i.e., is Dw=—%90 " DPw=—9g9 (72)

pointing towards the origijv|=0. But it decreases at the
same time with the inverse velocity along the channel We

therefore encounter the following behavior for atoms aboveyhich together with(71) allows us to calculate the critical

barrier in this configuration: High velocity atoms are C°0|edpotential depth in complete analogy to the 1D case. We find
and at the same time attracted towards the four channels.

Once they reach these channels they feel a perpendicular
force co_mponenffirst _term in (70)] that depends only on 28 1 10\/5 U, 1

vy—vy, i.e., on the distance to the channel. In contrast to v= W+ 3= TE—'F 3 (73
that the force parallel to the chann@econd line in(70)] xx ' =yy R

depends on the norm of the velocity, i.e., on the distance
along the channel. The atoms are thus strongly confined to a
guasi-one-dimensional subspace along which they feel the
force

8\2yUo&tey _ ectey

T A " R

(71)

This situation is completely analogous to the one-
dimensional case as discussed in the previous sections. The
force along the four channels allowdue to its 1| depen-
dence the existence of Ly walks for sufficiently shallow
optical potentials. Note that these walks lead due to the con-
finement of the velocity to the channels to almost straight
trajectories of the atom in position space.

In Fig. 11 we present the numerical result for the station-
ary momentum distribution. The four channels are clearly
visible. Note that the width of the channels is independent of
distance fronjv| =0 and that the distribution decreases along
these channels.

The numerical results were obtained by Monte Carlo
simulation of the semiclassical bipotential motisee Ref.
[17].

In order to study the threshold for Gaussian diffusion we F|G. 10. Vector plot of the semiclassical force in the four-beam
utilize the results derived in Sec. Ill. The diffusion matrix for configuration according to the expansi¢6). The magnified el-
high velocities can be approximated by a diagonal matrixXipses depict the force close to the chann@@). The gray arrows
with constant coefficients indicate the directions of the incident laser beams.
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0
-50

P,/hk -100 - . . e .

y -150 200 The nondiagonal terms in the diffusion matrix do not enter

the equation for the above-barrier motion and the diagonal

FIG. 11. Stationary momentum distribution in the four-beam glements are dominated by the velocity-independent coeffi-
optical molasses for the parameterd),=40/Er and jents

YYo= 16/\?11)R .

) 147 )
Dy=gg 1AK% Dyy=yo(ik%  (77)

from which we deduce that g flights exist for potential

depths belowd{™=16.6ZE. Note that for potential depths ) ] ] )
below U,=<3.3%x the distribution of the momentum along In analogy to the previous configuration we expand the semi-

the channels is not normalizable and therefore these channeqlé"lss"cal cooling force in powers oful/

play a role very similar to the escape channels of the three-
VEY . . : : ) 2Ugye| 1 [V3 1 1
beam configuration, which we discuss in the following sub F(v)~— —+|—>e—>g| =——
section. 9 2v, | 2 2 \/§Ux_vy
V3 1 1
B. Three-beam configuration - 7ex+ Eey \/§Ux+vy ' (79

As in the 2D experiments of Refl5], the laser field ) i .
studied now is composed of three traveling plane waves ofhich can be written in the form
equal strength, with coplanar wave vectors, rotated by 120° o
with respect to each other, and linear polarizations in the F(v) W) (79
common plane. This setup has the advantage that relati§; jefining a potential
phases are irrelevariéven though a fluctuating phase leads

to a spatial motion of the optical potential as mentioned be- Uovo ,
fore). The positive frequency part of the electric field is V(UXaUy):Tln(|vy||3vx_vy|)- (80)
given by

A vector plot of this force is shown in the main plot of Fig.

