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We study the coherent scattering of weak light from a system of cooled bosonic atoms in a trap. We derive
and discuss in detail the scattering equation for such a process that describes multiple scatterings from different
atoms. Our theory accounts for atom-atom interactions and determines the density profile of the atomic fields
from the self-consistent Bogoliubov-Hartree method. We present two kinds of analytic solutions to the scat-
tering equation using theon-shell approximationand thegeneralized diffraction theory. We discuss the validity
of those approaches, and demonstrate that they both lead to similar results. Our studies indicate that the
scattering cross sections exhibit non-Lorentzian shapes with narrow features close to resonance. Coherent
scattering occurs mainly in the forward direction, and the angular distribution is limited by the size of the
atomic sample in the trap. We present results for various ranges of relevant parameters such as trap size,
interaction strength, number of atoms, and temperature, etc.

PACS number~s!: 03.75.Fi, 42.50.Fx, 32.80.2t

I. INTRODUCTION

This paper is the third in a series of papers devoted to the
study of the quantum field theory of atoms interacting with
photons. In the previous two papers we discussed the funda-
mentals of the theory~paper I@1#!, and the problem of scat-
tering of short laser pulses off trapped atomic samples~paper
II @2#!. The present work is devoted to a detailed study of the
problem of weak cw light scattering from such systems. As
we stressed in papers I and II, the experimental realization of
Bose-Einstein condensates~BEC! @3# in systems of trapped
and cooled atoms@4# has recently become one of the major
efforts of atomic physics@5#. Significant progress has been
achieved during the last year towards this goal. Three groups
@6# now have reported observation of evaporative cooling@7#
in cold ~laser precooled! alkali-metal systems. New tech-
niques have also been developed to cool spin-polarized hy-
drogen@8#. Thus, it is becoming urgent to consider in detail
problems concerning detection and observation of a conden-
sate, or more generally of a system of quantum statistically
degenerate atoms.

Perhaps one of the most natural ways to detect BEC is by
scattering light from the system of cooled atoms. Several
authors have considered this problem in recent years. Quan-
tum optical studies of light scattering from a BEC have been
initiated by Svistunov and Shlyapnikov@9#, and Politzer
@10#. They discussed the problem of scattering of weak light
from a condensate at low temperaturesT.0, and considered
the case of a spatially homogeneous gas. Such a case corre-
sponds physically to the limit of a~formally! infinitely large
trap. In this limit atomic and photonic degrees of freedom
mix, giving rise to the formation ofpolariton-type excita-
tions and a gap in the excitation spectrum close to resonance.
This theory can be extended to the case of atoms inside

finite-size traps. In particular, for traps that have a slab ge-
ometry or sharp boundaries, one expects that because of the
gap in the spectrum, resonant light will not be able to propa-
gate inside the condensate, and therefore will be strongly
reflected back from the boundary of the condensate. In prac-
tice, the gap appears only in the narrow line limit, i.e., when
the width of the gap significantly exceeds the spontaneous
emission rateg. Javanainen considered another limiting case
of an optically thin condensate@11#, with sizea of the order
of the resonant wavelengthl. His approach consists essen-
tially of replacing the atomic field~which has infinite degrees
of freedom! by a single harmonic oscillator in the limit of
low optical density. This harmonic oscillator describes col-
lective excitations of the condensate. Within this framework
one can show that the scattering will take place mainly in the
forward direction, and the scattering cross section will have a
Lorentzian line shape with a width proportional to the col-
lective ~superradiant! spontaneous emission rate~which typi-
cally would be of the order ofgnl2a, wheren is the atomic
density!. In a recent paper@12# we have argued that the
above conclusions would be modified in a trap of significant
optical thickness, with no sharp boundaries, and of finite size
a in the range of~1–20!l. In the case of moderate atomic
densities,n such thatn(l/2p)3. 1–10, one does not ob-
serve backscattering or effects directly related to polariton
formation. The physical reason is that the effective gap in the
excitation spectrum is narrow in this regime, so that its ef-
fects are washed out by various mechanisms of line broad-
ening for individual atoms. On the other hand, the propaga-
tion effects influence the scattering process in such a way
that the approach of Ref.@11# also becomes less adequate.
Although the large scale width of the spectrum remains the
same as predicted in@11#, the spectrum becomes non-
Lorentzian and exhibits a narrow peak at the resonance. The
width of this narrow feature is controlled by the dominant
single-atom dissipative and dephasing processes such as
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spontaneous emission to noncondensed states, or quantum
diffusion of the excited atomic wave packets@12#. Weak light
scattering in the ultralow density limit has also been studied
by Gajda and Mostowski@13# ~see also@14#! using the Born
approximation.

All of the above papers concern the problem ofcoherent
scattering; that is, they concentrate on the evaluation of the
mean elastically scattered field. Coherent scattering is a
probe of the density of the system, and in this sense is not
necessary specific for Bose-Einstein statistics. The quantum
statistical character of the atoms exhibits itself in coherent
scattering only through the fact that at low temperatures the
density profiles for bosonic or fermionic atoms are different.
In order to obtain explicit effects of the statistics, one needs
to calculate higher-order moments of the scattered field that
will probe higher-order correlations of the atomic density.
Considerable progress on this ambitious task has been re-
cently realized by Morice, Castin, Dalibard@15#, who studied
the refractive index of a dilute Bose gas. These authors have
carried out a density expansion of the refractive index in a
homogeneous system up to second order, and effectively re-
summed a class of appropriate diagrams of the perturbation
theory that account for the effects of photon exchange pro-
cesses between pairs of atoms. The first nonzero correction
to the index of refraction related to the statistical nature of
atoms is found to be proportional to the density-density cor-
relation function. Similar corrections are expected to arise in
the incoherentspectrum of light scattered from the trapped
atomic samples. In paper II we have in fact calculated inco-
herent spectra for the case of scattering of short laser pulses
~see also@16#!, and have shown that they provide a direct
probe of the density-density correlations. In the present pa-
per, however, we will concentrate on coherent scattering, and
do not address the question of explicit quantum statistical
effects@17#.

The aim of this paper is to examine the problem of the
coherent scattering of a weak cw laser field from a system of
cold trapped atoms in detail. We discuss various limiting
cases and relate them to the results known from other stud-
ies. Our starting point is a scattering equation valid in the
weak-field limit ~for its derivation, see paper I!. We present
two alternative analytic approaches to the solution of this
equation: one based on theon-shell approximation to the
scattering matrix@18#, and the other based on Glauber’sgen-
eralized diffraction theory~GDT! @19–21#. We calculate and
discuss scattering cross sections, and their angular and spec-
tral distributions for a wide range of parameters such as tem-
perature, trap size, number of atoms, etc. We analyze also the
effects related to atom-atom interactions.

Throughout this paper we focus our attention on the range
of parameters describing contemporary magnetic traps such
as developed by Monroeet al. @22# @cesium atoms,l.800
nm, a.1–10 mm, trap frequency v t.(2p)10 Hz,
g.(2p)2.5 MHz#. The paper is organized as follows. In
Sec. II we present our model in the Fock representation. The
model we consider belongs to class A~defined in paper I!,
i.e., a system where one neglects short-range atom-atom in-
teractions. The model is idealized further by neglecting the
spontaneous emission processes that lead to modifications of
the atomic distribution in the ground electronic state. In par-
ticular at T50 it neglects spontaneous emission to states

other than the condensate. However, these restrictions will be
lifted later in the paper. The general derivation of the scat-
tering equation in the weak-field limit has been presented in
paper I not only for class A models of noninteracting atoms,
but also for class B and C models that account for atomic
collisions. We have shown in particular that the scattering
equation for the coherently scattered field depends function-
ally only on the mean density profile of atoms in thermal
equilibrium. Here we include only a brief discussion of the
derivation. In Sec. III we perform a detailed analysis of vari-
ous limits of the self-energy kernel that enters the scattering
equation. We also evaluate the kernel analytically in some
cases for class A models. This analysis demonstrates clearly
how the kernel can be reduced to a form fully determined by
the mean atomic density.

Section IV is devoted to the evaluation of atomic density
profiles for class C models that include the effects of atomic
ground-ground interactions in thermal equilibrium. We again
follow the procedure of paper I and calculate the equilibrium
density of the condensate atT50 using a self-consistent
Bogoliubov-Hartree method@23,24#. This calculation con-
sists of a numerical solution of the nonlinear Schro¨dinger
equation describing the BEC ground-state wave function for
atoms in a trap interacting via a zero-range effective poten-
tial. We present in this section some details of our numerical
approach and the results. In Sec. V we present analytic solu-
tions of the scattering equation in the on-shell approxima-
tion, and apply these solutions to calculate scattering and
absorption cross sections as well as angular distributions of
the scattered radiation. The advantage of using the on-shell
approximation is that it allows us to perform explicit analysis
of the solutions in terms of partial waves, and to discuss the
relation to Javanainen’s theory@11#. The disadvantage of this
approach is that it does not appear to have a precisely defined
regime of validity. Moreover, it also approximates the propa-
gation between multiple scatterings by regarding it as a
propagation of monochromatic photons. For these reasons,
we present in Sec. IV an alternative solution to the scattering
equation based on the GDT. The latter approach has several
advantages. First, it is analytically simpler than the previous
one. Second it is formulated in the spatial representation, and
thus allows us to calculate spatial characteristics of the scat-
tered field. In addition, the GDT accounts for off-shell propa-
gation effects for photon wave vectors close to wave vector
of incident laser field. Finally, the GDT has well-defined va-
lidity criteria that we check in Sec. VI.

In Sec. VII we present our numerical results. Both ap-
proximate theories give unexpectedly good agreement and
predict a non-Lorentzian line shape with a narrow peak at
resonance. In the idealized model the width of the narrow
peak results from the effects of quantum diffusion and drift
of the excited atomic wave packets. In a more realistic model
this width becomes of the order of maximum of either the
natural (g) or the diffusive (Gd) linewidth ~see discussion
later!. Scattering occurs mainly in the forward direction, and
the angular divergence is determined by the size of the
atomic sample. In fact, the distribution of the total field ex-
hibits a dip in the most dense regions of the trap, that is to
say it is deflected from the condensate without entering the
central region. This resembles the effects due to the forma-
tion of a gap in the polariton spectrum discussed in Refs.@9#
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and @10#. We discuss those results in various ranges of pa-
rameters, and in particular we study the role of atom-atom
interactions by comparing the results for class A and C mod-
els.

The paper contains three appendices. In Appendix A, we
outline the definitions for the scattering cross sections and
the normalizations used. We also derive an optical theorem
that will be used when computing the total cross section
within the on-shell approximation. In Appendix B we discuss
the problem of spontaneous emission out of the condensate
using a Schro¨dinger equation approach. In Appendix C we
discuss properties of the self-energy kernel at a finite tem-
peratureTÞ0.

II. THE SCATTERING EQUATION

In this section we remind the readers of the essential steps
in the derivation of the scattering equation valid in the weak-
field limit. The details of this derivation for class A, B, and C
models can be found in paper I. The discussion presented
below focuses on the case of class A models that neglect
short-range atom-atom interactions. We stress, however, that
the final result applies equally well for other classes of mod-
els that incorporate effects of atomic collisions.

