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We investigate the time-dependent Schro¨dinger equation for the case of a plane matter wave incident on an
oscillating potential step. Approximate solutions are given for different regimes of the problem. The resulting
energy spectra are quantized. This may either be interpreted as a phase modulation of the wave or as a coherent
multiphonon exchange. A comparison to the results that apply for a beam of classical particles is made. In
particular, the transition from the quantum-mechanical to the classical case is examined. We have performed an
experiment with very cold neutrons that clearly revealed the discussed effects. Energy splittings of 2.8 to 9.1
neV of the reflected waves were analyzed with an energy resolution of;1 neV, thus demonstrating the
feasibility of such high-resolution experiments with neutron reflectometry.

PACS number~s!: 03.75.Be;03.65.2w

I. INTRODUCTION

In recent years several impressive experiments have been
performed in the field of neutron optics that elucidate the
concept of particle-wave dualism@1#. The diffraction of neu-
trons by single and double slits or gratings, and the interfer-
ence of neutrons in interferometers built of gratings or per-
fect crystals@2# have become so well known that neutron
optics is now included in standard textbooks on optics@3#.

Due to their low velocities and matter wave frequencies,
cold neutrons are also a superb candidate to examine nonsta-
tionary interactions of matter waves. This idea was first ex-
pressed by Gerasimov and Kazarnovskiıˇ in 1976@4#. Still in
1986, Werner and Klein considered it a future challenge to
probe time-dependent interactions with cold neutrons@1#.

Up to now only a few nonstationary experiments have
been performed in neutron optics. Ga¨hler and Golub for in-
stance, have discussed an experiment where the time-energy
uncertainty relation is probed by high-frequency chopping of
a neutron beam@5# and experimental work is in progress.
Similar problems also were discussed theoretically by
Moshinsky@6# and by Nosov and Frank@7#. Badureket al.
experimentally demonstrated the time-dependent superposi-
tion of spinors@8#, and Hamiltonet al. examined the non-
elastic diffraction of neutrons by a surface acoustic wave@9#.

We describe a nonstationary experiment that clearly dem-
onstrates the nonclassical, quantized interaction of neutrons
with a time-dependent potential. We study the transmission
and reflection of very cold neutrons on a mirror that repre-
sents a potential step and is excited to a high-frequency os-
cillation perpendicular to its surface. Although this mirror is
of macroscopic dimensions and may thus be regarded as a
classical object, analogous to the oscillating magnetic field in
magnetic resonance experiments, we will show both in
theory and experiment that the resulting interaction with the
matter wave is quantized and can be interpreted as a coherent
multiphonon exchange. By increasing the amplitude of oscil-
lation we can raise the number of exchanged phonons, ap-
proaching eventually a classical behavior. The interest in

such systems is increased by recent suggestions@10# that
quantum mechanics might have to be altered in the region
between the quantum and classical regimes. However, our
work, while demonstrating the transition from quantum to
classical behavior, does not address the issue of wave func-
tion collapse at the detector.

Hocket al.have studied a related problem@11#, where the
spectral width of a neutron beam, backscattered by a silicon
single crystal excited by ultrasound, was examined. How-
ever, the spectral resolution was too low to allow the obser-
vation of quantized effects. A similar experiment was per-
formed earlier by Kleinet al., who measured the time
structure—but not the energy spectrum—of a neutron beam
that is deflected by a vibrating quartz crystal@12#.

The complementary case of the transmission through a
potential that is oscillating in height was dealt with by
Haavig and Reifenberger@13# and in very recent papers by
Summhammer@14# and Frank and Amandzholva@15#, but to
our knowledge no experiments for this case have been per-
formed until now. A recent quantum-mechanical discussion
of the transmission of neutrons through oscillating magnetic
fields is given by Golubet al. @16#, where emphasis is laid on
the application to particle beam magnetic resonance and neu-
tron resonance spin echo spectrometers.

In this paper we first discuss the problem of transmission
and reflection at a time-dependent potential step theoretically
and then present the results of an experiment.

II. DEFINITION OF THE PROBLEM

We consider a one-dimensional potential step of height
Vp that moves harmonically as a function of time,

V~x,t !5H 0, x,a~ t !

Vp, x>a~ t ! ~1!

with
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a~ t !5a0sinvpt, vp~ t !5]a~ t !/]t5vpcosvpt,

and

vp5a0vp .

We calculate the energy spread that either a classical particle
beam or a matter wave approaching the potential step from
x52` shows after being transmitted or reflected by the
step. A formal solution of the problem ofN potential layers,
that are time dependent both with respect to position and
height, may be found in@17#.

Both particle beam and matter wave are assumed to be
monochromatic. The initial kinetic energyE0 corresponds to
a ~group! velocity ofv05(2E0 /m)

21/2, wherem is the mass
of the particle. The corresponding wave properties are a mat-
ter wave frequency ofv05E0 /\

1 and a wave number of
k05mv0 /\.