EC)(x)=E, (_‘,yeier+ Eex— Eey)eikzx 12. T_h_is expansion qf the force for atoms with Iarg_e atomic
2 2 velocities shows again an anisotropy, but now the divergence
\/§ 1 occurs along the three lines 'ghat coincide with the.three di-
+ -t —ey) eikax| (74) rections of the laser beams—in contrast to the previous case.
2 2 This indicates that the approximation used to der(vé)

breaks down along these channels and hence we have left
these regions blank in the plot.
with wave vectors A striking feature of the vector field depicted in Fig. 12 is
that the momentum of an atom with large energy is drawn
towards the center due to a Sisyphus cooling mechanism, but
k \/§k is rotated at the same time towards six chanreés, the
ki=ke,, ke=—5&~ 58, star-shaped blank region in the main plot of Fig).1Phe
atom is therefore not cooled all the way down to small mo-
menta but it rather attracted to the nearest channel. Accord-
ing to approximatior{78) the component of the force parallel

k V3k to the six channels vanishes and therefore the atom does not

kKs3=— 56+ —5—¢. (75 . ;

2 2 feel a cooling force once it reaches the channel. However,
the force perpendicular to the channels diverges and there-
fore we have to use a different expansion in order to study

For small saturatiorsp,<<1 we can again derive a Fokker- the behavior of the force close to these channels.
Planck equation for the above-barrier motion, which is now In order to clarify this point we again expand the cooling
defined with respect to the optical bipotential force in the vicinity of the channels. Let us consider the
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nels of the three-beam configuratjaimat compete with the
Lévy flights. We have demonstrated that these effects can be
studied via very simple semiclassical methods. The method-
ology presented in this paper has therefore applications to a
larger class of problems than only the spatial diffusion.

V. CONCLUSION

We have studied the spatial motion @foninteracting
atoms in a one-dimensional optical lattice provided by two
counterpropagating cross-linearly polarized laser beams. The
first step in this study was performed with @b initio
guantum-mechanical treatment. We used a wave-function
Monte Carlo technique with localizing quantum jumps in
order to calculate the dependence of the spatial diffusion
constant on system parameters and found that the quantum
treatment predicts diffusion constants that are considerably

FIG. 12. Vector plot of the semiclassical force in the three-beandOwer than the ones obtained from semiclassical metf@ds
configuration according to the expansiér8). The magnified el- We also used the standard Monte Carlo technique in order to
lipses depict the force close to the chanr@$). The gray arrows calculate momentum correlation functions of the master
indicate the directions of the incident laser beams. equation. We found that the momentum correlation function

develops slowly decaying tails as the depth of the potential
regime in velocity space that is characterizedkl1)yy|<y0 wells of the optical molasses is decreased. This indicates that
andk|v|>y,. Along the direction of the laser beaky we there exist a certain threshold at which the spatial diffusion
observe a position-dependent alignmére., a difference in  switches from Gaussian to anomalous behavior. In a second
the populations of the two ground statéisat gives rise to a  part we have studied this transition by using a simple semi-

net force along the channk|: classical approach.
Our analysis showed that the microscopic motion of the
51 atom in the molasses is characterized by two very different
F(V)~e,yoK ) “states.” Firstly, the atom can be trapped in the potential
613+ 1458 \3kv, /27,)? wells and is then inert. Secondly, the energy of the atom can
AUk be above the potential barrier in which case the atom is able
0

3

(27)2\/§kvy/270 (81) to move over many wavelengths. Transitions between these
613+1458 \/§kvy/27,0)2 ' two states are stochastically induced by the cooling force
(slowing of fast atomsand its fluctuationgheating due to

The behavior of this force is magnified in the ellipses in Fig.randqmn.ess of spontaneous emission and fluctuations of the
12. Atoms with large negative, components feel a light atomic dipole moment
pressure force pointing to the right resulting in a total force 1he character of the diffusion depends strongly on the
that pushes the atomic momentum towdsdis: 0 depicted in dlstrlbutlon_of the flight distances and their variance as well
the left magnified ellipses. They are therefore cooled dowrfS On the time it takes to complete them. We found that for
to small atomic velocities, whereas atoms with positiye potential depths abovg a critical va!ue these dlstrlbutlohs
components are collected into the escape chanpreD and havg both an expeqtatmn and a variance ar}d the resulting
then accelerated to very high atomic velocitigght ellipsis ~motion of the atoms is thus a Gaussian diffusion. For poten-
in Fig. 12. These atoms rapidly escape from the molassedial depths bel_ow_ the_ critical _value_we found that the vari-
Hence the namescapechannels[25]. It is clear that no &nce of the_ dl_str|l_3ut|0n (_)f fllght dlst_ances ceases to e_X|st
stationary momentum distribution existsnless we include (while the distribution of fllght times still possesses both first
Doppler effectsand therefore no stationary spatial diffusion @d second momenisleading to the onset of anomalous
behavior is reached in contrast to the channels of the prev@iffusion. This is related to the existence of so-calledy e
ously considered crossed-beam configuration. walks_ in the_a_ltomlc traj_ectones. We pr?dlcted 3the at_)ove-

