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We study the coherent scattering of weak light from a system of cooled bosonic atoms in a trap. We derive
and discuss in detail the scattering equation for such a process that describes multiple scatterings from different
atoms. Our theory accounts for atom-atom interactions and determines the density profile of the atomic fields
from the self-consistent Bogoliubov-Hartree method. We present two kinds of analytic solutions to the scat-
tering equation using then-shell approximatiomnd thegeneralized diffraction theoryVe discuss the validity
of those approaches, and demonstrate that they both lead to similar results. Our studies indicate that the
scattering cross sections exhibit non-Lorentzian shapes with narrow features close to resonance. Coherent
scattering occurs mainly in the forward direction, and the angular distribution is limited by the size of the
atomic sample in the trap. We present results for various ranges of relevant parameters such as trap size,
interaction strength, number of atoms, and temperature, etc.

PACS numbds): 03.75.Fi, 42.50.Fx, 32.861

I. INTRODUCTION finite-size traps. In particular, for traps that have a slab ge-

ometry or sharp boundaries, one expects that because of the
This paper is the third in a series of papers devoted to thgap in the spectrum, resonant light will not be able to propa-
study of the quantum field theory of atoms interacting with9ate inside the condensate, and therefore will be strongly
photons. In the previous two papers we discussed the fundéeflected back from the boundary of the condensate. In prac-

_lice, the gap appears only in the narrow line limit, i.e., when
me_ntals of the theorypaper I[1]), and the prpblem of scat the width of the gap significantly exceeds the spontaneous
tering of short laser pulses off trapped atomic samfpeper

. X emission ratey. Javanainen considered another limiting case
Il [2]). The present work is devoted to a detailed study of thest an optically thin condensafd 1], with sizea of the order

problem of weak cw light scattering from such systems. Asyf the resonant wavelength. His approach consists essen-
we stressed in papers | and II, the experimental realization afa|ly of replacing the atomic fielwhich has infinite degrees
Bose-Einstein condensateBEC) [3] in systems of trapped of freedom by a single harmonic oscillator in the limit of
and cooled atomp4] has recently become one of the major low optical density. This harmonic oscillator describes col-
efforts of atomic physic$5]. Significant progress has been lective excitations of the condensate. Within this framework
achieved during the last year towards this goal. Three groupgne can show that the scattering will take place mainly in the
[6] now have reported observation of evaporative codlifig forward direction, and the scattering cross section will have a

in cold (laser precooledalkali-metal systems. New tech- Lorentzian line shape with a width proportional to the col-

nigues have also been developed to cool spin-polarized h)}(_actwe (superradiantspontaneous emission rdiehich typi-

2 . .
drogen[8]. Thus, it is becoming urgent to consider in detail cally would be of the order ofn\*a, wheren is the atomic

bl ing detecti d ob e f q density. In a recent papefl2] we have argued that the
probiems concerning detection and observation ot a Conaeny, a"conclusions would be modified in a trap of significant

sate, or more generally of a system of quantum statisticallystica| thickness, with no sharp boundaries, and of finite size
degenerate atoms. a in the range of1-20\. In the case of moderate atomic
Perhaps one of the most natural ways to detect BEC is byensities,n such thatn(A/27)3= 1-10, one does not ob-
scattering light from the system of cooled atoms. Severaserve backscattering or effects directly related to polariton
authors have considered this problem in recent years. Quafermation. The physical reason is that the effective gap in the
tum optical studies of light scattering from a BEC have beerexcitation spectrum is narrow in this regime, so that its ef-
initiated by Svistunov and Shlyapnikop®], and Politzer fects are washed out by various mechanisms of line broad-
[10]. They discussed the problem of scattering of weak lightening for individual atoms. On the other hand, the propaga-
from a condensate at low temperatufes 0, and considered tion effects influence the scattering process in such a way
the case of a spatially homogeneous gas. Such a case corthat the approach of Refl1] also becomes less adequate.
sponds physically to the limit of €&ormally) infinitely large  Although the large scale width of the spectrum remains the
trap. In this limit atomic and photonic degrees of freedomsame as predicted ifll], the spectrum becomes non-
mix, giving rise to the formation opolaritontype excita- Lorentzian and exhibits a narrow peak at the resonance. The
tions and a gap in the excitation spectrum close to resonanceidth of this narrow feature is controlled by the dominant
This theory can be extended to the case of atoms insidsingle-atom dissipative and dephasing processes such as
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spontaneous emission to noncondensed states, or quantwtiher than the condensate. However, these restrictions will be
diffusion of the excited atomic wave pack¢i®]. Weak light  lifted later in the paper. The general derivation of the scat-
scattering in the ultralow density limit has also been studiedering equation in the weak-field limit has been presented in
by Gajda and MostowsKil3] (see alsd14]) using the Born  paper | not only for class A models of noninteracting atoms,
approximation. but also for class B and C models that account for atomic
All of the above papers concern the problemcoherent collisions. We have shown in particular that the scattering
scattering; that is, they concentrate on the evaluation of thequation for the coherently scattered field depends function-
mean elastically scattered field. Coherent scattering is ally only on the mean density profile of atoms in thermal
probe of the density of the system, and in this sense is natquilibrium. Here we include only a brief discussion of the
necessary specific for Bose-Einstein statistics. The quantumerivation. In Sec. Il we perform a detailed analysis of vari-
statistical character of the atoms exhibits itself in coherenbus limits of the self-energy kernel that enters the scattering
scattering only through the fact that at low temperatures thequation. We also evaluate the kernel analytically in some
density profiles for bosonic or fermionic atoms are different.cases for class A models. This analysis demonstrates clearly
In order to obtain explicit effects of the statistics, one need$ow the kernel can be reduced to a form fully determined by
to calculate higher-order moments of the scattered field thahe mean atomic density.
will probe higher-order correlations of the atomic density. Section IV is devoted to the evaluation of atomic density
Considerable progress on this ambitious task has been rerofiles for class C models that include the effects of atomic
cently realized by Morice, Castin, Dalibatl5], who studied  ground-ground interactions in thermal equilibrium. We again
the refractive index of a dilute Bose gas. These authors havellow the procedure of paper | and calculate the equilibrium
carried out a density expansion of the refractive index in adensity of the condensate @t=0 using a self-consistent
homogeneous system up to second order, and effectively r&ogoliubov-Hartree methodi23,24]. This calculation con-
summed a class of appropriate diagrams of the perturbatiosists of a numerical solution of the nonlinear Sdinger
theory that account for the effects of photon exchange proequation describing the BEC ground-state wave function for
cesses between pairs of atoms. The first nonzero correctiatoms in a trap interacting via a zero-range effective poten-
to the index of refraction related to the statistical nature oftial. We present in this section some details of our numerical
atoms is found to be proportional to the density-density corapproach and the results. In Sec. V we present analytic solu-
relation function. Similar corrections are expected to arise irtions of the scattering equation in the on-shell approxima-
the incoherentspectrum of light scattered from the trappedtion, and apply these solutions to calculate scattering and
atomic samples. In paper Il we have in fact calculated incoabsorption cross sections as well as angular distributions of
herent spectra for the case of scattering of short laser pulsé¢ise scattered radiation. The advantage of using the on-shell
(see alsd16]), and have shown that they provide a directapproximation is that it allows us to perform explicit analysis
probe of the density-density correlations. In the present pasf the solutions in terms of partial waves, and to discuss the
per, however, we will concentrate on coherent scattering, ancelation to Javanainen’s theof¥1]. The disadvantage of this
do not address the question of explicit quantum statisticahpproach is that it does not appear to have a precisely defined
effects[17]. regime of validity. Moreover, it also approximates the propa-
The aim of this paper is to examine the problem of thegation between multiple scatterings by regarding it as a
coherent scattering of a weak cw laser field from a system opropagation of monochromatic photons. For these reasons,
cold trapped atoms in detail. We discuss various limitingwe present in Sec. IV an alternative solution to the scattering
cases and relate them to the results known from other stuagquation based on the GDT. The latter approach has several
ies. Our starting point is a scattering equation valid in theadvantages. First, it is analytically simpler than the previous
weak-field limit (for its derivation, see papey.IWe present one. Second it is formulated in the spatial representation, and
two alternative analytic approaches to the solution of thighus allows us to calculate spatial characteristics of the scat-
equation: one based on thlmn-shell approximation to the tered field. In addition, the GDT accounts for off-shell propa-
scattering matrix18], and the other based on Glaubeg&n-  gation effects for photon wave vectors close to wave vector
eralized diffraction theoryGDT) [19-21]. We calculate and of incident laser field. Finally, the GDT has well-defined va-
discuss scattering cross sections, and their angular and spdidlity criteria that we check in Sec. VI.
tral distributions for a wide range of parameters such as tem- In Sec. VIl we present our numerical results. Both ap-
perature, trap size, number of atoms, etc. We analyze also thppoximate theories give unexpectedly good agreement and
effects related to atom-atom interactions. predict a non-Lorentzian line shape with a narrow peak at
Throughout this paper we focus our attention on the rangeesonance. In the idealized model the width of the narrow
of parameters describing contemporary magnetic traps sugbeak results from the effects of quantum diffusion and drift
as developed by Monroet al. [22] [cesium atoms)=800  of the excited atomic wave packets. In a more realistic model
nm, a=1-10 um, trap frequency w,=(27)10 Hz, this width becomes of the order of maximum of either the
vy=(2m)2.5 MHz|. The paper is organized as follows. In natural (y) or the diffusive {"y) linewidth (see discussion
Sec. Il we present our model in the Fock representation. Thiater). Scattering occurs mainly in the forward direction, and
model we consider belongs to class(d@efined in paper)]  the angular divergence is determined by the size of the
i.e., a system where one neglects short-range atom-atom iatomic sample. In fact, the distribution of the total field ex-
teractions. The model is idealized further by neglecting théhibits a dip in the most dense regions of the trap, that is to
spontaneous emission processes that lead to modifications gdy it is deflected from the condensate without entering the
the atomic distribution in the ground electronic state. In parcentral region. This resembles the effects due to the forma-
ticular at T=0 it neglects spontaneous emission to statesion of a gap in the polariton spectrum discussed in Réfs.
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and[10]. We discuss those results in various ranges of pathe center-of-mass transition from th@éth state of the

rameters, and in particular we study the role of atom-atonground-state potential to théth state of the excited-state
interactions by comparing the results for class A and C modpotentia),

els.
The paper contains three appendices. In Appendix A, we > KBl e
outline the definitions for the scattering cross sections and 7an(K)=(g,1le &), (2)

the normalizations used. We also derive an optical theorem

that will be used when computing the total cross section The above Hamiltonian includes the strong resonant inter-

within the on-shell approximation. In Appendix B we discussactions due to electronic dipole-dipole forces and exchange

the problem of spontaneous emission out of the condensatd transverse photon®7,28. For clarity of discussion we

using a Schrdinger equation approach. In Appendix C we neglect at present other forces that are involved in atomic

discuss properties of the self-energy kernel at a finite temeollisions.

peratureT # 0. As mentioned in paper |, there are several possible meth-
ods of deriving the scattering equation for the electromag-

Il. THE SCATTERING EQUATION netic (EM) field in the limit of weak cw incident light field.