There is no analytical solution to this problem, either in
the classical or in the quantum-mechanical case. However, in
certain cases analytical approximations can be found. We
will use the following parameters for a classification of these
cases: modulation index:

a52k0a0 , ~2a!

relative potential height:

b5Vp /E0 , ~2b!

relative step velocity:

g5vp /v0 , ~2c!

relative oscillation frequency:

d5vp /v054g/a. ~2d!

In the case of a classical particle only two of these param-
eters~e.g.,b, g) are sufficient for a complete description of
the problem. For a matter wave there is one additional degree
of freedom and we use either the set (a,b,g) or (a,b,d).
The meaning of these quantities will be made clearer in the
following. We only mention here thata!1 defines a ‘‘high-
frequency’’ andg!1 a ‘‘quasistationary’’ regime of this
problem. The modulation indexa, which is proportional to
the ratio of the oscillation amplitude and the de Brogliel0
(52p/k0), plays an important role for the transition from
quantum-mechanical to classical behavior.

III. SPECTRA FOR A BEAM OF CLASSICAL PARTICLES

In general, a classical particle may pass the potential step
several times before it finally escapes the region of oscilla-
tion. Therefore its trajectory has to be calculated iteratively.

As an initial condition we assume that the undisturbed
trajectory of the particle would reach the originx50 at t0 . If
t i and v i denote the time of and the velocity after thei th
passing (i>0), the values after the (i11)th passing are then
given by

t i115t i1a@sinvpt i112~12d0i !sinvpt i #/v i , ~3a!

v i11 /v05H 2112g i11 , ~12g i11!
2<2eb ~r !

A~12g i11!
21eb1g i11 , ~12g i11!

2.2eb ~ t !
~3b!

~3c!

with g i5vp(t i)/v0 ande511 (21), if the particle is com-
ing from inside~outside! the potential step. The Kronecker
symbold0i expresses the initial condition. If~3a! has more
than one solution,t i11 takes the value that temporarily suc-
ceedst i . Equation~3!, ~r! and~t!, describe the velocity after
reflection~r! or transmission~t!, which is calculated by con-
sidering the Doppler shift that occurs during each passage. If
be.0 only transmission is possible, because then the par-
ticle travels from the side of the higher to the side of the
lower potential.

To calculate the energy spectrum of the outgoing beam,
one has to determine the different trajectories and with that
the final velocitiesv f(t0) as a function oft0 that occur. As
v f(t0) has a periodicity ofTp52p/vp it is sufficient to con-
sider only one period, e.g.,t0P@0,Tp#.

The fraction of particle fluxdF that is scattered into the
interval @v f ,v f1dv# is proportional to the timedt0 , during

which particles arriving at the step are finally scattered to
these velocities. The normalized energy spectrumwPB(Ef)
of the outgoing particle beam~PB! flux is therefore given by

wPB~Ef !5
dF~Ef !

F0dEf
5
dF~v f !
F0dv f

dv f
dEf

5 (
branches

1

Tpmv f
Udt0~v f !dv f

U , ~4!

whereF0 is the incoming flux andt0(v f) is the inverse
function of v f(t0). This inverse is in general not single val-
ued and the right hand side of Eq.~4! has to be summed up
over a complete set of branches.

Because Eq.~3a! is implicit, a solution of Eq.~4! can only
be found numerically. Here we will only use the results of
these calculations when neccessary for comparison with
quantum-mechanical results.

A. Quasistationary case

In general the particles can have several collisions, which
leads to very rich spectra that are approaching chaotic behav-

1In this definition of the matter wave frequency we only consider
the kinetic energy, thus setting the origin of the energy scale to the
neutron’s rest mass.
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ior @17#. If the relative step velocity is small (g!1), and if
the beam is either totally reflected (r ) or transmitted (t),
only one contact with the step occurs~i.e., v f5v1) and an
approximate analytical solution forwPB(Ef) can be given.
„As the spectral width of the reflected beam is proportional
to g @cf. Eq. ~8!# a sufficient condition for total reflection or
transmission isg!u12bu.… In this approximation we can set
t1.t0 in Eqs. ~3! and the final velocityv f is given in first
order ofg by a small harmonic modulation

v f~ t0!/v0>H 2112gcosvpt0 , b.1 ~r !

A12b1g~12A12b!cosvpt0 , b,1 ~ t !.

~5!

Using Eq.~5! and Eq.~4! we get the approximate spectrum

w r ,t
PB~Ef !>

1

c~Ef !
H 12F 1

g~12n!
SAEf2V

E0
2unu D G2J 2

1
2

,

~6!

with

c~Ef !52pgu12nuAE0~Ef2V! ,

n5 H 21
A12b

, V5 H 0 ~r !

