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Matter waves at a vibrating surface: Transition from quantum-mechanical to classical behavior
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We investigate the time-dependent Sclinger equation for the case of a plane matter wave incident on an
oscillating potential step. Approximate solutions are given for different regimes of the problem. The resulting
energy spectra are quantized. This may either be interpreted as a phase modulation of the wave or as a coherent
multiphonon exchange. A comparison to the results that apply for a beam of classical particles is made. In
particular, the transition from the quantum-mechanical to the classical case is examined. We have performed an
experiment with very cold neutrons that clearly revealed the discussed effects. Energy splittings of 2.8 to 9.1
neV of the reflected waves were analyzed with an energy resolutior lofneV, thus demonstrating the
feasibility of such high-resolution experiments with neutron reflectometry.

PACS numbsd(s): 03.75.Be;03.65-w

I. INTRODUCTION such systems is increased by recent suggesfib@k that
guantum mechanics might have to be altered in the region
In recent years several impressive experiments have bedietween the quantum and classical regimes. However, our
performed in the field of neutron optics that elucidate thework, while demonstrating the transition from quantum to
concept of particle-wave dualisfit]. The diffraction of neu-  classical behavior, does not address the issue of wave func-
trons by single and double slits or gratings, and the interfertion collapse at the detector.
ence of neutrons in interferometers built of gratings or per- Hocket al.have studied a related probldt], where the
fect crystals[2] have become so well known that neutron s_pectral width of a neutron beam, backscattered_by a silicon
optics is now included in standard textbooks on opf&is single crystal excited by_ ultrasound, was examined. How-
Due to their low velocities and matter wave frequencies€Ver. the spectral resolution was too low to allow the obser-
cold neutrons are also a superb candidate to examine nonst@tion of quantized effects. A similar experiment was per-
tionary interactions of matter waves. This idea was first exformed earlier by Kleinetal, who measured the time
pressed by Gerasimov and Kazarnovakil976[4]. Still in ~ Structure—but not the energy spectrum—of a neutron beam
1986, Werner and Klein considered it a future challenge tdhat is deflected by a vibrating quartz crysftaP].
probe time-dependent interactions with cold neutridds The complementary case of the transmission through a
Up to now only a few nonstationary experiments havepoten_nal that is oscillating in hglght was dealt with by
been performed in neutron optics. I@er and Golub for in- Haavig and Reifenberg¢d.3] and in very recent papers by
stance, have discussed an experiment where the time-energyfmmhammef14] and Frank and Amandzhola5], but to
uncertainty relation is probed by high-frequency chopping ofoUr knowledge no experiments for this case have been per-
a neutron beanfi5] and experimental work is in progress. formed until now. A recent quantum-mecha_nlcz_il dlscussm_n
Similar problems also were discussed theoretically by‘?f the.transm|33|on of neutrons through osullayng magnetic
Moshinsky[6] and by Nosov and Fran’]. Badureket al. fields is given by Golulet al.[16], where emphasis is laid on
experimentally demonstrated the time-dependent superpoépe application to partlcle beam magnetic resonance and neu-
tion of spinors[8], and Hamiltonet al. examined the non- {ron resonance spin echo spectrometers. o
elastic diffraction of neutrons by a surface acoustic w@je In this paper we first discuss the problem of transmission
We describe a nonstationary experiment that clearly dem@nd reflection at a time-dependent potenyal step theoretically
onstrates the nonclassical, quantized interaction of neutrord then present the results of an experiment.
with a time-dependent potential. We study the transmission
and reflection of very cold neutrons on a mirror that repre-
sents a potential step and is excited to a high-frequency os- Il. DEFINITION OF THE PROBLEM

of macroscopic dimensions and may thus be regarded as\a that moves harmonically as a function of time,
classical object, analogous to the oscillating magnetic field in P

magnetic resonance experiments, we will show both in
theory and experiment that the resulting interaction with the 0, x<a(t)

matter wave is quantized and can be interpreted as a coherent V(ix.t)= Vo, x=a(t) @
multiphonon exchange. By increasing the amplitude of oscil-

lation we can raise the number of exchanged phonons, ap-

proaching eventually a classical behavior. The interest imwith
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a(t)=agsinwpt, v,(t)=da(t)/dt=v,cosmt, y=v,/vo, (20
and relative oscillation frequency:
Vp=agwp - 0=w,lweg=4yla. (2d)