The Hamiltonian governing the interactions of light with
N bosonic atoms confined in a trap takes the following sec-
ond quantized form in the Fock representation@1#:

H5(
nW

EnW
ggnW

†gnW1(
mW

~EmW
e 1v0!eWmW

† eWmW

1(
nW ,mW

(
m

E dkWr~k!@hnWmW ~kW !gnW
†akWm

†
eWmW •eW kWm1H.c.#

1(
m

E dkWckakWm
†
akWm . ~1!

In Eq. ~1! we have used the rotating-wave approximation,
and have employed atomic units. We have also neglected the
contact interaction terms@25#. The symbolsgnW , gnW

† denote
atomic annihilation and creation operators for thenW th state of
the ~electronic! ground-state trap potential. For a rotationally
invariant potential,nW is actually a triplet index (nx ,ny ,nz).
The corresponding energy isEnW

g5v t(nx1ny1nz) wherev t

is the frequency of the harmonic trap potential for the ground
state.eWmW ,eWmW

† denote atomic annihilation and creation opera-
tors in the excited-state trap potential. The corresponding
energies areEmW

e 1v0 , i.e., are shifted by the electronic tran-
sition frequency. We consider here the case of a transition
from ans state to ap state and thereforeeWmW ’s andeWmW

† ’s have
a corresponding vector character. This is not the case of the
transition in cesium (6S1/2,F54 to 6P3/2,F55), but the
character of the transition is not essential for our conclu-
sions.akWm andakWm

† denote the annihilation and creation op-

erators for photons of the momentumkW and linear polariza-
tion eW kWm (m51,2). All these operators fulfill standard
bosonic commutation relations. The couplingr(k) is a
slowly varying function ofk related to the natural linewidth
~HWHM! g5(8p2k0

2/3c)ur(k0)u2, with k05v0 /c. Finally,

hnWmW (kW ) is the Franck-Condon factor~i.e., matrix element for

the center-of-mass transition from thenW th state of the
ground-state potential to themW th state of the excited-state
potential!,

hnWmW ~kW !5^g,nW ue2 ikW•RW ue,mW &. ~2!

The above Hamiltonian includes the strong resonant inter-
actions due to electronic dipole-dipole forces and exchange
of transverse photons@27,28#. For clarity of discussion we
neglect at present other forces that are involved in atomic
collisions.

As mentioned in paper I, there are several possible meth-
ods of deriving the scattering equation for the electromag-
netic ~EM! field in the limit of weak cw incident light field.
One such method involves the Schro¨dinger equation ap-
proach, and assumes that at any time at most one photon is
present. This assumption reduces the available Hilbert space
to two manifolds of states:~i! the states in which all atoms
are in the ground electronic state and the EM field is in a
single photon state;~ii ! the states in which all but one of the
atoms are in the ground electronic state, one atom is excited,
and the EM field is in the vacuum state. This approach is
discussed in more detail in Appendix B, where we apply it to
study the problem of spontaneous emission out of the con-
densate.

Another approach employs the Heisenberg equations of
motion for all the operators involved. The disadvantage of
this method is that the treatment of line broadening due to
spontaneous emission events, which deforms the initial
atomic distribution in the ground electronic state, becomes
more complicated. On the other hand, if one neglects broad-
ening by spontaneous emission out of the condensate from
the excited electronic states, the Heisenberg equation ap-
proach treats the idealized model with a fixed initial atomic
distribution as a closed~Hamiltonian! system. Such an
idealized model includes line broadening effects due to the
quantum diffusion and drift of the excited wave packets. One
should stress that probing the system does not necessarily
have to be done using the same wavelength as is used for
cooling @which for cesium atoms correspond tol.800 nm,
g.(2p)2.5 MHz#. In principle one could therefore employ
other resonant transitions that are characterized by much nar-
rower natural linewidths. In such situations the use of the
idealized model would be much more valid, since the line
broadening due to quantum diffusion and drift motion would
exceed the natural broadening. We shall first discuss the ide-
alized model, and account for other line broadening effects
later.

The Heisenberg equations of motion that follow from the
Hamiltonian~1! are

ȧkWm52 ickakWm2 ir~k!(
nW ,mW

gnW
†~eWmW •eW kWm!hnWmW ~kW !, ~3!

~ ėWmW •eW kWm!52 i ~EmW
e 1v0!eWmW 2 i(

m8
E dkW8r~k8!

3(
nW

akW8m8gnW@hnWmW ~kW8!#* ~eW kW8m8•eW kWm!, ~4!
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ġnW52 iEnW
ggnW2 i(

m8
E dkWr~k!(

mW
akWm
†

~eWmW •eW kWm!hnWmW ~kW !.

~5!

For scattering of weak light we assume that initially all at-
oms are in the ground electronic state and in thermal equi-
librium with respect to their center-of-mass motion. We ex-
pect that the weak incident field will not disturb this
equilibrium significantly as only one single photon is scat-
tered at a time. In particular, we also assume that the atomic
distribution in the ground electronic state remains unchanged
in the process of scattering. As we shall see, these assump-
tions can be replaced by a weaker assumption that the mean
atomic density profile does not change. Technically, these
assumptions are realized starting with a perturbative ap-
proach to solve the Heisenberg equation for the ground-state
operators in the zeroth order, and neglecting the influence of
the field and spontaneous emission processes. We set there-
fore

gnW~ t !'gnW~0!e2 iEnW
gt, ~6!

and similarly forgnW
†(t). The above expressions are then in-

serted into Eqs.~3! and ~4!, which then become linear and
can be, at least formally, solved under a decorrelation ap-
proximation for the product operators. We accomplish it in
two steps. First, we solve formally Eq.~4! and express the
operatorseWmW , eWmW

† in terms ofakWm , akWm
† , respectively. Second,

we insert the formal solutions into Eq.~3!, and perform an
average over all quantum fluctuations. This average consists,
in particular, in averaging over the initial atomic distribution,
which is described by the Bose-Einstein distribution, so that

^gnW
†~0!gnW 8~0!&5dnWnW 8NnW

5dnWnW 8
ze2bEnW

12ze2bEnW
, ~7!

where b51/kT, and z is the fugacity. The decorre-
lation approximation for the fluctuations of the EM
field and the atomic distribution allow us to replace
^gnW

†(0)gnW 8(0)akWm(t)& by ^gnW
†(0)gnW 8(0)&^akWm(t)& @29,30#.

As a result we obtain two independent and complex con-
jugated scattering equations for the averaged EM field opera-
tors ^akWm&, and^akWm

†
&. To avoid the proliferation of notation

we omit the quantum average in the following. From now
on, the symbolsakWm andakWm

† will denote the averaged pho-
tonic operators.

The scattering equation takes in the time domain the form

ȧkWm~ t !52 ickakWm~ t !2(
m8

E dkW8

3E
0

t

dt8K ~ t2t8;kW ,m,kW8,m8!akW8m8~ t8!, ~8!

where theself-energy kernelis defined as

K ~t;kW ,m,kW8,m8!5~eW kWm•eW kW8m8!r~k!r~k8!L~t;kW ,kW8!,
~9!

while the reduced kernel is

L~t;kW ,kW8!5(
nW ,mW

NnWhnWmW ~kW !@hnWmW ~kW8!#*

3exp@2 i ~EmW
e 1v02EnW

g!t#. ~10!

It is often more convenient to solve the scattering problem in
the Laplace-transformed space defined according to@31#

õ~s!5E
0

`

dte2sto~ t !. ~11!

The reduced kernel now takes the form@32#

L̃~s;kW ,kW8!5(
nW ,mW

NnW

hnWmW ~kW !@hnWmW ~kW8!#*

s1 i ~EmW
e 1v02EnW

g!
. ~12!

The physical interpretation of the self-energy kernel is
simple. It describes the amplitude for the process of the for-
mation of a wave packet in the excited-state trap potential
due to absorbtion of a photon of momentumkW8 and polariza-
tion m8 at time t8, followed by a free evolution of the wave
packet within the time intervalt5t2t8. The free evolution
consists primarily in quantum diffusion and drift caused by
the momentum of the absorbed photon, and terminates at
time t when recombination to the ground electronic state
accompanied by emission of a photon of momentumkW and
polarizationm takes place.

As we shall demonstrate in Sec. III, the reduced kernel
can be approximated for parameters of interest by

L̃~s;kW ,kW8!.
(
nW ,mW

NnWhnWmW ~kW !@hnWmW ~kW8!#*

s1 i ~v01kL
2/2M !1G

, ~13!

wherekL denotes the wave number of the incident light,M is
the atomic mass, andG denotes the effective width of the
line. The denominator in the above formula describes a reso-
nance shifted by the photon recoil energy,kL

2/2M , and broad-
ened byG. In the idealized model that neglects spontaneous
emission events out of the condensate,G results from the
combined effects of the quantum diffusion and drift of the
excited atoms wave packets. In Appendix B we show that if
such spontaneous emission events are taken into account,G
attains an additional contribution of the order of single atom
natural linewidthg.

Using the completeness of themW states, the sum overmW
can be performed independent of the shape of the excited-
state potential. We obtain

L̃~s;kW ,kW8!5

(
nW

NnWhnWnW~kW2kW8!

s1 i ~v01kL
2/2M !1G

5
r̄~kW2kW8!

s1 i ~v01kL
2/2M !1G

, ~14!

where
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r̄~kW !5E dRW r~RW !e2 ikW•RW ~15!

is theform factor, or the Fourier transform of the equilibrium
density

r~RW !5(
nW

NnW z^RW unW & z2. ~16!

Therefore, as in the case of scattering of strong light pulses
@2#, the study of weak light scattering off the interacting
condensate can be facilitated by using the self-consistent
atomic density profiles~see Sec. IV!.

The expression given by Eq.~14! provides the main result
of this section, since it implies that the self-energy kernel,
and thus all the physics of the scattering process, is fully
determined by the atomic density profile in equilibrium.
Moreover, as we have shown in paper I, the expression
analogous to Eq.~14! is generally valid for class B and class
C models that incorporate the effects of short-range atom-
atom interactions, provided the mean density in Eq.~16! is
calculated under the same assumptions. For instance, for
class B models one should include density-dependent shifts
of the resonance@12#. For the class C models one could use
the density profile constructed in the framework of the self-
consistent Bogoliubov-Hartree theory. In numerical calcula-
tions to be discussed below we will make use of Eq.~14!.

III. THE SELF-ENERGY KERNEL

In this section we demonstrate that in the range of param-
eters of interest for current experiments the reduced scatter-
ing kernel is accurately described by Eq.~14!. We shall il-
lustrate this point by using two analytically solvable cases:
~a! when the excited-state potential is absolutely flat~the
case of a zero potential!; and ~b! when the excited-state po-
tential is exactly the same as the ground-state harmonic os-
cillator potential. Both examples will be elaborated for class
A models atT50, but the approximations that we use can be
equally well applied to class B and C models. Extension to
the caseTÞ0 is discussed in Appendix C.

A. Zero potential for the excited state

In the case when there is no trapping potential for the
excited state, theumW & correspond in the spatial representation
to a plane-wave state~from now on, where appropriate,mW
should be understood to stand for the center-of-mass momen-
tum for the excited wave packet!.