One such method involves the ScHimmger equation ap-

In this section we remind the readers of the essential stegsroach, and assumes that at any time at most one photon is
in the derivation of the scattering equation valid in the weakpresent. This assumption reduces the available Hilbert space
field limit. The details of this derivation for class A, B, and C to two manifolds of stategi) the states in which all atoms
models can be found in paper I. The discussion presenteske in the ground electronic state and the EM field is in a
below focuses on the case of class A models that negleaingle photon statdji) the states in which all but one of the
short-range atom-atom interactions. We stress, however, thatoms are in the ground electronic state, one atom is excited,
the final result applies equally well for other classes of mod-and the EM field is in the vacuum state. This approach is
els that incorporate effects of atomic collisions. discussed in more detail in Appendix B, where we apply it to

The Hamiltonian governing the interactions of light with study the problem of spontaneous emission out of the con-
N bosonic atoms confined in a trap takes the following secdensate.
ond quantized form in the Fock representatjth Another approach employs the Heisenberg equations of
motion for all the operators involved. The disadvantage of
this method is that the treatment of line broadening due to
spontaneous emission events, which deforms the initial
atomic distribution in the ground electronic state, becomes

atal & 2. more complicated. On the other hand, if one neglects broad-
+n2m % f dRp (k)L 7arm(k) G, Em- € H-C] ening by spontaneous emission out of the condensate from
the excited electronic states, the Heisenberg equation ap-
Cobal a- proach treats the idealized model with a fixed initial atomic
+§ f dkaak#a"“' D distribution as a closedHamiltonian system. Such an
idealized model includes line broadening effects due to the
In Eq. (1) we have used the rotating-wave approximation,quantum diffusion and drift of the excited wave packets. One
and have employed atomic units. We have also neglected ttghould stress that probing the system does not necessarily
contactinteraction termg25]. The symbolsg;, g} denote have to be done using the same wavelength as is used for
atomic annihilation and creation operators for fitle state of ~ cooling [which for cesium atoms correspond Xe=800 nm,
the (electroni¢ ground-state trap potential. For a rotationally ¥=(27)2.5 MHZ]. In principle one could therefore employ
invariant potentialyi is actually a triplet indexy,n,n,). other resonant transitions that are characterized by much nar-
The corresponding energy @ﬁzwt(nx+ny+nz) where w, rower natural linewidths. In such S|tuat|ons thg use of Fhe
is the frequency of the harmonic trap potential for the groundde@lized model would be much more valid, since the line
state.é,6L denote atomic annihilation and creation opera—t’rC)""der‘Ing due to quantum'dlffusmn and .d”ﬁ motion wou'ld
tors in the excited-state trap potential. The correspondin xceed the natural broadening. We shall first discuss the ide-

energies ar€;+ wo, i.e., are shifted by the electronic tran- Iall[(z;red model, and account for other line broadening effects
sition frequency. We consider here the case of a transition The Heisenberg equations of motion that follow from the

= ->T1

from ans state to g state and therefo.renjs andég's have Hamiltonian(1) are
a corresponding vector character. This is not the case of the

transition in cesium (8,,,F=4 to 6P5,,F=5), but the
character of the transition is not essential for our conclu-

sions.ag, and aEﬂ denote the annihilation and creation op-

erators for photons of the momentumand linear polariza-
tion €, (u=1,2). All these operators fulfill standard . e L =,
bosonic commutation relations. The couplingk) is a (€m- €ku) = —1(Eqt “’O)erﬁ_'z dk’p(k’)
slowly varying function ofk related to the natural linewidth a
(HWHM) y=(8m%k3/3c)|p(ko)|?, with ko=wq/c. Finally,

nﬁm(lz) is the Franck-Condon factdi.e., matrix element for

T=2, Edglga+ > (E&+wo)éhen
[ m

ag,=—ickag,—ip(K) X 9i(En &) 7am(K), ()

,

=

xZﬁ i Ol 7am(KDT* (& - &), (D)
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. . . . VoL R while the reduced kernel is
0=~ 3 [ ko003 af, (6 &0 mun(®)
“

(5 ATKK) = 2 Nem(K)L75m(K)1*
For scattering of weak light we assume that initially all at- e
oms are in tr?e ground e?ectronic state and in therr>rl1al equi- X ex —i(Eq+wo—E 7. (10
librium with respect to their center-of-mass motion. We ex-
pect that the weak incident field will not disturb this
equilibrium significantly as only one single photon is scat-
tered at a time. In particular, we also assume that the atomic
distribution in the ground electronic state remains unchanged o(s)= f
in the process of scattering. As we shall see, these assump-
tions can be replaced by a weaker assumption that the mean
atomic density profile does not change. Technically, thesd he reduced kernel now takes the fof82]
assumptions are realized starting with a perturbative ap- R R
proach to solve the Heisenberg equation for the ground-state Pam(K)[ 7am(K") ]*

It is often more convenient to solve the scattering problem in
the Laplace-transformed space defined accordin@ib

ocdte‘“o(t). (12)
0

operators in the zeroth order, and neglecting the influence of *%(S’k'k’):;m Nﬁs+i(E%+wo—Eﬁ-) : (12
the field and spontaneous emission processes. We set there-
fore The physical interpretation of the self-energy kernel is
simple. It describes the amplitude for the process of the for-
gﬁ(t)~gﬁ(0)e‘iEgt, (6) mation of a wave packet in the excited-state trap potential

due to absorbtion of a photon of momentifand polariza-
and similarly forg}(t). The above expressions are then in-tjgn w' at timet’, followed by a free evolution of the wave
serted into Egs(3) and (4), which then become linear and packet within the time intervat=t—t’. The free evolution
can be, at least formally, solved under a decorrelation apeonsists primarily in quantum diffusion and drift caused by
proximation for the product operators. We accomplish it inthe momentum of the absorbed photon, and terminates at
two steps. First, we solve formally E¢4) and express the time t when recombination to the ground electronic state
operatorsy,, &}, in terms ofag,, , a, » respectively. Second, 4ccompanied by emission of a photon of momentumand
we insert the formal solutions into E3), and perform an polarizationu takes place.
average over all quantum fluctuations. This average consists, As we shall demonstrate in Sec. lll, the reduced kernel

in particular, in averaging over the initial atomic distribution, can be approximated for parameters of interest by
which is described by the Bose-Einstein distribution, so that

<gE(0)gﬁ/(0)>:5ﬁﬁ/Nﬁ . ;ﬁ Nﬁﬁﬁm(ﬁ)[ﬂﬁm(lz’)]*
Z(sik,K')=-

e FEn s+i(wo+ki/2M)+T (13
= O T o~ PEn (7
wherek,_ denotes the wave number of the incident ligiitjs
where B=1kT, and - is the fugacity. The decorre- the atomic mass, anl denotes the effective width of the
lation approximation for the fluctuations of the EM line. The denominator in the above formula describes a reso-
field and the atomic distribution allow us to replace nance shifted by the photon recoil ener@ﬁ,l,ZM, and broad-
(gg(O)gﬁ,(O)agM(t» by (gfﬁ(O)gﬁ,(O»(ag#(t)) [29,30. ened byl". In the idealized model that neglects spontaneous
As a result we obtain two independent and complex conemission events out of the condensdferesults from the
jugated scattering equations for the averaged EM field operazombined effects of the quantum diffusion and drift of the
tors(ag,), and(aEM). To avoid the proliferation of notation excited atoms wave packets. In Appendix B we show that if
we omit the quantum average in the following. From nowSUch spontaneous emission events are taken into acdount,
attains an additional contribution of the order of single atom
natural linewidthvy.
Using the completeness of tié states, the sum oven
an be performed independent of the shape of the excited-

state potential. We obtain

on, the symbolsy, and aEM will denote the averaged pho-

tonic operators.
The scattering equation takes in the time domain the forn%

agﬂ(t)=—icka@(t)—2 JdR'
g En: Ni7ai(k—K")

t “
ot 4 AP AP ’ As: "=
xfodt U=t KK u)ag, (1), (8) Sk = i e KZ2M) 4 T

where theself-energy kerndk defined as _ p(k—k") 14
o o s+i(wgt+ki/2M)+T"’
(KK pw') = (€ € wr) p(K)p(K') Z( 7K K"),
9 where
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_ . s s e to account phenomenologically for effects of atom-atom in-
P(k):f dRp(R)e™ ™R (15  teractiong1]. At zero temperature, all atoms are in the con-
densate, i.e.,
is theform factor, or the Fourier transform of the equilibrium Ny=Ndso. (19)
density
The relevant Franck-Condon parameter then becomes the
- - Fourier transform of the ground-state wave function, and is
p<R>=; NAK(RI ). (160 given by
R 252\34 -
Therefore, as in the case of scattering of strong light pulses nom(K)=| —| e (k-m=a%, (20
[2], the study of weak light scattering off the interacting

condensate can be facilitated by using the self-consiste
atomic density profilegsee Sec. IV.

The expression given by E¢L4) provides the main result
of this section, since it implies that the self-energy kernel,
and thus all the physics of the scattering process, is fuIIy(/( KK=N
determined by the atomic density profile in equilibrium. ~'""%"% /= (1+iwt7-/2)332
Moreover, as we have shown in paper |, the expression

Fhe reduced kernel Eq10) becomes a three-dimensional
Gaussian integral with respect ta, which can be easily
performed. We obtain

analogous to Eq.14) is generally valid for class B and class ) ) Vot o (k+k")%a?

