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A fully relativistic distorted-wave Born procedure for collision strength of highly charged ions is presented.
Multiconfiguration Dirac-Fock wave functions and intermediate coupling are used to describe the target-ion
states, and the relativistic continuum wave functions are calculated using a hybrid mesh point in the field of
frozen target-ion charge distribution with the Dirac-Fock-Slater exchange potential. Also a normalization
procedure of the continuum wave function is used. The factorization form of collision theory of Sampson and
Zhang@Phys. Rev. A45, 1657~1992!# is applied. The calculations of collision strengths of the ground state to
singly excited states with anN-shell electron for nickel-like Gd and U ions are done and the results are
compared with other work. There are several detailed considerations in our procedures, so the present results
should be more reliable and accurate.

PACS number~s!: 34.50.Fa, 34.80.Kw, 34.80.Dp

I. INTRODUCTION

The purpose of present work is to develop a very efficient
but very accurate program for evaluating relativistic
distorted-wave electron impact collision strengths of highly
charged ions. A main motivation for our work in this area is
also the large amount of collision data needed for the mod-
eling and diagnostics of high-temperature plasmas, such as
occur in research to develop x-ray lasers, inertial confine-
ment fusion~ICF!, and in astrophysics@1–8#. A third objec-
tive is to provide atomic collision data for the development
of soft-x-rays for the possibility of imaging biological speci-
mens in the water window betweenK absorption edges of O
~23.32 Å! and C~43.76 Å! @9# and for application to experi-
ment, such as the electron beam ion trap~EBIT! experiment
@10#. Relativistic effects in excitation of the ion~or atom!
arise from two main sources:~a! relativistic effects in target-
ion wave functions~b! the relativistic interaction of the free
and bound electrons in the target ions. In addition to the
usual nonrelativistic Coulomb interaction between the inci-
dent electron and the target ion, the electron undergoes a
relativistic interaction with the target nucleus and accompa-
nying bound electrons, such as spin-orbit, spin-spin, and
spin-other-orbit interactions. The use of the Dirac Hamil-
tonian will adequately describe the relativistic interaction be-
tween the incident electron and the target nucleus. To de-
scribe relativistic interactions between the incident electrons
and bound electrons, however, we must extract that part of
the Möller scattering that corresponds to the exchange of a
transverse photon@11#. In this study, we exclude Mo¨ller scat-
tering because the incident energyei ~,105 eV! may not be
high enough to make the Mo¨ller interaction scattering be-
tween the incident and bound electrons significant. Several
elaborate fully relativistic distorted-wave Born~RDWB! pro-
grams now exist with results published in the literature@12–
17#. A new, elaborate, rapid, and accurate program using
relativistic Multiconfiguration Dirac-Fock~MCDF! and in-
termediate coupling treatments of the bound electrons and
free electrons has now been completed. Our bound states are
from Grant’s code~also called GRASP, the acronym of

general-purpose relativistic atomic structure program! @18#.
GRASPhas been tested several times and thought to be very
reliable for atomic calculations of highly stripped ions. The
continuum wave functions are calculated in the central po-
tential using DFS exchange potential. A new WKB normal-
ization of continuum orbital is used. The factorization
method is used in collision strength calculation with partial
wave expansion.

In Sec. II a brief description of bound wave functions and
atomic structure is presented. Then in Sec. III a numerical
solution and the normalization of the continuum orbital and
continuum asymptotic are presented. In Sec. IV the theory of
impact excitation with Bar-Shalom’s factorization theory is
outlined; also presented are the treatments of the difficulties
of large-radial-distance and high-partial-wave contributions.
Finally, the present results are compared with results calcu-
lated by others. These comparisons are made for collision
strengths of nickel-like Gd and nickel-like U. For nickel-like
Gd, resonance excitations to theN shell involving the 107-
level MCDF configuration-expansion, and excitation to the
N shell and O shell involving the 249-level MCDF
configuration-expansion are calculated and discussed. As for
nickel-like U, only later MCDF configuration-expansion is
presented.

II. ATOMIC STRUCTURE AND WAVE FUNCTION

In outlining MCDF theory and intermediate coupling we
will closely refer to Ref.@18# on the atomic structure pro-
gramGRASP. In theGRASPprogram, treating an ion withN
bound electrons, we use basis statesFm~1,2,...,N!, which are
single-configuration state functions~CSFs!. These are the an-
tisymmetric sum of products ofN one-electron Dirac spinors
unkm that are solutions of the Dirac equation for a central
potential,@18,19#

unkm5
1

r FPnk~r !

iQnk~r !

xkm~r /r !

x2km~r /r !G , ~1!

wherePnk andQnk are large and small component radial
wave functions, respectively, and the functionxkm is the
spinor spherical harmonics,
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xkm~r /r !5 (
s561/2

^ lm2s 1
2 su l 1

2 jm&Yl
m2s~r /r !fs,

~2!

where ^ lm2s( 12 )su l ( 12 ) jm& is a Clebsch-Gordan coeffi-
cient,Y l

m2s~r /r ! is a spherical harmonic, andfs is a spinor
basis function;k is the relativistic angular quantum number,
k56~j11/2! for l5 j61/2, thusj5uku21/2.

The ion atomic state functions~ASFs! are a linear combi-
nation ofNc CSFs sharing common values of parity, total
target angular momentum

C5 (
m51

Nc

amFm ; ~3!

the mixing coefficientsam are obtained by diagonalizing the
Hamiltonian. Higher-order QED modifications due to trans-
verse electromagnetic interaction and the radiative correc-
tions are treated via perturbation theory@20–25#.