Figure 13 shows the numerical result for the quasistation™entioned critical potential depth fory= 3—J.=3 transi-
ary momentum distributiofiatoms that leave the simulation fion in-a 1D linLlin laser configuration to be
grid are fed back gt/ =0) in the three-beam molasses. Note Ug' = 61.5Er. We have also studied a two-dimensional la-
the existence of three escape channels pointing into the dfer configuration and have found that this system also shows
rections of the incident laser beams as predicted by the semfi€vy walks, but the threshold for Gaussian diffusion is con-
classical investigation above. For a related discussion of théiderably lower, namely, ay§"=16.6Fg.
anisotropy aspects in this laser configuration we refer to Ref.
[25].

The two different models show that \g-flight behavior
is not limited to one-dimensional setups. However, due to the We thank H. J. Kimble and P. Marte for stimulating dis-
inherent anisotropy of the two- or higher-dimensional setup a&ussions. This work was supported by the Austrian Science
variety of other effects exigsuch as, e.g., the escape chan-Foundation under Grant No. S06507-PHY.
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where |®(t)) is the stochastic system wave function that
gives—via stochastic averaging—the solution of the master
equation(1l), i.e.,

p(H)=(| PO NP/ (1)]). (A7)

100 A solution of (A5) can now be calculated by propagating
|d(t)) and |W(t)) according to(A6) between quantum

0. “ o ou/hk jumps who are dictated by the system wave function

100 Px |®(t)). Both wave functions experience the same quantum
50 0 i jump, but the renormalization after this jump is given by the

pyhk -850 . o57-100 system wave function, i.e., after determining the quantum
jump time and the decay channel in the usual Wb§] we
FIG. 13. Quasistationary momentum distribution calculated Viareplace|<b(t)) by

Monte Carlo simulation of the 2D bipotential Fokker-Planck equa-

tion. Particles that left the grid through the escape channels were |CI)(t+)>=e*i“iB(,(z)|CID(t*))/||e*i”iBg(2)|<D(t*))||

fed back at|p|=0. The parameters ardJ,=200/Fg and (A

vo=15/2wg .

and|W¥(t)) by
APPENDIX A: QMC SIMULATION OF THE MOMENTUM o o
CORRELATION FUNCTION | (t))y=e "B (2)|P(t7))/|e B (2)|P(t7))].
(A9)

In this appendix we will show how the momentum corre-
lation function can be calculated within a quantum MonteAn ensemble average over all possilite in practice suffi-

Carlo wave function approach. ciently many trajectories gives
To do this we follow the procedure given in RET.] and
define the functional p1(O)=((|POW P (O)|+]| T (L) D))/ D(1)]).
(A10)

t
Sf(t)Ef dr f(D[(p(7)p(1))+(p(t)p(7))]. (A1) A convenient choice for the functiorf in (Al) is
0 f(t)=A(t—ty) since we are directly interested in the mo-
mentum correlation functiofcf. (A1)]. In this case the wave
functions|®(t)) and|W¥(t)) are decoupled for times#t,
and the effect of (t) is to perturb the parasitic wavefunction
(PP =trpe” [ p(1)p] for 7<t, !\If(t)} at timet, by applying the momentum operatprto
it. This choice off (t) has therefore the convenient property
(POP(M)=trpe” = [pp(r)] for 7<t, (A2) that we can use the same propagation algorithm for both
wave functions. Prior ta, these wave functions are identi-

where ¥ is the master operator apdqt) the density operator ¢al, atto the parasite is perturbed, and aftgrthe two wave

The momentum correlation function follows from the quan-
tum regression theorem:

according to(11). We can now rewritdAl) as functions evolve independently.
Finally, the momentum correlation function can now be
Si(t) =trsppa(t) (A3)  simulated via
with . (P(O[PIPD))+(P(V)[P[W(H))
Cp(t;to):trsppl(t):<< D[ .