^RW umW &5
1

~2p!3/2
eimW •R

W
, ~17!

and have the corresponding energies

EmW
e 5

mW 2

2M
5v tmW

2a2. ~18!

The latter relation does not hold for class A* models, in
which we treata andv t as independent parameters in order

to account phenomenologically for effects of atom-atom in-
teractions@1#. At zero temperature, all atoms are in the con-
densate, i.e.,

NnW5NdnW0 . ~19!

The relevant Franck-Condon parameter then becomes the
Fourier transform of the ground-state wave function, and is
given by

h0mW ~kW !5S 2a2p D 3/4e2~kW2mW !2a2. ~20!

The reduced kernel Eq.~10! becomes a three-dimensional
Gaussian integral with respect tomW , which can be easily
performed. We obtain

L~t;kW ,kW8!5N
1

~11 iv tt/2!3/2

3expF2 iv0t2@k21~k8!2#a21
~kW1kW8!2a2

2~11 iv tt/2!
G .

~21!

The physical interpretation of the above expression is
straightforward. The free propagation of the excited wave
packet~20! consists~in the absence of the excited-state po-
tential! in quantum diffusion and drift due to photon recoil.
The time-dependent prefactor in Eq.~21! results directly
from quantum diffusion effects. The time dependence in the
exponent in Eq.~21! accounts for both of the above-
mentioned effects. In the regime of parameters that we con-
siderk.k8.2p/l, the productska.k8a.8280. The ker-
nel ~21! contains thus an exponentially small factor
exp$2@k21(k8)2#a2%, which has to be compensated by the last
term in the exponent of Eq.~21! in order to attain non-
negligible value. Physically, this means that as the diffusion
and drift of the excited wave packet proceeds, the wave
packet is moved away from the center of the trap, and the
probability of recombination decreases practically to zero.
The kernel~21! can be significantly different from zero only
for sufficiently short times, such thatv tt!1 @33#.

We can therefore perform an expansion inv tt in the ex-
ponent of ~21!, and keep only the first- and second-order
terms. In doing so we replace the diffusion factor
1/(11 iv tt/2)

3/2 by 1. Alternatively, we could represent it in
the exponential form as well, but the latter step is not neces-
sary forka,k8a@1 @33#. It would, however, play a role if we
should wish to extend the theory toka,k8a.1.

As a result we obtain the reduced kernel

L~t;kW ,kW8!5N exp@2~kW2kW8!2a2/22P 2t
22 iv0t

2 iv tt~kW1kW8!2a2/4#, ~22!

and its Laplace transform

L̃~s;kW ,kW8!5N expF2
1

2
~kW2kW8!2a2G Ap

2AP 2

3expS ~P 1

2AP 2
D 2 erfcS P 1

2AP 2
D , ~23!
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where

P 25v t
2~kW1kW8!2a2/8.v t

2kL
2a2/2, ~24!

P 15s1 iv01 iv t~kW1kW8!2a2/4.s1 iv01 ikL
2/2M , ~25!

with kL52p/l, and erfc() denoting the error function@31#.
The first exponential factor in Eq.~23! expresses the ap-
proximate photon momentum conservation for scattering off
a sample of finite size. From Eq.~22! we conclude that the
actual decay constant of the kernel is of the order of
G;A2P 2.v tkLa. For the idealized model~without sponta-
neous emission out of condensate! G ranges from 300 Hz for
a 1-mm trap to 30 Hz for a 10-mm trap ~for Cs atoms!. In
Appendix B we show that spontaneous emission out of the
condensate leads to the broadening of the atomic line
v0→v02 i ḡ, so that the decay constant of the kernelG
attains an additional contributionḡ of the order of the natural
linewidth g.

As will be demonstrated in Sec. V, for the calculation of
the scattering amplitude one needs only the value of
L̃(s;kW ,kW8) evaluated ats52 ivL52 ickL ~on the energy
shell!. For most of the values of the detuningvL2v0 , the
argument of the error function in Eq.~23! is large, and the
asymptotic expansion

Apz exp~z2!erfc~z!.1, ~26!

can be used. At the exact resonance, on the other hand, the
kernel remains finite. This suggests the following analytic
approximation,

L̃~s;kW ,kW8!.N exp@2~kW2kW8!2a2/2#
A

s1 i ~v01kL
2/2M !1G

.

~27!

The coefficientsA andG can be determined from the follow-
ing two requirements:~i! the asymptotic behavior for large
s1 i (v01kL

2/2M ) should be the same for both sides of Eq.
~27!; and ~ii ! the values of both expressions should agree at
the exact resonance,s1 i (v01kL

2/2M )50. These require-
ments giveA51 and

G5Gd5A2

p
v tkLa, ~28!

whereGd denotes the diffusive linewidth for the model that
neglects the effects of spontaneous emission out of the con-
densate. When those effects are incorporated, and when
Gd!ḡ, the asymptotic expansion of the error function can be
used for all detunings, i.e., including resonance. In such a
situation

G5ḡ. ~29!

In general, the widthG is of the order of max(ḡ,Gd), and
undergoes Doppler broadening at finiteT (Þ0).

Direct numerical calculation of the expression Eq.~27!
shows that in the regime corresponding to parameters of in-
terest it is very accurate, and produces less than 0.1% rela-
tive error for the idealized model, and less than 1024% for
the model including spontaneous emission out of the conden-

sate. This is the major result of this section; it provides a
mathematical justification for the expression Eq.~14!, which
was obtained only heuristically in Sec. II.

B. The same harmonic oscillator potential for the excited state
as for the ground state

The above considerations can be generalized to the case
of other trap potentials for the excited state. In particular, we
consider in this subsection the case where the excited-state
potential is harmonic and is the same as the ground-state
trapping potential. The indicesmW become (mx ,my ,mz),
umW & are the corresponding eigenstates for the harmonic os-
cillator, and

EmW
e 5v t~mx1my1mz!. ~30!

The reduced kernel atT50 in this case becomes

L~t;kW ,kW8!5e2 iv0t(
mW

e2 iEmW
e t^0ue2 ikW•RW umW &^mW ueikW8•RW u0&.

~31!

Observing that

^mxueikxRxu0x&5expF2
1

2
kx
2a2G~ ikxa!mx

Amx!
, ~32!

we can perform the sum overmx , my , andmz in Eq. ~31!
independently. The result is

L~t;kW ,kW8!5exp$2 iv0t2@k21~k8!2#a2/2

1kW•kW8a2e2 iv tt%. ~33!

The expression~33! is similar to ~21!, but it differs in one
important aspect. The excited wave packets do not diffuse
and spread as before@35#, but rather oscillate coher-
ently in the harmonic well. This means that the small
exponential factor exp$2@k21(k8)2#a2/2% can be compen-
sated by the last term in the exponent of Eq.~33! at
t.0,p/v t ,2p/v t , . . . . Physically, this means that when-
ever the wave packet returns to the origin, the approximate
momentum conservation can be realized. For even returns,
the scattering prefers the forward direction, whereas for odd
returns it prefers the backward direction. This is very similar
to the phenomena of revivals and collapses often discussed
in the Jaynes-Cummings model@36#. In principle, one can
account for multiple returns by calculating the Laplace trans-
form of L(t;kW ,kW8) with the help of saddle-point techniques
@37#. Here, however, we will for convenience assume that the
probing of the system by weak light has a finite duration
td , such thatv ttd<1, i.e., td<0.1 s. In this case we can
neglect the effects of multiple returns in Eq.~33!, and expand
the exponent inv tt, in the same manner as we did in the
previous subsection for the case of a zero trapping potential
in the excited states. Note, that for weak light pulses of the
durationtd.0.1 s, one can consider the long time limit of
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the scattering process, sincetd is still much larger than all
other relevant time scales~including 1/G).

With the above approximations, the Laplace transform of
the kernel is again given by the expression~23!, where now

P 25v t
2kW•kW8a2/2.v t

2kL
2a2/2, ~34!

P 15s1 iv01 iv tkW•kW8a2.s1 iv01 ikL
2/2M . ~35!

Thus, the self-energy kernel can also be approximated by
exactly the same formula given by Eq.~27!. In Appendix C
we generalize this result to the case of a finite temperature
TÞ0.

IV. ATOMIC DENSITY PROFILES

The results of Sec. II established the relations~14! and
~15! between the self-energy kernel and the atomic density
profile. Before we turn to a further discussion of the scatter-
ing problem, we thus need to specify the atomic density pro-
files.

For the class A models we use the density profiles ob-
tained from the Bose-Einstein distribution~BED! for nonin-
teracting atoms according to Eq.~16!. In particular, for
T50, the density distribution is

r~RW !5
N

~2pa2!3/2
exp~2R2/2a2!. ~36!

As we argued in paper I and Ref.@12#, by treatinga as a
parameter independent ofv t andM , we can account phe-
nomenologically for effects of the atom-atom interactions for
class A* models.

At high temperatures, the BED can be replaced by the
Boltzmann distribution and the effects of atomic collisions
can be neglected. The density in this limit is again Gaussian,

r~RW !5
N

@2pa2~b!#3/2
exp@2R2/2a2~b!#, ~37!

with a temperature-dependent width

a2~b!5a2 coth~bv t/2!.2a2/bv t . ~38!

The description of the atomic density profile atT50 for a
weakly interacting gas is much more difficult, and becomes
even more complex at low, but finite temperatures. In order
to find the density profile at thermal equilibrium, one has to
add to the Hamiltonian~1! a term@1# describing the ground-
ground atomic interactions. This term is usually written in
theshape-independent approximation@38#, and has the form

Hgg5
bgg
2 E dRW Cg

†~RW !Cg
†~RW !Cg~RW !Cg~RW !, ~39!

where

bgg54pasc/M , ~40!

andasc denotes the scattering length for the ground-ground
scattering. In the above formulaCg(RW )@Cg

†(RW )# is the
atomic annihilation~creation! field operator. Formally, such a
form of the atom-atom interaction Hamiltonian can be de-

rived in the low-energy limit by using the so-called,T matrix
or ladder approximation in the calculations of the single-
particle Green’s functions using standard many-body tech-
niques@39–41#.

In the mean-field Bogoliubov-Hartree approach@23,39#
the c-number wave functionCg(RW ) of the condensate at
T50 is a minimum of the energy functional~see also paper
I!,

EE dRW Cg* ~RW !Cg~RW !

5E dRW Cg* ~RW !S 2
¹2

2M
1
1

2
Mv tR

2DCg~RW !

1
bgg
2 E dRW Cg* ~RW !Cg* ~RW !Cg~RW !Cg~RW !, ~41!

with the normalization constraint*dRW uC(RW )u25N. The
condensate wave function then fulfills the following nonlin-
ear Schro¨dinger equation~NLSE!:

F2
¹2

2M
1
1

2
Mv tR

21bggr~RW !GCg~RW !5ECg~RW !. ~42!

For very largeN an approximate solution of this NLSE is
found to be~by neglecting the kinetic energy term@42#!

r~RW !5Cg* ~RW !Cg~RW !.
15N

8pR0
5 ~R0

22R2!, ~43!

for R<R0 , and zero otherwise. The size of the condensate
within this approximation is given by

R05a~60Nasc/a!1/5. ~44!