All atomic structure data are obtained from theGRASP
code. Bound-state orbitals and other required radial functions
are transformed to the new hybrid grid using a well tested
cubic spline interpolation which we find preserves accuracy
to at least a one part per 106 accuracy. In addition to using a
cubic spline for interpolation, we also use a cubic spline to
evaluate the definite integrals of the dependable variable and
to perform the derivatives required in the normalization sec-
tion and other sections.

III. CONTINUUM WAVE FUNCTION

A. Numerics of continuum orbital

To determine the continuum wave function, we useuekm
as the distorted-wave Dirac spinor for a free electron in the
central potentialV(r ) due to the target ion, which is analo-
gous to Eq.~1!,

uekm5
1

r FPek~r !

iQek~r !

xkm~r /r !

x2km~r /r !G . ~4!

The large and small componentsPek and Qek satisfy the
coupled Dirac equations,

F ddr 1
k

r GPek~r !5
1

c
@e2V~r !12c2#Qek~r !, ~5!

F ddr2 k

r GQek~r !52
1

c
@e2V~r !#Pek~r !. ~6!

These are like bound orbital Dirac equations, except thate is
positive and is the kinetic energy of the electron in a.u. when
r→`. c;137.036 is the light speed in a.u. The relation be-
tween the relativistic wave quantum numberk of the impact
electron, the relativistic momentump, and kinetic energye
of the impact electron is,

k25
p2a0

2

\2 5eF21
e

c2G . ~7!

The numerical solutions of the free Dirac equations are
largely the same as those for Dirac-Fock wave functions for

bound electrons, except for the modified orthogonality con-
dition that is discussed in Sec. III B and the fact that the
continuum orbitals do not vanish at larger . It is an inappro-
priate logarithm grid mesh for the continuum orbital because
its one step may contain one or more oscillating cycles of the
continuum orbital in the large-r region. Therefore the notable
departure is that the logarithmic radial mesh popular in
bound-state codes is unsuitable for continuum orbitals. In
calculating continuum orbitals, Pergeret al. @26,27# divided
the wholer region into two parts, i.e., the inner region and
the outer region, and used the logarithm gridr5ln(r ) for the
inner region and the linear gridr5ar for the outer region.
This method would bring about some complexities of inter-
polation and extrapolation at the boundary of the two re-
gions. Our approach is to work with a hybrid grid mesh of
the form,

r5ar1b ln~r !. ~8!

This kind of grid was first employed by Chernyshevaet al.
@28# in nonrelativistic continuum orbital calculations and was
also used by Hagelstein and Jung@12# and Desclaux and
co-workers@17,29# in their RDWB continuum orbital calcu-
lations. The hybrid mesh is more appropriate because it in-
corporates the characteristics of both the logarithm grid and
the linear grid. Moreover, the hybrid grid approximates the
logarithmic mesh in the inner region and approximates the
linear mesh in the outer region. The parametersa andb can
be determined as@30#

a5
nphkini
2p

, ~9!

b512
ar 0
ln~r 0!

, ~10!

wherenp is the number of grid points per cycle of oscilla-
tion, and we choosenp536 for each continuum orbital.
h5dr is equidistant in the hybrid mesh,r 0 is the first grid
point, and we chooseh50.05, r 051025 in all our present
calculations.kini is the wave number of the continuum wave
function for the initial state of each excitation by electron
impact. So the mesh parametersa andb are different ifkini
in a certain excitation is different, but the parameters are the
same for bound and free wave functions of initial and final
states in a certain transition. This choice is the most appro-
priate.

The two first-order differential equations~5! and ~6! are
integrated using the five-point Adams method@31–33# which
is chosen because of its fast, stable and accurate properties.
The Adams method is a standard predictor-corrector method.

B. Normalization and continuum asymptotic

The radial functions for bound orbitals satisfy the or-
thonomality conditions,

E
0

`

dr@Pnk~r !Pn8k~r !1Qnk~r !Qn8k~r !#5dnn8 , ~11!
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wherednn8 is a Kronecker delta, and the radial functions for
the continuum orbitals satisfy similar orthogonality condi-
tions,

E
0

`

dr@Pek~r !Pe8k~r !1Qek~r !Qe8k~r !#5pd~e2e8!.

~12!

For normalizing the continuum orbitals, we have adopted a
method of matching wave functions to their asymptotic and
relativistic WKB form. The method used presently makes
some modifications to Hagelstein and Jung@12#, and we
shall outline them briefly. The large component of the con-
tinuum wave function is taken, in the WKB approximation,
to be

P5AF e2V~r !12mc2

2c
df

dr
G 1/2sin f, ~13!

whereA is the normalization constant~to be determined!,
and the expressiondf/dr is

2S df

dr D
2

1
@e2V~r !1mc2#22m2c4

c2
2

k~k11!

r 2

1S df

dr D
1/2 d2

dr2 S df

dr D
21/2

2@e2V~r !

12mc2#1/2
d2

dr2
@e2V~r !12mc2#21/2

1
k

r

dV~r !/dr

@e2V~r !12mc2#
50. ~14!