Vp ~ t !
.

Ef expresses the total, i.e., the sum of kinetic and potential
energy. This spectrum essentially represents the amplitude
density of the cosine in Eq.~5!. The variablen may be rec-
ognized as the index of refraction, i.e., the ratio of the par-
ticle velocity~wave number! after and before transmission or
reflection. In the latter case,n521 indicates that the direc-
tion of the trajectories is reversed. In this case Eq.~6! just
gives the energy spectrum that is produced by the harmonic
Doppler drive of neutron backscattering spectrometers@18#.

The ranges of final energies in Eq.~6! extend over

~Ef2V!P†E0@n2g~121/n!#2, E0@n1g~121/n!#2‡ .
~7!

The spectrum diverges at the borders of this interval. The full
width DEf of the spectrum in this approximation is given by
4E0gu12nu, i.e.,

DEf>8gE0 ~r !, DEf>4gE0u12A12bu ~ t ! .
~8!

This shows that the energy spread of the reflected beam is
higher than that of the transmitted beam unlessb,28.

IV. SPECTRA FOR A MATTER WAVE

To calculate the energy spectra for an incident matter
wave, we have to solve the time-dependent Schro¨dinger
equation for the potential of Eq.~1!,

i\
]

]t
C~x,t !5S 2

\2

2m
¹21V~x,t ! DC~x,t !. ~9!

As usual in this kind of problem the wave function is sepa-
rated into three parts,

C~x,t !5H C0~x,t !1C r~x,t ! , x<a~ t !

C t~x,t ! , x.a~ t ! ,
~10!

whereC0 is the incoming plane wave as defined in Sec. II,
andC r andC t represent the reflected and transmitted waves,
respectively. Compared to the textbook problem of a poten-
tial step, the special feature of this problem is of course that
the boundary is in motion.

At the boundarya(t) these waves have to satisfy the
matching conditions

S 1

]/]xD ~C01C r2C t!u„x5a~ t !,t…5S 00D .
~11a!

~11b!

In analogy to@13,19# this boundary problem can be solved
by an ansatz,

C r~x,t !5(
n

C r ,n~x,t !5(
n

r nexp i ~2knk0x2vnt !,

~12!

C t~x,t !5(
n

C t,n~x,t !5(
n

tnexp i ~hnk0x2vnt !,

with

n50 ,61 ,62 , . . . , vn5v01nvp5v0~11nd!,

kn5Avn /v05A11nd ,

hn5A~vn2Vp /\!/v05A11nd2b .

The variableskn and hn represent the ratio of the wave
numbers of the partial wavesC (r ,t),n and the incoming wave
C0 . The change in their wave numbers is not only due to
refraction by the potential step, but is also influenced by the
shift in energy caused by the oscillation. Therefore we may
regard these parameters as ‘‘dynamic indices of refraction.’’

It is obvious from Eq.~12! that the outgoing waves show
a discrete line spectrum. The normalized energy spectra of
the outgoing~probability! flux of the matter wave~MW! are
straightforwardly calculated from Eq.~12!,

w r ,t
MW~Ef !5(

n
d„E0~11nd!2Ef…3H ur nu2Re~kn!

utnu2Re~hn!

~r !

~ t !

~13!

with d( ) representing a Dirac delta function. This is only the
time average of the matter wave flux. In addition we call
attention to the fact that the outgoing wavesC r andC t show
an interesting bunching effect that is subject to time- and
space-dependent collapses and revivals due to the dispersion
of the different partial waves in Eq.~12!. Of course, only
partial waves with real wave numbers, i.e.,Ef.0 in the case
of C r and Ef.Vp for C t , contribute to the flux. This is
taken into account by considering only the real part of the
dynamical refraction indices.

The amplitudesr n and tn are determined by Eq.~11!.
Making use of Eq.~12! and the relation

exp~ izsinu!5 (
m52`

1`

Jm~z!exp~ imu! , ~14!
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whereJm(z) is a Bessel function of first kind andmth order,
we can rewrite the boundary condition Eq.~11a!,

(
m

Jm~a0k0!e
it ~mvp2v0!

1(
n

(
m

r nJm~2a0knk0!e
it @~m2n!vp2v0#

5(
n

(
m

tnJm~a0hnk0!e
it @~m2n!vp2v0#. ~15!

This equation is only valid for all values oft, if all terms that
contain the same time dependence are equal separately. By
collecting those terms Eq.~15! can hence be split into a set
of equations in which the common and therefore trivial time
dependency can be omitted. If we apply the last steps also to
Eq. ~11b! and use the paramaters of Eq.~2!, we finally get

Jm~ 1
2a!1(

n
r nJm1n~2 1

2akn!5(
n

tnJm1n~
1
2ahn!,

~16a!