We calculate the energy spread thgt either a cIa;sicaI partic|g the case of a classical particle only two of these param-
beam or a matter wave approaching the potential step fromiers(e.g., 3, ) are sufficient for a complete description of
x=—o shows after being transmitted or reflected by thethe problem. For a matter wave there is one additional degree
step. A formal solution of the problem of potential layers, of freedom and we use either the set,8,) or (a,B,9).
that are time dependent both with respect to position anfthe meaning of these quantities will be made clearer in the
height, may be found if17]. following. We only mention here that<1 defines a “high-
Both particle beam and matter wave are assumed 10 bgequency” and y<1 a “quasistationary” regime of this
monochroma‘u'c. The initial k|net|01(/32nerd_;‘;/0 corresponds 0 problem. The modulation index, which is proportional to
a(group velocity ofvo=(2Eo/m)~ " wheremis the mass e ratio of the oscillation amplitude and the de Broglie

of the particle. The correspondinlg wave properties are a Maf—27/k,), plays an important role for the transition from
ter wave frequency ofug=Eo/%" and a wave number of gy antum-mechanical to classical behavior.

koz ml)o /h
Therells no gnalytlcal solution to th|_s problem, either N || SPECTRA FOR A BEAM OF CLASSICAL PARTICLES
the classical or in the quantum-mechanical case. However, in
certain cases analytical approximations can be found. We |n general, a classical particle may pass the potential step
will use the following parameters for a classification of theseseveral times before it finally escapes the region of oscilla-
cases: modulation index: tion. Therefore its trajectory has to be calculated iteratively.
As an initial condition we assume that the undisturbed
a=2Koao, (23 trajectory of the particle would reach the origis- 0 att,. If
t; andv; denote the time of and the velocity after thih

relative potential height:
P g passing (=0), the values after tha { 1)th passing are then

B=V,/Eq, (2b)  given by
relative step velocity: ti 1=t +a[sinwpti 1 —(1— g)sinwpt; /v,  (3a)
|
/ —14+2%41, (1_7i+1)2$_5ﬁ (r) (3b)
Uj Vo=
T VA= y )P Bt v, (I-yi)>—eB (D) 30

with y=v(tj)/ve ande=+1 (—1), if the particle is com- which particles arriving at the step are finally scattered to
ing from inside(outsidé the potential step. The Kronecker these velocities. The normalized energy spectw??(E;)
symbol 8, expresses the initial condition. (8a) has more  of the outgoing particle bearPB) flux is therefore given by
than one solutiont; , ; takes the value that temporarily suc-
ceedd; . Equation(3), (r) and(t), describe the velocity after
reflection(r) or transmissiont), which is calculated by con-
sidering the Doppler shift that occurs during each passage. If
Be>0 only transmission is possible, because then the par- =
ticle travels from the side of the higher to the side of the branches TpMu ¢
lower potential. . . . . .

To calculate the energy spectrum of the outgoing beamWher_e @q Is the incoming flux_ a.ndO(Uf) is the nverse
one has to determine the different trajectories and with thaqunCtIon Ofvf(.t")‘ This INVErSE 1S In general not single val-
the final velocitiesv¢(ty) as a function ofty that occur. As Ued and the right hand side of E) has to be summed up

on . . over a complete set of branches.
vi(to) has a periodicity off =2/ w, it is sufficient to con- Because Eq3a) is implicit, a solution of Eq(4) can only
sider only one perlod,_e.gtoe[O,Tp]. . . be found numerically. Here we will only use the results of