11)

We remark that even though it is possible to use the same
s approach as in Sec. Il B, i.e., the method of localizing quan-
tum jumps, in order to explicitly calculate the trajectories

t
pa(t)= fodf f(ne” " [p(np+pp(n].  (A4)

The two operatorp(t) andp4(t) obey the coupled equation

p(t)=%p(1), |®(t)) it is computationally more efficient to perform these
calculations with a periodic wave function. For more details
()= Zpi()+F(O[p(P+Pp(1)].  (A5)  Onthis see Ref7].

Following the arguments given in Rdf18], p;(t) can be = APPENDIX B: LONG-TIME LIMIT OF THE MOMENTUM
simulated by propagating the pair of wave functions CORRELATION FUNCTION

d In this appendix we give the asymptotic expansion of the
i—| @ (1)) =hes| D (1)), momentum correlation function of the Fokker-Planck equa-
dt tion (46) with the force(49) for large times. To achieve this
we will use an eigenfunction method described in R&8].
The Fokker-Planck equation considered here is of the

d .
I GV O)=hed W) +if(DP[P()),  (A)
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HW(P,t)=— 3 [F(P)W(p,t)]+Da2W(p,t), (B1)  These eigenfunctions form a continuum with energies0
since the potential goes to zero ps>e. We will thus use

with a forceF (p) that is antisymmetric ipp and that decays the notation ¢g(p)=u(p) for the antisymmetric and
as —a/p above a certain threshold,. We can assume ¢,(p) for the symmetric eigenfunctions with wave vectors
a=p,=1 since we can always use a scalipgp/p,, k=0.
t =tal/p2in order to achieve this with respect to the scaled The explicit form of the odd eigenfunctions—we will
variables. The scaled diffusion coefficient is then given byonly need those later—is
D=D/a. To be more precise, we assume the force to be

wdp), pl<1

_[F(p), |pl<1 yi(p)=c
F(p)—[_l,p, o, (82) Blew, (et (o). ol

whereE(p) is some not explicitly specified but antisymmet-

ric function of p. In the following we will denote a quantity whereJ,, andY, denote the Bessel functions of the first and

in the region|p| <1 with a tilde. second kind of. ordep= \/;/4+ vID, and@k(p) is the odd
With the definition® (p)=f(p)/D where (and real solution to(B7) in the rgg|0n|p|<1, which we

make unique by demanding Iym;¢(p)=1. The normal-

B p ization constant will later be calculated explicitly. The cor-
f(p)=- fo dZF(0), (B3) responding eigenvalues ag=Dk?. The functionsc, , can
be calculated by matching the eigenfunctions and their de-
we can write the stationary solution 1) as rivatives atp=1. We get
Ws((p)=Ne™ ), (B4) -
K)=—={[v(k)—3]Y,(k)—kY/(k

whereN is a hormalization constant. Using the explicit form C1(k) 2 {lo()=2]¥,(K) ol b
(B2) we get

=] P IpI<L ek =5 {lo(0~ 113,00 —kJy(k},  (BLY

D=1 (uD)inpl+®(1), |pl<1.  (B5)

From this equation an(B4) we see that the stationary solu- where we defined;(k):%i(l):voJrulkJr 0O(k?).

tion is proportional tdp|~ P for [p|>1, which necessitates  The propagator for the Fokker-Planck equation can now
D <3 in order to ensure the convergencefafp pPWg(p).  be related to the propagator for the equivalent Stimger
This is in order to guarantee the existence of the stationargroblemi g, % =HW with imaginary time via

momentum correlation function, which is defined by

—®/2,—Ht

e/t=g Pg HigP/2 (B12)
o0 =(POP(O))a= [ db pe”PWelp). (B
Using this in conjunction with the completeness relation