Jm~ 1
2a!2(

n
knr nJm1n~2 1

2akn!5(
n

hntnJm1n~
1
2ahn!,

with n,m50 ,61 ,62 , . . . . ~16b!

The coefficientsr n and tn are uniquely defined by these
equations. However, there is in general no analytical solution
to this system of an infinite number of linear equations and
we have to look for appropriate approximations.

A. Numerical solution

In general, i.e., if no restrictions are made on the param-
etersa,b, andd, only an approximate numerical solution of
Eq. ~16! is possible.

For every choice ofa,b,d a limit N can be found that
makes the contributions of all partial wavesCn with
unu.N negligible within a given tolerance. If the number of
partial waves (unu<N) and simultaneously the number of
equations (umu<N) are thus limited, Eq.~16! can be solved
with standard numerical methods. The limitN may then be
iteratively refined by putting the results forr n and tn in Eq.
~11! and checking whether the boundary conditions are bal-
anced with sufficient accuracy. If not, the calculations have
to be repeated with an enlarged limitN. As can be seen from
the following analytical solutions, a starting point may be
N'2a. We will use the results of such numerical calcula-
tions @17# in Sec. V.

B. Small amplitude approximation

In the case ofa!1, i.e., if the amplitude of the oscillation
is small compared with the wavelength of the incident wave,
the amplitudesr n and tn can be shown to be proportional to
a unu and thus fall off rapidly with risingunu. In first order of
a we thus only need to calculater n and tn for
n521,0,11.

In an actual experiment it is the maximum velocity of the
potential step that is limited by some constraint~in our ex-

periment the tensile strength of the mirror material!. There-
fore, in practice, the maximum amplitudea and frequency
d are inversely proportional. This explains whya!1 may be
called ‘‘high-frequency approximation.’’

By expanding the Bessel functions of Eq.~16! into power
series in a and solving the linear equation system for
unu,umu<1, we get

r 0.
12A12b

11A12b
, t0.

2

11A12b
,

r61.6
a

2

12A12b

A16d1A12b6d
, ~17!

t61.7
a

2
~12A12b!

A16d2A12b6d

A16d1A12b6d
.

The terms that have been neglected in these equations are at
least a factor ofa2 smaller than the leading ones. The results
of Eq. ~17! are identical to the first order Born approximation
of this problem. As one would expect, the amplitudesr 0 and
t0 in this approximation are the same as for a motionless
potential step, which is treated in every textbook on quantum
mechanics@20#.

Figure 1 shows the dependence ofur61u and ut61u, both
scaled witha21, on the step heightb and the oscillation
frequencyd. It is remarkable that the typical critical reflec-
tion edges are not only found atb51, as for a motionless
step, but also atb516d ~‘‘dynamic critical reflection’’!.

C. Quasistationary case

Consider a motionless potential step of infinite height
(Vp ,b→`) at x5a0 and an incident waveC0 as defined in
Sec. II. The reflected and transmitted waves can then imme-
diately be written down:

C r~x,t !52exp i @k0~2a02x!2v0t# , C t~x,t !50.
~18!

If we now allow for a slow oscillation of the step (g!1) we
get a rough approximation forC r by simply replacinga0
with a(t)5a0sinvpt:

FIG. 1. Amplitudes of the coefficientsr61 andt61 as a function
of the height of the potential stepb and for different oscillation
frequenciesd in the case of small modulationa!1.
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C r~x,t !'2exp i ~2k0x2v0t12a0k0sinvpt !

52(
n

Jn~2a!exp i ~2k0x2vnt !. ~19!

The wave functionC t still vanishes. The expression of~19!
is no exact solution of the Schro¨dinger equation because it
contains a wrong dispersion relation (k0 instead ofkn), but
this makes no essential difference in the vicinity of the po-
tential step. The termasinvpt causes a harmonic phase
modulation ofC r with a peak phase shift ofa.

From Eq.~16! we can get an approximation with a higher
precision that is valid for arbitrary values ofb by consider-
ing the following.

If the peak velocity of the step is small in relation to the
group velocity of the wave (g!1), the spectral width of the
outgoing waves is also small compared to their mean energy
„this can be implicitly proved with the results of the next
section@cf. Eq. ~21!#…. Therefore the dynamic refraction in-
dex kn varies only weakly as a function ofn. This is also
true for hn in the caseugu!u12bu. In the complementary
caseugu'u12bu, i.e., in the vicinity of critical reflection,
the absolute values ofhn are small compared to 1, but their
relative variation with respect ton is considerable@cf. Eq.
~12!#. This is particularly important in the arguments of the
Bessel functions in Eq.~16!, where hn is scaled witha
which may be substantially larger than 1.