The fraction of particle fluxd® that is scattered into the

. : X : ; these calculations when neccessary for comparison with
interval[v¢,v¢+dv] is proportional to the timelt,, during quantum-mechanical results

o) AD(E) _ dP(vy) duy
I (DodEf a (Dodvf d_Ef
1 dto(l}f)

de

P&

. 4

YIn this definition of the matter wave frequency we only consider A. Quasistationary case

the kinetic energy, thus setting the origin of the energy scale to the In general the particles can have several collisions, which
neutron’s rest mass. leads to very rich spectra that are approaching chaotic behav-
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ior [17]. If the relative step velocity is smalhf<1), and if Po(x,t)+ ¥, (x,t) , x=a(t)

the beam is either totally reflected)(or transmitted ), (x,t)= B(xt > at (10
only one contact with the step occulise., v;=v;) and an (0 x>a(t)
approximate analytical solution fap™*(Ey) can be given. wherew is the incoming plane wave as defined in Sec. II,
(As the spectral width of the reflected beam is proportionabngy, andw, represent the reflected and transmitted waves,
toy [cf. I.Eq.('8)] a sufficient condition for total reflection or yegpectively. Compared to the textbook problem of a poten-
transmission isy<<|1—4|.) In this approximation we can set {ja| step, the special feature of this problem is of course that
t;=to in Eqs.(3) and the final velocity is given in first  the poundary is in motion.

order of y by a small harmonic modulation At the boundarya(t) these waves have to satisfy the
matching conditions

o —1+2ycosw,to, B>1 (r)
vi(to)/vo= V1-B+y(1-1-B)cosupty, B<1 (1). ( )(\P e Z(O) f
. 31 9x 0 r vVlix=a®.n™| g (11b)

Using Eq.(5) and Eq.(4) we get the approximate spectrum |, gnajogy to[13,19 this boundary problem can be solved
by an ansatz,

1
e e Ve ]
‘P E - n b
(= y(1-n) Eo © W (X, 0) = W, (X0 = 1exXpi(— kpkoX— wit),
n n
. (12
with .
WG = 2 Wea(x ) =2 trexpi(7kox— ),
C(Ef)=2my|1-n|VEo(E;—V) ,
with
-1 0 (r)
n= J1-8 V= V, (1) n=0,£1,£2,..., w,=wotNw,=wy(l+nd),
E; expresses the total, i.e., the sum of kinetic and potential Kn=Voplwg=vy1+né ,
energy. This spectrum essentially represents the amplitude
density of the cosine in Ed5). The variablen may be rec- M= \/(wn—vp/h)/woz Vi+né—8 .

ognized as the index of refraction, i.e., the ratio of the par- . )

ticle velocity (wave numberafter and before transmission or The variablesx, and 7, represent the ratio of the wave
reflection. In the latter case= — 1 indicates that the direc- Numbers of the partial waveg, ;) , and the incoming wave
tion of the trajectories is reversed. In this case fy.just Yo- The change in their wave numbers is not only due to
gives the energy spectrum that is produced by the harmonitéfraction by the potential step, but is also influenced by the
Doppler drive of neutron backscattering spectromefieg shift in energy caused by the oscillation. Therefore we may

The ranges of final energies in E@) extend over regard these parameters as “dynamic indices of refraction.”
It is obvious from Eq(12) that the outgoing waves show
(Ef—V) e[Eo[n—y(1—1M)]%, Eoln+y(1-1n)]?] . a discrete line spectrum. The normalized energy spectra of

(7)  the outgoing(probability) flux of the matter wavéMW) are

straightforwardly calculated from E@12),
The spectrum diverges at the borders of this interval. The full
Irol®Re(xn) (1)

width AE; of the spectrum in this approximation is given by
[tal?Re(70) (D)

AEgy|1-n|, ie., ore (En=2, (Eg(1+nd)—Epx
AE(=8yE, (r), AE{=4yEl1—-VJ1-8] (). (13)

(8)  with 8( ) representing a Dirac delta function. This is only the
time average of the matter wave flux. In addition we call
Sitention to the fact that the outgoing wavks and ¥, show
an interesting bunching effect that is subject to time- and
space-dependent collapses and revivals due to the dispersion
IV. SPECTRA FOR A MATTER WAVE of the different partial waves in Eq12). Of course, only
partial waves with real wave numbers, i.€;>0 in the case
of ¥, and E;>V, for ¥, contribute to the flux. This is
taken into account by considering only the real part of the
dynamical refraction indices.