Note that Eq.~13! differs from Eq.~4! of Ong and Russek
@34# and Eq.~32! of Pergeret al. @26#. Hence the amplitude
of Eq. ~13! approaches~1/k!1/2 at large radial distance. De-
finingW as

W5AF e2V~r !12mc2

2c
df

dr
G 1/2cosf, ~15!

then taking the derivative of Eq.~13! with respect tor , W
can be shown to be

W5S df

dr D
21FdPdr 1

1

2

dV~r !

dr
@e2V~r !12mc2#21P

1
1

2

d2f/dr2

df/dr
PG ; ~16!

combining Eqs.~13! and ~15! to solve forA andf yields

A52cF 1

e2V~r !12mc2
df

dr
~P21W2!G

rmax

1/2

, ~17!

f~rmax!5tan21@P/W# rmax
, ~18!

where the radial pointrmax for the evaluation of Eqs.~17!
and ~18! is chosen to be well beyond the point where the
exchange potential is negligibly small. The expression for
df/dr in Eq. ~14! can easily be solved iteratively by ap-
proximatingdf/dr by the second and the third terms on the
left-hand side of Eq.~14!, then using that estimate in the next
iteration for the fourth term on the left-hand side of Eq.~14!.
With only two or three iterationsdf/dr is stable to seven
significant figures.

C. Potential choice

Our procedures have mainly two forms of potential for
free electron orbitals.~a! The first candidate is the Dirac-
Fock-Slater~DFS! potential,@37,13#

V~r !5V8~r !1VDFS
ex ~r !, ~19!

where

V8~r !52
Z~r !

r
1Vc~r !, ~20!

VDFS
ex ~r !52S 3p r~r ! D 1/3, ~21!

Vc~r !5 (
n8,k8

vn8,k8E
0

` 1

r.
@Pn8k8

2
~r 8!1Qn8k8

2
~r 8!#dr8,

~22!

r~r !5
1

4pr 2 (
n8k8

vn8k8@Pn8k8
2

~r !1Qn8k8
2

~r !#. ~23!

Here vn8k8 is the occupation number of subshell
n8k85n8l 8 j 8, vn8k8 is given by a fictitious occupation num-
ber, which is sometimes called a mean configuration. About
half an electron is excited. To compare with data in Ref.@14#,
Eq. ~30! of Ref. @13# is used in the present calculation. The
vn8k8 here is used solely to determine the spherically aver-
aged relativistic Dirac-Fock central field-free orbital poten-
tial. The summation is over all occupied subshell,
r.5max(r ,r 8). Finite nuclear chargeZ(r ), which differs
from ordinaryZ only for small r , is chosen to be the Fermi
charge distribution@35# and can be obtained from theGRASP
code@18#. This choice of potential is used in Sec. V of the
present paper for the purpose of making a comparison with
Zhanget al. @14# because he used the similar form of DFS
potential in his continuum-orbital calculation.

~b! The second candidate is one where the exchange po-
tential given by Eq.~21! is replaced by a form based on the
semiclassical exchange~SCE! approximation of Riley and
Truhlar @36#. Following Zhanget al. @37#, we refer to it as
the Mann@38# potentialVM(r ) @in place ofV(r )#; it is given
by

VM~r !5V8~r !1VM
ex~r !, ~24!

VM
ex~r !52

1

2
@V8~r !2e ~a.u.!#@~11b2!1/221#, ~25!

where
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b25
4pr~r !

@V8~r !2e ~a.u.!#2
~26!

and e ~a.u.! is the free-electron kinetic energy in atomic
units. The potentials used in calculating impact and scattered
electrons for a transition differed only by the free-electron
energies used.r 2 in Eq. ~27! of Ref. @37# should be omitted
consistent with Refs.@36# and @38#. This potential has been
proposed as an option in our code but it is not used in the
present calculations. In above mentioned two choices of
potential, since the orbitals of the free electron are not or-
thogonal to those of the bound electrons, it is necessary to
replace the factorr ,

l /r .
l11 with r ,

l /r .
l112dl0[Vc(r )/N] in

the exchange matrix elementEl @39#.

IV. COLLISION THEORY

A. Formulas of collision strengths

It is convenient to express the relativistic cross section
si f ~e! for the transitioni→ f in terms of collision strength
Vi f ~e! by the relation

s i f ~e!5
pa0

2

ki
2gi

V i f ~e!, ~27!

where the subscriptsi and f refer to initial and final states,a0
is the Bohr radius,ki is the relativistic wave number of the
impact electron, andgi5[Ji ]52Ji11 is the statistical
weight of the initial state of theN-electron target ion. We
further define the partial collision strengthVJ from which
the total transition collision strength is computed through
evaluation of

V i f ~e!5(
J

V i f
J ~e!, ~28!

where the summation is over the total angular momentumJ
of the entire~N11!-electron system of combined electron-
plus-ion states. The partial collision strength is defined as

V i f
J ~e!5

1

2 (
j j 8

@J#uTJ~G iJi j ,G fJf j 8!u2, ~29!

where [J]52J11,TJ(G iJi j ,G fJf j 8) are the transition matrix
elements,Gi and Gf refer to suppressed quantum numbers,
Ji ,Jf refer to the total angular momenta of the target ion in a
certain transition, andj and j 8 refer to the continuum orbit-
als total angular momenta. For the highly charged ions of
interest here, we express theT matrix in terms of reactance
matrix R:

T5
22iR

12 iR
'22iR, ~30!

where the final approximation gives nonunitarized cross sec-
tions. This is a weak-coupling approximation and gives a
very good treatment of the highly charged ions for which the
elements ofR are small. Then the relativistic distorted-wave
expression for collision strength can be written as@14#

V i f58(
J

@J# (
k,k8

ZK C iU (q,k
q,k

N11
1

r qkUC fL Z2, ~31!

whereCi andCf in Eq. ~31! are the initial and final anti-
symmetric wave functions for the total~N11!-electron sys-
tem consisting of the target ion plus the free electron, and
they must match in parity and total angular momentum.k
andk8 are the initial and final relativistic quantum numbers
for the free electrons.