By considering these properties and settingkn'1 outside
the Bessel functions arguments Eq.~16! can be transformed
to

2Jm~ 1
2a!.(

n
~11hn!tnJm1n~

1
2ahn! for ~16a!1~16b!,

2(
n

r nJm1n~2 1
2akn!.(

n
~12hn!tnJm1n~

1
2ahn!

for ~16a!2~16b!.

These equations can be approximately solved by

r n.rnJn~2 1
2a~11kn!! , rn5

12hn

11hn
,

~20!

tn.tnJn„
1
2a~hn21!… , tn5

2

11hn
.

In the case b→`, also uhnu→` and r n→
2Jn„2

1
2a(11kn)…'2Jn(2a), thus reproducing the result

of Eq. ~19!. An examination of the precision of Eqs.~20!
reveals that the relative error ofr n and tn , and coupled to
these also the error of the balance of Eq.~11!, is of the order
of g but rises to aboutAg near critical reflection (b'1),
whereasa has no important influence on the precision.# The
factors rn and tn represent the stationary reflection and
transmission coefficients of the partial wavesC r ,n and
C t,n , i.e., they are equal to the ratio of the amplitudes of the
outgoing and the incident wave in the case of the reflection
of a matter wave of energy\vn by a motionless potential
step.

V. DISCUSSION

First we discuss the influence of the modulation index
a, keeping the height of the potential step at a high value
(b510) to ensure nearly complete reflection and the fre-
quency of the oscillation low (d5531023). The peak ve-
locity of the step is then proportional toa
(g5da/451.2531023a). In Fig. 2 we compare the con-
tinuous energy spectra of a particle beam of Eq.~6! with the

FIG. 2. Comparison of particle beam and mat-
ter wave spectra in the case of total reflection for
different values of the modulation indexa. The
potential height and the oscillation frequency are
kept constant (b510.0, d50.005).
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line spectra of a matter wave of Eq.~20!. The latter are
shown as an appropriate scaled (3d21) histogram of the
relative weights of thed functions in Eq.~13!. For the cho-
sen value ofb only a negligible portion of the MW transmits
~none of the PB! and we only consider the reflected flux.

From Fig. 2 we can see that the MW spectra consist of
roughly 2a lines, thus explaining the reference toa as
modulation index. This can also be proved with Eq.~20! and
the property of the Bessel functions thatJn(a) vanishes rap-
idly with rising unu, if unu.uau anda is real. By multiplying
the number of excited harmonics with their distance in en-
ergy, we can calculate the typical width of the MW spectra,

DEr
MW.2a\vp52adE058gE0 ,

DEt
MW.auh021u\vp5aduh021ugE0 ~21!

54gu12A12buE0 .

The expression forDEt
MW is calculated in the case that the

spectrum of the transmitted wave essentially lies above the
potential step, which happens forugu!12b; the case of a
partially evanescent transmitted wave is treated later. The
spectral widths are in accordance with Eq.~8!, with the dif-
ference that for a PB the range of final energies is sharply
limited, whereas for a MW any harmonicvn can be found in
the outgoing waves, its amplitude, however, vanishing rap-
idly outside the range of Eq.~21!.

It should be emphasized that the portion of the MW spec-
tra that lies outside the limits of the classical spectra given by
Eq. ~8! can in no way be understood classically: The veloci-
ties of those particles are~much! faster or slower than is
permissible from the classical point of view.

The modulation indexa plays an important role in the
transition of the MW to the PB spectra, i.e., from the
quantum-mechanical to the classical case: For low values of
a (a,1) the spectrum of the reflected MW contains only a
few strong harmonics and is therefore, apart from their com-
parable mean widths, quite different than the PB case. This
difference partially vanishes whena rises, because then the
spectrum of the PB asymptotically coincides with the mean
envelope of the lines of the MW spectrum. However, even if
a approaches infinity the intensities of the lines fluctuate
from zero to about twice the value of the PB flux distribution
~cf. Fig. 2,a540). The effect that oscillations appear during
the approach to the classical limit has been discussed by
Peres@21#.

One way to complete the transition from the quantum-
mechanical to the classical case, i.e., to get rid of these fluc-
tuations and change the line spectra to continuous ones, is to
start, in addition to lettinga go to infinity, with an incident
beam of wave packets instead of a plane wave. The spectra
of the outgoing waves in this case are calculated by convolv-
ing Eq. ~13! with the energy distribution of the incident
packets. If the mean width of this distributionDE0

MW ex-
ceeds the line spacingdE0 , the line spectrum characteristic
is washed out and both cases, PB and MW, coincide asymp-
totically.

The spectra would be equally smeared out if we start with
an incoherent polychromatic mixture of plane waves instead
of coherent wave packets. In our experiment we actually did

not prepare wave packets~e.g., by using a chopper!, but we
only limited the incident spectrum well enough to ensure the
visibility of the spectral lines. A difference between those
two cases might only be visible in the time dependence of
the outgoing matter wave, but unfortunately such effects
seem not to be observable in our experimental setup.