J #2 The amplitudesr, andt, are determined by Eql1l).
ihﬁ\lf(x,t)= - ﬁVZJrV(X,t) T(x,t). (99  Making use of Eq(12) and the relation

This shows that the energy spread of the reflected beam
higher than that of the transmitted beam unlgss— 8.

To calculate the energy spectra for an incident matte
wave, we have to solve the time-dependent Sdimger
equation for the potential of Eql),

+ o0
As usual in this kind of problem the wave function is sepa- explizsing)= >, Jn(z)expimé) (14
rated into three parts, mste "
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whereJ,(2) is a Bessel function of first kind andth order,
we can rewrite the boundary condition Eq13),

> Jn(@gko)e!Me ™0
m

+2 2 Fadi( —aorgko)el MM ep™ ol
n m

=2 2 tadn(agykp)e M Mepmeol - (15)
neom FIG. 1. Amplitudes of the coefficients,; andt.., as a function
of the height of the potential ste@ and for different oscillation

This equation is only valid for all values of if all terms that S _
guenciess in the case of small modulatioa<<1.

contain the same time dependence are equal separately. §9
collecting those terms Eq15) can hence be split into a set

of equations in which the common and therefore trivial timePeriment the tensile strength of the mirror materidhere-
dependency can be omitted. If we apply the last steps also f®re, in practice, the maximum amplitude and frequency

Eq. (11b and use the paramaters of E8), we finally get are inversely proportional. This explains why<1 may be
called “high-frequency approximation.”

By expanding the Bessel functions of Ed6) into power

1 _1 - 1
Jm(i“”; Fndmen 2“"“)_; tadm+n(z@7n), series ina and solving the linear equation system for
(169  Inl,Im[<1, we get
1-v1- 2
‘]m(%a')_E KnrnJm+n(_%aKn):E nntn‘]m-%—n(%ann), lo= IB’ to= )
n n 1+J1-8 1+v1-8
with nm=0,*1,*2,.... (16b
N 1-vJ1-8

(17

o
The coefficientsr,, and t, are uniquely defined by these M= 2 J1+ 6+ \/1—,3+5’

equations. However, there is in general no analytical solution
to this system of an infinite number of linear equations and
we have to look for appropriate approximations.

Vi+6—\1-B*46
J1x6+1-B8%68

o
ta=%5(1=V1-5)
A. Numerical solution

In general, i.e., if no restrictions are made on the params- : .
X ) ; The terms that have been neglected in these equations are at
etersa, B, and g, only an approximate numerical solution of

Eq. (16) is possible. least a factor o_f)z2 smaller than_the leading ones. The_: res_ults
For every choice ofx, 3,6 a limit N can be found that of Eq.(l?) are identical to the first order Born apprommatlon
makes the contributions of all partial wavek, with of t.hls problem. AS one would expect, the amphtud@sa_nd
[n|>N negligible within a given tolerance. If the number of to In thls approximation are th_e same as for a motionless
partial waves [n|<N) and simultaneously the number of potenna! step, which is treated in every textbook on quantum
equations [m|<N) are thus limited, Eq(16) can be solved meI(::iharrncs;ZOE]. ws the dependence|of | and|t. 4|, both
with standard numerical methods. The limitmay then be scalegdu v?/ithjfl) zn tehe esrthp heei;EB 7a1ndathe éééilla?ion
iteratively refined by putting the results foy andt,, in Eq. f S It ié remarkable that the tvpical critical reflec-
(11) and checking whether the boundary conditions are bal; CaUencyo. - yp :
. S . tion edges are not only found #&=1, as for a motionless
anced with sufficient accuracy. If not, the calculations havet but al —1+5(“d ic critical reflection”)
to be repeated with an enlarged limit As can be seen from step, but also ag=1= yhamic critical refiection’).
the following analytical solutions, a starting point may be
N~2a. We will use the results of such numerical calcula- C. Quasistationary case

tions[17] in Sec. V. Consider a motionless potential step of infinite height

(Vp,—) atx=ag and an incident wavé as defined in

Sec. Il. The reflected and transmitted waves can then imme-
In the case ofr<1, i.e., if the amplitude of the oscillation diately be written down:

is small compared with the wavelength of the incident wave, ,

the amplitudes, andt, can be shown to be proportional to ~ Fr(X)=—expi[Ko(2a0=X) = wot] , Wi(x,1)=0.