We follow the work of Sampson and Zhang@39#, who
make use of the key and important research of Bar-Shalom
et al. @40#. The main features are that, in general, the various
6-j and 9-j factors entering the exchange and direct scatter-
ing matrix elements can be arranged so that they contain a
common factor that can be factored out and summed over
total angular momentaJ. This leads to a large reduction in
the angular part of the calculation. Following the notation of
Ref. @39#, the collision strength then factors into the form

V i f58 (
S,S8
S1 ,S18

(
l

Bl~ i ,SS1 ; f ,S8S18!Ql~nal aj a ,na8l a8 j a8 ;na1l a1 j a1 ,na18 l a18 j a18 !. ~32!

Here nal aj a ,na1l a1 j a1 indicate initial orbital of the active
electron in the purej j -coupled statesSandS1 that contribute
to the initial leveli . An analogous statement applies for cor-
responding primed quantities contributing to the final levelf .
Vi f is given by sums overS, S1, S8, S18 , andl, which is the
order of the tensor products in the angular parts. The factors
Bl andQl are give by Eqs.~30! and ~31! of Ref. @39#.

B. Large radial contribution in the direct matrix element

Since continuum orbitals do not quickly reach asymptotic
sinusoidal behavior, some direct transition matrix elements
that constituteV depend very much on the large-r behavior

of continuum orbitals. Therefore it is necessary to calculate
the continuum radial function to very largekr. This is a
difficult problem and it seems that Zhanget al. did not con-
sider this problem@14# sufficiently. They only used 1800
mesh points@see Eq.~16! of Ref. @14##. In most cases 1800
mesh points is enough, but in a few cases, this is obviously
not sufficient because of the unduly oscillatory behavior of
the continuum wave function. For our hybrid mesh point,
6000 mesh points have been tabulated in the present paper.
This approach, though somewhat slow in computation time,
is more stable and efficient. Belling’s method@41# extended
to the relativistic case has been coded as done by Hagelstein
@12# and compared with the present results. We will continue
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the research of this aspect, namely asymptotic expressions
for affected matrix elements, by extending the method of Sil
et al. @42# which transforms the integration contours into the
complex plane to the relativistic case@43#. Sil’s method has
solved this problem perfectly in the nonrelativistic case.

C. High-partial-wave contribution

Calculating large partial waves is another very difficult
problem. The large number of partial waves have to be com-
puted, especially for high impact-electron energies and opti-
cally allowed transition withDn50. Hence, a dependable
method must be found to estimate contributions from higher
partial waves. We find that results from distorted, Coulomb
and plane partial waves are sufficiently different only for
small partial waves. Kim and Desclaux@17# used the plane-
wave method to compensate the very high partial wave con-
tributions in addition to the detailed RDWB calculations of
low partial waves. This approach was elaborate and accurate,
but it was very time consuming because it also needed to
calculate the low-partial-wave contribution using the plane-
wave method. Another approach is~a! for dipole-allowed
transitions the very rapid and simpler Coulomb-Bethe ap-
proximation was used for high partial waves, which involve
a function given in the paper of Burgesset al. @44#,

I ~k1 ,l 1 ,k2 ,l 2 ;l!5E
0

`

F~k1l 1ur!F~k2l 2ur!r2l11dr,

~33!

where we have tried to remain true to the notation of that
paper and~b! for transitions that occur only through ex-
change, the contribution from large partial waves is insignifi-
cant. For other non-optically-allowed transitions, the ratio of
partial-wave contributions for successive partial waves be-
comes nearly constant for large partial waves, so this ratio
could be used to estimate the contribution for high partial
waves @45–47#. This approach was used by Zhanget al.
@14#. To obtain the results presented in the next section we
used the Shanks method for accelerating the summation of a
series to extend the summation to large partial waves
@48,49#. This method is very efficient and accurate and has
been used by Hagelstein’sRDWB code@12# andIMPACT code
@50#, a close-coupling code developed at University College,
London.

V. NUMERICAL RESULTS AND DISCUSSIONS

In Table I we present the collision strengths for nickel-like
gadolinium, evaluating in 107 levels and 249 levels the
MCDF configuration-expansion. The excitations to then54
shell only contain the configurations 3s23p63d94l ,
3s23p53d104l , 3s3p63d104l ,l5s,p,d, f , which involve 107
levels, and these were done by Hagelstein@51# and Zhang
et al. @14#. We calculate the collision strengths in this case in
order to compare them with the results of Hagelstein and
Zhang et al. in the same MCDF configuration-expansion.
However, as noted by Goldsteinet al. @52#, the n54 shell
with holes in the 3s and 3p subshells overlaps in energy the
n55 shell with holes in the 3d subshells, i.e.,
3s23p63d95l ,l5s,p,d, f ,g in addition to then54 shell in-
volving 181 levels in their calculation. Thus, one must in-

clude mixing with the latter in order to obtain accurate re-
sults for excitations to some of then54 levels. So, we
calculate the collision strength using excitations to alln54
levels and n55 levels ~i.e., including 3s23p63d95l ,
3s23p53d105l , 3s3p63d105l ,l5s,p,d, f ,g!, which involve
249 levels. Comparison of our results between the 107 levels
and the 249 levels, does show some differences. The largest
difference is about 9% due to an additional O-shell level
approach. The present results using the 249-level MCDF
configuration-expansion we believe to be more accurate than
those of previous calculations. Here we only present the re-
sults for excitations of a 3d3/2 or 3d5/2 electron because of
limited space, and the values are listed in increasing orders
of energy in Tables I and II.