Here,{())s; represents a stochastic average in stationary state
ande”! formally denotes the propagator f(B1). % (= _ _

We can get an explicit formula for this propagator in f dk‘/’k(p)wk(p)"'f dkek(p)e(P)=A(pP—p),
terms of eigenfunctions of the Fokker-Planck equation by 0 0 (B13)
transforming(B1) into an equivalent Schdinger equation

[13]. The eigenvalue problem then reads

Hye(p)=[~Dd5+V(p)14e(p)=Ege(p), (B7)

which is equivalent to the eigenvalue problem for a particle Cp(t)= Nf dk G(k)%e B« (B14)
with massM =(2D) ! in the potential 0

we can write the correlation function as

1 1 with
— 2 =
Throughout this section a prime denotes differentiation with G(k)zf dpyi(p)pe PP, (B15)
respect top. In our case we get
'\"/S(p), Ip|<1 Note that (B15) only involves the odd eigenfunctions
Vs(p)= vip?,  |pl>1, (B9 4. (p), which is due to the fact thatW,(p) is an odd func-

tion itself. Since we are interested in the long-time behavior
wherey=1/4D + 1/2. The potentialB9) is symmetric due to of (B14) it is only necessary to know the functigg(k) in
the antisymmetry of the force and therefore the eigenfuncthe vicinity of k=0. In order to find this behavior we expand
tions can be chosen to be real and to have a certain paritg, (k) in powers ofk:
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_I'w

2\° N
ci(k)=——| | [p=3+vot O],

k

2

v

p
S ar(prD) | 2) [P 2tvet O] (B1O)

co(k)

The eigenfunctiongB10) are necessarily orthogonal, but
have yet to be normalized. The normalization constaig
given by

k/2
ci+cs

1/2 2 k pt1/2 1
zr(p)(§> (p—1/2+u0+o(k))'
(B17)

p—®
which guarantees the correct behavioty(p) —
7w Y2%sin(kp— ¢y )with some phasep,. The functionG(k)
can now be evaluated to give

Gt9=c " dpTupipe *P7+20 [ “dp\p [c.3,(kp
-1 1

e~ (12

+CoY ,(Kp) Ip—175—-

o (B18)

The first integral converges to a finite valuekas 0 and can
be neglected in comparison with the second @& belowy,
which can be written as
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where we definegh=1/2D — 3/2= p— 2. The asymptotic be-
havior of the first integral can be found via the transforma-
tion y=kp:

I(k)=fdp p*“Jp(kp)=k“’lf:dy y 3,(y).
(B20)

The integral on the right-hand side exists in the likit: 0
and converges to 2*~1\/#/T'(p—1/2) and therefore

N

~— kw1
(k) 2’”1I‘(p—1/2)k '

(B21)

Using this in conjunction with B16) gives the asymptotic
behavior

I'(p)

-3
Tp-12 "

ca(K) 1 (K)~(p—1/2+vg) (B22)

The asymptotic behavior of the second integra(Bri9)

100= [ “app v, ko) =k “dyy v, )

- o % (B23)
2ce W2 clf dp p‘”J,J(kaczf dpp #Y,(kp)|,
1 1
(B19)  can be calculated in a similar way to give
|
Vasi(u+ 1) 7T (u—1/2)[p+ 12+ ve] ,
k=P 3 p<§
2°°T(p+1) ’ ?
co(K)I(k)~ (B24)
Vo—p— 1/2 < 3
2p(3=2p)" 7%
|
Therefore the asymptotic behavior G k) is given by _ N
~ &tW(z,p,t)Jraz—MW(z,p,t)
effIJ(l)/Z
G(k)~ ,J; kw12, (B25)
2T (p=112) @ | —y
=—dp —?\N(z,p,t) +DagW(z,p,t), (Cy

and therefore the asymptotic expansion of the momentum

correlation function is given by

We(1) (2 —3)*
T AR I (pr DT (n+2)

co(t) e (B26)