C models that incorporate the effects of short-range atom- xexp —iwor—[k*+(k')a At iwl2)|"
atom interactions, provided the mean density in Bd) is

calculated under the same assumptions. For instance, for (22

class B models one should include density-dependent shiftg},o physical interpretation of the above expression is
of the resonancgl2]. For the class C models one could Us€graightforward. The free propagation of the excited wave
the density profile constructed in the framework of the Self'packet(ZO) consists(in the absence of the excited-state po-
qonsistent Bpgoliubov-Hartree the_ory. In numerical Cam”'a‘tential) in quantum diffusion and drift due to photon recoil.
tions to be discussed below we will make use of E). The time-dependent prefactor in E(R1) results directly
from quantum diffusion effects. The time dependence in the
lll. THE SELF-ENERGY KERNEL exponent in Eq.(21) accounts for both of the above-

_ i ) mentioned effects. In the regime of parameters that we con-
In this section we demonstrate that in the range of paramgjqerk=k’ = 27/\. the productka=k’a=8—80. The ker-
eters of interest for current experiments the reduced scattefy 21) containé thus an exponentially small factor

ing kernel is accurately described by HE44). We shall il- exp{—[K2+ (k')2]a?, which has to be compensated by the last
lustrate this point by using two analytically solvable casesiarm in the exponent of Eq21) in order to attain non-

(@ when the excited-state potential is absc_)lutely e negligible value. Physically, this means that as the diffusion
case of a zero potentjaland (b) when the excited-state po- 54 grift of the excited wave packet proceeds, the wave

tential is exactly the same as the ground-state harmonic O%’acket is moved away from the center of the trap, and the
cillator potential. Both examples_ wiII_be elaborated for Classprobability of recombination decreases practically,to zero.
Amodels afl =0, but the approximations that we use can beTpg kernel(21) can be significantly different from zero only
equally well appllgd to cIa;s B and C models. Extension (O sufficiently short times, such that,7<1 [33].
the caseT #0 is discussed in Appendix C. We can therefore perform an expansionpr in the ex-
ponent of (21), and keep only the first- and second-order
A. Zero potential for the excited state terms. In doing so we replace the diffusion factor
SL/(1+i w¢712)%? by 1. Alternatively, we could represent it in
the exponential form as well, but the latter step is not neces-
sary forka,k’a>1 [33]. It would, however, play a role if we
ghould wish to extend the theory ka,k'a=1.
As a result we obtain the reduced kernel

In the case when there is no trapping potential for th
excited state, thpm) correspond in the spatial representation
to a plane-wave statérom now on, where appropriate)
should be understood to stand for the center-of-mass mome
tum for the excited wave packet

) 1 A7k K )=N exg —(k—k'")2a2/2— 7y —iwgr
(RIM)= ——pe'™F, (17) -
(2m)** —iwr(k+K')2a2/4], 22)
and have the corresponding energies and its Laplace transform
) . 1 N
m? “(s:k,k")=N exg — = (k—k’)%a?
En=opy = @ma’, (18 Askk) 2R 2\,
7\ %
The latter relation does not hold for class® Anodels, in Xexp( - 1 erfc( ’17 ) (23
which we treata and w; as independent parameters in order 2\/5;)2 2\/7/2
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where sate. This is the major result of this section; it provides a
L mathematical justification for the expression Ety), which
= w?(k+k')?a?%/8= w?k?a?/2, (24 was obtained only heuristically in Sec. I1.

P, = i i L/ \2a2/ H 1,2
P1=stiwgtio(k+k')ald=s+iwg+ik{/2M, (25 B. The same harmonic oscillator potential for the excited state

with k. =2#/\, and erfc() denoting the error functi¢8l]. as for the ground state

The first exponential factor in Eq23) expresses the ap- The above considerations can be generalized to the case
proximate photon momentum conservation for scattering ofbf other trap potentials for the excited state. In particular, we
a sample of finite size. From E¢2) we conclude that the consider in this subsection the case where the excited-state
actual decay constant of the kernel is of the order ofpotential is harmonic and is the same as the ground-state
I'~V275=wk a. For the idealized modévithout sponta-  trapping potential. The indicesh become (n,,m,,m,),
neous emission out of condensalteranges from 300 Hz for | m) are the corresponding eigenstates for the harmonic os-
a 1oum trap to 30 Hz for a 1Qsm trap (for Cs atomg In  gillator, and

Appendix B we show that spontaneous emission out of the

condensate leads to the broadening of the atomic line Ef=w(mytmy+m,). (30

wo— wo—1i7y, so that the decay constant of the keriel
attains an additional contributiopof the order of the natural
linewidth .

As will be demonstrated in Sec. V, for the calculation of
ttle icilttering amplitude one needs only the value of A E'E,):e—imofg e—iEfﬁT<o|e—i£-ﬁ|m><m|enZ'A|i|0>‘
Z(s;k,k") evaluated ats=—iw =—ick_ (on the energy m
shel). For most of the values of the detuniag — wq, the
argument of the error function in E¢23) is large, and the
asymptotic expansion Observing that

Jrre expl?)erfo ) =1, (26)

can be used. At the exact resonance, on the other hand, the
kernel remains finite. This suggests the following analytic
approximation,

The reduced kernel &=0 in this case becomes
(31

) 1 ik,a)mx
(mx|e'kax|0X>:exp{—Ekiaz}—( \/);1_)' , (32)
!

we can perform the sum oven,, m
independently. The result is

y, andm, in Eq. (31)

Z(s;KK)=N exq — (k— |Z')2az/2]S+

i(wot+kZ22M)+T .
(27 Ak K ) =exp{—iwor—[K?+ (k")?]a%/2
The coefficientdA andI” can be determined from the follow- +k- E’aze*“”tf}. (33

ing two requirements(i) the asymptotic behavior for large

. 2 .
s+i(wo+ki/2M) should be the same for both sides of Eq. the expression33) is similar to (21), but it differs in one
(27); and(ii) the values of both expressions should agree ajmportant aspect. The excited wave packets do not diffuse
the exact resonance+i(wo+k/2M)=0. These require- anq spread as beforg35], but rather oscillate coher-

ments giveA=1 and ently in the harmonic well. This means that the small
5 exponential factor exXp-[k®+(k')?]a%/2} can be compen-
I=T,= \ﬁwtkLaa (29 sated by the last term in _the exp_onent of HB3) at
7=0,7mlw;, 27l wy, . ... Physically, this means that when-

e . ever the wave packet returns to the origin, the approximate
wherel'y denotes the diffusive linewidth for the model that ), mentym conservation can be realized. For even returns,

neglects the effects of spontaneous emission out of the COixe gcattering prefers the forward direction, whereas for odd
densate. When those effects are incorporated, and Wh&Ry s it prefers the backward direction. This is very similar
I'y<y, the asymptotic expansion of the error function can beg, the phenomena of revivals and collapses often discussed
u_sed _for all detunings, i.e., including resonance. In such &, {he Jaynes-Cummings modk86]. In principle, one can
situation account for multiple returns by calculating the Laplace trans-
r=7. (299  form of Z(7;k,k") with the help of saddle-point techniques
[37]. Here, however, we will for convenience assume that the
In general, the widtH is of the order of maxy,I'y), and  probing of the system by weak light has a finite duration
undergoes Doppler broadening at finitg(#0). 74, such thatw,7y<1, i.e., 7q<0.1 s. In this case we can
Direct numerical calculation of the expression E7)  neglect the effects of multiple returns in E§3), and expand
shows that in the regime corresponding to parameters of irthe exponent inw;7, in the same manner as we did in the
terest it is very accurate, and produces less than 0.1% rel@revious subsection for the case of a zero trapping potential
tive error for the idealized model, and less than 4% for  in the excited states. Note, that for weak light pulses of the
the model including spontaneous emission out of the conderduration 74=0.1 s, one can consider the long time limit of
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the scattering process, sineg is still much larger than all rived in the low-energy limit by using the so-calléd matrix
other relevant time scaldicluding 117). or ladder approximation in the calculations of the single-
With the above approximations, the Laplace transform ofparticle Green’s functions using standard many-body tech-
the kernel is again given by the expressi@s), where now  niques[39-41.
. In the mean-field Bogoliubov-Hartree approaj8,39
7p=wik-k'a’l2=wika%2, (34 the c-number wave function?,(R) of the condensate at
R T=0 is a minimum of the energy functionéee also paper
P=s+tiwgtiok-k'a’=s+iwg+ik/2M. (35 1),

Thus, the self-energy kernel can also be approximated by R R R
exactly the same formula given by EQ7). In Appendix C EJ dRVG(R)Vy(R)
we generalize this result to the case of a finite temperature
T+0. Y B T | s

=f dR\I’g(R) —m'FzthR \I’Q(R)
IV. ATOMIC DENSITY PROFILES

b - - - - -
The results of Sec. Il established the relati¢hd) and + %f dRY(R)¥3 (R)¥4(R)Wy(R), (41
(15 between the self-energy kernel and the atomic density

profile. Before we turn to a further discussion of the scattery wh the normalization constrainf dR W (R)|2=N. The
ing problem, we thus need to specify the atomic density pro- d function then fulfills the followi ] i
files. condensate wave function then fulfills the following nonlin-

For the class A models we use the density profiles ob& Schrdinger equationNLSE):

tained from the Bose-Einstein distributigBED) for nonin- vZ 1
teracting atoms according to Eql6). In particular, for —m+§thR2+ bggp(ﬁ)}\lfg(ﬁ)zE‘Pg(ﬁ). (42
T=0, the density distribution is
. N For very largeN an approximate solution of this NLSE is
p(R)= 2 exp(— R?/2a?). (36)  found to be(by neglecting the kinetic energy terf42])
As we argu_ed in paper | and RdfL2], by treatinga as a p(§)=‘1’§(§)‘1’g(§)2 15N5(RS—R2), (43)
parameter independent af, and M, we can account phe- 87Ry

nomenologically for effects of the atom-atom interactions for

class A& models. for R<R,, and zero otherwise. The size of the condensate
At high temperatures, the BED can be replaced by thevithin this approximation is given by

Boltzmann distribution and the effects of atomic collisions

can be neglected. The density in this limit is again Gaussian, Ro=a(60Nag./a)™. (44)
. N _— The above solution evidently is not correct fe—R;. In
p(R)= [27a2(B) ]2 exf—RY2a%(B)]l, (3D general, one then has to rely on numerical solutions to Eq.
(42).
with a temperature-dependent width Recently Edwards and Burndg®4] have studied the nu-
5 5 ) merical solutions of this equation. Utilizing the spherical
a*(B)=a“ coth Bw/2)=2a"/ B . (38 symmetry of the condensate, E@2) can be transformed