Table II presents the results of the nickel-like ion with
Z592, using the 249-level MCDF configuration-expansion.
To our knowledge there have been no other collision
strengths of this ion presented, except those by Zhanget al.,
so we only compare with their result. In most cases, the
agreement is fairly good. But in a few cases, e.g., excitation
to (3d3/24 f 5/2)3, the difference is about 6% forZ592; in the
case of excitation to (3d3/24s1/2)2, the difference is about 8%
for Z564. Because the values are almost unchanged by an
additional O-shell level approach in the two transitions, im-
plies that detailed numerical considerations result in two dif-
ferences: e.g., the detailed treatments of Sec. IV B and IV C,
etc., in the RDWB calculating. In conclusion, both additional
O-shell levels and the detailed numerical approaches are nec-
essary for the calculations in some transitions.

One sees that our results are good agreement with those of
Zhang or Hagelstein. However, as noted by Zhanget al. @14#
the collision strength of excitation to the (3s1/24p1/2)1 level
in his calculation is a value about 1.5 times that of Hagel-
stein, in high energies. In our RDWB calculations, the cross
section for this excitation is 1.336310222 cm2 in ef52500
eV, whereas the value of Hagelstein@51# is 6.719310223

cm2; our value is about 2.0 times that of Hagelstein. So our
collision strength for this excitation is closer to the value of
Zhanget al. than that of Hagelstein. As noted before, our
results may be more accurate and reliable. We will continue
this research to consider the Mo¨ller interaction in future
work and make the calculations more accurate at high impact
energies.

VI. SUMMARY

A very rapid, extremely accurate, fully RDWB procedure
and corresponding computer code have been developed in
the present work for the calculation of electron-impact exci-
tation of highly charged ions. This work addresses an acute
need for population kinetics modeling in the research of
x-ray lasers and ICF development. The features of the colli-
sion theory are somewhat followed by Hagelstein, Sampson,
and Desclaux, but there are several differences. The merits of
the numerical techniques of the above mentioned three
elaborate fully relativistic distorted-wave programs are se-
lected and utilized in our RDWB electron impact excitation
code; e.g., with theGRASPatomic structure code, the factor-
ization technique is used so that various 6-j and 9-j symbols
entering the direct and exchange matrix elements can be ar-
ranged and contain a common factor that can be factored out
and summed over the total angular momentum of the com-
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TABLE I. Comparison of collision strengths for nickel-like gadolinium. Abbreviations like Eq.~28! of Ref. @13# are used in designating
the upper level as done by Zhanget al. in Ref. @14#. The first and second entries for each transition are calculated by the present approach
using 107- and 249-level MCDF configuration-expansions, respectively. The third and the fourth entries are fully RDWB results by Zhang
et al. ~Ref. @14#! and Hagelstein~Ref. @51#!, respectively.DE ~eV! is the transition energy in eV. The numbers in square brackets are powers
of 10 by which adjacent entries should be multiplied.

Upper
level DE ~eV!

ef ~eV!
Upper
level DE ~eV!

ef ~eV!

