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We study theoretically the spatial diffusion~transport! of two-level atoms in one- and two-dimensional
optical molasses derived from counterpropagating laser beams. We use both quantum Monte Carlo and semi-
classical methods to study the microscopic characteristics of the atomic motion and their effect on the mac-
roscopic behavior of the spatial distribution. We find that there exists a certain critical depth of the optical
potential below which the atomic trajectories show Le´vy flights in space that last on a definite time scale~Lévy
walks!. This behavior leads to a transition from Gaussian spatial diffusion to anomalous diffusion while
crossing this critical potential depth. We show that only atoms with very high momentum are responsible for
these Le´vy walks. This observation allows us to predict the critical parameters via a semiclassical Fokker-
Planck equation approach.

PACS number~s!: 42.50.Vk, 32.80.Pj

I. INTRODUCTION

Laser cooling of atoms can be achieved in optical molas-
ses, where counterpropagating laser beams provide a damp-
ing mechanism, and lead to the formation of optical poten-
tials corresponding to a spatially varying ac Stark shift of the
atomic ground states@1,2#. The generic model of laser cool-
ing is an angular momentumJg5

1
2 to Je5

3
2 transition driven

by two counterpropagating linearly polarized lasers with or-
thogonal polarizations. For red laser detuning and low laser
intensities the optical potentials corresponding to the two
ground states form an alternating pattern of optical bipoten-
tials Umg561/2(z). Spontaneous emission causes transitions

between these potentials via optical pumping processes. In
the semiclassical picture of Sisyphus cooling@3# one consid-
ers an atom moving on one of these potential curves, and for
red laser detuning transitions to the other potential then occur
preferentially from the tops ofU21/2(z) down to the valleys
of U11/2(z), so that on the average the atomic motion is
damped. Quantum mechanically, laser cooling can be under-
stood as optical pumping between the quantized energy lev-
els ~band structure in the periodic optical potential! @4#. The
temperatures achieved in experiments correspond to the ac-
cumulation of atoms in the few lowest vibrational energy
levels. Transitions between the vibrational states will mani-
fest themselves as sidebands~Raman transitions due to opti-
cal pumping! in atomic absorption and emission spectra@5#.
From the physical picture derived from this model it is clear
that laser cooling is intrinsically connected with a random
walk of the atom~transport and spatial diffusion! in the op-
tical lattice. It is the purpose of this paper to present a theo-
retical study of this spatial diffusion process. The final goal
is to give aphysicalexplanation for the divergence of the
spatial diffusion constant of a12→ 3

2 atom in a lin' lin laser
configuration as predicted in a semiclassical Fokker-Planck
treatment by Hodappet al. @6#.

We will start our discussion below with a fully quantum-
mechanical investigation of spatial diffusion of12→ 3

2 atoms
in a one-dimensional~1D! optical molasses formed by a
lin' lin laser configuration~see Ref.@7# and references cited

therein!. The basis is the quantum Monte Carlo wave func-
tion simulation with ‘‘spatially localizing quantum jumps’’
as developed by Hollandet al. @8#. This simulation corre-
sponds to aspatially resolvedphotodetection of the sponta-
neously emitted photon, and can be visualized as an ‘‘experi-
ment with a Heisenberg microscope’’ where the atom
moving in the optical molasses is ‘‘continuously monitored
through a lens’’ and the locus of spontaneously emitted pho-
tons is simulated. Each ‘‘observation’’ of a photon thus lo-
calizes the atom with the accuracy of a laser wavelength, and
in this sense we can give an operational definition to a quan-
tum trajectory of an atom moving in space. It can be shown
@8# that an averaging over many realizations is equivalent to
a solution of the standard master equation of laser cooling
@1,2#. The scheme has the significant numerical advantage
that each occurrence of a quantum jump localizes the atoms
in space and we can allocate a relatively small dynamic grid
for the atomic wave function to ‘‘follow’’ the motion of the
atom in space. A typical example for one of these simulated
trajectories is depicted in Fig. 1. The upper part of Fig. 1
shows the expectation value for the position of the Monte
Carlo wave function as a function of time. The lower plot
shows the total energy, i.e., kinetic plus potential, on the
same time scale. We see that the trajectory consists of two
very different types of motion. First, there are the more or
less horizontal lines, where the atom is trapped in the wells
of the optical lattice, having an energy below the potential
barrier ~indicated by the dashed line in Fig. 1! between ad-
jacent minima. The atom stays more or less in this well,
occasionally shifting to the neighboring ones. But at some
stage energy fluctuations due to spontaneous emissions allow
the atom to accumulate enough energy to be sufficiently high
above the barrier@9#. It then takes off on a flight that can
reach over many wavelengths~indicated by the shaded re-
gions in Fig. 1! until it is eventually trapped again.

This behavior is reminiscent of random walk processes
with long flights, which have been studied in the mathemati-
cal literature under the name of Le´vy flights @10,11#. The
defining property of Le´vy flights is that the jump distance for
each consecutive step is drawn from a distribution whose
variance diverges. In the context of laser cooling this type of
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behavior has been found in laser configurations that give rise
to velocity-selective dark states@12#. In this case the Le´vy
character of the random process results from long waiting
times ~when the atom is trapped in a momentum state close
to the dark state!.

A characteristic feature of Le´vy-type random processes is
that the distribution of the total distance traveled aftern steps
does not approach a Gaussian in the limitn→`, i.e., the
central limit theorem@10# is not applicable. Instead the limit
distribution is given by a Le´vy law that possesses slowly
decaying wings@10#. As a consequence the asymptotic de-
pendence of the width of this distribution on the step number
n is given by

Dz~n!25^z2&n2^z&n
2;ng with gÞ1, ~1!

where ^z&n and ^z2&n denote the expectation value for the
total distance and the total squared distances traveled after
n steps of the random walk, respectively. Another remark-
able property is that the underlying microscopic process~i.e.,
the trajectory of the random walk! shows longer and longer
‘‘flights’’ the longer we observe the system~hence the name
Lévy flights! and thus has a self-similar~fractal! nature@11#.
In other words, if we look at a trajectory like the one in Fig.
1 we will find that the total distance that the particle traveled
is dominated by a single flight, no matter on what time scale
we look at the trajectory.

As has been emphasized by Shlesinger, Zaslavsky, and
Klafter @11#, the elegant mathematics of Le´vy flights is not
directly applicable to the kinetic description of realdynami-
cal processes. In the case of Le´vy flights the time aspect of

the flight~i.e., the time it takes to complete it! does not enter.
If this dynamical aspect of the flights is included these pro-
cesses are named Le´vy walksaccording to Ref.@11#.

In generalizing ~1! the spatial diffusion ofdynamical
quantum systems can be characterized by the time evolution
of the squared width@11#

D ẑ~ t !25^ẑ2& t2^ẑ2& t , ~2!

where^A& t denotes—as usual—the quantum-mechanical ex-
pectation value for an arbitrary operatorA,

^A& t[trS1BAuC~ t !&^C~ t !u

5trS1BA~ t !uC~0!&^C~0!u ~3!

in the Schro¨dinger and Heisenberg pictures, respectively.
Since we are dealing here with an ‘‘open system,’’ i.e., a
system~atom! that is coupled to a ‘‘bath’’~quantized elec-
tromagnetic field!, we must trace over both system and bath.

Many physical systems show a time evolution of the spa-
tial distribution converging to a Gaussian,

W~x,t !;
1

A3 4pDzt
exp@2x2/4Dzt#, ~4!

and thus are characterized in the above sense by
D ẑ(t)2;2Dzt. Throughout this paper we will denote asymp-
totic expansions with a tilde. The long-time behavior of this
type of diffusion is solely described by thespatial diffusion
constant Dz , which is defined by@13#

Dz5 lim
t→`

1

2

d

dt
D ẑ~ t !2. ~5!

A deviation from this linear behavior, i.e.,D ẑ(t)2;tg

(gÞ1), defines anomalous diffusion@11#. In our context the
existence of a spatial diffusion constant is best discussed by
reexpressing~5! in terms of the~symmetrized! momentum
correlation function~see Sec. II C for details!

Dz5 lim
t→`

1

M2E
0

t

dt^ p̂~t!,p̂~ t !&sym. ~6!

We will show that in the case of 1D lin' lin optical molasses
the momentum correlation function for a12 to

3
2 transition

decays with the characteristic law

^ p̂~ t !,p̂~ t1t!&sym}t2m, ~7!

where the critical parameterm is related to the depth of the
optical potentialU0 by

m5
5

123

U0

ER
2
3

2
, ~8!

with recoil energyER5\2k2/2M . Form.1 the integral~6!
converges and the diffusion constant~5! exists; below
m51—corresponding to a critical potential depth
U0
crit561.5ER—there is a transition to anomalous diffusion.
Lévy walks are associated with atomic motion in the op-

tical molasses far above the potential barrier. In this energy

FIG. 1. A ‘‘typical’’ trajectory of an atom in a 1D lin' lin op-
tical lattice with a potential depth ofU0540ER . The upper plot
shows the expectation value of the position for the stochastic wave
function as a function of time~in units of tR5ER /\). The lower
plot shows the corresponding total energy of the atom. The shaded
areas correspond to a motion of the atom above the barrier between
adjacent potential minima where the atom travels over many wave-
lengths. The regions left white correspond to below-barrier motion
where the atom is trapped in the wells of the optical lattice.
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range a semiclassical description in terms of a Fokker-Planck
equation~FPE! is appropriate and provides the basis for the
analytical description of these phenomena. Note, however,
that the FPE cannot be employed to describe the below bar-
rier motion ~the localization regime!. Only for the special
case of aJg5

1
2→Je5

3
2 transition can one formulate a semi-

classical bipotential model~which includes localization! @14#
since in this case no Zeeman coherences exist between the
ground states.

A final question studied in this paper is the existence of
Lévy walks in 2D optical lattices. We will present results for
two laser configurations@15–17# based on FPE treatment for
a 1

2 to
3
2 atom that is verified by a semiclassical bipotential

simulation.

II. QUANTUM MECHANICAL TREATMENT
OF SPATIAL DIFFUSION IN ONE DIMENSION

In this section we will investigate the spatial diffusion of
atoms in an optical molasses in a fully quantum-mechanical
framework. Due to the complexity of the underlying equa-
tions of motion we will restrict this treatment to one-
dimensional laser configurations.

After a brief review of the basic equations of 1D laser
cooling we will solve these equations with the initial condi-
tion that the atom is localized to a single well in the optical
potential. It is in principle possible to calculate the time evo-
lution of this system by using the standard quantum Monte
Carlo ~QMC! method as described in Refs.@7,18#. The key
feature of this simulation scheme is that the emissiondirec-
tion ~and polarization! of the photon is measured. We will
therefore refer to the measurement that is simulated by this
simulation method asangle resolved photon detection. By
emitting a photon in a certain direction the atom receives a
momentum kick in the opposite direction. Formally, this kick
is transferred to the atom by applying the operator

Ksu~ ẑ!5ANs~u!Bs~ ẑ!e2 iuẑ ~9!