. . . : into a differential equation involving the radial coordin&e
The c_iescrlpt!on of thg atomic denS|ty_ p_roflleTaFO fora only. The asymptotic behaviorR) and the boundary
weakly interacting gas is much more difficult, and becomes

even more complex at low, but finite temperatures. In orde?zond'tIons R=0) were studied analytically and enforced

to find the density profile at thermal equilibrium, one has todurmg the integration procedure. For a given set of param-

add to the Hamiltoniaril) a term[1] describing the ground- g};rj%’o rl:ls "Z‘Sﬂ ggo% | awsa‘zugg;‘a;‘;‘:a Ssgfg'esabﬁnnb%l{g‘;g’
ground atomic interactions. This term is usually written in e 9 9

~ . method. In practice, this is achieved by specifying the value
the shape-independent approximati8g], and has the form of the radial wave function, and its first-order derivative at

b . _ _ _ . R=0. The equation for the radial wave function was inte-
]KQGZ%j dRVI(RWI(R)W4(R)W4(R), (39  grated outwards to sufficiently larg and then compared to
the known asymptotic solution. A solution that has the cor-
where rect asymptotic behavior is obtained by varying the first-
order derivative of the radial wave function Rt=0. How-
bgg=4mas/M, (40 ever, the solution thus obtained is not necessarily correctly
normalized. Edwards and Burnett observed that the nonlinear
andas. denotes the scattering length for the ground-groungagdial Schrdinger equation has the property that a normal-
scattering. In the above formul&fg(R)[\Ifg(R)] is the ized solution can be obtained from any solution through a
atomic annihilatior(creation field operator. Formally, such a suitable scaling transformation. This normalized solution,
form of the atom-atom interaction Hamiltonian can be de-however, corresponds to a condensate with a number of at-
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FIG. 1. Comparison of various approximations to the conden-
sate wave function. The solid line denotes the numerical solution of
the nonlinear Schiinger equatiori42), and the dotted line denotes
the approximate solution given by E@3). The dot-dashed line is
a Gaussian with an effective width 1.5 times larger than that of the 0.010
noninteracting Gaussian ground state represented by the dashed
line. The coupling strength in dimensionless scaled units is
N(as/a)=10. 0.000

Na,,=10000

0 5 10 15 20
R (units of a)

oms N that cannot be specified priori. Their scheme of ) _

solution of Eq.(42) is therefore not very suitable for our  F!G. 2. The lowest eigenvalue solutions of H42) for three

purpose, as we have to compare light-scattering properties §f!ues of the coupling strengia, (as listed in the figurecom-

condensates with givennumber of atom#\. We have there- pared with the corresponding approximate solutions given by Eq.

. . L§43). The solid line denotes the exact numerical solution and the
fore developed an alternative scheme for the numerical sol fotted line denotes the approximate solution given by(&8. The
tion of Eq. (42) [25]. pp .

dashed line serves as a reference, and is a single atom Gaussian
Sround state, which also corresponds to the noninteracting conden-
sate.

Our scheme is an iterative one. Within each step, we tak
p(R) as given, so that Eq42) becomes a standard linear
Schralinger equation. We solve the eigenprobléra., find
the eigenvalues and normalized eigenvegtéws this linear
equation using a standard matching method coupled with th

Egﬁef(e(:htéanzfglﬂztlofsﬂtg%éTgffmcééhe (Izgest\-/\t/agerg)é dszftlelzj- notes the numericalll s_olutioﬂhe Iqwest-energy eigenstate
e (2 i ' ' of the nonlinear Schdinger equatior{42), while the dotted
p(R)=|¥g™(R)[“ by a weighted average of the newly COM- |ine denotes the approximate solution given by &@®). The
puted lowest eigenvectoP ;°(R) and the previous wave dot-dashed line is again a Gaussian but with an effective
function ¥ *(R)[ used for computing(R)] width 1.5 times larger than that of the noninteracting ground
state(the dashed line The Gaussian with the effective width
W R)oc(1— nmix)«yg'd(ﬁg)Jr nmixquigef( R), (45 matches the numerical solutigsolid line) quite well. Obvi-
ously, since the physical observables are related directly to
where we use the signe” instead of “=" since the right- the density profile, using the Gaussian with the effective
hand side has yet to be correctly normalized. In the abovevidth for the clasA* models is a very good approximation.
7mix€ (0,1) is a mixing parameter. In general the conver-In the calculation we have used a coupling strength
gence of our method strongly depends gy, and on the N(ag/a)=10. For a 10um trap, this corresponds to all pos-
parameteNb,,. The detailed analysis, as well as the resultssible pairs of parametersN(as), such as, (160.1 A),
for the collective excited states of the condenddtigher  (10°,1 A), (10°,10 A), ..., aslong as their product remains
eigenvalues and eigenvectors of E42)] will be presented the same.
elsewhere[25]. The iteration proceeds until both absolute In Fig. 2, we plot the lowest eigenvalue solutions of Eq.
and relative convergence criteria are satisfied. As an adde@d?2) for three values of the coupling strendtta (as listed
bonus, we find that our method basically converges irrespedn the figure compared with their corresponding approxi-
tive of the coupling strengtNby, (which effectively deter- mate solutions as given by E@3). For a condensate with a
mines the strength of the interaction or the nonlinearity given N, as the parametes,. increases the shape of the
Tmix 1S adjusted appropriately. condensate function changes smoothly from a Gaussian
In Fig. 1 we present a comparison of various approxima<{characteristic for noninteracting atojrte parabolic one as
tions to the condensate wave function used in computing thgiven by Eq.(43) (characteristic for an interacting gasand
density profilep(R). The dashed line denotes the noninter-the approximation given by E¢43) becomes better and bet-
acting(Gaussianground state of the harmonic oscillator po- ter.

Fential, which serves as the reference, and the solid line de-



V. ON-SHELL APPROXIMATION

In this section we turn back to a discussion of the solu-

tions of the scattering equation: E¢B). In the Laplace-
transformed form it reads

(st+ick)ag,(s)
=a,;ﬂ(0)—2 fdIZ’%’(s;IZ,M,IZ’,,u’)égw(s), (46)
M
where

ac,(0)=ads(k—Kk.)o

wp

47)
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?(s)
(stiw )(stick)

1
lim —f dset
"

2
=2mf(—iw)e lts(ck—w),

t—ow

f(—iw)e fet—f(—ickje ikt

(53

which holds for an arbitrary functiofi(s) provided it does
not have any singularities to the right of or on the imaginary
axis in the complexs plane, so that lim,..f(t)=0. One
might also try to solve Eq(52) using the Born approxima-
tion, i.e., neglecting the second, self-energy term on the

corresponds to the incident coherent laser field of wave vedight-hand side. Such attempts are reasonable in the low-

tor IZL, polarizationEkLML, and amplitudeax. The on-shell

approximation to the scattering problem is formulated as fol

lows.
First, we divide the total field into incident and scattere
parts,

. _ - - <50
ag,(s)= STiop ad(k kL)5WL+ak#(s), (48
and obtain an equation for the scattered field
~§C _ ;/' . - >
~SC
~ ar, !(S)
_ L el " ’ k' u
% J Ak Z(siku K w ) (49)

In the limit t—co (or practically,t>1/T") the incident field
has enough time to penetrate the system arnldng time
coherent responseill build up. Therefore we postulate that
asymptatically the scattered field behaves as

a% (1)~ aB(K,u) (ck—w e oL, (50)
and its Laplace transform,

3% (s)~ —— B(K, ) 8(ck— o) (51)

k/‘l“ S+Iw|_ ”LL L/

where B(IZ,,u) is the scattering amplitude. Thus in this ap
proximation ag— oo only coherenklastic scattering is pos-
sible.

Inserting the above expressions into E4P), transform-
ing back to the time domain, and taking the lirhit-o0, we

density limit[13], but fail miserably in the regime of param-
eters that we consider. This is partially due to the large op-
tical thickness of the condensate, since after an incident
dphoton is absorbed, it takes on average very many rescatter-
ing events before it escapes the condensate. Self-energy
terms are extremely important close to resonance and one
must fully account for them. One may also try to solve Eq.
(52) numerically. To accomplish this we discretized the solid
angle and solved the resulting finite set of linear equations on
a grid. However, in the regime of parameters of interest, the
dimensions of the resulting finite difference equations are
quite large, and its numerical solutions become quite difficult
and expensive to obtain. Consequently, they have only been
used as a guidance for developing approximate analytic so-
lutions.
One can construct an approximate analytic solution for
Eq. (52), if one (i) substitutes the produgt(k)p(K') in .72
by |p(k.)|?, and (i) neglects the dependence .@f on the
polarization producég,, - €. The first of these approxima-
tions is obviously very accurate, sinp€k) is an extremely
slowly varying function ofk in the optical regime. The sec-
ond approximation is also quite accurate, since the scattering
occurs mainly in the forward direction and the scattered pho-
tons have polarizations that are approximately perpendicular

to IZ,_, and do not couple to the other polarization component
strongly.
After performing the two above-mentioned approxima-

tions, B(k, ) can be expanded in spherical harmonics. For
k=k_(sind cosp,sind sin,cos), k =k (0,0,1), and é,
_=(1,0,0, the expansion is

©

B(K,u)= ;O Bi(k )P,[cog 0)](2I +1)/4m, (54

conclude that the scattering amplitude in this on-shell ap-

proximation[18] as assumed by E@50) satisfies
- k?
/’L’
X H(—iwg KK uw)BK u'), (52)

where |k|=|k’|=|k_|=w,/c. In deriving the above equa-
tion we have used the identity

whereP|(x) are Legendre polynomials. Since spherical har-
monics are now eigenvectors of the scattering kernel on the
energy shell, the coefficien®; (k. ) can be directly obtained

as

|
YL

(of
Ty i - wo—KI2M] K O

Bi(kp)=
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where am [KE\? ,
| ,w Treat o) = oz | S [ dodBR w59
nw=12my7, (56) L m
with
. and (ii) the total cross sectionr,(w,), being the sum of
C)l:f deRp(R)j,Z(k,_R). (57) oscaf @) and the absorption cross sectionopd w);
0 o {w) is determined from the optical theoreffl8], see
Iso Appendix A.
Herej,() denotes a spherical Bessel function. Comparison o?s ppendix A

; . . . Using the partial wave expansion, the total scatterin
the above expressions with the numerical solution of Eq'cross sgction Eecomes P g
(52) shows that the approximate solution describes the line
shape very well, although it underestimates the overall cross

section typically by 10—20 %. The above expressions can be

’ i k k2 2 »
further elaborated analytically, after specifying the atomic _ 1 _L) + 2
density profile. For a Gaussian profile as given by &8), Iseatt™ (1 a)2| ¢ .:Eo @+ 1)[Bik)]
for instance, we obtain " -
. 2a? 2.2 =" > (21+1) )
yi=Ny3y2me %1 (kia®)/(2k,a), (58 (k a)%%h (yer) 2+ (0L — wo—kZ12M)?’
wherel,() denotes a modified Bessel function. (60)