This transition from quantum-mechanical to classical
spectra may also be interpreted from first principles: To pro-
vide the wave packets with classical behavior we have to
demand that the timeDtpass that it takes a packet to pass the
step is small compared to the oscillation period of the step

Dtpass!Tp52p / vp ,

because only then are the instant of passage and the momen-
tary velocity of the step is defined well enough to allow the
calculation of a classical Doppler shift. If we consider the
time-energy uncertainty relation this is only possible if

DE0
MW>\ / Dtpass@\ / Tp5dE0 / 2p.

Next we discuss the influence of the step height on the
spectra. Figure 3 shows a comparison of the dependence of
the PB and the MW spectra onb, calculated by numerical
solutions of Eq.~3! and Eq.~16!. To be able to display the
complete wave functions~including the evanescent partial
waves! we have plotted the expressionsuknr n

2u and uhntn
2u

that differ from the actual fluxes in Eq.~13! only if kn or
hn is imaginary.

The MW flux is for all values ofb split into a reflected
and transmitted portion, whereas for the PB splitting occurs
only aroundb'1.

The PB results in Fig. 3 clearly reveal the difference of
the spectral widths with respect to reflection or transmission
according to Eq.~8!. This is also true for the MW in the case
of b50.5. For&1, however, the transmitted partial waves
that have imaginary wave numbers (\vn,Vp) and thus are
evanescent, show a substantial growth with risingb. This
can be explained with Eq.~20! and the exponential growth
that Bessel functions show when continued for complex ar-
guments.

This behavior has no severe consequences as these partial
waves carry no flux. In addition, it can be shown that due to
their alternating phases these partial waves extinguish one
another in the summation of Eq.~12! and the total transmit-
ted wave functionC t vanishes in the caseb→`.

Another property of the flux spectra is their asymmetry
with respect to energy gain or loss~cf. Fig. 3,b51.5). If we
define an effective modulation indexa r ,n

e f f5 1
2a(11kn) it is

obvious from Eqs.~17! and ~20! that the upscattered partial
waves (n.0) are subject to a higher effective phase modu-
lation due to their increased wave numbers and that this part
of the spectrum extends to higher values ofunu. On the other
hand, partial waves with higher energies are reflected less,
which is expressed byrn in Eq. ~20!. Thus the amplitudes of
the upscattered harmonics are, on the average, smaller than
the downscattered ones. A more detailed survey reveals that
the first effect is dominating and that the mean energy is
increased after passing the oscillating step.

Up to now we have discussed the MW spectra in terms of
simultaneous phase and amplitude modulations. The phase
modulation is caused by the motion of the step, and the am-
plitude modulation is due to the different reflection and
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transmission indices that the distinct partial waves are sub-
ject to. The discreteness of the spectra results from the peri-
odicity of these modulations.

Another possible interpretation is to regard the wave func-
tions of Eq.~12! as coherent superpositions of partial waves
Cn that have absorbed or emittedn phonons at the potential
step. This interpretation is emphasized in our experiment,
where the incidence of the matter wave is not perpendicular
to the potential step, which leads to a splitting of the partial
waves not only in energy but also with respect to the outgo-
ing direction. In consequence, suggestions have been made
to use this effect for coherent beam splitting in interferom-
etry with neutrons@22# and atomic beams@23#.

In our case the oscillation of the step is described by a
well defined oscillation amplitude. Thus the step is not in an
eigenstate of the phonon number, but has to be modeled as

an appropriate superposition of states with different occupa-
tion numbers. Indeed, the mean occupation number is very
high in our experiment~roughly 1024 phonons!, so the mirror
that represents the potential step in the experiment is really
in a highly classical state.

VI. EXPERIMENT WITH VERY COLD NEUTRONS

We performed an experiment to demonstrate some of the
results of the previous sections. The measurements were
made at the research reactors of Munich and Geesthacht
~FRM and FRG!. Here we only describe the basic setup of
the experiment, details can be found in@17#.

Figure 4 shows the schematic setup. A beam of very cold
neutrons~VCN! with a mean wavelength of 24 Å is re-
flected by a mirror that is excited to an oscillation perpen-
dicular to its surface by a piezo drive. The resulting energy
spectrum is analyzed by determining the profile of the out-
going beam.

To set up an experiment with a one to one correspondence
to the discussed one-dimensional problem one would have to
use ultracold neutrons~UCN! because their energies (,300
neV! are comparable to the mean Fermi pseudopotential of
most materials, thus allowing a perpendicular incidence on a
surface that represents the potential step.