~see Sec. II A for details! to the wave function. Unfortu-
nately, this simulation method leads to an unlimited spatial
spreading of the stochastic wave function in the course of its
evolution since the application of the kick operators~9! does
not reduce the spatial coherence length of the atomic wave
function. The angle resolved photon detection is therefore
not able to reduce the unavoidable spreading of the stochas-
tic wave function during its coherent propagation~i.e., in
between the quantum jumps!. Hence, storing the~dis-
cretized! wave function on a computer requires an ever
growing memory grid, which at some point will either lead
to memory problems or will render the propagation algo-
rithm inefficient @19#.

It is therefore desirable to avoid this spreading and we
have shown in Ref.@8# that this can be achieved by simulat-
ing a measurement of the emission locus of the spontaneous
photon instead of the emission direction. In Sec. II B we will
briefly review this method and utilize it in order to study the
time evolution of an initially well localized cloud of nonin-
teracting atoms.

In Sec. II C we will use an alternative, indirect approach
that makes use of a relation between the spatial diffusion
constant and the momentum correlation function. For the cal-

culation of these correlation functions it is advantageous to
use the standard QMC technique again~cf. Appendix A!.

A. Basic equations for one-dimensional laser cooling

In this section we summarize and review the basic equa-
tions of one-dimensional laser cooling in order to identify the
physical parameters in our model and to establish our nota-
tion. For details we refer to Refs.@4,7,20#. In our 1D model
we consider a two-level atom with a Zeeman substructure
corresponding to an angular momentumJg to Je transition in
a laser configuration consisting of two counterpropagating
light beams with linear and orthogonal polarization~lin'lin!.
In this configuration the positive frequency part of the elec-
tric field can be written as

Ecl
1~z,t !5EA2@cos~kz!e11sin~kz!e2#e2 ivLt. ~10!

Here E is the light amplitude,vL and k denote the laser
frequency and wave vector,z is the coordinate along the
light propagation axis~which is also the quantization axis for
the atom!, ande657(1/A2)(x̂6 i ŷ) are spherical unit vec-
tors.

We are interested in laser intensities well below saturation
s0!1, which give rise to the lowest temperatures corre-
sponding to the largest ground-state population. The satura-
tion parameter is defined ass05

1
2V

2/(D21 1
4G

2), with
V52Ed/\ the Rabi frequency,d the dipole matrix element
on the outermost Zeeman transitionMg5Jg→Me5Je , G
the spontaneous decay rate, andD5vL2veg the laser de-
tuning. Elimination of the excited-state manifold leads to the
generalized optical Bloch equation~GOBE! for the ground-
state density matrixr(t), @7#,

ṙ52
i

\
~heffr2rh eff

† !12g0 (
s50,61

E
2k

1k

duKsu~ ẑ!rKsu
† ~ ẑ!,

~11!

with the momentum kick~or angle resolved photon detection
@8#! jump operators

Ksu~ ẑ!5ANs~u!Bs~ ẑ!e2 iuẑ, ~12!

and the non-Hermitian effective Hamiltonian

heff5
p̂2

2M
1

\s0
2 S D2 i

G

2 DD~ ẑ!D†~ ẑ!. ~13!

The dipole operatorD( ẑ) is given by

D~ ẑ!5 (
s50,61

~21!sAse2s* ~ ẑ!, ~14!

where

As5 (
Me ,Mg

uJgMg&^JgMg ;1suJeMe&^JeMeu ~15!

denotes the atomic lowering operator involving the emission
of a photon of polarizations and the space-dependent coef-
ficientses(z) of the polarization vectors relate to the electric
field via
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Ecl
~1 !~z,t !5E (

s50,61
es~z!es* e

2 ivLtS (
s

ues~z!u251D . ~16!

The first two terms on the right-hand side of Eq.~11! corre-
spond to a time evolution due to the Hamiltonianheff , while
the last term describes the return of the atomic electron to the
ground state by optical pumping.

The Hermitian part ofheff governs the coherent 1D mo-
tion of a particle in the periodic optical potential

U~ ẑ!52
s0\D

2
D~ ẑ!D†~ ẑ!, ~17!

as given by the ac Stark shift of the various Zeeman sublev-
els. In the following, we will refer toU052 1

2s0\D as the
potential depth, which we usually give in units of the recoil
energyER5\vR5\2k2/2M . Since our laser configuration
involves nop-polarized light component, this coherent evo-
lution couples only states that are connected by as1-s2

Raman transition, i.e., states whoseMg differ by two. The
anti-Hermitian part in~13! leads to a damping due to optical
pumping withg05

1
4s0G the optical pumping rate between

the ground-state levels. The operatorsBs( ẑ)5AsD
†( ẑ) in

the jump operators~12! describe a Raman transition, corre-
sponding to absorption of a laser photon (D†) followed by
spontaneous emission of a photon (As) with light polariza-
tion s50,61. The angular distributions of spontaneously
emitted photons with polarizations are given by

N0~u!5
3

4k
@12~u/k!2#,

N61~u!5
3

8k
@11~u/k!2#. ~18!

As is shown in Ref.@18#, a solution of~11! can be calcu-
lated by simulating stochastic trajectories that correspond to
a coherent evolution of the atomic wave function, which is
interrupted at random times by the emission of spontaneous
photons. The density matrix at a certain time is then recov-
ered by averaging over many of these trajectories. This ap-
proach is called quantum Monte Carlo wave-function simu-
lations. A pictorial view of this method is to consider the
bath of quantized electromagnetic field modes as being used
as a meter to continuously monitor the atom. Each time a
photon is detected in the bath we can calculate the back
action that this emission has had on the atom. By doing this
the evolution of the density matrixr(t) in the GOBE is
replaced by an average over pure-state trajectories that cor-
respond to stochastically chosen photon emission times and
decay channels~for example, emission direction and polar-
ization of the photon!. The numerical advantage of dealing
with wave functions instead of density matrices is evident
since the dimension of a wave function is proportional to the
numberN of basis states~in our case the number of points of
a discretized spatial grid!, whereas the density matrix scales
asN2 ~see also the discussion in Ref.@7#!.

B. Direct simulation of atomic motion using localizing
quantum jumps

As already mentioned the key idea behind the method of
localizing quantum jumps is the simulation of a measure-
ment process for the emitted photons that gives us informa-
tion on the position of the atom. This can be visualized as
follows: instead of detecting the emission direction as in the
standard QMC approach we ‘‘look at the atom via an imag-
ing system’’ such as, e.g., a microscope lens and thereby
detect where the spontaneous photon came from. The math-
ematical implementation of a measurement process that can
be interpreted in this way is given by the following unitary
transformation of the angle resolved jump operators@8#:

Jsm~ ẑ!5E
2k

k

du
eimul/2

A2k
Ksu~ ẑ!~m50,61,62, . . . !, ~19!

where the discrete indexm corresponds to the detection po-
sition z5ml/2 of the photon. From~19! and~12! we readily
see that the spatial dependence of the jump operators
Jsm( ẑ) is given by the product of the Raman transition op-
eratorsBs( ẑ) ~which are periodic with periodl) and the
Fourier transform of the angular distribution functions for
spontaneous emissionNs(u). It is easy to check by explic-
itly calculating these Fourier transforms that the latter factor
is similar to a sin(kz)/z function. The effect of applying the
new jump operatorsJsm( ẑ) to a wave function is thus a
reduction of the coherence length~i.e., the spatial width of
the wave packet! to something on the order of the wave-
length of the emitted photon~in compliance with the Heisen-
berg uncertainty principle!. This results in the localization of
the atom around the detection locus of the emitted photon.
Another important property of the jump operatorsJsm( ẑ) is
that they can be generated from a single one, sayJs0( ẑ), by
the translation

Jsm~ ẑ!5Js0S ẑ2
ml

2 D . ~20!

By inverting Eq.~19!,

Ksu~ ẑ!5 (
m50,61,62, . . .

e2 imul/2

A2k
Jsm~ ẑ!, ~21!

and inserting it into~11! we get the transformed GOBE,

ṙ52
i

\
~heffr2rheff

† !

12g0 (
s50,61

(
m50,61, . . .

Jsm~ ẑ!rJsm
† ~ ẑ!. ~22!

Note that the physical content of the GOBE is of course not
altered by this transformation. The conclusions drawn from
this representation are therefore necessarily identical to the
ones derived in Eq.~11!. However, this new form leads to a
simulation scheme for the problem at hand that is much more
efficient than the angle resolved detection approach.

The procedure for calculating the trajectory corresponding
to the simulation of a certain measurement record
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(s1m1 ,s2m2 ,s3m3 , . . . ) for thepolarization and emission
loci of consecutive spontaneous photons and the subsequent
averaging over many different measurement records can be
summarized as follows.

(i) Initial condition. Any initial atomic density matrix
r(t50) can be decomposed into a sum of projectors onto
pure states, i.e.,r(t50)5(lpluFl&^Flu. We choose one
of the pure statesuFl& as the initial condition for our sto-
chastic trajectory according to the distributionpl . For the
simulations in this subsection we start by definition with the
atom in a pure stater(t50)5uF0&^F0u, whereuF0& corre-
sponds to an atomic wave function that is localized to a
single quantum well in the optical potential.

(ii) Propagation. We propagate the wave function
uF(t)& according to the effective Schro¨dinger equation

i\
d

dt
uF~ t !&5heffuF~ t !&. ~23!

This is a multicomponent Schro¨dinger equation that does not
preserve the norm due to the anti-Hermitian part ofheff .
Note that this coherent propagation is not affected by the
transformation~19!.

In order to determine the timet2 for the next quantum
jump we draw a uniform random numberrP@0,1# and
propagateuF(t)& until the squared normiF(t2)i2 drops
below this random number.

(iii) Quantum jump. As soon as we reach the time for the
next quantum jump we have to choose a decay channel for
the spontaneous photon. In the case of the localizing quan-
tum jumps this amounts to choosing the polarizations and
emission locusml/2 according to the distribution

p~s,m!5 c̃iJsm~ ẑ!uF~ t2!&i2, ~24!

wherec̃ is some normalization constant. The wave function
after the jumpuF(t1)& is then given by

uF~ t1!&5
Jsm~ ẑ!uF~ t2!&

iJsm~ ẑ!uF~ t2!&i
. ~25!

(iv) Averaging.After the jump we proceed with step~ii ! and
repeat the procedure until we reach the final propagation
time t. We then use the resulting wave functionuF(t)& in
order to improve the expectation value

r~ t !5 KK uF~ t !&^F~ t !u
iF~ t !i2 LL . ~26!

Finally, we repeat the whole procedure starting with~i! until
the prediction forr(t) is sufficiently converged.

We already mentioned that every time we apply one of
the new jump operators to the atom we collapse its wave
function to the detection location of the spontaneous photon
with a width corresponding to the wavelength of the photon.
It is apparent that the repeated application of localizing jump
operators enables us to store the wave function on a fixed-
size spatial grid that we allocate dynamically to follow the
atom @19#.