160 2500 160 2500

(3d5/24s1/2)3 1027.02 8.81@24# 3.11@24# (3d5/24s1/2)2 1028.51 2.40@23# 3.07@23#

1027.49 8.53@24# 3.05@24# 1028.99 2.41@23# 3.07@23#

1027 8.45@24# 3.05@24# 1028 2.24@23# 2.85@23#

1029 8.47@24# 3.05@24# 1030 2.32@23# 2.99@23#

(3d3/24s1/2)1 1059.31 3.99@24# 1.36@24# (3d3/24s1/2)2 1060.34 1.81@23# 2.17@23#

1059.77 4.01@24# 1.36@24# 1060.80 1.82@23# 2.16@23#

1060 3.80@24# 1.32@24# 1061 1.69@23# 2.01@23#

1062 3.80@24# 1.32@24# 1063 1.74@23# 2.11@23#

(3d5/24p1/2)2 1100.89 8.76@24# 3.35@24# (3d5/24p1/2)3 1101.97 1.44@23# 1.18@23#

1101.37 8.43@24# 3.29@24# 1102.47 1.44@23# 1.18@23#

1101 8.68@24# 3.30@24# 1102 1.37@23# 1.12@23#

1101 8.37@24# 3.30@24# 1102 1.41@23# 1.16@23#

(3d3/24p1/2)2 1133.32 6.95@24# 2.30@24# (3d3/24p1/2)2 1135.87 2.26@23# 4.92@23#

1133.80 6.86@24# 2.30@24# 1136.33 2.32@23# 4.98@23#

1134 6.75@24# 2.26@24# 1136 2.16@23# 4.59@23#

1134 6.80@24# 2.32@24# 1137 2.13@23# 4.69@23#

(3d5/24p3/2)4 1148.35 1.22@23# 4.12@24# (3d5/24p3/2)2 1150.10 6.58@24# 2.37@24#

1148.84 1.19@23# 4.12@24# 1150.58 6.36@24# 2.33@24#

1149 1.18@23# 4.05@24# 1150 6.57@24# 2.33@24#

1149 1.20@23# 4.22@24# 1151 6.46@24# 2.39@24#

(3d5/24p3/2)2 1150.91 4.32@23# 1.08@22# (3d5/24p3/2)3 1152.50 8.56@24# 7.23@24#

1151.35 4.50@23# 1.09@22# 1152.98 8.69@24# 7.23@24#

1151 4.21@23# 1.04@22# 1153 8.22@24# 6.76@24#

1152 4.46@23# 1.23@22# 1153 8.29@24# 6.92@24#

(3d3/24p3/2)0 1177.86 2.45@24# 9.84@25# (3d3/24p3/2)2 1181.80 8.51@24# 1.35@23#

1178.31 2.44@24# 9.90@25# 1182.25 8.60@24# 1.35@23#

1179 2.45@24# 9.70@25# 1183 8.35@24# 1.27@23#

1179 2.40@24# 9.93@25# 1183 8.33@24# 1.33@23#

(3d3/24p3/2)3 1181.87 1.27@23# 1.07@23# (3d3/24p3/2)2 1184.08 4.26@24# 1.40@24#

1182.34 1.30@23# 1.07@23# 1184.54 4.20@24# 1.39@24#

1183 1.21@23# 1.00@23# 1185 4.23@24# 1.38@24#

1184 1.25@23# 1.05@23# 1186 4.20@24# 1.42@24#

(3d5/24d3/2)3 1261.17 2.02@23# 6.92@24# (3d5/24d3/2)4 1265.46 2.00@23# 9.65@24#

1261.64 2.00@23# 6.84@24# 1265.98 1.98@23# 9.46@24#

1262 1.95@23# 6.66@24# 1266 1.89@23# 9.13@24#

1262 1.95@23# 6.86@24# 1267 1.99@23# 9.81@24#

(3d5/24d3/2)2 1266.47 1.87@23# 1.02@23# (3d5/24d3/2)3 1268.35 1.35@23# 3.72@24#

1266.98 1.86@23# 1.01@23# 1268.85 1.34@23# 3.66@24#

1267 1.81@23# 9.82@24# 1269 1.31@23# 3.58@24#

1267 1.89@23# 1.09@23# 1269 1.36@23# 3.84@24#

(3d5/24d5/2)1 1273.30 1.32@23# 4.10@24# (3d5/24d5/2)5 1274.40 2.67@23# 7.78@24#

1273.79 1.30@23# 4.06@24# 1274.91 2.63@23# 7.50@24#

1274 1.28@23# 4.00@24# 1275 2.57@23# 7.50@24#

1275 1.23@23# 3.92@24# 1276 2.55@23# 7.54@24#

(3d5/24d5/2)3 1277.48 1.74@23# 5.03@24# (3d5/24d5/2)2 1278.42 3.59@23# 4.45@23#

1277.99 1.72@23# 4.94@24# 1278.92 3.61@23# 4.44@23#

1278 1.69@23# 4.87@24# 1279 3.47@23# 4.26@23#

1279 1.65@23# 4.84@24# 1280 3.77@23# 4.82@23#

(3d5/24d5/2)4 1278.99 1.36@23# 5.04@24# (3d5/24d5/2)0 1286.04 3.67@23# 3.65@23#

1279.50 1.36@23# 5.01@24# 1286.45 3.71@23# 3.67@23#
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TABLE I. ~Continued!.

Upper
level DE ~eV!

ef ~eV!
Upper
level DE ~eV!

ef ~eV!

160 2500 160 2500

1280 1.30@23# 4.77@24# 1287 3.72@23# 3.71@23#
1280 1.27@23# 4.89@24# 1287 3.51@23# 3.60@23#

(3d3/24d3/2)1 1296.95 1.17@23# 3.69@24# (3d3/24d3/2)3 1297.35 1.54@23# 4.52@24#
1297.43 1.18@23# 3.71@24# 1297.85 1.52@23# 4.49@24#
1298 1.14@23# 3.56@24# 1299 1.48@23# 4.36@24#
1299 1.09@23# 3.50@24# 1299 1.47@23# 4.39@24#

(3d3/24d3/2)2 1301.91 2.35@23# 2.89@23# (3d3/24d5/2)1 1305.61 1.35@23# 4.35@24#
1302.39 2.35@23# 2.88@23# 1306.08 1.36@23# 4.37@24#
1303 2.26@23# 2.76@23# 1307 1.31@23# 4.21@24#
1304 2.36@23# 2.94@23# 1308 1.33@23# 4.41@24#

(3d3/24d5/2)4 1308.02 1.89@23# 8.71@24# (3d3/24d5/2)2 1309.39 2.00@23# 1.50@23#
1308.51 1.92@23# 8.80@24# 1309.87 1.99@23# 1.49@23#
1310 1.78@23# 8.21@24# 1311 1.93@23# 1.44@23#
1310 1.89@23# 8.88@24# 1311 1.97@23# 1.49@23#

(3d3/24d5/2)3 1310.93 1.21@23# 3.24@24# (3d3/24d3/2)0 1338.77 6.17@22# 6.56@22#
1311.42 1.25@23# 3.22@24# 1337.19 5.69@22# 6.03@22#
1313 1.17@23# 3.12@24# 1340 5.98@22# 6.34@22#
1313 1.22@23# 3.36@24# 1340 5.64@22# 6.17@22#

(3d5/24 f 5/2)0 1392.77 1.14@23# 3.39@24# (3d5/24 f 5/2)1 1394.78 3.22@23# 1.44@23#
1393.23 1.16@23# 3.45@24# 1395.24 3.27@23# 1.46@23#
1394 1.11@23# 3.31@24# 1396 3.13@23# 1.40@23#
1394 1.15@23# 3.44@24# 1396 3.22@23# 1.40@23#

(3d5/24 f 5/2)2 1398.13 3.36@23# 9.22@24# (3d5/24 f 5/2)5 1398.42 1.88@23# 8.08@24#
1398.61 3.41@23# 9.34@24# 1398.86 1.88@23# 8.06@24#
1399 3.22@23# 8.84@24# 1400 1.80@23# 7.56@24#
1400 3.37@23# 9.20@24# 1400 1.95@23# 7.90@24#