APPENDIX C: DISTRIBUTION OF EXIT POINTS FOR
THE KRAMERS EQUATION

In this section we will give a derivation of the distribution
of exit times following the method of Ref22]. We are
considering the following Kramers equation:

where the force is inversely proportional to the momentum.
Using the scaling

W(z,p,t) =w(zM/Va,plVa,)=w(z,p,t)  (C2)
we get with the definitiorD =D/a:
aw(z,p,t)+d,pw(z,p,t)
1
:—3p<—EW(z,p,t) +DJEw(z,p,t). (C3
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In order to assure normalizability of the stationary solution,This problem can be solved using a separation ansatz. By
which goes ap P, we needD>1. We start with the par- using
ticle prepared in a deterministic statg,(py) at timet=0

and look for the probability densityr(z,p,zg,po) for exit-

ing through the ling{(z,p)|ze (—«,»)} (cf. Fig. 7. This p=— > (C7)
will give us the distribution of distances the particle travels 3D 3 3’

until its momentum falls below a certain threshgdd Ac-

cording to Ref.[22] the distribution function satisfies the we can write the solution as

equation
1 w  eMz-2 pPH P (z, (A
_(?poﬂ-e(zipIZO!pO):pOﬁZOWe(Zip1201pO) (Z Z ): d\ %™ Pa ’ (Zpo( ))
Po TelZ,P,2Z9,Po 27 pPH Tz, (\))
e C(z,
+Ddp me(Z,P,20,P0),  (CH (C8)
with the boundary condition whereH{")(2) is the Hankel function with the asymptotic
72,0, Z0,Po=P) = (20— 2), (cs)  behavior |imH3w/2H<;>(z)/=2+ 2/i(wz)e'<2* val2==i4) - and
z/(\)=24[\[/D 3%tz M4l 3 gre V-shaped paths
lim m(z,p,29,pg)=0. (C6)  in the upper complex plane.
po—* Using the series expansion for the Hankel functions

©

(_1)k+1
.Z‘O KIT'(k—v+1)

S\ [N (—1)K S| 2
5) +(E) 2 KTk v+ D) E) } €9

it is easy to show that the functioif\) =H{"(z, (\))/H'"(z,())) has a series expansion

HM(2)=3(2)+iY (2)= = | (E)
v v v sin(vw) \ z

f(N)=s1(N)+N"Sy(N)+AN2"s3(N)+ .. ., (C10

with analytical functionss,(\) whose convergence radius is equal to the distance of the origin to the closest zero of
Hff)(zp()\)). We therefore find fonv#1,2,3, ... a branch cut of the"” function, and the corresponding discontinuity of a
sufficiently large derivative of (A\). When taking the Fourier transform 6{\) according to Eq(C8) these discontinuities
produce slowly decaying parts of which the=1 term is the dominant one. Using

I'v+1 . :
lim J“ d) Ave-allg—inn— (21:+1 )[ef'(VHWZWLe'(swl)m], z>0
a—0, v ~—* o’ Z<0,
|
we get forz—o the asymptotic expansion AP)W1(P,po)=— 8(P—Po),
1 (3v+1)” pg’=p* L(B)W2(B,Po) = —2wi(B, o). (D1)

we(z,p,Zo,po)~@ To) (=2 " (C1)
The boundary condition for the functions, , are

APPENDIX D: FIRST AND SECOND MOMENTS OF THE Wi AP=p,po)=0, limgz_..w;AP,pg)=0. (D2)
DISTRIBUTION OF FLIGHT TIMES FOR THE
KRAMERS EQUATION The first and second moments of the distribution of flight

times when departing from, and arriving afp (see Fig. 7,

In this section we will calculate the first and second mo—Tl(pO) andT,(p,), can then be calculated via

ments for the flight times of the above-barrier flights dis-

cussed in the previous Appendix. .
The starting point is again the Fokker-Planck equation Tn(po):J dpw,,(P,po). (D3)

(B1) with the force(B2). Denoting the operator that acts on p

the right-hand side of EqB1) on W(p,t) with “(p), we

can calculate the first two moments of the distribution ofUsing the explicit form of the Fokker-Planck equati(Bi)

flight times (or mathematically the moments of the first re- and the definitio(C7) we can write the solution for the first

turn time from the hierarchy of equationf43]: equation in(D1) as



3428 S. MARKSTEINER, K. ELLINGER, AND P. ZOLLER 53

~—3(v— l).