We have used this approach in order to simulate the time
evolution of an initially well localized atom in a 1D

lin' lin optical molasses. The basic features of the trajecto-
ries as illustrated in Fig. 1 have already been discussed in the
Introduction.

By averaging over many of these trajectories~usually sev-
eral hundred thousands! we recover the smooth spreading of
the atomic density matrix as depicted in Fig. 2. Following
the experimental procedure in Ref.@6#, we calculate the spa-
tial diffusion constant from the time derivative of the squared
full width at half maximumDFWHM of the spatial distribu-
tion. More precisely, this means that we calculate the evolu-
tion of the diagonal of the atomic density matrix^zur(t)uz&
~usually up tot51000vR

21) and plot the squared FWHM as
a function of time~cf. Fig. 3!. This function converges in the
case of a Gaussian diffusion after a certain initial transient
~that depends critically on the system parameters! to a linear
behavior and we can calculate the spatial diffusion constant
from the slope of the linear asymptote:

Dz5
1

16 ln2
lim
t→`

dDFWHM~ t !2

dt
. ~27!

FIG. 2. Spatial distribution forU05200ER and g053vR at
times t50, 500vR

21 , and 1000vR
21 . The initial condition corre-

sponds to an atom confined to a single well in the optical potentials.
The arrows indicate the FWHM used for the calculation of the
spatial diffusion constant.

FIG. 3. Time dependence ofDFWHM(t)
2 for a deep and a rather

shallow optical potential depth. Note thatD FWHM(t)
2 for the deep

potential converges faster to a linear asymptote.
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The behavior of the diffusion constant as a function of the
potential depthU0 is plotted in Fig. 4 for a12→ 3

2 transition
~solid squares! and a 3→4 transition ~solid circles!, and
compared with a semiclassical Fokker-Planck theory for a
1
2 → 3

2 transition ignoring the localization of atoms in the
optical potential wells@6# ~solid line!. A semiclassical bipo-
tential simulation forJg5

1
2→Je5

3
2 ~which includes localiza-

tion but is based on a semiclassical\k expansion! give re-
sults virtually identical to the full quantum treatment for
1
2→ 3

2.
For the sake of completeness we have also included ex-

perimental data for theFg53 toFg54 transition of85Rb @6#
~light open circles!. However, we would like to caution the
reader not to compare them directly with the actual results
depicted in Fig. 4. This is for two reasons: firstly, the experi-
ment was set up in a six-beam 3D configuration whose light
shift potentials cannot be compared directly with the 1D op-
tical potentials used in this section~see also Sec. IV in which
we discuss the effect on the potential when going to higher
dimensions!. Secondly and more important, phase fluctua-
tions of the six laser beams lead to a temporal variation of
the topography of the potential, producing potential hills
where potential minima might have been a certain time be-
fore. A behavior like that would strongly reduce the local-
ization of atoms in the moving potential minima and hence
aid to the spatial diffusion. It is for this reason that a semi-
classical approach that neglects localization@6# is appropri-
ate to describe the atoms. In order to visualize this we have
plotted the experimental data in Fig. 4 as light open circles.

The first apparent feature of Fig. 4 is that the predictions
for the diffusion of the semiclassical Fokker-Planck treat-
ment ~which ignores localization and trapping of atoms in
the wells of the optical potential! and the full quantum cal-
culation for the same12→ 3

2 transition deviate substantially.
The presence of potential hills that separate the various po-
tential wells necessitates that atoms must have a certain
minimum kinetic energy in order to overcome the barrier

between neighboring minima as they travel from one well to
the other. Since atoms are very efficiently cooled in an opti-
cal molasses only a few percent of the particles have large
enough energies to do so~cf. Ref. @8#!. This localization
effect is—by assumption—not included in the semiclassical
FP approach used in Ref.@6# and hence particles with arbi-
trarily small momenta contribute to the spatial diffusion. We
will give a simple extension of the theory used in Ref.@6#
that is able to account for this effect in Sec. III@see Eq.~53!#.

A decrease of the spatial diffusion constant is found as we
go to the 3→4 transition~corresponding, for example, to the
Zeeman substructure of85Rb used in the experiment in Ref.
@6#!. In Ref. @8# we show that this can be explained by the
fact that the number of atoms whose energies are larger than
the barrier between adjacent adiabatic minima is five times
lower for a 3→4 transition than for a12→ 3

2 transition. In
addition the light shift potential for 3→4 atoms is compli-
cated by the existence of Raman coherences between differ-
ent Zeeman sublevels. In order to travel to the neighboring
well the atom has to adiabatically follow the avoided cross-
ings in the adiabatic potentials@8#. Whether it is able to
proceed to the neighboring well or is reflected back depends
very much on how fast it approaches these crossings. This
explains the strong suppression of spatial diffusion for this
transition as compared to the12→ 3

2 case.
In addition, according to Fig. 4 the QMC simulations do

not show the divergence of the spatial diffusion constant in
the FP theory at a potential depth of 135ER @6#, even though
all curves exhibit a pronounced increase of the diffusion con-
stant asU0 decreases. However, we find that we run into
severe convergence problems with the quantum Monte Carlo
method when we lowerU0 below approximately 60ER . The
lowest potential depth for the QMC curves in Fig. 4 is
U0575ER and the corresponding time evolution of the spa-
tial distribution (12→ 3

2 transition! at various time steps is
given in Fig. 5.

The numerical convergence problems mentioned result
from the marked non-Gaussian wings that are clearly visible
in the logarithmic plot. These wings become less pronounced

FIG. 4. Spatial diffusion constant versus potential depth. The
solid line shows the result of the semiclassical Fokker-Planck
theory of Ref.@6# (g051.875vR). The filled circles and squares
were calculated using a localizing quantum jump QMC method for
a Jg53→Je54 transition withg053vR and aJg5

1
2→Je5

3
2 tran-

sition with g051.875vR , respectively. A semiclassical bipotential
simulation forJg5

1
2→Je5

3
2 give results virtually identical to the

full quantum treatment for this transition. The experimental points
~open circles! were taken from Ref.@6# and correspond to the
Fg53 to Fg54 transition of85Rb with for variousg0’s.

FIG. 5. Spatial distribution on a logarithmic scale for
U0575ER and g051.875vR at times t50, 250vR

21 , and
500vR

21 . A Gaussian fit to the final distribution is indicated by the
dash-dotted line.
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as we propagate the density matrix to larger times, but pre-
vail for longer and longer as we lower the potential depth
towards approximately 60ER ~cf. also Fig. 3!. Slowly decay-
ing parts of the spatial distribution are a typical feature of
anomalous diffusion and are thus a strong indication that the
character of the atomic motion undergoes a characteristic
change as we reach the critical value of the potential depth.

It is the purpose of the subsequent sections to examine the
physical mechanisms that lead to this change in behavior and
to quantitatively predict its critical parameters.

C. Momentum correlation functions

In the Introduction we mentioned that the momentum cor-
relation function is a powerful tool to investigate the problem
of the divergence of the spatial diffusion constant for an
atom in an optical molasses, as first encountered in Ref.@6#.
In order to prove this let us first derive a relation between the
spatial diffusion constant and the momentum correlation
function.

As discussed in the Introduction, the spatial diffusion con-
stant is defined by@13#

Dz5 lim
t→`

Dz~ t !, ~28!

with

2Dz~ t ![
d

dt
D ẑ~ t !2. ~29!

Interchanging the differentiation and the trace and using the
reflection symmetry of our problem~which leads to
^ẑ& t5^ẑ&05const) we can rewrite this as

Dz~ t !5^ẑ~ t !, ż̂~ t !&sym, ~30!

where we have used the definition for the symmetrized two-
time expectation value

^A~ t !,B~t!&sym5 1
2 @^A~ t !B~t!&1^B~t!A~ t !&#. ~31!

The time derivative of the position operator is easy to evalu-
ate since we are working in a dipole approximation and
therefore the momentum operator only enters the Hamil-
tonian through the kinetic term p̂2/2M . We find

ż̂(t)5 p̂(t)/M and therefore

ẑ~ t !5 ẑ~0!1
1

ME
0

t

dt p̂~t!. ~32!

Inserting this into~29! we find

Dz~ t !5
1

M
^ẑ~0!,p̂~ t !&sym1

1

M2E
0

t

dt^ p̂~t!,p̂~ t !&sym. ~33!

The first term on the right-hand side is the correlation of the
momentum with the initial position and is thus a function
that decays to zero for large times. The second term incor-
porates the correlation of the atomic momentum at timet
with the momentum at earlier timest and thus converges for
large t to the stationary momentum correlation function

cp~ t !5 lim
T→`

^ p̂~T!,p̂~T1t !&sym. ~34!

We thus find the above-mentioned relation,

Dz5
1

M2E
0

`

dtcp~ t !, ~35!

between the spatial diffusion constantDz and the time inte-
gral over the momentum correlation functioncp(t). It is now
obvious that a divergence of the spatial diffusion constant is
related to a divergence of the time integral of the momentum
correlation function. This means that if a certain threshold
exists at which the spatial diffusion behavior switches from
Gaussian to anomalous diffusion, then the long time behav-
ior of the momentum correlation function must switch from
integrable~decaying faster thant21) to nonintegrable~de-
caying slower thant21).

In the following we will restrict ourselves to a12→ 3
2 tran-

sition. A generalization to more complicated transitions is
straightforward. The results of QMC simulations are shown
in Fig. 6. It is worth mentioning here that in order to calcu-
late these correlation functions we had to use a momentum
grid that is considerably larger than the one we used in order
to calculate the steady-state momentum distribution in the
molasses@7#. For this kind of simulation a momentum grid
covering the range@264\k,64\k# gives excellent results. In
order to produce Fig. 6 we had to use a grid twice as large.
As will be shown below this is necessary due to the fact that
the slowly decaying tails of the momentum correlation func-
tion are made by high-momentum particles.

The solid lines in Fig. 6 correspond to the momentum
correlation function as calculated with the rigorous quantum-
mechanical method described in Appendix A. We chose two
different potential depths, which are both below the thresh-
old for Gaussian diffusion as predicted in Ref.@6#. However,
as the analysis in the forthcoming section will show we

FIG. 6. Stationary momentum correlation function@in units of
(\k)2] vs time @in units of optical pumping times# for g053vR .
The solid lines correspond to the full quantum-mechanical treat-
ment~quantum Monte Carlo method! described in Appendix A. The
dashed lines correspond to act2m fit wherec was fitted andm was
calculated according to the semiclassical treatment of Sec. III.
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rather have to expect this divergence to occur at a somewhat
lower U0 , namely, 61.5ER . Therefore the two potential
depths correspond to above (85ER) and below (50ER) the
Gaussian diffusion threshold. The oscillating behavior of the
momentum correlation function for small times is due to
oscillations of the atom in the light shift potential. Due to the
randomness of the momentum kick imposed on the atom by
spontaneously emitted photons the momentum decorrelates
and the correlation function decreases to zero.