The above solution evidently is not correct forR→R0 . In
general, one then has to rely on numerical solutions to Eq.
~42!.

Recently Edwards and Burnett@24# have studied the nu-
merical solutions of this equation. Utilizing the spherical
symmetry of the condensate, Eq.~42! can be transformed
into a differential equation involving the radial coordinateR
only. The asymptotic behavior (R→`) and the boundary
conditions (R50) were studied analytically and enforced
during the integration procedure. For a given set of param-
etersa, N, andbgg , a solution that satisfies both boundary
conditions (R50,̀ ) was obtained using a Runge-Kutta
method. In practice, this is achieved by specifying the value
of the radial wave function, and its first-order derivative at
R50. The equation for the radial wave function was inte-
grated outwards to sufficiently largeR, and then compared to
the known asymptotic solution. A solution that has the cor-
rect asymptotic behavior is obtained by varying the first-
order derivative of the radial wave function atR50. How-
ever, the solution thus obtained is not necessarily correctly
normalized. Edwards and Burnett observed that the nonlinear
radial Schro¨dinger equation has the property that a normal-
ized solution can be obtained from any solution through a
suitable scaling transformation. This normalized solution,
however, corresponds to a condensate with a number of at-
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oms N that cannot be specifieda priori. Their scheme of
solution of Eq.~42! is therefore not very suitable for our
purpose, as we have to compare light-scattering properties of
condensates with agivennumber of atomsN. We have there-
fore developed an alternative scheme for the numerical solu-
tion of Eq. ~42! @25#.

Our scheme is an iterative one. Within each step, we take
r(R) as given, so that Eq.~42! becomes a standard linear
Schrödinger equation. We solve the eigenproblem~i.e., find
the eigenvalues and normalized eigenvectors! for this linear
equation using a standard matching method coupled with the
Pruefer transformation@26#. To find the lowest-energy solu-
tion ~the ground state! of Eq. ~42!, we update
r(R)5uCg

new(RW )u2 by a weighted average of the newly com-
puted lowest eigenvectorCg

eigen(RW ) and the previous wave

functionCg
old(RW )@used for computingr(R)#

Cg
new~RW !}~12hmix!Cg

old~RW !1hmixCg
eigen~RW !, ~45!

where we use the sign ‘‘} ’’ instead of ‘‘5’’ since the right-
hand side has yet to be correctly normalized. In the above
hmixP(0,1) is a mixing parameter. In general the conver-
gence of our method strongly depends onhmix , and on the
parameterNbgg . The detailed analysis, as well as the results
for the collective excited states of the condensate@higher
eigenvalues and eigenvectors of Eq.~42!# will be presented
elsewhere@25#. The iteration proceeds until both absolute
and relative convergence criteria are satisfied. As an added
bonus, we find that our method basically converges irrespec-
tive of the coupling strengthNbgg ~which effectively deter-
mines the strength of the interaction or the nonlinearity! if
hmix is adjusted appropriately.

In Fig. 1 we present a comparison of various approxima-
tions to the condensate wave function used in computing the
density profiler(R). The dashed line denotes the noninter-
acting~Gaussian! ground state of the harmonic oscillator po-

tential, which serves as the reference, and the solid line de-
notes the numerical solution~the lowest-energy eigenstate!
of the nonlinear Schro¨dinger equation~42!, while the dotted
line denotes the approximate solution given by Eq.~43!. The
dot-dashed line is again a Gaussian but with an effective
width 1.5 times larger than that of the noninteracting ground
state~the dashed line!. The Gaussian with the effective width
matches the numerical solution~solid line! quite well. Obvi-
ously, since the physical observables are related directly to
the density profile, using the Gaussian with the effective
width for the classA* models is a very good approximation.
In the calculation we have used a coupling strength
N(asc/a)510. For a 10-mm trap, this corresponds to all pos-
sible pairs of parameters (N,asc), such as, (107,0.1 Å!,
(106,1 Å!, (105,10 Å!, . . . , aslong as their product remains
the same.

In Fig. 2, we plot the lowest eigenvalue solutions of Eq.
~42! for three values of the coupling strengthNasc ~as listed
in the figure! compared with their corresponding approxi-
mate solutions as given by Eq.~43!. For a condensate with a
given N, as the parameterasc increases the shape of the
condensate function changes smoothly from a Gaussian
~characteristic for noninteracting atoms! to parabolic one as
given by Eq.~43! ~characteristic for an interacting gas!, and
the approximation given by Eq.~43! becomes better and bet-
ter.

FIG. 1. Comparison of various approximations to the conden-
sate wave function. The solid line denotes the numerical solution of
the nonlinear Schro¨dinger equation~42!, and the dotted line denotes
the approximate solution given by Eq.~43!. The dot-dashed line is
a Gaussian with an effective width 1.5 times larger than that of the
noninteracting Gaussian ground state represented by the dashed
line. The coupling strength in dimensionless scaled units is
N(asc/a)510.

FIG. 2. The lowest eigenvalue solutions of Eq.~42! for three
values of the coupling strengthNasc ~as listed in the figure! com-
pared with the corresponding approximate solutions given by Eq.
~43!. The solid line denotes the exact numerical solution and the
dotted line denotes the approximate solution given by Eq.~43!. The
dashed line serves as a reference, and is a single atom Gaussian
ground state, which also corresponds to the noninteracting conden-
sate.
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V. ON-SHELL APPROXIMATION

In this section we turn back to a discussion of the solu-
tions of the scattering equation: Eq.~8!. In the Laplace-
transformed form it reads

~s1 ick!ãkWm~s!

5akWm~0!2(
m8

E dkW8K̃ ~s;kW ,m,kW8,m8!ãkW8m8~s!, ~46!

where

akWm~0!5ad~kW2kWL!dmmL
, ~47!

corresponds to the incident coherent laser field of wave vec-
tor kWL , polarizationeW kLmL

, and amplitudea. The on-shell
approximation to the scattering problem is formulated as fol-
lows.

First, we divide the total field into incident and scattered
parts,

ãkWm~s!5
1

s1 ivL
ad~kW2kWL!dmmL

1ãkWm
sc

~s!, ~48!

and obtain an equation for the scattered field

ãkWm
sc

~s!52
a

~s1 ivL!~s1 ick!
K̃ ~s;kW ,m,kWL ,mL!

2(
m8

E dkW8K̃ ~s;kW ,m,kW8,m8!
ãkW8m8
sc

~s!

s1 ick
. ~49!

In the limit t→` ~or practically,t@1/G) the incident field
has enough time to penetrate the system anda long time
coherent responsewill build up. Therefore we postulate that
asymptotically the scattered field behaves as

akWm
sc

~ t !;aB~kW ,m!d~ck2vL!e2 ivLt, ~50!

and its Laplace transform,

ãkWm
sc

~s!;
a

s1 ivL
B~kW ,m!d~ck2vL!, ~51!

whereB(kW ,m) is the scattering amplitude. Thus in this ap-
proximation ast→` only coherentelasticscattering is pos-
sible.

Inserting the above expressions into Eq.~49!, transform-
ing back to the time domain, and taking the limitt→`, we
conclude that the scattering amplitude in this on-shell ap-
proximation@18# as assumed by Eq.~50! satisfies

B~kW ,m!522pK̃ ~2 ivL ;kW ,m,kWL ,mL!22p
kL
2

c (
m8

E dVkW8

3K̃ ~2 ivL ;kW ,m,kW8,m8!B~kW8,m8!, ~52!

where ukW u5ukW8u5ukWLu5vL /c. In deriving the above equa-
tion we have used the identity

lim
t→`

1

2p i E dsest
f̃ ~s!

~s1 ivL!~s1 ick!

5 lim
t→`

F f̃ ~2 ivL!e2 ivLt2 f ~2 ick!e2 ickt

i ~ck2vL!
G

52p f̃ ~2 ivL!e2 ivLtd~ck2vL!, ~53!

which holds for an arbitrary functionf̃ (s) provided it does
not have any singularities to the right of or on the imaginary
axis in the complexs plane, so that limt→` f (t)50. One
might also try to solve Eq.~52! using the Born approxima-
tion, i.e., neglecting the second, self-energy term on the
right-hand side. Such attempts are reasonable in the low-
density limit @13#, but fail miserably in the regime of param-
eters that we consider. This is partially due to the large op-
tical thickness of the condensate, since after an incident
photon is absorbed, it takes on average very many rescatter-
ing events before it escapes the condensate. Self-energy
terms are extremely important close to resonance and one
must fully account for them. One may also try to solve Eq.
~52! numerically. To accomplish this we discretized the solid
angle and solved the resulting finite set of linear equations on
a grid. However, in the regime of parameters of interest, the
dimensions of the resulting finite difference equations are
quite large, and its numerical solutions become quite difficult
and expensive to obtain. Consequently, they have only been
used as a guidance for developing approximate analytic so-
lutions.

One can construct an approximate analytic solution for
Eq. ~52!, if one ~i! substitutes the productr(k)r(k8) in K̃
by ur(kL)u2, and ~ii ! neglects the dependence ofK̃ on the
polarization producteW kWm•eW kW8m8. The first of these approxima-
tions is obviously very accurate, sincer(k) is an extremely
slowly varying function ofk in the optical regime. The sec-
ond approximation is also quite accurate, since the scattering
occurs mainly in the forward direction and the scattered pho-
tons have polarizations that are approximately perpendicular
to kWL , and do not couple to the other polarization component
strongly.

After performing the two above-mentioned approxima-
tions,B(kW ,m) can be expanded in spherical harmonics. For
kW5kL(sinu cosf,sinu sinf,cosu), kWL5kL(0,0,1), and eWmL

5~1,0,0!, the expansion is

B~kW ,m!5(
l50

`

Bl~kL!Pl@cos~u!#~2l11!/4p, ~54!

wherePl(x) are Legendre polynomials. Since spherical har-
monics are now eigenvectors of the scattering kernel on the
energy shell, the coefficientsBl(kL) can be directly obtained
as

Bl~kL!52
gL
l

@G1gL
l 2 i ~vL2v02kL

2/2M !#

c

kL
2 , ~55!
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where

gL
l 512pgQ l , ~56!

with

Q l5E
0

`

R2dRr~R! j l
2~kLR!. ~57!

Here j l() denotes a spherical Bessel function. Comparison of
the above expressions with the numerical solution of Eq.
~52! shows that the approximate solution describes the line
shape very well, although it underestimates the overall cross
section typically by 10–20 %. The above expressions can be
further elaborated analytically, after specifying the atomic
density profile. For a Gaussian profile as given by Eq.~36!,
for instance, we obtain

gL
l 5Ng3A2pe2kL

2a2I l11/2~kL
2a2!/~2kLa!, ~58!

whereI l() denotes a modified Bessel function.
The quantities of interest are~i! the total number of elas-

tically scattered photons of frequencyvL , per unit time and
normalized to the total number of photons incident upon the
areapa2 ~normalized cross section!, given by~see Appendix
A!

sscatt~vL!5
4p

~kLa!2
S kL2c D 2(

m
E dVkWuB~kW ,m!u2; ~59!

and ~ii ! the total cross sections tot(vL), being the sum of
sscatt(vL) and the absorption cross sectionsabs(vL);
s tot(vL) is determined from the optical theorem~@18#, see
also Appendix A!.