04 Thus, the second momeiit,(py) exists if v
D4) >3

i (Fpe) = P P o[- p3”|5 ), P<po
PPI)= 1D (p3-p*)P %, B>Po-

From the behavior of this solution for largeit is easy to see APPENDIX E: TWO-DIMENSIONAL OPTICAL LATTICES

that the first momenturit;(po) exists forv>2. B After transforming the master equatiof9) into the

The functionw,(p,po) enters the equation fow,(p,po) Wigner picture, and subsequent expansion in orders kof
as an inhomogeneity and it is straightforward to check thatup to second ordgrwe get a bipotential equation for the
the largep behavior ofw,(p,po) is therefore proportional to  two components of the Wigner operator

J
_+£V

e Far Vx| Fe (P D) = ([ ZOWg(x,p 1) £) + ([ L Weg(x,p 1) £) + (= ZEWgg(x,p 1) +).  (ED)

This appendix summarizes the terms on the right-hand side ofEag.for electric fields of the form(62).
The zeroth-order term determines the transition rates between the optical potentials and can be written in the form

(=L OWgg(x,p,1)| =)= F 5 70{| COOF 1 (x,p,1) =[SO [P - (x,p, 1)} (E2

The mechanical light force corresponds to the first-order term irfithexpansion:

) 1 v 3|S(x)|2+|C(x)|? v iV, S* (x)S(x) —i1S* (X) V4 S(X)
Wb D10 == 3 YoV o sl Ve =P T apig s st —is* (09,8001
i V,C* (X)C(X)—iC* (x)2V,C(X)]
Vof (X, ° Vo f(xp,
P ‘(Xpt)ﬂo( iV,C*(X)C(X)—iC*(V,C(x) | " =P
20 [ 1V,SF (X)S(X) —iS* (X) V,S(X)
9| iV,C* (0T —IC* (0 V,C(x) | P =P E3

The last of these terms in E(EJ) gives rise to a deterministic momentum change when the atom is optically pumped from
one optical potential into the other. The intrawell and interwell “diffusiof@ssociated with a fuzzy jump between the optical
potential$ is determined by the second-order term, which is not necessarily positive definite everywhere. These negativities
are quantum features of the atomic center-of-mass motion. A thorough discussion of this point can be found ] Ref.
(numerically we truncate this negative parts by setting the “diffusion” equal to zero in these negative regimes, thus “slightly”
overestimating the heating to some exjent

(2] 7 B @ [3ISX)P+[C0[?\ 1 & L (oISl 1 2
| Z15Wgg(x,p.)] =)= 6 axax, 3|C(x)|?+|S(x)|? zap,ap,f (xpt)+y09;<++ |S(x)|? 2<9p,(9p,f =(xp0)
|C(x)|? @ J IS)2\ 1 42
#1590 e 2 map PO 105 e 3 o 1-04P
2 K+_S(X)C(X)*+C.C. 1 92 ol &
903 1 sct0r +oc) 2 pam =PV F 7 apgp 0P
( 2 2
- 0xiaxj[s*(x)]s(x)_s*(x) 7%,3% S(x)
X9 2 1 (92
\ _§C7Xic7Xj[S*(X)]S(X)_§S*(X) aXian S(X)
J J J J
T[S*(X)]—,S(X)—.[S*(X)]WS(X) vl &
* 19 . +7§&piﬁpjfi(x’p't)
9% S*(x )]—S(X)g 7x; [S (X)]a—XIS(X)
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C(x)

2

Ip;IP;

Yo 1
92

fi(xipit)

[C*(¥)]C(x)—C*(x) C(x)

\ B X O"XJ IX (9X]

d d J J
a—)(i[s*(x)]a—)(jS(x)+[7—)(j[s*(x)]ﬁ—)(iS(X)

(E4)

7 o
(9_Xi[

d J . 9
(X)]&—XjC(XH &—Xj[c (X)]a—XiC(x)

The spatial variances of spontaneous photon emiségoare given by

3k?
K==

Y =0 for o=0,*,

[eaon

(E5

respectively.
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