Two observations can be made from Fig. 6. Firstly, the
correlation function for the shallow potential is larger than
the one for the deeper potential, indicating that the diffusion
constant~in case it exists! is at least larger. This confirms the
trend for small potential depths that we have seen in Fig. 4.
Secondly, at2m fit to the plots indicates that the correlation
function forU0585ER decays approximately ast22, being
integrable, whereas the correlation function forU0550ER

decays approximately ast20.5, being nonintegrable. How-
ever, the results of Fig. 6 are numerical in nature and it is
difficult to establish whether the correlation functions al-
ready reveal their asymptotic long-time behavior, which we
assumed as our justification for at2m fit. The correlation
functions might still be decaying, for example, exponentially
for times tg0.80 in which case they would both be inte-
grable.

In summary, we find that the increase of the spatial diffu-
sion constant when going to smaller potential depths can be
seen in the momentum correlation function as slowly decay-
ing tails. We also find numerical evidence that there exists a
certain valueU0

crit below which cp(t) decreases so slowly
that the spatial diffusion constant diverges, indicating the
onset of an anomalous diffusion behavior.

A direct consequence of long momentum correlations is
that the atom retains its momentum state for a rather long
time. This in return corresponds to a motion over a large
distance. A look at the trajectory in Fig. 1 immediately con-
firms this: the distance that the atom travels~and therefore
the spatial diffusion! is dominated by these long flights
whereas those parts of the trajectory where the atom is
trapped in the potential wells do not contribute significantly.
Mathematically this means that the position of the atom after
finishing itsnth flight is a random variable that is equal to
the sum of independent~and identical! random variables cor-
responding to the flight distance of thej th flights
( j51, . . . ,n). Whether the resulting distribution of this ran-
dom variable~i.e., the shape of the atomic cloud! in the limit
t→` is Gaussian or follows a Le´vy law depends critically
on the distribution of the flight distances and flight times. To
be more specific, it depends on the asymptotic behavior of
these distribution functions@10# for large distances and
times, respectively.

During the flight period the energy of the atom is well
above the maxima of the optical potentials so that it sees
these potentials only in an averaged way. This allows us to
use a very simple semiclassical picture in order to study the
characteristics of these flights. In the following section we
will use this simple approach in order to justify the afore-
mentioned asymptotic behavior of the momentum correlation
function @i.e., cp(t);ct2m ast→`], to derive a relation for

the critical exponentm, and to calculate the asymptotic be-
havior of the distribution of flight distances for very long
flights.

III. SEMICLASSICAL TREATMENT USING
FOKKER-PLANCK EQUATIONS

As mentioned in Sec. II C the characteristics of the diffu-
sion are shaped by particles that are flying over large dis-
tances and that therefore have an energy well above the bar-
rier between neighboring potential wells. These particles can
be well described using Fokker-Planck equations@2,21,3#
~see also Sec. IV!.

A. Kramers equations for the atomic motion above barrier

In this section we will model the atoms in the molasses by
the standard Kramers equation to describe 1D laser cooling
of atoms with aJg5

1
2→Je5

3
2 Zeeman substructure in a

lin' lin laser configuration~Sisyphus cooling! under the as-
sumption of negligible spatial modulation@14,21#

S ] t1]z
p

M DW~z,p,t !5]p$@2F~p!1D~p!]p#W~z,p,t !%,

~36!

with the force

F~p!52
āp

11~p/pc!
2 ~37!

and the momentum diffusion coefficient

D~p!5D11
D2

11~p/pc!
2 . ~38!

The choice for the coefficientsā, D1 , andD2 varies in the
literature. We use the following set that differs from the one
used in Ref.@6# ~which is actually the reason why our pre-
diction for the diffusion threshold differs from the one found
there!:

pc
\k

5
2

9

g0

vR
5
2

9

\Gs0
4ER

, ~39!

a¯

vR
53

U0

\g0
56

uDu
G

, ~40!

D1

~\k!2vR
5
82

45

g0

vR
5
41

90

Gs0
vR

, ~41!

D2

~\k!2vR
5

U0
2

\g0ER
5

\uDus0
ER

uDu
G

. ~42!

This choice of parameters nicely reproduces the momentum
distribution that we find from the quantum Monte Carlo
simulations. Especially the behavior of the wings of this dis-
tribution is predicted very accurately.

From a mathematical point of view it is advantageous to
generalize the Kramers equation~36! to
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S ] t1]z
p

M DW~z,p,t !5]p$@2F~p!1D1]p#W~z,p,t !%,

~43!

where the momentum diffusion coefficientD1 is independent
of p and the forceF(p) is antisymmetric and has the asymp-
totic behavior

F~p!→2a/p for p→6`, ~44!

but is otherwise not explicitly specified. We would like to
note that Eq.~36! is indeed covered by Eq.~43! even though
we assume aconstantmomentum diffusion coefficientD1 in
Eq. ~43!, whereasD(p) is explicitly momentum dependent
in Eq. ~36!. This is due to the fact that one can eliminate the
p dependence of the momentum diffusion coefficient~38!
according to Ref.@13# without changing the asymptotic be-
havior ofF(p).

The reason for the generalization~43! is that—as will turn
out later—only atoms with very large momenta are respon-
sible for the asymptotic expansion of the momentum corre-
lation function for large times.

The explicit form of the coefficienta is derived from Eq.
~42!:

a

~\k!2vR
5

4

27

U0g0

ERvR
5

1

54

s0
2\uDuG
ERvR

. ~45!

B. Momentum correlation function

In this subsection we are interested in the long-time be-
havior of the momentum correlation function of the particles
described by~43!. It is convenient to eliminate thez depen-
dence by integrating over space~assuming that the spatial
distribution drops off sufficiently fast asz→`). We thereby
get the one-dimensional Fokker-Planck equation

] tW~p,t !5]p@2F~p!W~p,t !#1D1]p
2W~p,t !, ~46!

which has the stationary solution

Wst~p!5Ne2 E0
pdzF~z!/D1, ~47!

whereN is some normalization constant.
The stationary momentum correlation function for~46! is

given by @13#

cp~ t !5E dp pw~p,t !. ~48!

wherew(p,t) obeys the Fokker-Planck equation~46! with
initial conditionw(p,0)5pWst(p).

In order to calculate the asymptotic expansion ofcp(t) as
t→` we first approximate the forceF(p) by

Fa~p!5 HF~p!, upu,pa
2a/p, upu.pa,

~49!

wherepa is chosen sufficiently large in order to make the
error small@which is always possible due to~44!#. As will be
shown in Appendix B such a force leads to a momentum
correlation function having the asymptotic expansion

cp~ t !;pa
2m13Wst~pa!

p~2m23!m

am4m11m~m11!G~m12!
t2m,

~50!

where the critical exponentm is given by

m5
a

2D1
2
3

2
. ~51!

In order to get rid of the artificially introduced approximation
~49! we perform the limitpa→` and thus recover the origi-
nal problem~46!. It is easy to check using~47! and~44! that
the first two factors go to a constant in this limit. We there-
fore find that the asymptotic behavior of the momentum cor-
relation function for~46! is proportional tot2m with a pro-
portionality constant that depends on the detailed form of the
forceF(p). In contrast to that,m depends only on the ratio
a/D1 and therefore only on the large momentum behavior of
F(p).

It is now easy to see that Gaussian spatial diffusion is
found wheneverm.1 and that the spatial diffusion constant
diverges~anomalous diffusion! if m,1. Using the expres-
sions~45! we can write

m5
5

123

U0

ER
2
3

2
, ~52!

and find the threshold for Gaussian diffusion at
U0
crit561.5ER , as already mentioned in the previous section.

Note that this number is only valid for an atom with aJg5
1
2→Je5

3
2 Zeemann substructure in a 1D lin' lin laser con-

figuration.
We are now able to revisit Fig. 6 in order to check how

the prediction for the long-time behavior of the momentum
correlation function derived in this section compares with the
full quantum-mechanical treatment of Sec. II C. We have
now not only a justification for at2m fit to the graphs in Fig.
6, but we are also able to relatem to the potential depth. For
the parameters given in this figure we find thatm50.533 for
the shallow potential andm51.96 for the deep one. We have
fitted the proportionality constant~which we cannot calculate
with a semiclassical treatment! and the resulting graphs are
shown as dashed lines in Fig. 6. The good agreement indi-
cates that the diffusion threshold exists in the full quantum-
mechanical system and is not only an artifact of a semiclas-
sical treatment.

C. Distribution of flight distance and Lévy walks

Up to now we have shown that there exists a critical po-
tential depth below which the spatial diffusion constant di-
verges, indicating that the diffusive behavior of our system
shows a transition from Gaussian to anomalous. We already
mentioned in the Introduction that this transition is caused by
a substantial change of the character of the microscopic mo-
tion of the atoms in the molasses. The characterization of this
motion will be the main concern of the rest of this section.

We found so far that the decision between Gaussian and
anomalous diffusion is made by atoms that wander high up
in momentum space, thereby flying over a large distance. It
seems therefore worthwhile to study the distribution of this
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flight distance under the following assumptions:~1! Atoms
with a momentum below a certain thresholdp0 are trapped
in the optical potential wells and do not wander around.~2!
Atoms that~in the course of their random walk! cross this
threshold from below start to wander around in both momen-
tum and position space, until they cross the threshold again
~this time from above! which results in their capture. During
this phase of their random walk the atoms see only the as-
ymptotic part of the force, i.e.,F(p)'2a/p. This situation
is sketched in the upper part of Fig. 7.

This model is a generalization of the Kramers equation
~43! that can be accounted for by replacing

]zF pM W~z,p,t !G→]z@v~p!W~z,p,t !# ~53!

with the velocity function

v~p!5 H0, upu,p0
p/M , upu.p0

, ~54!

where the cutoff for spatial motion occurs whenever the ki-
netic energy is less than the maximum of the potential, i.e.,
p0
2/2M54U0/3. We have used this generalization of the

Kramers equation to calculate spatial diffusion constant fol-
lowing the procedure given in Ref.@6# and found a suppres-
sion of the diffusion by a factor of 2–3 as compared to the
original Kramers equation~43!.

However, in the rest of this section we are only interested
in the distribution of the flight distances and therefore in the
motion of the atoms above the thresholdp0 . This amounts to
calculating the probability of an atom that crosses the thresh-
old p0 at a certain positionz0 to exist through thep0 line for
the first time at pointz, the distance of the flight being

z2z0 . This definition of the distribution of flight distances is
a very appealing one, but leads to a Diracd distribution
aroundz5z0 meaning thatanyparticle immediately crosses
p0 again @22#. In order to get nontrivial results we have to
lower the threshold for the second crossing by a small but
finite value. This is depicted in the lower part of Fig. 7.

As will be shown in Appendix C the distribution of flight
distances~or—as it is mathematically called—the distribu-
tion of first exit points! for our problem has the asymptotic
expansion

pe~z,p,z0 ,p0!;
1

32n

~3n11!n

G~n!

p0
3n2p3n

~z2z0!
n11 ~55!

with a critical parametern that is related to the potential
depth via

n5
a

3D1
1
1

3
5

10

369

U0

ER
1
1

3
. ~56!