Using the partial wave expansion, the total scattering
cross section becomes

sscatt5
1

~kLa!2
S kL2c D 2(

l50

`

~2l11!uBl~kL!u2

5
1

~kLa!2(l50

`

~2l11!
~gL

l !2

~geff
l !21~vL2v02kL

2/2M !2
,

~60!

i.e., the sum of Lorentzians~55!, characterized by the width
geff
l 5G1gL

l , and the corresponding differential cross sec-
tion only depends on the polar angleu, and is given by

dsscatt~u,vL!5
1

2~kLa!2U(l50

`

~2l11!
gL
l

@geff
l 2 i ~vL2v02kL

2/2M !#
Pl@cos~u!#U2 sin~u!du. ~61!

A similar expression holds fors tot , i.e.,

s tot~vL!52
8p

~kLa!2
kL
2

c
Re@B~kWL ,mL!#

5
2

~kLa!2(l50

`

~2l11!
gL
l geff

l

~geff
l !21~vL2v02kL

2/2M !2
.

~62!

We note that in generals tot>2sscatt, i.e., there are always
more absorption events than scattering events. In the ideal-
ized model for the scattering kernel with the very smallG,
we haves tot.2sscatt. For the parameters we are using, the
dominant contribution to the sums in Eqs.~61! and ~62!
comes froml values withgL

l @G, therefore the absorption
and the scattering cross sections are approximately the same,
i.e., sabs'sscatt.

We analyze the result given by Eq.~60! with the help of
the formula Eq.~58!. Note that the Gaussian function used to
derive Eq.~58! describes the density profile for class A mod-
els with a harmonic potential, class A* models, and all
classes of models in the high-temperature limit. We can thus
use Eq.~58! in all these cases provided the value ofa is
appropriately adjusted.

For l!kL
2a2, all gL

l ’s are roughly equal to
geff'3Ng/(2kL

2a2) @11#. One might think that if only low

angular momentum harmonics contribute to scattering, the
cross section would be a sum of Lorentzians with approxi-
mately the same width; i.e., it would itself be a Lorentzian.
However, thegL

l ’s decrease quite significantly with increas-
ing l . In fact, the contribution from higherl ’s is also impor-
tant. As a result, the line shape becomes non-Lorentzian, and
exhibits a very narrow spike close to resonance. This narrow
feature in the spectrum is an analog of the coherent Dicke
narrowing@43#. The lower bound for the width of this spike
is determined by the rateG, which in the model that accounts
for spontaneous emission out of the condensate is of the
order of the sum of the natural linewidth and diffusive broad-
eningGd . It is worth noticing that even close to resonance
the angular distribution of the scattered light has a width of
the order 1/(kLa). We shall discuss the line shapes in detail
in Sec. VII.

We summarize this section by stressing once more that the
on-shell approximation has many appealing properties: it al-
lows for an accurate analytic solution of the scattering prob-
lem, and for a direct analysis of the cross sections in terms of
partial waves. It also provides a representation of the cross
sections in the form of a sum of Lorentzians with decreasing
width. The latter representation allows us to recover Jav-
anainen’s result@11#, in the limit in which the contribution
from the lower partial waves is dominant. On the other hand,
the on-shell approximation has two major drawbacks: its va-
lidity range is not well established, and, according to Eq.
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~50!, ast→` it treats each of the multiple scattering events
as elastic@to see that multiple scattering occurs one may
consider an iterative solution of Eqs.~8! or ~46!#. The latter
statement implies that this approximation presumably cannot
be used for very dense systems for whichoff-shellpropaga-
tion between the successive scattering events might play a
significant role. In Sec. VI we present another solution of the
scattering problem which employs Glauber’s GDT, which
should account much more accurately for the off-shell propa-
gation effects.

VI. GENERALIZED DIFFRACTION THEORY

In order to apply the GDT@19# we perform the same
approximations to the self-energy kernel as in Sec. V,
i.e., replace r(k)r(k8) by ur(kL)u2, and neglect the
polarization dependence in Eq.~14!. In the long time limit,
we may also replaceK̃ (s;kW ,m,kW8,m8) in Eq. ~46! by
K̃ (2 ivL ;kW ,m,kW8,m8) @45#. Equation~46! may now be con-
veniently transformed to the spatial representation. To
achieve this we multiply the left-hand side bys2 ick, the
right-hand side by22ick.s2 ick, and introduce the scalar
field

E~RW !}E dkWr~k!eik
W
•RWakWm . ~63!

Within the framework of the approximations used, this scalar
field is proportional to a component of the electric field
propagating in the direction close tokWL , with polarization
close toeWmL

. In the time domain this field fulfills the wave
equation,

F2
]2

]t2
1c2¹2GE~RW !52vLV~RW !E~RW !, ~64!

where the complex potential@related to the spatial Fourier
transform of the scattering kernel as given by Eq.~14!# is

V~RW !5
~2p!3ur~kL!u2

D1 iG
r~RW !, ~65!

with D5vL2(v01kL
2/2M ) being the detuning from the re-

coil shifted resonance. Physically, the imaginary part of this
potential describes the absorption processes. In the idealized
model, these processes lead to the excitation of atomic wave
packets which then diffuse, and drift away from the trap,
without having any possibility of returning their energy back
to the field. In the more realistic model of Appendix B the
absorbed energy is also dissipated in the processes of spon-
taneous emission out of the condensate, which subsequently
contributes to the incoherently scattered photons.

According to the GDT, when the incident wave propa-
gates in thez direction one seeks a solution of Eq.~64! in the
form

E~RW !5e2 ivLt1 ikLzc~RW !, ~66!

wherec(RW ) is a slowly varying function ofRW . Neglecting its
second-order derivatives~in the same way as the slowly

varying envelope approximation normally used in studying
propagational problems!, we obtain

]c~RW !

]z
52 i

1

c
V~RW !c~RW !, ~67!

and hence

c~x,y,z!5e2~ i /c!E
2`

z

V~x,y,z8!dz8. ~68!

Let us denote bypW ~the impact parameter! a vector in the
(x,y) plane, and byẑ a unit vector in the direction of propa-
gation of the incident wave. It is also convenient to introduce
the quantity

x~pW !52
1

cE2`

`

V~pW 1 ẑz!dz. ~69!

The scattering amplitude can then be expressed as@19#

f ~kW ,,kWL!5
kL
2p i E dpWei ~k

W
L2kW !•pW@eix~pW !21#. ~70!

The scattering and total cross sections are

sscatt5E dpW ueix~pW !21u2, ~71!

and

s tot5
4p

kL
Im@ f ~kWL ,kWL!#

52 ReH E dpW @12eix~pW !#J . ~72!

The above expressions can be further elaborated analyti-
cally. For instance, for the case of a Gaussian density profile
~see, for instance,@20#! as given by Eq.~36!, we get

x~pW !52
3Ng

2~kLa!2
e2p2/2a2

D1 iG
, ~73!

and the cross sections~in units ofpa2) can be expressed in
terms of the exponential integral function@31#

s tot54 Re@E1~j tot!1 ln~j tot!1gE#, ~74!

sabs52@E1~jabs!1 ln~jabs!1gE#, ~75!

sscatt5s tot2sabs, ~76!

where E1() is the exponential integral function,
gE50.577 215 664 9 . . . isEuler’s constant, and

j tot5 i
3Ng

2~kLa!2
1

D1 iG
, ~77!

jabs5
3Ng

2~kLa!2
2G

D21G2 . ~78!
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Similarly, analytic expressions in terms of hypergeometric
functions can be obtained for the density profile of Eq.~43!
@33#. In general, within the GDT, we can also use numerical
integration techniques to evaluate the cross sections and an-
gular distributions of the scattered field for density profiles
such as those obtained from the solutions of the nonlinear
Schrödinger equation Eq.~42! @33#.

We can also consider the angular distributions within the
GDT. As shown by Glauber in Ref.@19#, on the energy shell
for elastic scattering, after performing the angular integrals
one should use

1

2pE ei ~k
W
L2kW !•pWdpW $•••%5E

0

`

J0S 2kp sinu2D pdp$•••%,
~79!

and consequently the scattering amplitude takes the form

f ~u!52 ikLE
0

`

J0S 2kp sinu2D @eix~pW !21#pdp. ~80!

The angular distribution for the elastic scattering is thus

dsscatt~u!

du
52pu f ~u!u2 sinu. ~81!

Apart from its simplicity, which allows us to obtain many
analytic results, GDT has another appealing property: the
conditions for its validity regime are well established, and
are given by

uVumax
vL

!1, ~82!

whereuVumax denotes the maximal value of the complex po-
tential given by Eq.~65!, and

kLa@1. ~83!

The product of the parameters of Eqs.~82! and~83! may be
arbitrarily large, and thus in this sense the GDT is capable of
describing strongly nonperturbative effects. The second of
the above conditions is fulfilled in the regime of parameters
we consider@a5(1–20)l#. The first condition physically
means that the GDT in the manner of the eikonal approxi-
mation describes high-energy scattering, when the energy of
incoming photons is significantly larger than that of the cor-
responding potential barrier. Obviously, in such situations,
scattering, although highly nonperturbative, occurs mainly in
the forward direction. In the polariton picture discussed in
Refs. @9,10# this corresponds to the case where the photon
frequency lies outside the gap, which is formed in the exci-
tation spectrum, or to the case of finite trap size when the
line shape is broadened so much that the effects of the gap
cease to exist. We examine in more detail below the condi-
tion of Eq. ~82! for the case of class A models, class A*
models with a Gaussian density profile, and a phenomeno-
logically adjusteda, and for the class C models.

The condition ~82! for the case of a Gaussian density
profile may be written as

FIG. 3. The partial Lorentzian widthgL
l as a function ofl for

three different values of the trap size:a530, 10, and 3mm, respec-
tively. The solid lines represent the results given by Eq.~58! for an
ideal noninteracting gas, while the dashed~dotted! lines ~overlay
each other as the approximation is very good in this case! represent
results obtained for density profiles obtained from the numerical
solutions of the NLSE~42! @approximate solutions of the NLSE
given by Eq.~43!# with a coupling strengthNasc51.

FIG. 4. Same as Fig. 3 except forNasc510 000. Dotted lines
can hardly be distinguished from the solid ones.
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3

A2p

N

~kLa!3
g

max~ uDu,G!
,1. ~84!

Similarly for the class C model with the density profile of
Eq. ~43!, the condition becomes

45

4

N

~kLR0!
3

g

max~ uDu,G!
,1. ~85!

We obtain then the following ranges of applicability of our
theory:

~i! For T50, N5107, a510 mm our results for class A
models are valid for

uDu.20g, ~86!

i.e., on a scale of tens of MHz. For the class C models with
the density profile given by Eq.~43!, a scattering length
asc520 Å, and the rest of the parameters the same, the va-
lidity condition becomes

max~ uDu,G!.0.2g. ~87!