The quantities of interest af@ the total number of elas-
tically scattered photons of frequenay , per unit time and
normalized to the total number of photons incident upon the-.€., the sum of Lorentzian&5), characterized by the width
areama? (normalized cross sectigrgiven by(see Appendix  Yer=1"+ ¥, and the corresponding differential cross sec-

A) tion only depends on the polar angle and is given by
o0 | 2
e B0 = = S (2141) n P\[cog 0)]| sin(6)de (61)
g W)= = o - .
seat P 2(kea)?| b [Yer—i (0L~ wo—kZ/2M)] "
|
A similar expression holds fot, i.€., angular momentum harmonics contribute to scattering, the

cross section would be a sum of Lorentzians with approxi-

2 mately the same width; i.e., it would itself be a Lorentzian.

p— L "
Tl @)=~ (ka?c ReB(kL,u1)] However, they, s decrease quite significantly with increas-
ing I. In fact, the contribution from highdts is also impor-
2 o Y Yer tant. As a result, the line shape becomes non-Lorentzian, and
:ﬁz (21+1) ———— 7,2 exhibits a very narrow spike close to resonance. This narrow
(kLa)“=o (Yeit)*+ (0L — wo—K{/2M)

feature in the spectrum is an analog of the coherent Dicke
(62 narrowing[43]. The lower bound for the width of this spike
_ _ is determined by the rate, which in the model that accounts

We note that in generak,=20can I.€., there are always for spontaneous emission out of the condensate is of the
more absorption events than scattering events. In the ideagrder of the sum of the natural linewidth and diffusive broad-
ized model for the scattering kernel with the very snall  eningI'y. It is worth noticing that even close to resonance
we haveo,= 20 FOr the parameters we are using, thethe angular distribution of the scattered light has a width of
dominant contribution to the sums in Eq®1) and (62)  the order 1/k a). We shall discuss the line shapes in detail
comes froml values with y'L>l“, therefore the absorption in Sec. VII.
and the scattering cross sections are approximately the same, We summarize this section by stressing once more that the
I.€., Tabs™ Tscart on-shell approximation has many appealing properties: it al-

We analyze the result given by E(O) with the help of  |ows for an accurate analytic solution of the scattering prob-
the formula Eq(58). Note that the Gaussian function used to |lem, and for a direct analysis of the cross sections in terms of
derive Eq.(58) describes the density profile for class A mod- partial waves. It also provides a representation of the cross
els with a harmonic potential, class A* models, and allsections in the form of a sum of Lorentzians with decreasing
classes of models in the high-temperature limit. We can thugidth. The latter representation allows us to recover Jav-
use Eq.(58) in all these cases provided the valueafis  anainen’s resulf11], in the limit in which the contribution
appropriately adjusted. from the lower partial waves is dominant. On the other hand,

For I<kfa2, all y'L's are roughly equal to the on-shell approximation has two major drawbacks: its va-
yeir=3Ny/(2k?a?) [11]. One might think that if only low lidity range is not well established, and, according to Eq.
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(50), ast— it treats each of the multiple scattering eventsvarying envelope approximation normally used in studying
as elastic[to see that multiple scattering occurs one maypropagational problemswe obtain

consider an iterative solution of Eg®) or (46)]. The latter )

statement implies that this approximation presumably cannot IY(R) . o

be used for very dense systems for whaffshell propaga- o7~ 1gV(R¥R), (67)
tion between the successive scattering events might play a

significant role. In Sec. VI we present another solution of theand hence

scattering problem which employs Glauber’s GDT, which

should account much more accurately for the off-shell propa- ” z v Nz
gation effects. p(x,y,z)=e (/0 | Vioy.zydz, (68)
VI. GENERALIZED DIFFRACTION THEORY Let us denote by (the impact parametga vector in the

(x,y) plane, and by a unit vector in the direction of propa-

In order to apply the GDT19] we perform the same gation of the incident wave. It is also convenient to introduce
approximations to the self-energy kernel as in Sec. Vihe quantity

i.e., replace p(k)p(k’) by |p(k)|?>, and neglect the

polarization dependence in E(L4). In the long time limit, . 1(=
we may also replaceZ(s;K,u,k',x’) in Eq. (46) by X(p):_Ef
F(—iw, K uK ,u') [45]. Equation(46) may now be con-

veniently transformed to the spatial representation. Tolhe scattering amplitude can then be expressed @is
achieve this we multiply the left-hand side By-ick, the

V(p+2zz)dz (69)

—o0

right-hand side by-2ick=s—ick, and introduce the scalar c O — if 200 (K —K) - Br i x(B) _
= . g The scattering and total cross sections are
Z(R)oc f dkp(k)e'* Ray, . (63)
= | dplexP—1)?, 71
Within the framework of the approximations used, this scalar 7scatt” J P | (7
field is proportional to a component of the electric field
propagating in the direction close tﬁ with polarization
close to€,, . In the time domain this field fulfills the wave 4 Lo
equation, Tror=— IMLf (ke k)]
L
9? R L. o
—Ez+czv2 Z(R)=2w V(R)4(R), (64) =2 Re“ dﬁ[l—e'X(p)]}. (72)

where the complex potentiételated to the spatial Fourier =~ The above expressions can be further elaborated analyti-

transform of the scattering kernel as given by Egf)] is cally. For instance, for the case of a Gaussian density profile
(see, for instancd20]) as given by Eq(36), we get
(2m)3|p(k)[?

O p(R), (65) - 3Ny e P2’
XP) =" 5 ka)? A+il

V(R)=
(73

with A=w| — (wo+ kf/ZM) being the detuning from the re-

coil shifted resonance. Physically, the imaginary part of thisand the cross sectiori@ units of ra?) can be expressed in
potential describes the absorption processes. In the idealizég@rms of the exponential integral functi¢8l]

model, these processes lead to the excitation of atomic wave

packets which then diffuse, and drift away from the trap, o10=4 REE1(&o) +IN(€ro)) + Vel (74)
without having any possibility of returning their energy back

to the field. In the more realistic model of Appendix B the Taps= 2[E1(&apd +IN(Eapd + Vel (795)
absorbed energy is also dissipated in the processes of spon-

taneous emission out of the condensate, which subsequently Oscatf™ Otot— T abs» (76)

contributes to the incoherently scattered photons. ) ) ) ]
According to the GDT, when the incident wave propa-Where E;() is the exponential integral function,

gates in the direction one seeks a solution of B§4) inthe ~ Ye=0.577215689 ... isEuler's constant, and
form
. 3Ny 1 ;
Z(R)=e loLtrikizy (R), (66) o= 2(k,a)® A+il’ 77
Where://(ﬁ) is a slowly varying function oR. Neglecting its 3Ny 2r

second-order derivativen the same way as the slowly Sabs™ 2(k a)? A°+TI?" (78)
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FIG. 3. The partial Lorentzian widtI‘y:_ as a function ofl for
three different values of the trap siz=30, 10, and g.m, respec-
tively. The solid lines represent the results given by &) for an
ideal noninteracting gas, while the dashelbtted lines (overlay
each other as the approximation is very good in this cesgresent
results obtained for density profiles obtained from the numerica
solutions of the NLSE42) [approximate solutions of the NLSE
given by Eq.(43)] with a coupling strengtiNag= 1.

Similarly, analytic expressions in terms of hypergeometric
functions can be obtained for the density profile of Et)

[33]. In general, within the GDT, we can also use numerical
integration techniques to evaluate the cross sections and al
gular distributions of the scattered field for density profiles

such as those obtained from the solutions of the nonlinear

Schralinger equation Eq42) [33].
We can also consider the angular distributions within the
GDT. As shown by Glauber in Reff19], on the energy shell

for elastic scattering, after performing the angular integrals

one should use

1 e ” 4
277J e|(kL—k)-pd5{...}:f0 JO(ka sini)pdp{"'}:
(79

and consequently the scattering amplitude takes the form

[eXP —1]pdp. (80)

* 0
f(0)=—ika JO(ka sins
0 2

The angular distribution for the elastic scattering is thus

doscad 0)

— 2 i
40 =27|f(6)|* sing.

(81)
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Apart from its simplicity, which allows us to obtain many
analytic results, GDT has another appealing property: the
conditions for its validity regime are well established, and

are given by

|V max

W

<1, (82

where|V| ax denotes the maximal value of the complex po-
tential given by Eq(65), and
k a>1. (83

The product of the parameters of E¢82) and(83) may be
arbitrarily large, and thus in this sense the GDT is capable of
describing strongly nonperturbative effects. The second of
the above conditions is fulfilled in the regime of parameters
we considerfa=(1-20)\]. The first condition physically
means that the GDT in the manner of the eikonal approxi-
mation describes high-energy scattering, when the energy of
incoming photons is significantly larger than that of the cor-
responding potential barrier. Obviously, in such situations,
scattering, although highly nonperturbative, occurs mainly in
the forward direction. In the polariton picture discussed in
Refs.[9,10] this corresponds to the case where the photon
frequency lies outside the gap, which is formed in the exci-
tation spectrum, or to the case of finite trap size when the
line shape is broadened so much that the effects of the gap
cease to exist. We examine in more detail below the condi-
tion of Eq. (82 for the case of class A models, class A
models with a Gaussian density profile, and a phenomeno-
|ogically adjusteda, and for the class C models.

The condition(82) for the case of a Gaussian density
profile may be written as

2.0
15F a=30um
n- "

a=10um

a=3um

2000 3000

1000 4000

FIG. 4. Same as Fig. 3 except fdka,,=10 000. Dotted lines

can hardly be distinguished from the solid ones.
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FIG. 5. Typical results for the scattering cross sections obtained from the on-shell approximation for three different values of the
interaction strengtiNa,.=10 000,100, and 1 respectively, aherkaw,=31.4 Hz. The solid lines represent the results obtained from the
density profile of the numerical solutions of the nonlinear Sdimger equatiori42). The dotted line represents the results obtained for the
approximate density profiles given by E@3). The dashed lines serve as a reference and are obtained for noninteracting gases with the
Gaussian density profile given by E@6); (a) large-scale plot of the scattering cross secti@;enlargement of the central region @.

[Note: change of units ifb) from GHz to MHz]

3 N y cr?ncrllude trf1at tr|1e inequalijtyIE(fW) ilsdaflwa)r/]s fulr:illled, and f
1. (84 the theory for class C models is valid for the whole range o

V2 (k.a)® max(A]T) laser detunings Obviously, this analysis suggests that the
value of a used for class A models, should be increased
several times to account phenomenologically for the effects
of the atom-atom interactions. For class Anodels, with
45 N y a* =3a, the theory becomes valid for the whole range of
_ 3 1. (85  detunings.