We thus find that the distribution of flight distances pos-
sess both first and second moments forn.2 whereas the
second moment ceases to exist belown52. This threshold
coincides with the threshold for Gaussian diffusion predicted
in Sec. III B and one is tempted to assign the onset of
anomalous diffusion to the existence of Le´vy flights in the
atomic trajectories. Indeed, the trajectories show the self-
similarity mentioned in the Introduction, i.e., the domination
by single, rare events that is typical for Le´vy flights. How-
ever, since the system studied here is intrinsically a dynami-
cal one we also have to consider the time it takes the atom to
finish this long flight. We have calculated the parameter
range in which the first and second moment of the distribu-
tion of the flight times exist~see Appendix D! and the result
is shown in Fig. 8.

We find that above the Gaussian diffusion threshold
m51 ~which for the case of aJg5

1
2→Je5

3
2 atom in a 1D

lin' lin laser configuration is atU0
crit561.5ER) both the dis-

tribution of flight distances and of flight durations possess
finite expectation values and variances for these~not inde-
pendent! random variables, leading to a Gaussian type of
diffusion. Below this threshold we find a regime (0,m
,1) for which the distribution of flight times still possess
finite first and second moments, but the distribution of flight
distances has an infinite variance. The anomalous diffusion
in this regime is indeed caused by Le´vy walks that take a
finite time ~i.e., last on a certain time scale!. These flights are
thus very close to what is mathematically defined as Le´vy
flights.

Below this we find a regime (1,n, 4
3) in which also the

variance of the flight times ceases to exist. We thus encoun-
ter the situation in which the atoms show Le´vy walks that are
in some sense longer than the ones mentioned before~in a
fractal sense they are closer to a one-dimensional trajectory
@11#!, but that at the same time last for arbitrarily long times.
This situation corresponds to a Le´vy flight in both space and
time. Interestingly, this regime coincides with the one where
no expectation value for the kinetic energy of the atoms ex-
ists.

Below this regime the expectation value for the flight dis-
tance diverges and eventually also the first moment of the

FIG. 7. Schematic plot illustrating the distribution of flight dis-
tances. The upper plot shows the momentum dependence of the
cooling force. The lower plot shows some stochastic trajectories in
phase space. Atoms are supposed to be trapped~and therefore inert!
as soon as their momentum falls below a certain threshold~indi-
cated by the dashed line! but are allowed to wander in space if their
momentum is above threshold. Note that the starting point of all
trajectories has a slightly larger momentum than the trapping mo-
mentum in order to produce nontrivial first-exit-point distributions.
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flight time ceases to exist leading to a nonexistence of a
stationary momentum distribution~the molasses is heating!.

D. Influence of Doppler forces: Truncation of the Lévy walks

In the last subsection we would like to discuss whether
the Lévy walks found above can be observed experimentally.
As mentioned before the experiment of Ref.@6# is not really
suited for reasons already stated. However, one could think
of an experimental setup very similar to the one used therein
that tries to resolve the non-Gaussian wings~i.e., the Lévy
distribution! of the spatial distribution. This approach has to
face several experimental challenges: firstly, the relative
phase of the various laser beams needs to be stabilized very
precisely in order to produce a time-independent optical po-
tential. Secondly and more important, the experiment must
be set in a detuning regime in which Doppler forces can be
neglected on the time scale of the experiment. This is due to
the following effect. In the previous discussion we have as-
sumed a cooling force that decays asp21 with increasing
momentum. The occurrence of Le´vy walks results exactly
from this behavior. But in a realistic situation a force with
this behavior exists only in a momentum regime, where the
atoms have a negligible Doppler shift. This is an important
assumption made during the adiabatic elimination of the ex-
cited state, which was used throughout this paper. However,
since the long-time behavior of the momentum correlation
function is made by faster and faster particles they will at
some stage violate this assumption and they will start to
experience the strong Doppler force. This force prevents
them from climbing higher in momentum space and there-

fore effectively cuts off the momentum correlation function.
In order to demonstrate this we have numerically calculated
the momentum correlation function of Eq.~36! with the
modified force

FDoppler~p!5F~p!2aDp, ~57!

where the first-order expansion of the Doppler Force is given
by

aDvR5
128

9

\g0
3

G2U0
. ~58!

The result is shown in a double-logarithmic plot in Fig. 9.
The upper solid curve corresponds to neglecting Doppler
forces. After a short transient on the order of approximately
10tR the momentum correlation function reaches its asymp-
totic behaviorct2m, which is indicated by the dashed-dotted
line. The lower curve corresponds to the correlation function
with the first-order Doppler correction included. The initial
transient is more or less identical, however, the correlation
function follows thect2m only for a certain time~which is
for the parameters used in Fig. 9 approximately 100tR). For
larger times the correlation functions drop considerably
faster. This results in the effect that the initially noninte-
grable correlation functions are now rendered integrable. We
recover a Gaussian type of diffusion where the original Le´vy
walks ~which in the idealized semiclassical model caused the
anomalous diffusion! are effectively truncated as soon as
they try to fly beyond a certain critical distance@23#. The
point at which this cutoff is effective and thus the time scale
on which the diffusion is anomalous depends very much on
the detuning that one is using in the experiment, larger de-
tunings leading to a later truncation of the correlation func-
tion and therefore to a larger spatial diffusion constant. But
on the other hand it could be exactly this kind of effect that
might lead to an indirect experiment that is able to detect the
Lévy flights.

Another experiment that one can think of is the~indirect!
detection of the Le´vy flights due to their influence on the

FIG. 8. A map of the various regimes of nonexistence of the first
and second moments of several distribution functions discussed in
the text as a function of the parametera/D1 . The uppermost block
corresponds to the moments of the momentum correlation function
~Sec. III B!. The two block below that corresponds to the distribu-
tion of flight distance and flight times, respectively. The last block
~set apart from the others! gives the moments of the stationary
momentum distribution. The shaded region corresponds to the re-
gime where no variance of the flight distance exists, but the distri-
bution of flight times possesses both first and second moments.

FIG. 9. Numerical calculation of the momentum correlation
function without~1! and with~2! Doppler correction Eq.~57!. The
dash-dotted line gives the asymptotic behavior as calculated in Sec.
III B. Parameters:U0550ER , g0510vR , aD51025vR

21 .
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narrow central feature in the weak probe absorption spectrum
due to recoil-induced resonances@24#.

IV. TWO-DIMENSIONAL OPTICAL LATTICES

In this section we will present a semiclassical examination
of two two-dimensional laser configurations in order to study
whether the Le´vy walks that we found in the one-
dimensional case also show up in higher-dimensional molas-
ses. As we will show this behavior does indeed exist but
there are also some new features depending on the laser
fields used to set up the optical molasses These new effects
compete with the Le´vy walks and can in certain cases~as,
e.g., in the second case studied below! overpower them and
lead to a completely new type of long-time behavior.

These new effects come from a property that is common
to all higher-dimensional molasses: The laser field has no
rotational symmetry and therefore the light force which the
atom experiences depends crucially on the direction in which
the atom propagates. This can lead to a very different behav-
ior for particles that propagate into a certain direction as
compared to atoms that propagate into a slightly different
direction. This anisotropy of the atomic motion along certain
channels can for some geometries establish an important loss
mechanism for optical molasses in higher dimensions.

The master equation we consider for two-dimensional Si-
syphus cooling can be written in the form~excited states
have been adiabatically eliminated!

ṙgg52
i

\
~heffrgg2rggheff

† !1 (
s,s850,6

g0

2pE dVnNss8~n!

3@Bs~ x̂!e2 ikn• x̂#rgg@Bs8
†

~ x̂!eikn• x̂#, ~59!

with effective Hamiltonian

heff[
P̂2

2M
1

\s0
2 S D2 i

G

2 DD~ x̂!D†~ x̂! ~60!

and angular distributions for the spontaneously emitted pho-
tons

Nss8~n!5 3
4 ~dss82ns* ns8! ~61!

with n05cos~u! and n657~1/A2!sin~u!e6 if. We consider
electric fields with a positive frequency part of the form

E~x!
~1 !5E@S~x!e11C~x!e2#. ~62!

This guarantees that no ground-state coherences are build up
in a 1

2→ 3
2 optical transition. These configurations are thus

assumed to consist of laser fields with polarizations concen-
trated in a plane perpendicular to some given directione0 .
We entirely restrict our discussion on a12→ 3

2 optical transi-
tion in the following. The optical potentialU(x) can be writ-
ten in the form

U~x!52 1
3U0$u1&^1u1u2&^2u%@ uS~x!u21uC~x!u2#

2 2
3U0$u1&^1iS~x!u21u2&^2iC~x!u2%. ~63!

After transforming the master equation into the Wigner pic-
ture, and subsequent expansion in orders of\k ~up to second

order!, we get a bipotential equation for the two components
of the Wigner operator~the ground-state coherences vanish!

F ]

]t
1

p

M
•“xG f6~x,p,t !5^6uL~0!Wgg~x,p,t !u6&

1^6uL~1!Wgg~x,p,t !u6&

1^6uL~2!Wgg~x,p,t !u6&,

~64!

with f6(x,p,t) denoting the diagonal components of the
Wigner operator

f6~x,p,t !5^6uWgg~x,p,t !u6&. ~65!

The explicit form for the right-hand side of Eq.~64! for
electric fields of the form Eq.~62! can be found in Appendix
E. For semiclassical center-of-mass motion Eq.~64! can be
turned into a Fokker-Planck equation for the Wigner func-
tion W(x,p,t) by adiabatic elimination of the internal de-
grees of freedom@2#.

A. Two crossed linear polarized laser beams

The first laser configuration we consider consists of two
cross linear polarized lasers propagating in thex and y di-
rections, respectively with a phase differencef. This con-
figuration was used in the 2D experiments of Ref.@16#. The
positive frequency part of the electric field is given by

E~1 !~x!52E @cos~kx!ey1eifcos~ky!ex#. ~66!

The atomic motion is defined with respect to the optical bi-
potential

U6~x,y!52
8U0

3
@cos2~kx!1 cos2~ky!

6sin~f!cos~kx!cos~ky!#. ~67!

As discussed in Ref.@16# the spatial pattern of the light po-
larization is analogous to the one-dimensional lin' lin molas-
ses discussed in the previous sections if one chooses a phase
shift of f590°. In this case there exists a 2D array of
straight lines parallel to thez axis where the light exhibits
circular polarization with alternating sign and continuously
changes to linear polarization when one moves away from
these locations. We will therefore restrict the following
analysis to this case. The above-barrier motion is fully deter-
mined by the semiclassical theory~we have again neglected
the Doppler cooling mechanism in the adiabatic elimination
of the excited states!:
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S ]

]t
1

p

m
•

]

]xDW~x,p,t !52
]

]p
@F~p!W~x,p,t !#

1 (
i5x,y

]2

]pi
2 @DiiW~x,p,t !#.

~68!

In the one-dimensional case we have observed that the char-
acter of the above-barrier motion, which dominates the spa-
tial diffusion of an initially localized wave packet, is entirely
determined by the large-momentum behavior of the semi-
classical cooling force. It is therefore natural to calculate a
similar expansion of the force in two dimensions, keeping in
mind anisotropic effects.