/" and thus fall off rapidly with risingn|. In first order of (18

a we thus only need to calculate, and t, for

n=-1,0,+1. If we now allow for a slow oscillation of the step/&1) we
In an actual experiment it is the maximum velocity of the get a rough approximation fo¥, by simply replacinga,

potential step that is limited by some constraiimt our ex-  with a(t) =agsinw,t:

B. Small amplitude approximation
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partial wave index n (= number of absorbed or emitted phonons)
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' ° 0 oo P 2; rnJern(_%aKn):; (1_77n)tn\]m+n(%a77n)

=—§ J(—a)expi(—kox—wpt). (19) for (169—(168).

These equations can be approximately solved by
The wave function¥, still vanishes. The expression @f9)

is no exact solution of the Schiimger equation because it fo=pode(— ta(1+xy) | pﬁﬂ,
contains a wrong dispersion relatioky(instead ofk,), but 1+ 7,

this makes no essential difference in the vicinity of the po- (20
tential step. The termusinwyt causes a harmonic phase ty=rd Ga(p,—1)), = 2 _
modulation of¥, with a peak phase shift af. 1+ 7,

From Eq.(16) we can get an approximation with a higher
precision that is valid for arbitrary values @f by consider-

ing the following. onh -
If the peak velocity of the step is small in relation to the of Eq. (19). An examination of the precision of Eqe20)
reveals that the relative error of, andt,, and coupled to

group velocity of the wave¥<1), the spectral width of the )
outgoing waves is also small compared to their mean energij/€S€ also the error of the balance of Ei), is of the order
(this can be implicitly proved with the results of the next ©f ¥ but rises to about/y near critical reflection g~1),

section[cf. Eq. (21)]). Therefore the dynamic refraction in- Wherease has no important influence on the precisiohhe
dex «,, varies only weakly as a function of. This is also factors_pn_ and 7, re_present the statlc_)nary reflection and
true for 7, in the casd y|<|1—A|. In the complementary transrr_ussmn coefficients of the _part|al wave{.s,,n and
case|y|~|1— B, i.e., in the vicinity of critical reflection, Wy, ie, they are equal to the rgtlo of the amplitudes of the
the absolute values af,, are small compared to 1, but their outgoing and the incident wave in the case of the refle_ctlon
relative variation with respect to is considerabldcf. Eq.  Of @ matter wave of energyw, by a motionless potential
(12)]. This is particularly important in the arguments of the SteP-

Bessel functions in Eq(16), where 7, is scaled witha

which may be substantially larger than 1. V. DISCUSSION

By considering these properties and setig=1 outside First we discuss the influence of the modulation index
the Bessel functions arguments E#6) can be transformed «, keeping the height of the potential step at a high value
to (B=10) to ensure nearly complete reflection and the fre-

quency of the oscillation low §=5x10"3). The peak ve-
locity of the step is then proportional toa

— — —3 H
23 ()= (1+ p)tydmen(tan,) for (16a+(16b, (y=0a/4=1.25<10 “a). In Fig. 2 we compare the con-
n tinuous energy spectra of a particle beam of &) .with the