4 (kiRo)® max(|A[T") (i) For T=T, where T, is the critical temperature for
BEC,N=10", a=10 um one can use class A models with
an appropriately scaled size of the Gaussian density profile,
a(B.). The critical value ofBw; for BEC may be estimated
to be (Bwy).=(1.202N)¥3=2x10"2 [46,47. As a result
a(B:)=100 um [from Eq. (38)], and the validity of the
|A|>20y, (86) theory requires that

Similarly for the class C model with the density profile of
Eq. (43), the condition becomes

We obtain then the following ranges of applicability of our
theory:

(i) For T=0, N=10", a=10 um our results for class A
models are valid for

i.e., on a scale of tens of MHz. For the class C models with max|A|,I')>0.02y. (88
the density profile given by Eq43), a scattering length
a,=20 A, and the rest of the parameters the same, the va-

lidity condition becomes The above conditiqn Fs again_ fulfilled for all detunings, when
I'~max(y,I'y). It is interesting to note that even for the
max(|A[,I')>0.2y. (87) idealized model, which neglects completely the spontaneous

emission events out of the condensate which disturb the ther-
Since for realistic models that take into account spontaneoumal equilibrium, our theory is valid up to detunings of the
emission out of the condensaté,is of the order ofy, we  order of a few hundred’=T".
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100 - ; ' ] the condensate state. In another words, the incident field pro-
L ] duces a coherent combination of the scattered field and ex-
75 F Na.=10000 cited matter wave — i.epolaritons The fact that the effec-
C ] tive potential in the idealized model is complex, reflects the
50 ] fact that part of the incident energy is absorbed to excite
r ] some atoms and is never returned back to the field. For the
25| 7 model that includes spontaneous emission out of the conden-
: ] sate this energy is returned to field in the form of inelasti-
38 e = cally scattered photons.
Na,=100

VII. RESULTS AND DISCUSSIONS

In this section we report some of our numerical results.
We present cross sections in the parameter range of interest
to experiments. We also compare the results obtained from
the two approaches discussed in Sec. VI. We discuss also the
dependence of the results on the trap siznd on the inter-
action strengtiNag./a.

We start our discussion with the results of the on-shell
approximation. In that case the cross sections can be repre-
sented as sums of Lorentzian contributions of partial waves
[see Eqgs(60) and(62)].

Tuer (Units of ma®)

: 15[
0 L L L § a=30um
-0.5 -0.25 0.0 0.25 0.5 10
w—w, (GHZ) i
FIG. 6. The same as in Fig(& but forI'=1y. 5r
Above the temperature such th@#w,=3x103 the i
theory becomes valid for all detunings for both the idealized, 38
and the more realistic model. o~
The above estimates are easily translated to another ex- g I
perimentally accessible case, namely microtrapish a=1 w5 207
um) containingN=10* atoms. o
This discussion shows that generally the results obtained € r
from the GDT are reliable for the whole range of detunings, ™~ 107
although at low temperatures one has to use models with ¢ |
realistic density profiles that account for atom-atom interac- 0k . . :
tions and allow for spontaneous emission out of condensate. 40 ' ' ' 1
As we shall see in Sec. VI, the results obtained within the i az3um
framework of the GDT are numerically very close to those 30 b ;
obtained from the on-shell approximation. We thus conjec- r
ture that in the regime of parameters of interest both theories 20¢ ]
give an accurate description of the scattering process. It is ; ]
worth stressing that our description accounts for nonpertur- or ]
bative multiple scattering effects and provides a complemen- } St N .
tary approach to the polariton theory of Svistunov and 0lmoess ' RS
-0.5 -0.25 0.0 0.25 0.5

Shlyapnikov[9], and to the single harmonic oscillator ap-
proach of Javanaindril]. More importantly, our approach is
valid In the regime of parameters that are expected in many FIG. 7. Comparison of the dependence of the scattering cross
experiments. i . _section on the trap size fa=3, 10, and 30um. We have used

Of course, the fact that one considers here the regime i ag.= 100 andl’= y. The solid lines represent the results obtained
which the effects of the gap in the polariton spectrum argrom the density profile of the numerical solutions of the nonlinear
irrelevant does not imply that the present theory does nogchrainger equation(42). The dotted lines represent the results
describe relevant effects due to polariton formation. This isptained for the approximate density profiles given by @8). The
especially true for the idealized model. For such a model irjashed lines serve as a reference and are obtained for noninteracting
the stationary state there survives some coherent amplitudgses with the Gaussian density profile given by B§). The
of the excited-state atoms, whi¢tue to quantum diffusion dashed lines can also be viewed as representing the high-
and drify is not able to undergo a spontaneous transition taemperature limit as given by E7).

w—w, (100/a* GHz)
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FIG. 9. Comparison between the results of the scattering, ab-
sorption, and total cross sections obtained from the on-shell ap-

< O proximation and the GDT for the case of a noninteracting gas with

?3/ I'=y anda=10 um. The solid lines represents the result obtained
3 from the on-shell approximation, while the dotted line represents
Vs the result obtained from GDT.

widths for the interaction strengtiia;./a=1 when the den-
sity profile does not significantly differ from the Gaussian
distribution for the noninteracting g&as given in Fig. 2 In
Jhis case the approximate density given by &} does not
section forT'= y anda=10 m; (a) for a noninteracting gasb) provide a good approximation. In Fig. 4 we present the re-

Results from the approximate density profile given by @@ with ~ Sults forNas/a=10 000 when the approximate density of
Nag.= 100. Eq. (43) becomes an excellent approximation.

We notice that generally the number of Legendre polyno-
mials involved(with nonzero partial widthin the scattering
increases with the trap size. Comparison of Fig. 3 with Fig. 4
In Figs. 3 and 4 we have plotted the partial Lorentzianshows that this number increases also with interaction
widths y| [as defined in Eq(56)] as a function of the order strength[33]. We find that, in general, the exact numerical
of the spherical harmonidsfor three different values of trap solution of the NLSE leads to broader partial width distribu-
sizes(as listed in each figujeand two different interaction tions than those obtained for noninteracting gases in propor-
strengths. Here, the solid lines represent the results given lijon to the effective siz&®[ Eq. (44)]. It is also important to
Eq. (58) for an ideal noninteracting gas and serve as a refemote that the results obtained from the approximate solutions
ence. The dashed lines represent results for the density prof the NLSE given by Eq(43) lead to partial width distri-
files obtained from the numerical solutions of the NLSE butions that approximate quite well the results for interacting
(42). Finally, the dotted lines represent the results corregases even in the case of moderate coupling strength
sponding to the approximate solutions of the NLSE given byNa.=1 (Fig. 3). Of course, as the interaction strength in-
Eq. (43). creases, it becomes a better and better approximésiea
Note that since the contribution of each Lorentzian to theFig. 2). The results for the cross section can hardly be dis-
scattering cross section is proportional tyzUZ, the results  tinguished then from those obtained from the exact solutions
in Figs. 3 and 4 can be viewed as a measure of the relativef the NLSE(see Fig. 4.
significance of the partial waves. In Figs. 5—8 we present and discuss parameter depen-
Figure 3 represents the results of the partial Lorentziamdences of the cross sections obtained from the on-shell ap-

2
o (aeore®)

0.0 A

FIG. 8. The spectral-angular distribution of the scattering cros
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FIG. 10. The same as Fig. 9 but for an interacting condensate
with Nag=100. The results obtained with the help of both ap-
proaches are calculated with the approximate density profile given
by Eq. (43).

Kg\«\ﬂ
©

proximation. Unless otherwise stated, from now on we use
the convention that the solid lines represent the results ob-
tained from the density profile corresponding to the numeri-
cal solutions of the NLSE42). The dotted lines represent the 0.0 A (degfeed
results obtained from the approximate density profiles given ©
by Eg. (43). Finally, the dashed lines are obtained with the ) .
help of the on-shell approximation for noninteracting gases F!G- 11. The same as Fig. 8, but obtained from the GDT ap-
with the Gaussian density profile given by HG6). proach.

Figure 5 represents the scattering cross sections for the
three different values of the interaction strengthclose to resonand€ig. 5(b)], the abrupt edge in the approxi-
Na,/a=10 000,100, and 1, respectively. These resultgnate density profile solutions affects the contribution of the
were obtained for the idealized model with=kaw,;. For a  higher partial wavegcompare Fig. B As a result the central
Cs atom with the mass of about 220 atomic mass units, théeature is much less pronounced for the approximate solu-
trap frequencyw, is related to the trap size according to tions. As we see in Fig. 6, these artificial differences between
a’=1/(2Mw,). Fora=2 um, ;=10 Hz. Therefore for the the solid and dotted curves vanish for larger values of
three different sizes used the corresponding values foF'=1y.
I'=kaw, are 105, 31.4, and 10.5 Hz. We remind the reader The overall shape and the magnitude of the cross sections
that these results may be alternatively viewed as corresponéiso change with the interaction strength, as shown in Fig. 5.
ing to scattering of light at a very narrow resonar(ber ~ Larger values of interaction strength lead to larggr and
instance, a forbidden transition for whighis very smal). consequently to broader spatial distributions with a smaller

From Fig. 5 we see clearly that the line shapes have twe@lensity in the trap center. The collective width therefore be-
basic features: an overall broad spectrum of the effectiveomes smaller as represented in Fig&) &nd 6. For the
collective widthcNy/(k a)?, and a narrow feature close to same reason the magnitudes of various cross sections in-
the resonance of width comparablelto We notice also that crease with the interaction strength. However, we find that
with the increase of the interaction strengtta./a, the  the increase does not scale=Bj (as a simple geometrical
overall cross sections calculated from the approximate derargument would suggestinstead, the cross section is a
sity profiles become indistinguishable from those obtainedather complex function of the parameteg,.. Similar re-
with the exact density distributidirig. 5(a)]. However, very  sults as in Fig. &) are displayed in Fig. 6 fof' = y. As we
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(a) of the interaction strengthi33]. As discussed in Sec. V,

3F ‘ ' ] within the on-shell approximation, the absorption cross sec-

\—©=0.36GHz ] tion is roughly the same as the scattering cross section for
most of the parameter regions of practical interest. For this
reason we do not display comparative results for the absorp-
g tion cross sections here.