An expansion in powers of 1/v reveals the leading behav-
ior

F~v!;2
32g0U0

27 H ex1ey
vx1vy

1
ex2ey
vx2vy

J ~69!

if the atomic velocity isnot in the vicinity of the channels
vy5vx andvy52vx . This expansion of the force for atoms
with large atomic velocities shows an anisotropy with a di-
vergence as one goes towards the channelsvy5vx and
vy52vx , which are—in contrast to the next case—not
aligned with the incident laser beams but lay symmetrically
in between them~cf. Fig. 10!. In the vicinity of the channel
kuvy2vxu<g0 the semiclassical force can be expanded for
kuvu@g0 ,

F~v!;2
32g0U0

27 H ex2ey
vx2vy

k2~vx2vy!
2

256g0
2/811k2~vx2vy!

2 1
ex1ey
vx1vy

F12
128g0

2/81

256g0
2/811k2~vx2vy!

2G J , ~70!

which clearly shows that the force in the channel~whose
width is proportional tog0 /k) is always cooling, i.e., is
pointing towards the originuvu50. But it decreases at the
same time with the inverse velocity along the channel We
therefore encounter the following behavior for atoms above
barrier in this configuration: High velocity atoms are cooled
and at the same time attracted towards the four channels.
Once they reach these channels they feel a perpendicular
force component@first term in ~70!# that depends only on
vx2vy , i.e., on the distance to the channel. In contrast to
that the force parallel to the channel@second line in~70!#
depends on the norm of the velocity, i.e., on the distance
along the channel. The atoms are thus strongly confined to a
quasi-one-dimensional subspace along which they feel the
force

F~v!;2
8A2g0U0

27

ex1ey
uvu

52b
ex1ey

uvu
. ~71!

This situation is completely analogous to the one-
dimensional case as discussed in the previous sections. The
force along the four channels allows~due to its 1/uvu depen-
dence! the existence of Le´vy walks for sufficiently shallow
optical potentials. Note that these walks lead due to the con-
finement of the velocity to the channels to almost straight
trajectories of the atom in position space.

In Fig. 11 we present the numerical result for the station-
ary momentum distribution. The four channels are clearly
visible. Note that the width of the channels is independent of
distance fromuvu50 and that the distribution decreases along
these channels.

The numerical results were obtained by Monte Carlo
simulation of the semiclassical bipotential motion~see Ref.
@17#!.

In order to study the threshold for Gaussian diffusion we
utilize the results derived in Sec. III. The diffusion matrix for
high velocities can be approximated by a diagonal matrix
with constant coefficients

Dxx5
97g0~\k!2

90
, Dyy5

91g0~\k!2

90
, ~72!

which together with~71! allows us to calculate the critical
potential depth in complete analogy to the 1D case. We find

n5
2b

3~Dxx1Dyy!
1
1

3
5
10A2
47

U0

ER
1
1

3
, ~73!

FIG. 10. Vector plot of the semiclassical force in the four-beam
configuration according to the expansion~69!. The magnified el-
lipses depict the force close to the channels~70!. The gray arrows
indicate the directions of the incident laser beams.
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from which we deduce that Le´vy flights exist for potential
depths belowU0

crit516.62ER . Note that for potential depths
belowU0<3.32ER the distribution of the momentum along
the channels is not normalizable and therefore these channels
play a role very similar to the escape channels of the three-
beam configuration, which we discuss in the following sub-
section.

B. Three-beam configuration

As in the 2D experiments of Ref.@15#, the laser field
studied now is composed of three traveling plane waves of
equal strength, with coplanar wave vectors, rotated by 120°
with respect to each other, and linear polarizations in the
common plane. This setup has the advantage that relative
phases are irrelevant~even though a fluctuating phase leads
to a spatial motion of the optical potential as mentioned be-
fore!. The positive frequency part of the electric field is
given by

E~1 !~x!5E0Feyeik1•x1SA32 ex2
1

2
eyD eik2•x

1S 2
A3
2
ex2

1

2
eyD eik3•xG , ~74!

with wave vectors

k15kex , k252
k

2
ex2

A3k
2

ey ,

k352
k

2
ex1

A3k
2

ey . ~75!

For small saturations0!1 we can again derive a Fokker-
Planck equation for the above-barrier motion, which is now
defined with respect to the optical bipotential

U6~x,y!52
4

3
U0H F11sin2SA32 kyD

2cosS 32 kxD cosSA32 kyD G
6

A3
2 FcosS 32 kxD sinSA32 kyD

2sinSA32 kyD cosSA32 kyD G J . ~76!

The nondiagonal terms in the diffusion matrix do not enter
the equation for the above-barrier motion and the diagonal
elements are dominated by the velocity-independent coeffi-
cients

Dxx5
183

90
g0~\k!2, Dyy5

147

90
g0~\k!2. ~77!

In analogy to the previous configuration we expand the semi-
classical cooling force in powers of 1/v,

F~v!;2
2U0g0

9 Fey 1

2vy
1S A3

2
ex2

1

2
eyD 1

A3vx2vy

1S A3
2
ex1

1

2
eyD 1

A3vx1vy
G , ~78!

which can be written in the form

F~v!;2¹vV~v! ~79!

by defining a potential

V~vx ,vy!5
U0g0

9
ln~ uvyuu3vx

22vy
2u!. ~80!

A vector plot of this force is shown in the main plot of Fig.
12. This expansion of the force for atoms with large atomic
velocities shows again an anisotropy, but now the divergence
occurs along the three lines that coincide with the three di-
rections of the laser beams—in contrast to the previous case.
This indicates that the approximation used to derive~78!
breaks down along these channels and hence we have left
these regions blank in the plot.

A striking feature of the vector field depicted in Fig. 12 is
that the momentum of an atom with large energy is drawn
towards the center due to a Sisyphus cooling mechanism, but
is rotated at the same time towards six channels~i.e., the
star-shaped blank region in the main plot of Fig. 12!. The
atom is therefore not cooled all the way down to small mo-
menta but it rather attracted to the nearest channel. Accord-
ing to approximation~78! the component of the force parallel
to the six channels vanishes and therefore the atom does not
feel a cooling force once it reaches the channel. However,
the force perpendicular to the channels diverges and there-
fore we have to use a different expansion in order to study
the behavior of the force close to these channels.

In order to clarify this point we again expand the cooling
force in the vicinity of the channels. Let us consider the

FIG. 11. Stationary momentum distribution in the four-beam
optical molasses for the parametersU0540/3ER and
g0516/3vR .
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regime in velocity space that is characterized bykuvyu<g0
andkuvu@g0 . Along the direction of the laser beamk1 we
observe a position-dependent alignment~i.e., a difference in
the populations of the two ground states! that gives rise to a
net force along the channelk1:

F~v!;exg0kS 51

61311458~A3kvy /2g0!
2D

2ey
4U0k

3 S ~27!2A3kvy/2g0

61311458~A3kvy/2g0!
2D . ~81!

The behavior of this force is magnified in the ellipses in Fig.
12. Atoms with large negativevx components feel a light
pressure force pointing to the right resulting in a total force
that pushes the atomic momentum towardsuvu50 depicted in
the left magnified ellipses. They are therefore cooled down
to small atomic velocities, whereas atoms with positivevx
components are collected into the escape channelvy50 and
then accelerated to very high atomic velocities~right ellipsis
in Fig. 12!. These atoms rapidly escape from the molasses.
Hence the nameescapechannels@25#. It is clear that no
stationary momentum distribution exists~unless we include
Doppler effects! and therefore no stationary spatial diffusion
behavior is reached in contrast to the channels of the previ-
ously considered crossed-beam configuration.

Figure 13 shows the numerical result for the quasistation-
ary momentum distribution~atoms that leave the simulation
grid are fed back atuvu50) in the three-beam molasses. Note
the existence of three escape channels pointing into the di-
rections of the incident laser beams as predicted by the semi-
classical investigation above. For a related discussion of the
anisotropy aspects in this laser configuration we refer to Ref.
@25#.

The two different models show that Le´vy-flight behavior
is not limited to one-dimensional setups. However, due to the
inherent anisotropy of the two- or higher-dimensional setup a
variety of other effects exist~such as, e.g., the escape chan-

nels of the three-beam configuration! that compete with the
Lévy flights. We have demonstrated that these effects can be
studied via very simple semiclassical methods. The method-
ology presented in this paper has therefore applications to a
larger class of problems than only the spatial diffusion.

V. CONCLUSION

We have studied the spatial motion of~noninteracting!
atoms in a one-dimensional optical lattice provided by two
counterpropagating cross-linearly polarized laser beams. The
first step in this study was performed with anab initio
quantum-mechanical treatment. We used a wave-function
Monte Carlo technique with localizing quantum jumps in
order to calculate the dependence of the spatial diffusion
constant on system parameters and found that the quantum
treatment predicts diffusion constants that are considerably
lower than the ones obtained from semiclassical methods@6#.
We also used the standard Monte Carlo technique in order to
calculate momentum correlation functions of the master
equation. We found that the momentum correlation function
develops slowly decaying tails as the depth of the potential
wells of the optical molasses is decreased. This indicates that
there exist a certain threshold at which the spatial diffusion
switches from Gaussian to anomalous behavior. In a second
part we have studied this transition by using a simple semi-
classical approach.

Our analysis showed that the microscopic motion of the
atom in the molasses is characterized by two very different
‘‘states.’’ Firstly, the atom can be trapped in the potential
wells and is then inert. Secondly, the energy of the atom can
be above the potential barrier in which case the atom is able
to move over many wavelengths. Transitions between these
two states are stochastically induced by the cooling force
~slowing of fast atoms! and its fluctuations~heating due to
randomness of spontaneous emission and fluctuations of the
atomic dipole moment!.

The character of the diffusion depends strongly on the
distribution of the flight distances and their variance as well
as on the time it takes to complete them. We found that for
potential depths above a critical value these distributions
have both an expectation and a variance and the resulting
motion of the atoms is thus a Gaussian diffusion. For poten-
tial depths below the critical value we found that the vari-
ance of the distribution of flight distances ceases to exist
~while the distribution of flight times still possesses both first
and second moments!, leading to the onset of anomalous
diffusion. This is related to the existence of so-called Le´vy
walks in the atomic trajectories. We predicted the above-
mentioned critical potential depth for aJg5

1
2→Je5

3
2 transi-

tion in a 1D lin' lin laser configuration to be
U0
crit561.5ER . We have also studied a two-dimensional la-

ser configuration and have found that this system also shows
Lévy walks, but the threshold for Gaussian diffusion is con-
siderably lower, namely, atU0

crit516.62ER .
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FIG. 12. Vector plot of the semiclassical force in the three-beam
configuration according to the expansion~78!. The magnified el-
lipses depict the force close to the channels~81!. The gray arrows
indicate the directions of the incident laser beams.
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APPENDIX A: QMC SIMULATION OF THE MOMENTUM
CORRELATION FUNCTION

In this appendix we will show how the momentum corre-
lation function can be calculated within a quantum Monte
Carlo wave function approach.