Since for realistic models that take into account spontaneous
emission out of the condensate,G is of the order ofg, we

conclude that the inequality Eq.~87! is always fulfilled, and
the theory for class C models is valid for the whole range of
laser detunings. Obviously, this analysis suggests that the
value of a used for class A models, should be increased
several times to account phenomenologically for the effects
of the atom-atom interactions. For class A* models, with
a*>3a, the theory becomes valid for the whole range of
detunings.

~ii ! For T.Tc where Tc is the critical temperature for
BEC, N5107, a510 mm one can use class A models with
an appropriately scaled size of the Gaussian density profile,
a(bc). The critical value ofbv t for BEC may be estimated
to be (bv t)c.(1.202/N)1/3.231022 @46,47#. As a result
a(bc).100 mm @from Eq. ~38!#, and the validity of the
theory requires that

max~ uDu,G!.0.02g. ~88!

The above condition is again fulfilled for all detunings, when
G;max(ḡ,Gd). It is interesting to note that even for the
idealized model, which neglects completely the spontaneous
emission events out of the condensate which disturb the ther-
mal equilibrium, our theory is valid up to detunings of the
order of a few hundredG.Gd .

FIG. 5. Typical results for the scattering cross sections obtained from the on-shell approximation for three different values of the
interaction strengthNasc510 000,100, and 1 respectively, andG5kav t531.4 Hz. The solid lines represent the results obtained from the
density profile of the numerical solutions of the nonlinear Schro¨dinger equation~42!. The dotted line represents the results obtained for the
approximate density profiles given by Eq.~43!. The dashed lines serve as a reference and are obtained for noninteracting gases with the
Gaussian density profile given by Eq.~36!; ~a! large-scale plot of the scattering cross section;~b! enlargement of the central region of~a!.
@Note: change of units in~b! from GHz to MHz.#
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Above the temperature such thatbv t.331023 the
theory becomes valid for all detunings for both the idealized,
and the more realistic model.

The above estimates are easily translated to another ex-
perimentally accessible case, namely microtraps~with a.1
mm! containingN.104 atoms.

This discussion shows that generally the results obtained
from the GDT are reliable for the whole range of detunings,
although at low temperatures one has to use models with
realistic density profiles that account for atom-atom interac-
tions and allow for spontaneous emission out of condensate.
As we shall see in Sec. VII, the results obtained within the
framework of the GDT are numerically very close to those
obtained from the on-shell approximation. We thus conjec-
ture that in the regime of parameters of interest both theories
give an accurate description of the scattering process. It is
worth stressing that our description accounts for nonpertur-
bative multiple scattering effects and provides a complemen-
tary approach to the polariton theory of Svistunov and
Shlyapnikov @9#, and to the single harmonic oscillator ap-
proach of Javanainen@11#. More importantly, our approach is
valid in the regime of parameters that are expected in many
experiments.

Of course, the fact that one considers here the regime in
which the effects of the gap in the polariton spectrum are
irrelevant does not imply that the present theory does not
describe relevant effects due to polariton formation. This is
especially true for the idealized model. For such a model in
the stationary state there survives some coherent amplitude
of the excited-state atoms, which~due to quantum diffusion
and drift! is not able to undergo a spontaneous transition to

the condensate state. In another words, the incident field pro-
duces a coherent combination of the scattered field and ex-
cited matter wave – i.e.,polaritons. The fact that the effec-
tive potential in the idealized model is complex, reflects the
fact that part of the incident energy is absorbed to excite
some atoms and is never returned back to the field. For the
model that includes spontaneous emission out of the conden-
sate this energy is returned to field in the form of inelasti-
cally scattered photons.

VII. RESULTS AND DISCUSSIONS

In this section we report some of our numerical results.
We present cross sections in the parameter range of interest
to experiments. We also compare the results obtained from
the two approaches discussed in Sec. VI. We discuss also the
dependence of the results on the trap sizea and on the inter-
action strengthNasc/a.

We start our discussion with the results of the on-shell
approximation. In that case the cross sections can be repre-
sented as sums of Lorentzian contributions of partial waves
@see Eqs.~60! and ~62!#.

FIG. 6. The same as in Fig. 5~a! but for G5g.

FIG. 7. Comparison of the dependence of the scattering cross
section on the trap size fora53, 10, and 30mm. We have used
Nasc5100 andG5g. The solid lines represent the results obtained
from the density profile of the numerical solutions of the nonlinear
Schrödinger equation~42!. The dotted lines represent the results
obtained for the approximate density profiles given by Eq.~43!. The
dashed lines serve as a reference and are obtained for noninteracting
gases with the Gaussian density profile given by Eq.~36!. The
dashed lines can also be viewed as representing the high-
temperature limit as given by Eq.~37!.
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In Figs. 3 and 4 we have plotted the partial Lorentzian
widths gL

l @as defined in Eq.~56!# as a function of the order
of the spherical harmonicsl for three different values of trap
sizes~as listed in each figure! and two different interaction
strengths. Here, the solid lines represent the results given by
Eq. ~58! for an ideal noninteracting gas and serve as a refer-
ence. The dashed lines represent results for the density pro-
files obtained from the numerical solutions of the NLSE
~42!. Finally, the dotted lines represent the results corre-
sponding to the approximate solutions of the NLSE given by
Eq. ~43!.

Note that since the contribution of each Lorentzian to the
scattering cross section is proportional to (gL

l )2, the results
in Figs. 3 and 4 can be viewed as a measure of the relative
significance of the partial waves.

Figure 3 represents the results of the partial Lorentzian

widths for the interaction strengthNasc/a51 when the den-
sity profile does not significantly differ from the Gaussian
distribution for the noninteracting gas~as given in Fig. 2!. In
this case the approximate density given by Eq.~43! does not
provide a good approximation. In Fig. 4 we present the re-
sults forNasc/a510 000 when the approximate density of
Eq. ~43! becomes an excellent approximation.

We notice that generally the number of Legendre polyno-
mials involved~with nonzero partial width! in the scattering
increases with the trap size. Comparison of Fig. 3 with Fig. 4
shows that this number increases also with interaction
strength@33#. We find that, in general, the exact numerical
solution of the NLSE leads to broader partial width distribu-
tions than those obtained for noninteracting gases in propor-
tion to the effective sizeR0@Eq. ~44!#. It is also important to
note that the results obtained from the approximate solutions
of the NLSE given by Eq.~43! lead to partial width distri-
butions that approximate quite well the results for interacting
gases even in the case of moderate coupling strength
Nasc51 ~Fig. 3!. Of course, as the interaction strength in-
creases, it becomes a better and better approximation~see
Fig. 2!. The results for the cross section can hardly be dis-
tinguished then from those obtained from the exact solutions
of the NLSE~see Fig. 4!.

In Figs. 5–8 we present and discuss parameter depen-
dences of the cross sections obtained from the on-shell ap-

FIG. 8. The spectral-angular distribution of the scattering cross
section forG5g anda510 mm; ~a! for a noninteracting gas.~b!
Results from the approximate density profile given by Eq.~43! with
Nasc5100.

FIG. 9. Comparison between the results of the scattering, ab-
sorption, and total cross sections obtained from the on-shell ap-
proximation and the GDT for the case of a noninteracting gas with
G5g anda510mm. The solid lines represents the result obtained
from the on-shell approximation, while the dotted line represents
the result obtained from GDT.
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proximation. Unless otherwise stated, from now on we use
the convention that the solid lines represent the results ob-
tained from the density profile corresponding to the numeri-
cal solutions of the NLSE~42!. The dotted lines represent the
results obtained from the approximate density profiles given
by Eq. ~43!. Finally, the dashed lines are obtained with the
help of the on-shell approximation for noninteracting gases
with the Gaussian density profile given by Eq.~36!.

Figure 5 represents the scattering cross sections for the
three different values of the interaction strength
Nasc/a510 000,100, and 1, respectively. These results
were obtained for the idealized model withG5kav t . For a
Cs atom with the mass of about 220 atomic mass units, the
trap frequencyv t is related to the trap size according to
a25\/(2Mv t). Fora52 mm,v t510 Hz. Therefore for the
three different sizes used the corresponding values for
G5kav t are 105, 31.4, and 10.5 Hz. We remind the reader
that these results may be alternatively viewed as correspond-
ing to scattering of light at a very narrow resonance~for
instance, a forbidden transition for whichg is very small!.

From Fig. 5 we see clearly that the line shapes have two
basic features: an overall broad spectrum of the effective
collective width}Ng/(kLa)

2, and a narrow feature close to
the resonance of width comparable toG. We notice also that
with the increase of the interaction strengthNasc/a, the
overall cross sections calculated from the approximate den-
sity profiles become indistinguishable from those obtained
with the exact density distribution@Fig. 5~a!#. However, very

close to resonance@Fig. 5~b!#, the abrupt edge in the approxi-
mate density profile solutions affects the contribution of the
higher partial waves~compare Fig. 3!. As a result the central
feature is much less pronounced for the approximate solu-
tions. As we see in Fig. 6, these artificial differences between
the solid and dotted curves vanish for larger values of
G.g.

The overall shape and the magnitude of the cross sections
also change with the interaction strength, as shown in Fig. 5.
Larger values of interaction strength lead to largerR0 , and
consequently to broader spatial distributions with a smaller
density in the trap center. The collective width therefore be-
comes smaller as represented in Figs. 5~a! and 6. For the
same reason the magnitudes of various cross sections in-
crease with the interaction strength. However, we find that
the increase does not scale aspR0

2 ~as a simple geometrical
argument would suggest!. Instead, the cross section is a
rather complex function of the parameterNasc. Similar re-
sults as in Fig. 5~a! are displayed in Fig. 6 forG5g. As we

FIG. 10. The same as Fig. 9 but for an interacting condensate
with Nasc5100. The results obtained with the help of both ap-
proaches are calculated with the approximate density profile given
by Eq. ~43!.

FIG. 11. The same as Fig. 8, but obtained from the GDT ap-
proach.
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already mentioned, in this case the agreement between the
results corresponding to the exact and approximate solutions
of the NLSE is much better. We stress that the dependence of
the cross sections on the interaction strength has an analo-
gous form for other trap sizes (a53,30mm @33#!.

In Fig. 7 we compare the dependence of the scattering
cross sections on the trap size for an interaction strength
Nasc/a5100 andG5g. For a better comparison, we have
scaled the frequency coordinate by@10(mm)/a] 2 to elimi-
nate the asymptotic density dependence of the cross sections.
We observe again that the results obtained from the approxi-
mate density profile agree with those from the exact density
profile very well. Similar conclusions hold for other values

of the interaction strength@33#. As discussed in Sec. V,
within the on-shell approximation, the absorption cross sec-
tion is roughly the same as the scattering cross section for
most of the parameter regions of practical interest. For this
reason we do not display comparative results for the absorp-
tion cross sections here.