(3d5/24 f 7/2)6 1399.41 3.07@23# 7.64@24# (3d5/24 f 5/2)3 1401.13 2.20@23# 5.80@24#
1399.84 3.10@23# 7.69@24# 1401.62 2.23@23# 5.86@24#
1401 3.03@23# 7.58@24# 1402 2.17@23# 5.77@24#
1401 3.27@23# 7.99@24# 1403 2.33@23# 6.08@24#

(3d5/24 f 7/2)2 1401.15 1.82@23# 4.26@24# (3d5/24 f 5/2)4 1402.24 1.71@23# 3.81@24#
1401.64 1.84@23# 4.29@24# 1402.72 1.72@23# 3.83@24#
1402 1.82@23# 4.32@24# 1403 1.66@23# 3.69@24#
1403 1.96@23# 4.55@24# 1404 1.79@23# 3.90@24#

(3d5/24 f 7/2)4 1403.78 2.12@23# 4.99@24# (3d5/24 f 7/2)5 1404.89 1.25@23# 3.46@24#
1404.26 2.14@23# 5.04@24# 1405.36 1.25@23# 3.44@24#
1405 2.11@23# 5.01@24# 1406 1.20@23# 3.25@24#
1406 2.26@23# 5.24@24# 1407 1.32@23# 3.45@24#

(3d5/24 f 7/2)3 1405.53 3.96@23# 4.69@23# (3d5/24 f 7.2)1 1412.61 3.01@22# 4.91@22#
1406.01 3.95@23# 4.68@23# 1412.93 2.99@22# 4.89@22#
1407 3.66@23# 4.40@23# 1414 2.99@22# 4.82@22#
1407 3.76@23# 4.50@23# 1414 3.00@22# 4.95@22#

(3d3/24 f 7/2)2 1430.41 3.23@23# 8.97@24# (3d3/24 f 5/2)4 1430.50 1.90@23# 4.66@24#
1430.87 3.28@23# 9.09@24# 1430.93 1.90@23# 4.62@24#
1432 3.14@23# 8.75@24# 1433 1.87@23# 4.62@24#
1433 3.32@23# 9.09@24# 1433 2.03@23# 4.90@24#

(3d3/24 f 5/2)2 1433.09 1.69@23# 4.09@24# (3d3/24d7/2)5 1433.62 1.62@23# 6.91@24#
1433.56 1.71@23# 4.13@24# 1434.06 1.63@23# 6.93@24#
1435 1.67@23# 4.08@24# 1436 1.54@23# 6.44@24#
1435 1.79@23# 4.28@24# 1436 1.67@23# 6.71@24#

~3d3/24 f 5/2)3 1435.62 1.43@23# 3.26@24# (3d3/24d7/2)3 1436.41 3.49@23# 3.94@23#
1436.09 1.44@23# 3.29@24# 1436.87 3.50@23# 3.92@23#
1438 1.36@23# 3.50@24# 1438 3.27@23# 3.65@23#
1438 1.46@23# 3.82@24# 1439 3.38@23# 3.72@23#

(3d3/24d7/2)4 1437.12 1.43@23# 3.03@24# (3d3/24 f 5/2)1 1454.93 1.71@21# 2.87@21#
1437.59 1.44@23# 3.04@24# 1454.26 1.59@21# 2.68@21#
1439 1.40@23# 2.98@24# 1457 1.68@21# 2.80@21#
1440 1.52@23# 3.16@24# 1458 1.65@21# 2.80@21#
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TABLE II. Comparison of collision strengths for nickel-like uranium. The notation is the same as in Table I, but in this case only Zhang
et al.’s results~Ref. @14#! can be obtained. For brevity, the results of our calculations using 107 level MCDF configuration-expansion are not
presented.

Upper
level DE ~eV!

ef ~eV!
Upper
Level DE ~eV!

ef ~eV!

400 10000 400 10000

(3d5/24s3/2)3 2688.14 3.32@24# 8.07@25# (3d5/24s1/2)2 2690.85 1.15@23# 1.60@23#
2683 3.28@24# 7.95@25# 2685 1.10@23# 1.53@23#

(3d5/24p1/2)2 2833.29 3.38@24# 8.11@25# (3d5/24p1/2)3 2834.57 6.44@24# 5.44@24#
2831 3.32@24# 7.98@25# 2833 6.22@24# 5.26@24#

(3d3/24s1/2)1 2876.72 1.63@24# 3.61@25# (3d3/24s1/2)2 2878.28 7.10@24# 8.84@24#
2875 1.58@24# 3.53@25# 2876 6.82@24# 8.47@24#

(3d3/24p1/2)2 3021.48 2.66@24# 5.79@25# (3d3/24p1/2)1 3026.59 1.59@23# 4.01@23#
3023 2.62@24# 5.69@25# 3028 1.57@23# 3.88@23#

(3d5/24p3/2)4 3160.39 4.19@24# 1.00@24# (3d5/24p3/2)2 3162.76 2.89@24# 6.48@25#
3162 4.16@24# 9.85@25# 3164 2.85@24# 6.41@25#

(3d5/24p3/2)1 3164.30 1.49@23# 4.37@23# (3d3/24p3/2)3 3167.48 3.29@24# 2.74@24#
3166 1.44@23# 4.19@23# 3169 3.14@24# 2.62@24#

(3d3/24p3/2)0 3344.96 9.24@25# 2.44@25# (3d3/24p3/2)1 3350.13 2.36@24# 1.99@24#
3350 9.19@25# 2.38@25# 3355 2.37@24# 1.75@24#