To do this we follow the procedure given in Ref.@7# and
define the functional

Sf~ t ![E
0

t

dt f ~t!@^ p̂~t! p̂~ t !&1^ p̂~ t ! p̂~t!&#. ~A1!

The momentum correlation function follows from the quan-
tum regression theorem:

^ p̂~t! p̂~ t !&5trsp̂e
L~ t2t!@r~t! p̂# for t,t,

^ p̂~ t ! p̂~t!&5trsp̂e
L~ t2t!@ p̂r~t!# for t,t, ~A2!

whereL is the master operator andr(t) the density operator
according to~11!. We can now rewrite~A1! as

Sf~ t !5trsp̂r1~ t ! ~A3!

with

r1~ t !5E
0

t

dt f ~t!eL~ t2t!@r~t! p̂1 p̂r~t!#. ~A4!

The two operatorsr(t) andr1(t) obey the coupled equations

ṙ~ t !5Lr~ t !,

ṙ1~ t !5Lr1~ t !1 f ~ t !@r~ t ! p̂1 p̂r~ t !#. ~A5!

Following the arguments given in Ref.@18#, r1(t) can be
simulated by propagating the pair of wave functions

i
d

dt
uF~ t !&5heffuF~ t !&,

i
d

dt
uC~ t !&5heffuC~ t !&1 i f ~ t ! p̂uF~ t !&, ~A6!

where uF(t)& is the stochastic system wave function that
gives—via stochastic averaging—the solution of the master
equation~11!, i.e.,

r~ t !5 ^̂ uF~ t !&^F~ t !u/iF~ t !i2&&. ~A7!

A solution of ~A5! can now be calculated by propagating
uF(t)& and uC(t)& according to ~A6! between quantum
jumps who are dictated by the system wave function
uF(t)&. Both wave functions experience the same quantum
jump, but the renormalization after this jump is given by the
system wave function, i.e., after determining the quantum
jump time and the decay channel in the usual way@18# we
replaceuF(t)& by

uF~ t1!&5e2 iuẑBs~z!uF~ t2!&/ie2 iuẑBs~ ẑ!uF~ t2!&i
~A8!

and uC(t)& by

uC~ t1!&5e2 iuẑBs~ ẑ!uC~ t2!&/ie2 iuẑBs~ ẑ!uF~ t2!&i .
~A9!

An ensemble average over all possible~or in practice suffi-
ciently many! trajectories gives

r1~ t !5 ^̂ ~ uF~ t !&^C~ t !u1uC~ t !&^F~ t !u!/iF~ t !i2&&.
~A10!

A convenient choice for the functionf in ~A1! is
f (t)5D(t2t0) since we are directly interested in the mo-
mentum correlation function@cf. ~A1!#. In this case the wave
functions uF(t)& and uC(t)& are decoupled for timestÞt0
and the effect off (t) is to perturb the parasitic wavefunction
uC(t)& at time t0 by applying the momentum operatorp̂ to
it. This choice off (t) has therefore the convenient property
that we can use the same propagation algorithm for both
wave functions. Prior tot0 these wave functions are identi-
cal, att0 the parasite is perturbed, and aftert0 the two wave
functions evolve independently.

Finally, the momentum correlation function can now be
simulated via

cp~ t;t0!5trsp̂r1~ t !5 KK ^C~ t !u p̂uF~ t !&1^F~ t !u p̂uC~ t !&
iF~ t !i2 LL .

~A11!

We remark that even though it is possible to use the same
approach as in Sec. II B, i.e., the method of localizing quan-
tum jumps, in order to explicitly calculate the trajectories
uF(t)& it is computationally more efficient to perform these
calculations with a periodic wave function. For more details
on this see Ref.@7#.

APPENDIX B: LONG-TIME LIMIT OF THE MOMENTUM
CORRELATION FUNCTION

In this appendix we give the asymptotic expansion of the
momentum correlation function of the Fokker-Planck equa-
tion ~46! with the force~49! for large times. To achieve this
we will use an eigenfunction method described in Ref.@13#.

The Fokker-Planck equation considered here is of the
form

FIG. 13. Quasistationary momentum distribution calculated via
Monte Carlo simulation of the 2D bipotential Fokker-Planck equa-
tion. Particles that left the grid through the escape channels were
fed back at upu50. The parameters areU05200/3ER and
g0515/2vR .
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] tW~p,t !52]p@F~p!W~p,t !#1D]p
2W~p,t !, ~B1!

with a forceF(p) that is antisymmetric inp and that decays
as 2a/p above a certain thresholdpa . We can assume
a5pa51 since we can always use a scalingp̄5p/pa ,
t 5̄ta/pa

2 in order to achieve this with respect to the scaled
variables. The scaled diffusion coefficient is then given by
D̄5D/a. To be more precise, we assume the force to be

F~p!5 H F̃~p!, upu,1
21/p, upu.1,

~B2!

whereF̃(p) is some not explicitly specified but antisymmet-
ric function ofp. In the following we will denote a quantity
in the regionupu,1 with a tilde.

With the definitionF(p)5 f (p)/D where

f ~p!52E
0

p

dzF~z!, ~B3!

we can write the stationary solution of~B1! as

Wst~p!5Ne2F~p!, ~B4!

whereN is a normalization constant. Using the explicit form
~B2! we get

F~p!5H F̃~p!, upu,1

~1/D !lnupu1F̃~1!, upu,1. ~B5!

From this equation and~B4! we see that the stationary solu-
tion is proportional toupu21/D for upu.1, which necessitates
D, 1

3 in order to ensure the convergence of*dp p2Wst(p).
This is in order to guarantee the existence of the stationary
momentum correlation function, which is defined by

cp~ t ![^̂ p~ t !p~0!&&st5E dp peLtpWst~p!. ~B6!

Here, ^̂ &&st represents a stochastic average in stationary state
andeLt formally denotes the propagator for~B1!.

We can get an explicit formula for this propagator in
terms of eigenfunctions of the Fokker-Planck equation by
transforming~B1! into an equivalent Schro¨dinger equation
@13#. The eigenvalue problem then reads

HcE~p![@2D]p
21Vs~p!#cE~p!5EcE~p!, ~B7!

which is equivalent to the eigenvalue problem for a particle
with massM5(2D)21 in the potential

Vs~p!5
1

4D
F2~p!1

1

2
F8~p!. ~B8!

Throughout this section a prime denotes differentiation with
respect top. In our case we get

Vs~p!5 H Ṽs~p!, upu,1
g/p2, upu.1,

~B9!

whereg51/4D11/2. The potential~B9! is symmetric due to
the antisymmetry of the force and therefore the eigenfunc-
tions can be chosen to be real and to have a certain parity.

These eigenfunctions form a continuum with energiesE>0
since the potential goes to zero asp→`. We will thus use
the notation cE(p)[ck(p) for the antisymmetric and
wk(p) for the symmetric eigenfunctions with wave vectors
k>0.

The explicit form of the odd eigenfunctions—we will
only need those later—is

ck~p!5cH c̃k~p!, upu,1
Ap@c1Jr~kp!1c2Yr~kp!#, upu.1,

~B10!

whereJr andYr denote the Bessel functions of the first and
second kind of orderr5A1/41g/D, and c̃k(p) is the odd
~and real! solution to ~B7! in the regionupu,1, which we
make unique by demanding limp→1c̃k(p)51. The normal-
ization constantc will later be calculated explicitly. The cor-
responding eigenvalues areEk5Dk2. The functionsc1,2 can
be calculated by matching the eigenfunctions and their de-
rivatives atp51. We get

c1~k!52
p

2
$@v~k!2 1

2 #Yr~k!2kYr8~k!%,

c2~k!5
p

2
$@v~k!2 1

2 #Jr~k!2kJr8~k!%, ~B11!

where we definedv(k)5c̃k8(1)5v01v1k1O(k2).
The propagator for the Fokker-Planck equation can now

be related to the propagator for the equivalent Schro¨dinger
problemi ] tC5HC with imaginary time via

eLt5e2F/2e2HteF/2. ~B12!

Using this in conjunction with the completeness relation

E
0

`

dkck~p!ck~ p̄!1E
0

`

dkwk~p!wk~ p̄!5D~p2 p̄!,

~B13!

we can write the correlation function as

cp~ t !5NE
0

`

dk G~k!2e2Ekt ~B14!

with

G~k!5E dpck~p!pe2F~p!/2. ~B15!

Note that ~B15! only involves the odd eigenfunctions
ck(p), which is due to the fact thatpWst(p) is an odd func-
tion itself. Since we are interested in the long-time behavior
of ~B14! it is only necessary to know the functionG(k) in
the vicinity of k50. In order to find this behavior we expand
c1,2(k) in powers ofk:
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c1~k!5
G~r!

2 S 2kD
r

@r2 1
21v01O~k!#,

c2~k!5
p

2G~r11! S k2D
r

@2r2 1
21v01O~k!#. ~B16!

The eigenfunctions~B10! are necessarily orthogonal, but
have yet to be normalized. The normalization constantc is
given by

c5S k/2

c1
21c2

2D 1/25 2

G~r! S k2D r11/2S 1

r21/21v0
1O~k! D ,

~B17!

which guarantees the correct behaviorck(p) →
p→`

p21/2sin(kp2fk)with some phasefk . The functionG(k)
can now be evaluated to give

G~k!5cE
21

1

dpc̃k~p!pe2F̃~p!/212cE
1

`

dpAp @c1Jr~kp!

1c2Yr~kp!#p
e2F̃~1!/2

p1/2D
. ~B18!

The first integral converges to a finite value ask→0 and can
be neglected in comparison with the second one~see below!,
which can be written as

2ce2F̃~1!/2Fc1E
1

`

dp p2mJr~kp!1c2E
1

`

dpp2mYr~kp!G ,
~B19!

where we definedm51/2D23/25r22. The asymptotic be-
havior of the first integral can be found via the transforma-
tion y5kp:

I ~k!5E
1

`

dp p2mJr~kp!5km21E
k

`

dy y2mJr~y!.

~B20!

The integral on the right-hand side exists in the limitk→0
and converges to 22m21Ap/G(r21/2) and therefore

I ~k!;
Ap

2m11G~r21/2!
km21. ~B21!

Using this in conjunction with~B16! gives the asymptotic
behavior

c1~k!I ~k!;Ap~r21/21v0!
G~r!

G~r21/2!
k23. ~B22!

The asymptotic behavior of the second integral in~B19!

I~k!5E
1

`

dpp2mYr~kp!5km21E
k

`

dyy2mYr~y!

~B23!

can be calculated in a similar way to give

c2~k!I~k!;H Apsin@~m11!p#G~m21/2!@r11/21v0#
22rG~r11!

k2r23, r, 3
2

v02r21/2

2r~322r!
, r. 3

2 .

~B24!

Therefore the asymptotic behavior ofG(k) is given by

G~k!;
Ape2F̃~1!/2

2r23/2G~r21/2!
km21/2, ~B25!

and therefore the asymptotic expansion of the momentum
correlation function is given by

cp~ t !;
Wst~1!p~2m23!m

4m11m~m11!G~m12!
t2m. ~B26!