In Fig. 8 we have plotted the spectral-angular distribution,
i.e., differential scattering cross sections forG5g and
a510mm. As we see, the scattering is basically restricted in
the forward direction to a solid angle determined by the size
of the condensate. In Fig. 8~a! we have plotted the results for
the case of an ideal noninteracting gas. Close to resonance
the angular distribution displays patterns of oscillations due
to the interference of all the harmonics involved in the scat-
tering. The period of those oscillations is proportional to
1/(kLa). Off resonance these oscillations decay very rapidly
as higher order harmonics contribute less and less. Note that
the plot is on a logarithmic scale. In Fig. 8~b! the same result
is presented for the case of an interacting gas with
Nasc/a5100. The repulsive interaction increases the size of
condensate, and consequently the oscillation period becomes
smaller, in proportion to}1/(kLR0). Interestingly, the oscil-
lations in the angular dependence can now be seen even far
off-resonance. Analogous results hold for different trap sizes
and different interaction strengths@33#.

In Figs. 9 and 10 we present a comparison between the
results obtained from the on-shell approximation and those
obtained from the generalized diffraction theory for the scat-
tering, absorption, and total cross sections. As we can see in
Fig. 9 for the noninteracting case, the overall agreement be-
tween the two approaches is reasonably good. This is espe-
cially true for the total cross section. Note that on resonance
the total cross sections obtained from both approaches have
roughly the same magnitude, and the respective spectral
wings merge together.

We should stress, however, that the agreement between
the scattering cross section and absorption cross sections is
not very good. In particular the GDT predicts that the scat-
tering cross section is broader than the absorption cross sec-
tion. In the on-shell approximation, on the other hand, the
scattering and absorption cross sections have the same width.
Moreover, the scattering cross section obtained from the
GDT exhibits interesting~although relatively broad! struc-
tures close to resonance. Note, however, that the narrow peak
at the exact resonance is still present in the absorption cross
section.

Figure 10 presents similar results as Fig. 9, but now for an
interacting condensate withNasc/a5100. Both results were
obtained from the approximate density profile given by Eq.
~43!. We note that now there exists an additional structure
‘‘line splitting’’ in the scattering cross section obtained from
the GDT close to the line center. This is in fact a general
feature of the results obtained from the GDT. It is not yet
fully understood, and will be discussed elsewhere@33#. At
this point it is worthwhile to point out that in contrast to the
on-shell approximation, the GDT includes contributions that
are not fully coherent in a similar manner to the way Mollow
spectrum has both coherent and incoherent component at the
laser frequency@34#. We stress also that the shape of the
absorption cross section is governed by the relevant dissipa-
tive processes, and for both approaches exhibit a narrow

FIG. 12. Comparison of the angular scattering cross sections at
two fixed laser detunings for results obtained from the GDT and
on-shell approximations. The solid lines represent the results from
the on-shell approximation, while the dotted lines represent the re-
sults from the GDT;~a! line sections of Fig. 8~a! and Fig. 11~a! for
the noninteracting density profile;~b! line sections of Fig. 8~b! and
Fig. 11~b! for the approximate density profile forNasc5100.
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peak at the resonance of widthG.
In Fig. 11 we present the spectral-angular distributions

~i.e., differential cross sections! obtained from GDT. Here
the same parameters have been used as in Fig. 8. As we see
the agreement between the two approaches is qualitatively
very good. For a clear comparison, we also display in Figs.
12 and 13 a few line sections from the surface plots of Figs.
8 and 11. In Fig. 12, we present the angular distributions at
two fixed detunings. In Fig. 13 the comparison of the scat-
tering cross sections is made for two fixed polar angles.

Even though the differences between the two approaches
are sometimes clearly visible, we conclude that in general
the two approximate theories agree reasonably well in terms
of magnitudes of the cross sections close to resonance, over-
all shape of the spectra~narrow feature in the center with a
broad background!, widths of the spectra, etc. This conclu-
sion holds for other trap sizes and interaction strengths as
well. This suggests that the parameter ranges of applicability
of the two methods are similar.

VIII. CONCLUSIONS

In summary we have calculated the line shapes for coher-
ent scattering from a BEC. This line shape has three inter-
esting properties. First, it exhibits a very broad resonance of
width of ordergeff53Ng/2(kLa)

2. To detect this resonance
it will be sufficient to shine strongly detuned light on the
system of cooled atoms, with a detuning of the order of
geff . Those atoms that are not in the condensate phase will
Rayleigh scatter with a cross section with effective linewidth
g(!geff) and will not significantly contribute, while the con-
densed atoms will scatter collectively. Second, the very nar-
row feature (;G) in the spectrum atvL.v0 suggests obvi-
ous applications of this system for precision spectroscopy.

This is one of the comparatively rare examples of a situation
in which such a narrow resonance is present.~The Dicke
narrowed spectrum@43# is also similar in shape to this sharp
spectral feature.! Yet the response of the system at this reso-
nance is strong. This is in contrast to normal narrow reso-
nances associated with weak transitions. From the experi-
mental point of view, the spike atvL.v0 is especially
interesting, since it will not be smeared out due to fluctua-
tions in the number of condensed atoms. Third, the line
shape is non-Lorentzian, and in some circumstances may ex-
hibit additional interesting features. In particular the GDT
predicts line splitting and similar structures in the scattering
cross section close to resonance. Although at present those
features are not fully understood, we point out that they arise
in the GDT from the contributions that are not fully coherent.

We emphasize again that coherent scattering probes in the
first place the density profile of the trapped atoms, and does
not reflect quantum statistical effects directly. It does reflect
these effects indirectly, however, through the density profiles
that are different for bosons or fermions at low temperatures.
It also reflects the very fact of condensation, since the den-
sity profile changes in the condensation process. As we
pointed out earlier, our results for broad Gaussian density
profiles may be in principle regarded as corresponding to
high-temperature cases. According to our theory, in both
cases of a low-temperature BEC and a high-temperature gas
the scattering will occur mainly in the forward direction.
Thus, forward scattering is not a signature of BEC. In the
high-temperature case, however, the divergence of the scat-
tered beam will be determined by the thermal size
ath;a(b) @Eq. ~38!# of the sample, i.e., it will be propor-
tional to 1/@kLa(b)#, and thus much smaller than the angle
in the presence of the condensate@sincea(b)@l#.

FIG. 13. Comparison of the frequency dependence of the scattering cross sections at two fixed polar angles for results obtained from the
GDT and on-shell approximations. The solid lines represent the results from the on-shell approximation, while the dotted lines represent the
results from the GDT;~a! line sections of Fig. 8~a! and Fig. 11~a! for the noninteracting density profile;~b! line sections of Fig. 8~b! and Fig.
11~b! for the approximate density profile given by Eq.~43! for Nasc5100.
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The quantum statistical effects are clearly visible in the
spectrum of scattered light, since they cause an enhancement
of the spontaneous emission rate into the condensate. These
effects again will cease to exist for a gas at temperatures
above the Bose-Einstein transition; the spectrum of coherent
scattering will be then much narrower, and in the extreme
limit b→0 it will tend to be Lorentzian with a width;G,
bounded from below by the single atom spontaneous emis-
sion rateg or by the rateGd due to single atom quantum
diffusion processes. The spectrum in the presence of the con-
densate at low temperatures will display a broadnon-
Lorentzianshape gradually narrowing toward the resonance,
and transforming into a narrow feature of the characteristic
width G in close vicinity to the resonance. Physically, the
narrowing of the spectrum close to resonance comes from
the fact that the quantum statistical enhancement of the spon-
taneous emission rate to the condensate decreases with suc-
cessive multiple scattering events due to the broadening of
excited atomic wave packet in momentum space~or alterna-
tively, due to the excitation of higher and higher partial wave
components!. Even though the narrow feature in the spec-
trum at low temperatures reminds one somewhat of the
Lorentzian spectrum at high temperatures, it is worth stress-
ing that both its magnitude and shape strongly depend on the
sample sizea, and therefore on temperature~compare Fig. 7!
@44#.

According to the present study the clear signatures of con-
densation from coherent light scattering are thus:~a! forward
scattering with a divergence angle proportional to 1/(kLa)
determined by the size of the condensatea; ~b! a broad non-
Lorentzian spectrum with an overall width of;Ng/(kLa)

2

in the spectral wings, a gradually narrowing width closer to
the resonance, and a characteristic width;G at the reso-
nance.
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APPENDIX A: DEFINITION OF THE SCATTERING
CROSS SECTION

Within the on-shell approximation, the solution of the
scattering equation~8! has the form

akWm~ t→`!;ad~kW2kWL!dmmL
e2 ivLt

1aB~kW ,m!d~ck2vL!e2 ivLt, ~A1!

from which we can define the scattering cross section ac-

cording to the following scheme. The number of scattered
photonsdnscattand the number of incident photons are given,
respectively, by

dnscatt}dVkW(
m

E
0

`

uaB~kW ,m!u2d2~ck2vL!k2r~k!dk,

~A2!

nin}E uau2d2~kW2kWL!r~k!dkW . ~A3!

Therefore the differential scattering cross section can be de-
fined as

dsscatt

dVkW
5
dnscatt
nin

5~pa2!
4p

~kLa!2
S kL2c D 2(

m
uB~kW ,m!uk5kL

2 ,

~A4!

where we have used the standard normalization,

d2~kW2kWL!5
1

~2p!3
~ctd!Ad~kW2kWL!, ~A5!

d2~ck2vL!5
1

c2
1

2p
~ctd!d~k2kL!. ~A6!

HereA is the unit cross-sectional area corresponding to the
incident flux, andtd is the duration of the incident weak field
pulse. The differential cross section in units ofpa2 is, there-
fore,

dsscatt

dVkW
5

4p

~kLa!2
S kL2c D 2(

m
uB~kW ,m!uk5kL

2 . ~A7!

Note that according to this normalization, the cross section is
4p times bigger than what we have used in Ref.@12#.

An optical theorem can be derived by squaring Eq.~A1!,
and calculating the total number of photonsnph in the scat-
tered field. In the remote past whent→2`, the number of
photons in the field isnin . Conservation of energy then gives

nin5nph1nabs. ~A8!

We have denoted the number of photons absorbed bynabs,
andnph is the number of photons remaining in the field in the
long time limit. A corresponding absorption cross section can
be defined in a form similar to Eq.~A4! for the scattering
cross section. In the long time limit whent→`,
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nph}(
m

E uad~kW2kWL!dmmL
e2 ivLt1aB~kW ,m!d~ck2vL!e2 ivLtu2r~k!dkW

5nin1E dnscatt12 Re@ uau2B~kWL ,mL!d~ck2vL!r~kL!#. ~A9!

Substituting Eq.~A9! into Eq. ~A8!, and using again the
normalization relation~A6!, we obtain the total cross section
~for cross sections in units ofpa2)

s tot5sscatt1sabs

52
8p

~kLa!2
kL
2

c
Re@B~kWL ,mL!#. ~A10!

Comparing the above expression with Eq.~72!, we see that
2 iB(kW ,mL) can be associated with a scattering amplitude,
and in particular

2
8p2

c
Re@B~kWL ,mL!#→

4p

kL
Im@ f ~kWL ,kWL!#. ~A11!

APPENDIX B: SPONTANEOUS EMISSION OUT
OF THE CONDENSATE

In this Appendix we show that the spontaneous emission
out of the condensate can be included in the theory by re-
placingv0 by v02 i ḡ, with ḡ being typically of the order of
the natural linewidthg. As a result, the effective decay con-
stant of the self-energy kernel becomes of the order of
ḡ1Gd . Thus, in the regime whenGd!g, G becomes com-
parable tog.