(3d3/24p3/2)3 3350.92 4.38@24# 3.59@24# (3d3/24p3/2)2 3354.05 1.79@24# 3.78@25#
3356 4.14@24# 3.41@24# 3359 1.80@24# 3.81@25#

(3d5/24d3/2)1 3362.37 6.46@24# 1.47@24# (3d5/24d3/2)4 3369.10 7.26@24# 3.39@24#
3364 6.30@24# 1.43@24# 3372 7.02@24# 3.31@24#

(3d5/24d3/2)2 3371.09 8.57@24# 6.72@24# (3d5/24d3/2)3 3374.60 4.47@24# 7.45@25#
3373 8.39@24# 6.57@24# 3377 4.38@24# 7.42@25#

(3d5/24d5/2)1 3432.33 5.30@24# 1.15@24# (3d5/24d5/2)5 3434.60 9.48@24# 1.79@24#
3436 5.24@24# 1.14@24# 3439 9.34@24# 1.77@24#

(3d5/24d5/2)3 3440.33 6.27@24# 1.18@24# (3d5/24d5/2)2 3442.10 1.45@23# 1.96@23#
3444 6.17@24# 1.16@24# 3445 1.40@23# 1.90@23#

(3d5/24d5/2)4 3442.89 4.88@24# 1.61@24# (3d5/24d5/2)0 3473.90 7.97@23# 8.58@23#
3447 4.67@24# 1.55@24# 3478 8.12@23# 8.79@23#

(3d3/24d3/2)3 3556.73 5.40@24# 1.06@24# (3d3/24d3/2)2 3558.37 3.30@24# 6.95@25#
3563 5.30@24# 1.05@24# 3564 3.38@24# 7.17@25#

(3d3/24d3/2)2 3566.01 4.86@24# 5.18@24# (3d3/24d3/2)0 3608.53 1.88@22# 2.04@22#
3572 5.01@24# 5.45@24# 3615 1.94@22# 2.11@22#

(3d3/24d5/2)1 3621.62 5.37@24# 1.22@24# (3d3/24d5/2)4 3625.35 6.58@24# 2.80@24#
3628 5.20@24# 1.19@24# 3633 6.48@24# 2.66@24#

(3d3/24d5/2)2 3628.15 7.25@24# 5.30@24# (3d3/24d5/2)3 3630.57 4.42@24# 7.50@25#
3635 7.04@24# 5.14@24# 3638 4.31@24# 7.37@25#

(3d5/24 f 5/2)0 3639.89 4.70@24# 9.57@25# (3d5/24 f 5/2)1 3644.84 1.09@23# 2.34@24#
3643 4.52@24# 9.29@25# 3649 1.04@23# 2.22@24#

(3d5/24 f 5/2)5 3649.28 7.42@24# 3.23@24# (3d5/24 f 5/2)5 3651.82 8.90@24# 1.43@24#
3655 7.21@24# 3.06@24# 3656 8.56@24# 1.39@24#

(3d5/24 f 5/2)3 3655.91 1.00@23# 5.24@24# (3d5/24 f 5/2)4 3657.03 5.49@24# 6.99@25#
3660 9.68@24# 5.05@24# 3661 5.38@24# 6.95@25#

(3d5/24 f 7/2)6 3667.52 1.19@23# 1.91@24# (3d5/24 f 7/2)2 3669.72 1.05@23# 1.79@24#
3674 1.18@23# 1.92@24# 3675 1.02@23# 1.75@24#

(3d5/24 f 7/2)4 3676.01 9.05@24# 1.40@24# (3d5/24 f 7/2)5 3678.15 4.55@24# 1.22@24#
3681 8.81@24# 1.38@24# 3684 4.37@24# 1.15@24#

(3d5/24 f 7/2)3 3679.03 1.70@23# 2.06@23# (3d5/24 f 7/2)1 3704.11 4.03@22# 7.43@22#
3684 1.60@23# 1.97@23# 3710 4.03@22# 7.35@22#

(3d3/24 f 5/2)4 3837.49 7.34@24# 1.18@24# (3d3/24 f 5/2)2 3841.02 7.58@24# 1.26@24#
3846 7.27@24# 1.20@24# 3849 7.33@24# 1.24@24#

(3d3/24 f 3/2)3 3848.11 8.70@24# 9.79@24# (3d3/24d7/2)2 3855.99 1.23@23# 2.30@24#
3856 8.16@24# 9.38@24# 3864 1.18@23# 2.25@24#

(3d3/24 f 7/2)5 3859.90 6.18@24# 2.67@24# (3d3/24d7/2)3 3864.57 1.06@23# 7.25@24#
3869 5.86@24# 2.50@24# 3873 1.00@23# 6.84@24#

(3d3/24d7/2)4 3866.38 5.41@24# 7.24@25# (3d3/24 f 5/2)1 3872.77 5.60@22# 1.04@21#
3875 5.26@24# 7.14@25# 3882 5.66@22# 1.04@25#
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bined system, using the mean configuration to obtain the
central potential, etc. A code for the calculating free-electron
radial function has been created. The WKB method and the
cubic spline method are used to obtain the normalization
factor for the free-electron wave function. Thus, a fully
RDWB code for evaluating the electron-impact excitation
cross sections of highly ionized ions is completed. The col-
lision strengths of resonance excitations of nickel-like highly
ionized ions have been compared with others and are in good
agreement with them. Most of the differences are within a
very small percentage. Because there are several detailed
considerations in our RDWB procedures, the present results
should be more reliable and accurate for highly stripped ions.
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