APPENDIX C: DISTRIBUTION OF EXIT POINTS FOR
THE KRAMERS EQUATION

In this section we will give a derivation of the distribution
of exit times following the method of Ref.@22#. We are
considering the following Kramers equation:

] tW~ z̄,p̄,t !1] z̄

p̄

M
W~ z̄,p̄,t !

52] p̄S 2
a

p̄
W~ z̄,p̄,t ! D1D̄] p̄

2W~ z̄,p̄,t !, ~C1!

where the force is inversely proportional to the momentum.
Using the scaling

W~ z̄,p̄,t !5w~ z̄M /Aa,p̄/Aa,t !5w~z,p,t ! ~C2!

we get with the definitionD5D̄/a:

] tw~z,p,t !1]zpw~z,p,t !

52]pS 2
1

p
w~z,p,t ! D1D]p

2w~z,p,t !. ~C3!

3426 53S. MARKSTEINER, K. ELLINGER, AND P. ZOLLER



In order to assure normalizability of the stationary solution,
which goes asp21/D, we needD.1. We start with the par-
ticle prepared in a deterministic state (z0 ,p0) at time t50
and look for the probability densitype(z,p,z0 ,p0) for exit-
ing through the line$(z,p)uzP(2`,`)% ~cf. Fig. 7!. This
will give us the distribution of distances the particle travels
until its momentum falls below a certain thresholdp. Ac-
cording to Ref.@22# the distribution function satisfies the
equation

1

p0
]p0pe~z,p,z0 ,p0!5p0]z0pe~z,p,z0 ,p0!

1D]p0
2 pe~z,p,z0 ,p0!, ~C4!

with the boundary condition

pe~z,p,z0 ,p05p!5d~z02z!, ~C5!

lim
p0→`

pe~z,p,z0 ,p0!50. ~C6!

This problem can be solved using a separation ansatz. By
using

n5
1

3D
1
1

3
.
2

3
, ~C7!

we can write the solution as

pe~z,p,z0 ,p0!5E
2`

`

dl
eil~z02z!

2p

p0
3n/2Hn

~1 !
„zp0~l!…

p3n/2Hn
~1 !

„zp~l!…
,

~C8!

whereHn
(1)(z) is the Hankel function with the asymptotic

behavior limz→`Hn
(1)(z)5A2/(pz)ei (z2np/22p/4), and

zz(l)52Aulu/Dz3/2ei @arg(l)/21p/4#/3 are V-shaped paths
in the upper complex plane.

Using the series expansion for the Hankel functions

Hn
~1 !~z!5Jn~z!1 iYn~z!5

i

sin~np! S 2zD nF (
k50

`
~21!k11

k!G~k2n11! S z2D 2k1S z2i D 2n

(
k50

`
~21!k

k!G~k1n11! S z2D 2kG , ~C9!

it is easy to show that the functionf (l)5Hn
(1)

„zp0(l)…/Hn
(1)

„zp(l)… has a series expansion

f ~l!5s1~l!1lns2~l!1l2ns3~l!1 . . . , ~C10!

with analytical functionssn(l) whose convergence radius is equal to the distance of the origin to the closest zero of
Hn
(1)

„zp(l)…. We therefore find fornnÞ1,2,3, . . . a branch cut of thelnn function, and the corresponding discontinuity of a
sufficiently large derivative off (l). When taking the Fourier transform off (l) according to Eq.~C8! these discontinuities
produce slowly decaying parts of which then51 term is the dominant one. Using

lim
a→01

E
2`

`

dl lne2aulue2 izl5H G~n11!

zn11 @e2 i ~n11!p/21ei ~3n11!p/2#, z.0

0, z,0,

we get forz→` the asymptotic expansion

pe~z,p,z0 ,p0!;
1

32n

~3n11!n

G~n!

p0
3n2p3n

~z2z0!
n11 . ~C11!

APPENDIX D: FIRST AND SECOND MOMENTS OF THE
DISTRIBUTION OF FLIGHT TIMES FOR THE

KRAMERS EQUATION

In this section we will calculate the first and second mo-
ments for the flight times of the above-barrier flights dis-
cussed in the previous Appendix.

The starting point is again the Fokker-Planck equation
~B1! with the force~B2!. Denoting the operator that acts on
the right-hand side of Eq.~B1! onW(p,t) with L(p), we
can calculate the first two moments of the distribution of
flight times ~or mathematically the moments of the first re-
turn time! from the hierarchy of equations@13#:

L~ p̃!w1~ p̃,p0!52d~ p̃2p0!,

L~ p̃!w2~ p̃,p0!522w1~ p̃,p0!. ~D1!

The boundary condition for the functionsw1,2 are

w1,2~ p̃5p,p0!50, limp̃→`w1,2~ p̃,p0!50. ~D2!

The first and second moments of the distribution of flight
times when departing fromp0 and arriving atp ~see Fig. 7!,
T1(p0) andT2(p0), can then be calculated via

Tn~p0!5E
p

`

dp̃wn~ p̃,p0!. ~D3!

Using the explicit form of the Fokker-Planck equation~B1!
and the definition~C7! we can write the solution for the first
equation in~D1! as
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w1~ p̃,p0!5
p̃

11D H ~12p3np̃23n!, p̃,p0
~p0

3n2p3n! p̃23n, p̃.p0.
~D4!

From the behavior of this solution for largep̃ it is easy to see
that the first momentumT1(p0) exists forn. 2

3.
The functionw1( p̃,p0) enters the equation forw2( p̃,p0)

as an inhomogeneity and it is straightforward to check that
the largep̃ behavior ofw2( p̃,p0) is therefore proportional to

p˜23(n21). Thus, the second momentT2(p0) exists if n
. 4

3 .

APPENDIX E: TWO-DIMENSIONAL OPTICAL LATTICES

After transforming the master equation~59! into the
Wigner picture, and subsequent expansion in orders of\k
~up to second order!, we get a bipotential equation for the
two components of the Wigner operator

F ]

]t
1

p

M
•“xG f6~x,p,t !5^6uL~0!Wgg~x,p,t !u6&1^6uL~1!Wgg~x,p,t !u6&1^6uL~2!Wgg~x,p,t !u6&. ~E1!

This appendix summarizes the terms on the right-hand side of Eq.~E1! for electric fields of the form~62!.
The zeroth-order term determines the transition rates between the optical potentials and can be written in the form

^6uL~0!Wgg~x,p,t !u6&57 4
9g0$uC~x!u2f1~x,p,t !2uS~x!u2f2~x,p,t !%. ~E2!

The mechanical light force corresponds to the first-order term in the\k expansion:

^6uL~1!Wgg~x,p,t !u6&52
1

3
U0“xS 3uS~x!u21uC~x!u2

3uC~x!u21uS~x!u2D •“pf6~x,p,t !1g0S i“xS* ~x!S~x!2 iS* ~x!“xS~x!

1
9 @ i“xS* ~x!S~x!2 iS* ~x!“xS~x!#

D
•“pf6~x,p,t !1g0S 1

9 @ i“xC* ~x!C~x!2 iC* ~x!2“xC~x!#

i“xC* ~x!C~x!2 iC* ~x!“xC~x!
D“p• f6~x,p,t !

1
2g0

9 S i“xS* ~x!S~x!2 iS* ~x!“xS~x!

i“xC* ~x!C~x!2 iC* ~x!“xC~x!D“p• f7~x,p,t !. ~E3!

The last of these terms in Eq.~E3! gives rise to a deterministic momentum change when the atom is optically pumped from
one optical potential into the other. The intrawell and interwell ‘‘diffusion’’~associated with a fuzzy jump between the optical
potentials! is determined by the second-order term, which is not necessarily positive definite everywhere. These negativities
are quantum features of the atomic center-of-mass motion. A thorough discussion of this point can be found in Ref.@17#
~numerically we truncate this negative parts by setting the ‘‘diffusion’’ equal to zero in these negative regimes, thus ‘‘slightly’’
overestimating the heating to some extent!:

^6uL~2!Wgg~x,p,t !u6&5
g0

6

]2

]xi]xj
S 3uS~x!u21uC~x!u2

3uC~x!u21uS~x!u2D 12 ]2

]pi]pj
f6~x,p,t !1g0

2

9
k11
i j S 9uS~x!u2

uS~x!u2 D 12 ]2

]pi]pj
f6~x,p,t !

1g0

2

9
k22
i j S uC~x!u2

9uC~x!u2D 12 ]2

]pi]pj
f6~x,p,t !1g0

4

9
k00
i j S uS~x!u2

uC~x!u2D 12 ]2

]pi]pj
f7~x,p,t !

1g0

2

3 S k12
i j S~x!C~x!*1c.c.

k12
i j S~x!C~x!*1c.c.

D 12 ]2

]pi]pj
f6~x,p,t !1

g0

2

1

2

]2

]pi]pj
f6~x,p,t !

3H S 2
]2

]xi]xj
@S* ~x!#S~x!2S* ~x!

]2

]xi]xj
S~x!

2
1

9

]2

]xi]xj
@S* ~x!#S~x!2

1

9
S* ~x!

]2

]xi]xj
S~x!

D
1S ]

]xi
@S* ~x!#

]

]xj
S~x!

]

]xj
@S* ~x!#

]

]xi
S~x!

1

9

]

]xi
@S* ~x!#

]

]xj
S~x!

1

9

]

]xj
@S* ~x!#

]

]xi
S~x!

D J 1
g0

2

1

2

]2

]pi]pj
f6~x,p,t !
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3H S 2
1

9

]2

]xi]xj
@C* ~x!#C~x!2

1

9
C* (x)

]2

]xi]xj
C~x!

2
]2

]xi]xj
@C* ~x!#C~x!2C* ~x!

]2

]xi]xj
C~x!

D
1S 1

9

]

]xi
@C* ~x!#

]

]xj
C~x!1

1

9

]

]xj
@C* ~x!#

]

]xi
C~x!

]

]xi
@C* ~x!#

]

]xj
C~x!1

]

]xj
@C* ~x!#

]

]xi
C~x!

D J 1
g0

9

1

2

]2

]pi]pj
f7~x,p,t !

3H S 2
]2

]xi]xj
@S* ~x!#S~x!2S* ~x!

]2

]xi]xj
S~x!

2
]2

]xi]xj
@C* ~x!#C~x!2C* ~x!

]2

]xi]xj
C~x!

D
1S ]

]xi
@S* ~x!#

]

]xj
S~x!1

]

]xj
@S* ~x!#

]

]xi
S~x!

]

]xi
@C* ~x!#

]

]xj
C~x!1

]

]xj
@C* ~x!#

]

]xi
C~x!

D J . ~E4!

The spatial variances of spontaneous photon emissionks
i j are given by

k66
xx 5k6

yy5
3k2

10
, k00

xx5k0
yy5

4k2

10
,

kss
xy 50 for s50,6,

k67
xx 5

k2

10
, k67

yy 52
k2

10
,

k12
xy 5k21

xy 52
ik2

10
, ~E5!

respectively.
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