However, due to intensity arguments and the large sample
sizes that would be necessary in UCN experiments it is easier
to use VCN (E0'100meV! under grazing incidence. In this
case we can bring the experiment into coincidence with the
one-dimensional problem by transforming to a reference
frame that is moving with2v0 i ~cf. Fig. 4 for a definition of
involved quantities!. In consequence we have to replace the
quantities in Eq.~2! by the perpendicular components of
their analogs in the experiment.

An energy transfer ofDE' by the mirror that changes
only the perpendicular velocity component of the neutrons
causes a beam deflection of

tanf r5
v r'
v0 i

5tanf0A11
DE'

E0'
, ~22!

whereE0'5E0sin
2f0 is the ‘‘perpendicular’’ energy compo-

nent of the incident beam.
Becausef0 andDE' are relatively small in our setup, we

can linearize

FIG. 3. Comparison of particle beam and matter wave spectra in
the vicinity of critical reflection for different values of the step
height b (a515.0, d50.05, g50.1875 kept constant!. The re-
flected and transmitted flux spectra are plotted to the left and right,
respectively. The histograms give the results of the quantum-
mechanical calculations, while the dark shaded areas represent the
classical spectra. The light shaded areas represent the potential step.
On the left ordinate the final relative energy is shown. The right one
gives the corresponding number of exchanged phonons.

FIG. 4. Schematic experimental setup.
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Df5f r2f0.
DE'

mnv0v0'
, ~23!

wheremn is the neutron mass.
The mirror that was used in the experiment was a disk

~4 mm thickness3 40 mm diameter! of nickel coated glass
~layer thickness' 200 nm!. We keptv0' ('5.7 m/s! of the
beam well below the critical velocity of nickel
(vcrit'6.7 m/s! to ensure total reflection. The mirror was
mounted on a piezo ceramic transducer~lead zircon titanate,
3 mm 3 50 mm diameter!. The thicknesses of both disks
were chosen to match their acoustic resonances. We used two
different thickness resonance modes: the fundamental mode
at 693 kHz, that allowed higher amplitudes, and its third
harmonic at 2.22 MHz, that produced a higher line separa-
tion at the expense of reduced amplitudes.

To prevent a spreading of the reflected beam the mirror
has to be sufficiently planar. This becomes a problem when
vibrations are excited, because then a curving of the surface
arises due to thermal tensions caused by dissipative heating.
We observed the mirror’s flatnessin situ by an autocollima-
tion telescope and applied appropriate cooling by com-
pressed air. The piezo disk was excited in series resonance
by means of a crystal stabilized sine wave generator and an
impedance matching network. To calibrate the ultrasound
amplitude with respect to the applied power and determine
the modal structure of the oscillation we built a special light
interferometer of Michelson type and scanned the mirror sur-
face. The measurements showed a strong coupling of thick-
ness and higher harmonics radial modes which results in a
structure of concentric areas of minimum and maximum am-
plitudes. We applied a special edge beveling technique
@24,25# to suppress this coupling and to produce a pistonlike
motion, which also raised the quality factor of the resonances
and thus reduced heating of the sample. With optimum bev-
eling the width of the surface amplitude distribution was
about 25% full width at half maximum~FWHM!. This inho-
mogeneity was sufficiently low to neglect beam deflection
due to the dynamic curving of the mirror surface, but had to
be considered in the comparison of experiment and theory by
averaging over adequate distributions ofa.

Evaluating Eq.~23! with the experimental parameters we
can estimate the angular separation of two lines to be about
331024 rad in the case of the fundamental resonance~693
kHz!, corresponding to a spatial distance of about 0.8 mm at
the detector plane. To resolve this minute deflection we re-
stricted the beam divergence in the direction perpendicular to
the mirror by means of two slits to values of about~1.8–
4.1)31024 rad, depending on which mode we examined.
The beam divergence perpendicular to the plane of Fig. 4
does not degrade the resolution and we used a neutron guide
~two parallel pieces of nickel coated glass separated 25 mm!
for intensity gain.

From Eq.~23! it is obvious thatDf depends onv0 , i.e.,
the resolution is decreased by the velocity spread of the in-
cident beam. To get rid of this effect, which would have been
visible when using the full spectrum of the neutron guide
that was defined to about 10% (Dv/v) by a velocity selector,
we used an additional filter that was set to a bandwidth of
about 2%. The filter uses a successive transmission and re-
flection by mirrors that were optimized for a steep cutoff at

critical reflection and are slightly tilted with respect to each
other to tune the bandwidth~see@17# for details!.

We were able to increase the efficiency of the measure-
ment with respect to the usual method of scanning a narrow
slit by using a recently developed two-dimensional position
sensitive detector~PSD! @26#. This PSD is distinguished by a
superb resolution~about 35335mm2), a high efficiency of
about 90% at 24 Å, and a high noise andg-ray
immunity—no background was subtracted in the measure-
ments shown in Fig. 5 although the neutron count rate was
only a few neutrons per second or less. The measurements

FIG. 5. Results of the experiment in comparison to the theory.
The value of the modulation indexa is increased from M1 to M5
~cf. Table I for experimental parameters!.
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were carried out using the detector only as a one-dimensional
PSD by summing up all counts in columns perpendicular to
the plane of Fig. 4.