We consider here only the class A model with a Gaussian
density profile atT50, and zero potential in the excited
state. We employ the Schro¨dinger equation approach to de-
scribe single photon scattering events in the spirit of the

one-photon approximation@48#. The wave function contains
in this case three components

uC~ t !&5(
m

E dkWa~ t;kW ,m!uN,0, . . . ;0W ;kWm&

1(
mW

bW mW ~ t !•eWmW
† uN21, . . . ;0W ;0&

1 (
nW Þ0

(
m

E dkWgnW~ t;kW ,m!uN21, . . . ,1, . . . ;0W ;kWm&,

~B1!

where the indices for the Fock representation of the wave
function are arranged in the following order
uground;excited;photon&, and uN,0, . . . ;0W ;kWm& denotes the
state for which allN atoms are in the condensate~i.e., in the
ground electronic state and in the ground state of the trap!,
and a photon of momentumkW and polarizationeW kWm is present;
eWmW
† uN21, . . . ;0W ;0& is a state for whichN21 atoms are in
the condensate, one atom is excited to the statemW , and there
are no photons; and, finally,uN21, . . . ,1, . . . ;0W ;kWm& is a
state for whichN21 atoms are in the condensate, one atom
is in the ground electronic state, but in thenW th excited state
of the trap, and a photon of momentumkW and polarization
eW kWm is present.

The Schro¨dinger equations for the amplitudes can be eas-
ily derived from the Hamiltonian~1!, and they are

ȧ~ t;kW ,m!52 icka~ t;kW ,m!2 iAN(
mW

r~k!h0mW ~kW !@eW kWm•bW mW ~ t !#, ~B2!

@eW kWm•bẆ mW ~ t !#52 i ~v01EmW
e !@eW kWm•bW mW ~ t !#2 iAN(

m8
E dkW8r~k8!@h0mW ~kW8!#* ~eW kWm•eW kW8m8!a~ t;kW8,m8!

2 i(
nW Þ0

(
m8

E dkW8r~k8!@hnWmW ~ k̂8!#* ~ êkWm• êkW8m8!gnW~ t; k̂8,m8!, ~B3!

ġnW~ t;kW ,m!52 i ~ck1EnW
g!gnW~ t;kW ,m!2 i(

mW
r~k!hnWmW ~kW !@eW kWm•bW mW ~ t !#, ~B4!

with a(0;kW ,m)5d(kW2kWL)dmmL
, bW mW (0)50, andgnW(0;kW ,m)50. If we had ignoredgnW(t,kW ,m) in the above equations, the Eqs.

~B2! and~B3! would be equivalent to the linearized Heisenberg equations discussed in Sec. II. In particular,a(t;kW ,m) would
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have fulfilled the scattering equation~8!. In general, we use the Laplace-transform technique to solve Eq.~B4! for
gnW(s;kW ,m), and then insert it into the solution for the Laplace-transformed Eq.~B3!. The result is

@s1 i ~v01EmW
e !#@eW kWm•bW mW ~s!#52 iAN(

m8
E dkW8r~k8!@h0mW ~kW8!#* ~eW kWm•eW kW8m8!a~s;kW8,m8!

2(
mW 8

(
m8

E dkW8ur~k8!u2(
nW Þ0

@hnWmW ~kW8!#*hnWmW 8~k
W8!

s1 i ~EnW
g1ck8!

~eW kWm•eW kW8m8!@eW kW8m8•b
W
mW 8~s!#. ~B5!

To get an estimate of the role of the last term in Eq.~B5! we
use the Wigner-Weisskopf pole approximation@49# and re-
places1 iEnW

g1 ick8 with i (ck82v01EnW
g2EmW

e )1«, with an
infinitesimally small«.0 in the denominator. We also sub-
stituteEmW

e 2EnW
g5kL

2/2M , since the numerator does not vary
much with the change ofEmW

e or EnW
g . Then we employ the

sum rule

(
nW Þ0

@hnWmW ~kW !#*hnWmW 8~k
W8!5dmW mW 82@h0mW ~kW8!#*h0mW 8~k

W !.

~B6!

Since both@h0mW (kW8)#* andh0mW 8(k
W8) are sharply peaked at

mW .mW 8.kW8, and~at least for not too small traps,a>l), the
approximate momentum conservation allows us to limit our
attention tomW .kWL . We can thus approximate

@h0mW ~kW8!#*h0mW 8~k
W8!bW mW 8~s!.@h0kWL

~kW8!#*h0mW 8~k
W8!bW mW ~s!.

~B7!

Neglecting the polarization dependence as discussed in the
on-shell approximation in Sec. V, we obtain the equation

@s1 i ~v01EmW
e !1ḡ #bW mW ~s!

52 iAN(
m

E dkWr~k!@h0mW ~kW !#* eW kWma~s;kW ,m!, ~B8!

which is valid formW .kWL , where

ḡ.gF12
3

2A2~kLa!2
G . ~B9!

Physically, the above formula means that the rate of sponta-
neous emission out of the condensate is smaller than the
natural linewidth by an amount that is of the order of the rate
of emission back to the ground state containing a single
atom. The latter quantity is smaller thang, since due to
approximate momentum conservation, such emission is lim-
ited to the solid angle determined by the size of the ground-
state wave function. Equation~B8! proves our conjecture
that the processes of spontaneous emission out of the con-
densate can be accounted for by the simple substitution
v0→v02 i ḡ, as is normally used for the one-photon ap-
proximation@48#.

APPENDIX C: SELF-ENERGY KERNEL
AT FINITE TEMPERATURE

In this appendix we demonstrate that the reduced self-
energy kernel can be approximated by Eq.~14! at finite T
(Þ0). For simplicity, we first consider class A models with
the same trapping potential for the ground and excited atoms,
but the results are expected to be valid generally. Using the
series expansion for expression~7!

NnW5(
l51

`

zl exp~2 lbEnW
g!, ~C1!

we can represent the reduced kernel~12! in the form

L̃~s;kW ,kW8!5(
l51

`

zlL̃ l~s;kW ,kW8!, ~C2!

where

L̃ l~s;kW ,kW8!5(
nW ,mW

E
0

`

dte2@s1 i ~EmW
e

1v02EnW
g
!#te2 lbEnW

g
hnWmW ~kW !

3@hnWmW ~kW8!#* . ~C3!

Denoting bybW 5(bx ,by ,bz) (bW †) the annihilation~cre-
ation! operators for a single harmonic oscillator describing
motion in the trap potential, we introduce

Hh5v tbW
†
•bW , ~C4!

RW 5a~bW 1bW †!, ~C5!

RW ~ t !5e2 iHhtRW eiHht5a~bWeiv tt1bW †e2 iv tt!. ~C6!

Using the above notation and the definition of the Franck-
Condon factors we can rewrite the expression~C3! in a more
compact form

L̃ l~s;kW ,kW8!5E
0

`

dte2~s1 iv0!t Tr~e2 lbHhe2 ikW•RWeik
W8•RW ~ t !!,

~C7!

where Tr() denotes the trace of an operator.
The trace can be easily evaluated using the same methods

as described in Appendixes B, C, and D of paper II. The
exponents of position operators can be ordered normally
with the help of the Baker-Hausdorf formula, while the trace
is performed using coherent states. The result is
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Tr@e2 lbHhe2 ikW•RWeik
W8•RW ~ t !#5

1

~12e2 lbv t!3
expS 2

@k21~k8!2#a2~e2 lbv t11!22kW•kW8a2~e2 iv tt1e2 lbv t1 iv tt!

2~12e2 lbv t!
D . ~C8!

We now proceed as in Sec. III, i.e., we expand the above expression up to the second-order terms int in the exponent. We
obtain

L̃ l~s;kW ,kW8!5
1

~12e2 lbv t!3
expF2

~kW2kW8!2a2~11e2 lbv t!

2~12e2 lbv t!
G E

0

`

dte2P 2~ l !t22P 1t, ~C9!

with

P 2~ l !5kW•kW8a2v t
2 11e2 lbv t

2~12e2 lbv t!

.kL
2a2v t

2 11e2 lbv t

2~12e2 lbv t!
, ~C10!

P 15s1 iv01 iv tkW•kW8a2

.s1 iv01 ikL
2/2M . ~C11!

In principleP 2( l ) is l dependent. For very low temperatures,
however, this dependence is negligible. For high tempera-
tures only the terml51 contributes to the kernel. In both
these cases we recover the form of Eq.~14! for the kernel
using the asymptotic expansion of the error function as in
Sec. III. We also use the identity

r̄~kW2kW8!5(
l51

`
zl

~12e2 lbv t!3

3expF2
~kW2kW8!2a2~11e2 lbv t!

2~12e2 lbv t!
G . ~C12!

For intermediate temperatures, when the resonance line at
v0 is broadened byḡ ~see Appendix B! we can still neglect
the l dependence ofP 2( l ) ~by considering only thel51
term! since typicallyAP 2( l )!ḡ. If the natural linewidthg
is small, we replaceP 2( l ) by pG2/4 defined according to

2

ApG
5~12z!(

l51

`

zl
1

AP 2~ l !
. ~C13!

The above definition forG assures that at exact resonance
(vL2v02v tkL

2a250) the expression~14! is exact for

kW5kW8.
The above results can be generalized to the case of zero

potential in the excited state. Under such an assumption we
first note that

hnWmW ~kW !5CnW~kW2mW !, ~C14!

whereCnW(kW ) are the normalized harmonic oscillator wave
functions in the momentum representation~and once again
we usemW to index the momentum of the center-of-mass mo-
tion in the excited state!. The reduced kernel can be written
again in the form Eq.~C2! with

L̃ l~s;kW ,kW8!5(
nW
E dmW E

0

`

dte2@s1 i ~v tmW
2a21v0!#te2~ lb2 i t !EnW

g
CnW~kW2mW !CnW* ~kW82mW !. ~C15!

Introducingb̃ l(t)5 lb2 i t , we can express the sum overnW in the above equation as

(
nW

e2b̃ l ~ t !HhCnW~kW2mW !CnW* ~kW82mW !5G@b̃ l~ t !;kW2mW ,kW82mW #, ~C16!

whereG(.;.,.) is theharmonic oscillator temperature Green function in the momentum representation, calculated at complex
b̃ l(t). It is given by@50#

G@b̃ l~ t !;kW2mW ,kW82mW #5S a2

p sinh@b̃ l~ t !v t#
D 3/2 exp@3v tb̃ l~ t !/2#

3expH 2
a2

sinh@v tb̃ l~ t !#
$@~kW2mW !21~kW82mW !2#cosh@v tb̃ l~ t !#22~kW2mW !•~kW82mW !%J . ~C17!
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As is well known the Green function is Gaussian, so
that the integral overmW in Eq. ~C15! can be performed
exactly. The result is expanded to the second-order terms int
in the exponent, and we recover, as in the previous case, the
representation Eq.~C9! for the l -dependent kernels

L̃ l(s;kW ,kW8). The expression forP 1 and P 2( l ) takes the
same form as before~provided we neglect their dependence
on kW andkW8, and setkW5kW85kWL). From this point, the same
analysis as the one presented above applies, and we recover
Eq. ~14!.
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