- _ ] In Fig. 8 we have plotted the spectral-angular distribution,
-2 E i.e., differential scattering cross sections fbr=y and

-3t : : : a=10 um. As we see, the scattering is basically restricted in
the forward direction to a solid angle determined by the size
of the condensate. In Fig(® we have plotted the results for
the case of an ideal noninteracting gas. Close to resonance
the angular distribution displays patterns of oscillations due
to the interference of all the harmonics involved in the scat-
tering. The period of those oscillations is proportional to
1/(k_a). Off resonance these oscillations decay very rapidly
as higher order harmonics contribute less and less. Note that
the plot is on a logarithmic scale. In Fig(8 the same result

is presented for the case of an interacting gas with
Nas./a=100. The repulsive interaction increases the size of

10g10[dToee/d8 (units of ma?)]

3 () . 3 condensate, and consequently the oscillation period becomes
2f o @=0.36Hz ] smaller, in proportion to<1/(k, Ry). Interestingly, the oscil-
TE E lations in the angular dependence can now be seen even far
Of off-resonance. Analogous results hold for different trap sizes
—E and different interaction strength33].
-2t In Figs. 9 and 10 we present a comparison between the
e results obtained from the on-shell approximation and those
:g’ : obtained from the generalized diffraction theory for the scat-

tering, absorption, and total cross sections. As we can see in
Fig. 9 for the noninteracting case, the overall agreement be-
tween the two approaches is reasonably good. This is espe-
cially true for the total cross section. Note that on resonance
the total cross sections obtained from both approaches have
roughly the same magnitude, and the respective spectral
wings merge together.
We should stress, however, that the agreement between
) the scattering cross section and absorption cross sections is
0 ! 6 (degres) 2 3 not very good. In particular the GDT predicts that the scat-
9 tering cross section is broader than the absorption cross sec-
tion. In the on-shell approximation, on the other hand, the
FIG. 12. Comparison of the angular scattering cross sections &fcattering and absorption cross sections have the same width.
two fixed laser detunings for results obtained from the GDT andMoreover, the scattering cross section obtained from the
on-shell approximations. The solid lines represent the results fronspT exhibits interestingalthough relatively brogdstruc-
the on-shell approxima_tion, wh_ile the dqtted lines rgpresent the reg,res close to resonance. Note, however, that the narrow peak
sults from the GDT{a) line sections of Fig. @) and Fig. 118) for ¢ the exact resonance is still present in the absorption cross
the noninteracting dens[ty profiléy) I_|ne se(_:tlons of Fig. &) and section.
Fig. 11(b) for the approximate density profile fé¢as.=100. Figure 10 presents similar results as Fig. 9, but now for an
interacting condensate witas./a=100. Both results were
already mentioned, in this case the agreement between tlobtained from the approximate density profile given by Eq.
results corresponding to the exact and approximate solutiong3). We note that now there exists an additional structure
of the NLSE is much better. We stress that the dependence ¢line splitting” in the scattering cross section obtained from
the cross sections on the interaction strength has an analthe GDT close to the line center. This is in fact a general
gous form for other trap sizes & 3,30 um [33)]). feature of the results obtained from the GDT. It is not yet
In Fig. 7 we compare the dependence of the scatterinfully understood, and will be discussed elsewhg38]. At
cross sections on the trap size for an interaction strengtthis point it is worthwhile to point out that in contrast to the
Nag./a=100 andl’=y. For a better comparison, we have on-shell approximation, the GDT includes contributions that
scaled the frequency coordinate py0(wm)/a]? to elimi-  are not fully coherent in a similar manner to the way Mollow
nate the asymptotic density dependence of the cross sectiorspectrum has both coherent and incoherent component at the
We observe again that the results obtained from the approxlaser frequency34]. We stress also that the shape of the
mate density profile agree with those from the exact densitpbsorption cross section is governed by the relevant dissipa-
profile very well. Similar conclusions hold for other values tive processes, and for both approaches exhibit a narrow

10g.[d0m/dB (units of ma?)]
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FIG. 13. Comparison of the frequency dependence of the scattering cross sections at two fixed polar angles for results obtained from the
GDT and on-shell approximations. The solid lines represent the results from the on-shell approximation, while the dotted lines represent the
results from the GDT(a) line sections of Fig. &) and Fig. 11a) for the noninteracting density profiléy) line sections of Fig. &) and Fig.

11(b) for the approximate density profile given by Eg3) for Nas.= 100.

peak at the resonance of width This is one of the comparatively rare examples of a situation
In Fig. 11 we present the spectral-angular distributiondn which such a narrow resonance is preséfhe Dicke
(i.e., differential cross section®btained from GDT. Here narrowed spectrurf43] is also similar in shape to this sharp
the same parameters have been used as in Fig. 8. As we sgsectral featurg.Yet the response of the system at this reso-
the agreement between the two approaches is qualitativelyance is strong. This is in contrast to normal narrow reso-
very good. For a clear comparison, we also display in Figshances associated with weak transitions. From the experi-
12 and 13 a fe.w line sections from the surface _plqts qf Figsmental point of view, the spike ab,=~w, is especially
8 and 11. In Fig. 12, we present the angular distributions ajyieresting, since it will not be smeared out due to fluctua-
two fixed detunings. In Fig. 13 the comparison of the scatyions in the number of condensed atoms. Third, the line
tering cross sections is made for two fixed polar angles. gpane is non-Lorentzian, and in some circumstances may ex-
areE\s/g&g':i?Tl:gg ::Tgaﬂ';f?/ri:mgsvsgt\ggrelgl}gg tt\;lvgtaiﬁpg;i‘;?:rﬁbit additional interesting features. In particular the GDT
: o ; éredicts line splitting and similar structures in the scattering
the two approximate theories agree reasonably well in term .
0ss section close to resonance. Although at present those

f magni f the cr ions cl resonan Ver- . .
of magnitudes of the cross sections close to resonance, o %eatures are not fully understood, we point out that they arise

all shape of the spectri@arrow feature in the center with a . o
broad background widths of the spectra, etc. This conclu- " the GDT from the contributions that are not fully coherent.

sion holds for other trap sizes and interaction strengths as W€ emphasize again that coherent scattering probes in the

well. This suggests that the parameter ranges of applicabilitf/"St place the density profile of the trapped atoms, and does
of the two methods are similar. not reflect quantum statistical effects directly. It does reflect

these effects indirectly, however, through the density profiles
that are different for bosons or fermions at low temperatures.
It also reflects the very fact of condensation, since the den-

In summary we have calculated the line shapes for cohesity profile changes in the condensation process. As we
ent scattering from a BEC. This line shape has three interpointed out earlier, our results for broad Gaussian density
esting properties. First, it exhibits a very broad resonance gbrofiles may be in principle regarded as corresponding to
width of ordery.s=3Ny/2(k_a)?. To detect this resonance high-temperature cases. According to our theory, in both
it will be sufficient to shine strongly detuned light on the cases of a low-temperature BEC and a high-temperature gas
system of cooled atoms, with a detuning of the order ofthe scattering will occur mainly in the forward direction.
veit- Those atoms that are not in the condensate phase willhus, forward scattering is not a signature of BE@ the
Rayleigh scatter with a cross section with effective linewidthhigh-temperature case, however, the divergence of the scat-
v(< vex) and will not significantly contribute, while the con- tered beam will be determined by the thermal size
densed atoms will scatter collectively. Second, the very nara,~a(B) [Eq. (38)] of the sample, i.e., it will be propor-
row feature ¢-T") in the spectrum ab, = w suggests obvi- tional to 1[k a(B)], and thus much smaller than the angle
ous applications of this system for precision spectroscopyin the presence of the condensfdencea(8)>\].

VIIl. CONCLUSIONS
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The quantum statistical effects are clearly visible in thecording to the following scheme. The number of scattered
spectrum of scattered light, since they cause an enhancemeapttotonsdng.,and the number of incident photons are given,
of the spontaneous emission rate into the condensate. Thessspectively, by
effects again will cease to exist for a gas at temperatures
above the Bose-Einstein transition; the spectrum of coherent

scattering will be then much narrower, and in the extreme % R o )
limit —0 it will tend to be Lorentzian with a width-T, dNgeap 4O fo |aB(k, u)|?8%(ck—w)k?p(Kk)dk,
bounded from below by the single atom spontaneous emis- a (A2)

sion ratey or by the ratel'y due to single atom quantum

diffusion processes. The spectrum in the presence of the con-

densate at low temperatures will display a broadn-

Lorentzianshape gradually narrowing toward the resonance, nin“f || 282(K— K, ) p(k)dKk. (A3)

and transforming into a narrow feature of the characteristic

width T" in close vicinity to the resonance. Physically, the

narrowing of the spectrum close to resonance comes fromtherefore the differential scattering cross section can be de-
the fact that the quantum statistical enhancement of the spoRued as

taneous emission rate to the condensate decreases with suc-

cessive multiple scattering events due to the broadening of

excited atomic wave packet in momentum spémealterna- do dn 4 [K2\2
tively, due to the excitation of higher and higher partial wave —_S¢'_ Sca“:(waz)_z(_L> > Bk ),
components Even though the narrow feature in the spec- dQg Nin (kka)“\ ¢/ % L

trum at low temperatures reminds one somewhat of the (A4)
Lorentzian spectrum at high temperatures, it is worth stress-

ing that both its magnitude and shape strongly depend on thghere we have used the standard normalization,
sample siza, and therefore on temperatu@mpare Fig. Y

[44].

According to the present study the clear signatures of con- 1
densation from coherent light scattering are tiasforward 2(K—K )= —=—=(c7q) Z8(K—K_), (A5)
scattering with a divergence angle proportional tokl#) (2m)

determined by the size of the condensatéb) a broad non-
Lorentzian spectrum with an overall width efNy/(k a)?2

in the spectral wings, a gradually narrowing width closer to ’ 11
the resonance, and a characteristic widtl' at the reso- o (ck—w )= 2 ﬁ(”d) o(k=kp). (AB)
nance.
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APPENDIX A: DEFINITION OF THE SCATTERING

CROSS SECTION

Within the on-shell approximation, the solution of the Nin=Nph+ Naps: (A8)
scattering equatiofB) has the form
- (1 ~ aS(K—Kk & —iot We have denoted the number of photons absorbed_ jy
Al t—o0)~ ad( R andny, is the number of photons remaining in the field in the
+aB(K ) 8(ck—w e oLt (A1) long time limit. A corresponding absorption cross section can

be defined in a form similar to EqA4) for the scattering
from which we can define the scattering cross section aceross section. In the long time limit when- oo,
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Mo 2 f |ad(K—ky)8,, e '+ aB(K,u) 8(ck—w e t!|2p(k)dk
y73

:nin+f dNgcait 2 Ref|a|*B(KL, 1) S(ck—wp)p(ky)]. (A9)

Substituting Eq.(A9) into Eq. (A8), and using again the one-photon approximatiof#8]. The wave function contains
normalization relatiorfA6), we obtain the total cross section in this case three components
(for cross sections in units afa?)