VII. EXPERIMENTAL RESULTS

In Fig. 5 the results of different measurements are shown
by plotting the neutron counts in each detector column ver-
sus the energy transfer that was calculated from the beam
deflection according to Eq.~22!. These measurements are
compared to what is expected from theory~shaded histo-
grams!. The relevant experimental parameters of the differ-
ent measurements are listed in Table I. Each data point cor-
responds to a spatial distance of about 0.2 mm~0.1 mm in
the case of M4 and M5! at the detector plane.

The measurements clearly show that the beam profiles
consist of several peaks, thus proving the quantization of the
energy transfer by the oscillating mirror. The width of the
single peaks can be fully explained by the experimental reso-
lution, thus they conform to the assumption that the trans-
ferred energy spectrum is discrete. The position of the peaks
is in close agreement with what is expected from theory.

This is also true for the typical excitation pattern of the
sidebands as a function ofa. However, the surface inhomo-
geneity of the mirror oscillation has to be considered by
averaging the theory spectra calculated from Eq.~20! over
appropriate distribution ofa. The widthDa and shape of
these distributions was deduced from the optical measure-
ment of the surface modes. This averaging degrades the vis-
ibility of the strong modulation of the intensities of neigh-
boring sidebands that shows in the theoretical results in Figs.
2 and 3.

We have made least-squares fits for a quantitative com-
parison of experiment and theory. In addition to the distribu-
tion of a, the finite resolution caused by the beam diver-
gence and the incident beam velocity spectrum were taken
into concern. The fitting parameters werea, d, andDa.

The results of the fit showed a close agreement of theory
and experiment. The relative deviation ofa andDa was on
the order of 5%. The main errors in these parameters came
from ambiguities in the optical determination of the oscilla-
tion amplitudes. The parameterd, i.e., the separation of the
distinct lines of the energy spectra is not influenced by these
errors. Indeed, we found an excellent agreement of the val-
ues ofd that we got from the neutron experiment compared
to its expected values calculated from the frequencies that

were applied to the mirror: The fit gave a line spacing~pho-
non energy! of DE'5 2.8646 0.011~1s) neV for the 693
kHz mode which is to be compared with\vp5 2.866 neV,
and 9.166 0.05 neV for the 2.22 MHz mode, whose theo-
retical value is 9.18 neV.

VIII. CONCLUSIONS

We have discussed the problem of the reflection and trans-
mission of a particle by an oscillating potential step. We
present both classical and quantum-mechanical calculations.
The classical model is expected to be valid in the region
where the vibration amplitude is large compared to the par-
ticle wavelength, and shows a very rich behavior approach-
ing that of chaotic systems in the region of parameter space
where the particles can make several collisions~see@17# for
details!.

The quantum-mechanical calculations show that with
small vibration amplitudes the energy of the reflected neu-
trons is changed by6\vp ~one phonon exchange!. As the
amplitude increases, one sees additional sidebands corre-
sponding to two and higher numbers of phonons. Eventually
the spectrum of the reflected neutrons approaches that of a
classical particle. As mentioned above in Sec. V and has
been discussed by Peres@21#, the classical limit only arises
by neglecting or averaging the oscillations which appear as
one takes the quantum-mechanical calculations to the limit.
In practice these oscillations are always eventually averaged
by the finite experimental resolution.

We have presented the results of a series of experiments
where very cold neutrons are reflected from a glass surface
which was vibrated by a piezoelectric transducer. Our mea-
surements were able to span the parameter region corre-
sponding to both one phonon and multiphonon~approxi-
mately612) exchange. Although we have not yet been able
to go into the strong classical limit, we see clearly the ap-
proach to the spectrum expected classically. The results are
in all cases compatible with the quantum-mechanical de-
scription whose validity is clearly a function of the experi-
mental resolution.

Thus in this system we can observe a continuous transi-
tion from quantum ~few phonon exchange! to classical
~many phonon exchange! behavior by simply adjusting an
experimental parameter.
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TABLE I. Experimental parameters.

Angle of incidence:f052.00°
Velocity: v0516463 m/s, v'55.7160.11 m/s
Mean energy: E05140meV E'5171 neV
Potential height: Vp5235 neV b51.37
Measurement M1 M2 M3 M4 M5
Frequency (d) 2.2206 MHz~0.0538! 692.95 kHz~0.0167!
Mean amplitude

~nm!
5.3 8.0 10.9 23.2 32.1

a 0.95 1.45 1.98 4.21 5.82
g 0.013 0.020 0.027 0.018 0.024
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