Otot= Tscati™ Tabs |\If(t)>=2 j dRa(t;RaMNN.Oa ce ,E“Z,bb>
M
__ 87 ki R B(k A10
= k@2 ¢ RaBkem)l (ALD) +2 Ba()-6}IN-1,...;00)

Comparing the above expression with E@2), we see that . . .
—iB(Kk, ) can be associated with a scattering amplitude, P % f dkya(tik,w)IN=1,....1, ... ;0ku),
and in particular

3y

2 (B1)

8w . A7 L
e ReB(k, "“L)]_’k_L Imf(k. kD)1 (AlL)  \yhere the indices for the Fock representation of the wave

function are arranged in the following order

APPENDIX B: SPONTANEOUS EMISSION OUT |ground; excited; photgn and [N,0, ... ;Qku) denotes the
OF THE CONDENSATE state for which alN atoms are in the condensdie., in the

_ _ ~ground electronic state and in the ground state of the),trap
In this Appendix we show that the spontaneous emissionng a photon of momentuknand polarizatiorg,, is present;
out of the condensate can be included in the theory by re=

placinga by wo— iy, with y being typically of the order of fﬁ‘ﬂ'”‘loi - 00) s a state for whict\-—1 e e
the natural linewidthy. As a result, the effective decay con- € condensate, one atom Is excited fo the and there

stant of the self-energy kernel becomes of the order ofi'€ no photons; and, finallyN—1,....1,...;0ku) is a
y+T4. Thus, in the regime wheRy<1y, T’ becomes com- State for whichN—1 atoms are in the condensate, one atom
parable toy. is in the ground electronic state, but in tfith excited state

We consider here only the class A model with a Gaussiarf the trap, and a photon of momentuknand polarization
density profile atT=0, and zero potential in the excited €&, is present.
state. We employ the Schiimger equation approach to de-  The Schrdinger equations for the amplitudes can be eas-
scribe single photon scattering events in the spirit of thdly derived from the Hamiltoniar{1), and they are

a(t;lz,m=—icka<t;|2,m—iJNEm p(K) 7om(K)[ €k, Br(D], (B2)

[ Br(0)]= =i (w0 ES 5, Ba(0] -1 NS JdR'P(k’)[ﬂom(R')]*(gﬁﬂ'gﬁruf)a(tilz',,u’)
M

3y

iy > fdR’p(k'Mnﬁm(R')]*(azM-éwwﬁ(t;&',m, (B3)
#0 ,u’

Ya(t;k,p)=—i(ck+ E%)yﬁa;ﬁ,m—iEm p(K) 7am(K)[ &g, Br(D1, (B4)

with a(0:K, ) = 8(k—Kk,) &

M
(B2) and(B3) would be equivalent to the linearized Heisenberg equations discussed in Sec. Il. In pardicmléw) would

Ba(0)=0, andys(0;k, 1) = 0. If we had ignoredyx(t,k, ) in the above equations, the Egs.
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have fulfilled the scattering equatio{8). In general, we use the Laplace-transform technique to solve (E4j. for
yﬁ(s;lz,,u), and then insert it into the solution for the Laplace-transformed(B8). The result is

[s+i(wo+ER) &, Bn(9)]=—1 N f dK’p(K") 70m(K')]* (€, &) (iK' 1)
M

" am(KT* K’
S S [ dkppkpy HmOT ) e B9 ©5)
mV M/

iz0  s+i(Eg+ck’)

To get an estimate of the role of the last term in E8p) we APPENDIX C: SELF-ENERGY KERNEL
use the Wigner-Weisskopf pole approximatigtd] and re- AT FINITE TEMPERATURE
places+iE2+ick’ with i(ck’ —wy+EZ—EL) + ¢, with an
infinitesimally sméalls>0 in the denominator. We also sub- energy kernel can be approximated by Etg) at finite T
stitute Er— E3=k{/2M, since the numerator does not vary (. gy For simplicity, we first consider class A models with
much with the change oEf, or ER. Then we employ the he same trapping potential for the ground and excited atoms,
sum rule but the results are expected to be valid generally. Using the
series expansion for expressitf)

In this appendix we demonstrate that the reduced self-

2 [am(K)1* 7 (K') = e = L0m(K ) 1* 70 (K)- -
" (B6) Nﬁzzl < exp(—18EY), (C1)

Since both 7:(k’)]* and 70 (k') are sharply peaked at we can represent the reduced ker(i) in the form

m=m’=k’, and(at least for not too small trapa=\), the -
approximate momentum conservation allows us to limit our ?(S'IZ K" 2 1 ,V(s KK,
ALY 2|

2 C2
attention tom=k, . We can thus approximate ©
-, >, > >, >, > where
[ 70m(K") I* moms (K") B () =[ mok (K")T* 70m: (K") Bra(S).
(B7) g g -
/I(S k k j dte [s+i(ES mtoo—ERIt 7|BEﬁ7’ﬁn’](k)
Neglecting the polarization dependence as discussed in the o
on-shell approximation in Sec. V, we obtain the equation X[ pam(K)]* . (C3
[s+i(wo+ES)+ ¥]1Bm(s) Denoting byb=(by,b,,b,) (b") the annihilation(cre-

ation) operators for a single harmonic oscillator describing
motion in the trap potential, we introduce

NS f dRp(K)[ oK) T* & pa(siK 1), (B)
"

%h == thT . 5, (C4)
which is valid form=Kk, , where R=a(b+b"), (C5)
3 . 3 (Bg) ﬁ(t) — e*i]/'htﬁei.i/ht: a( Bei wtt+ BTe*iwlt) ) (CG)
Y=L T = 5
2\2(k.a)? Using the above notation and the definition of the Franck-

Condon factors we can rewrite the expres<iG8) in a more
Physically, the above formula means that the rate of spontazompact form
neous emission out of the condensate is smaller than the

natural linewidth by an amount that is of the order of therate ~, ==/ _ [* . _(stiwgt —1 By amiK-RAIK' - R()
of emission back to the ground state containing a single Zi(skk )_jo dte o" Tr(e e € ),
atom. The latter quantity is smaller than since due to (C?)

approximate momentum conservation, such emission is lim-

ited to the solid angle determined by the size of the groundwhere Tr() denotes the trace of an operator.

state wave function. Equatio(B8) proves our conjecture The trace can be easily evaluated using the same methods
that the processes of spontaneous emission out of the coas described in Appendixes B, C, and D of paper Il. The
densate can be accounted for by the simple substitutioaxponents of position operators can be ordered normally
wo— wo—i7y, as is normally used for the one-photon ap-with the help of the Baker-Hausdorf formula, while the trace
proximation[48]. is performed using coherent states. The result is
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L 1 [k2+(kr)2]a2(eflﬁwt+ 1)_2|2'EraZ(efiwtt_Fefl,Bthriwlt)
=187 ha—ik-Raik’-R(t)7 — _
Trle e e ] (1——e"5“‘_t)3 exp( 2(1—9_|Bwt) . (C8
We now proceed as in Sec. lll, i.e., we expand the above expression up to the second-order tamthénexponent. We
obtain
. o 1 (k—k)%a*(1+e Py | = o
L (ar " — _ —7H(Hte=7qt
*ill(svkak ) (1—e7|ﬁ“’t)3 eXF{ 2(1_e7|ﬁwt) J'O dte ’ (Cg)
|
with For intermediate temperatures, when the resonance line at
1w wg is broadened by (see Appendix Bwe can still neglect
BN B a2, .2 l+e ‘ the | dependence of#(l) (by considering only thd =1
Po(1)=Kk-K'a’w; Tho . ) = L . .
2(1-e P term) since typicallyy7%(1)<y. If the natural linewidthy
14+ B is small, we replace”,(1) by wI'?/4 defined according to
L2422
TS (10 2 SRR
——=(1-92 ¢ == (C13
Pr=stimgtiok-K a2 Val ERNEA()
~S+iwg+ik?/2M. (c1y  The above definition fol" assures that at exact resonance

(0, — wo— wk’a?=0) the expression(14) is exact for
In principle (1) is | dependent. For very low temperatures, k=’ .
however, this dependence is negligible. For high tempera- The above results can be generalized to the case of zero

tures only the termi=1 contributes to the kernel. In both potential in the excited state. Under such an assumption we
these cases we recover the form of Etg) for the kernel  first note that

using the asymptotic expansion of the error function as in

Sec. lll. We also use the identity Pan(K) =P o(k—m), (C14)
“ /I >, . . .
p(k— E/):E _l_gi — Wher_e\Ifﬁ(_k) are the normalized harmonlc oscillator wave
<1 (1—e Py functions in the momentum representati@nd once again

we usem to index the momentum of the center-of-mass mo-
tion in the excited staje The reduced kernel can be written
again in the form Eq(C2) with

p[ (K—K')%a%(1+e Ao
Xexpg —

51 } (C12

e

A(sikKk) =2 fdmfo dte [stilem®a® o) ltg=(1B-IVEQY (K —m)W* (K’ — ). (C15

i

IntroducingB|(t)=I,B—it, we can express the sum oveiin the above equation as

> e POSnp (K—m) Wk (K — i) =G[ By(t);k— i,k — ], (C16
n

whereG(.;.,.) is theharmonic oscillator temperature Green function in the momentum representation, calculated at complex
Bi(t). Itis given by[50]

2 3/2
G[B(1);k— rﬁ,E’—rﬁ]:(m) exd 3wB(1)/2]
(1) wy

a? . R ~ . R
xXe — [ (k—m)2+ (k' —m)?]cos t)y]—2(k—m)-(k"'—m)} ;. C1
XF{ sinr[wt,el(t)]{[( )+ ( )<lcosh w8 (t)]—2( )-( )} (C17
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As is well known the Green function is Gaussian, SOZ(S; |2,;2f)_ The expression for”; and (1) takes the

that the integral overn in Eq. (C15 can be performed same form as beforgprovided we neglect their dependence
exactly. The result is expanded to the second-order terms ingn k andk’, and sek= |2':|2L)_ From this point, the same

in the exponent, and we recover, as in the previous case, thfalysis as the one presented above applies, and we recover
representation Eq.(C9 for the I-dependent kernels Eq.(14).
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