In the case B—w, also |y,|—« and r,—
—J,(— 3a(1+ k)~ —J,(— a), thus reproducing the result
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line spectra of a matter wave of EqQ). The latter are not prepare wave packets.g., by using a choppgrbut we
shown as an appropriate scaled § ') histogram of the only limited the incident spectrum well enough to ensure the
relative weights of theS functions in Eq.(13). For the cho-  Visibility of the spectral lines. A difference between those
sen value of3 only a negligible portion of the MW transmits two cases might only be visible in the time dependence of
(none of the PBand we only consider the reflected flux. ~ the outgoing matter wave, but unfortunately such effects
From Fig. 2 we can see that the MW spectra consist oF€€M not to be observable in our experimental setup.
roughly 2« lines, thus explaining the reference to as This transition from quantum-mechanical to classical
modulation index. This can also be proved with E2) and ~ SPECtra may also be interpreted from first principles: To pro-
the property of the Bessel functions thia{ @) vanishes rap- vide the wave packets with classical behavior we have to

idly with rising ||, if |n|>|a| anda is real. By multiplying demand that the timat,,sthat it takes a packet to pass the

the number of excited harmonics with their distance in en-Step is small compared to the oscillation period of the step

ergy, we can calculate the typical width of the MW spectra, Atyass<Tp=27 | wp,
AE'rV'W:Zaﬁwp=2a5Eo=87Eo, because only then are the instant of passage and the momen-
tary velocity of the step is defined well enough to allow the
AEM=a| no—1|fiwp= ad| no— 1| yE, (21)  calculation of a classical Doppler shift. If we consider the

time-energy uncertainty relation this is only possible if

AEYW=1 | Atyas>h | Ty=0Eq | 2.

=4vy|1—1-B|E,.

The expression foAEMY is calculated in the case that the ~ Next we discuss the influence of the step height on the
spectrum of the transmitted wave essentially lies above thepectra. Figure 3 shows a comparison of the dependence of
potential step, which happens fby|<1— g; the case of a the PB and the MW spectra g8, calculated by numerical
partially evanescent transmitted wave is treated later. Theolutions of Eq.(3) and Eq.(16). To be able to display the
spectral widths are in accordance with Eg), with the dif- ~ complete wave functiongincluding the evanescent partial
ference that for a PB the range of final energies is sharplyvaves we have plotted the expressiofs,r?| and | 7,t?|
limited, whereas for a MW any harmonig, can be found in that differ from the actual fluxes in Eq13) only if «, or
the outgoing waves, its amplitude, however, vanishing rap+, is imaginary.
idly outside the range of Ed21). The MW flux is for all values ofg split into a reflected
It should be emphasized that the portion of the MW specand transmitted portion, whereas for the PB splitting occurs
tra that lies outside the limits of the classical spectra given bynly aroundg~1.
Eq. (8) can in no way be understood classically: The veloci- The PB results in Fig. 3 clearly reveal the difference of
ties of those particles arémuch faster or slower than is the spectral widths with respect to reflection or transmission
permissible from the classical point of view. according to Eq(8). This is also true for the MW in the case
The modulation indexx plays an important role in the of 8=0.5. For=<1, however, the transmitted partial waves
transition of the MW to the PB spectra, i.e.,, from the that have imaginary wave numbers«,<V,) and thus are
guantum-mechanical to the classical case: For low values @vanescent, show a substantial growth with ris;\gThis
a (a<1) the spectrum of the reflected MW contains only acan be explained with Eq20) and the exponential growth
few strong harmonics and is therefore, apart from their comthat Bessel functions show when continued for complex ar-
parable mean widths, quite different than the PB case. Thiguments.
difference partially vanishes when rises, because then the  This behavior has no severe consequences as these partial
spectrum of the PB asymptotically coincides with the mearwaves carry no flux. In addition, it can be shown that due to
envelope of the lines of the MW spectrum. However, even iftheir alternating phases these partial waves extinguish one
a approaches infinity the intensities of the lines fluctuateanother in the summation of E¢L2) and the total transmit-
from zero to about twice the value of the PB flux distribution ted wave functior?; vanishes in the casg— .
(cf. Fig. 2,a=40). The effect that oscillations appear during  Another property of the flux spectra is their asymmetry
the approach to the classical limit has been discussed byith respect to energy gain or lo&s. Fig. 3,3=1.5). If we
Pereq21]. define an effective modulation index® /= ja(1+ «,) it is
One way to complete the transition from the quantum-obvious from Eqs(17) and (20) that the upscattered partial
mechanical to the classical case, i.e., to get rid of these fluavaves (>0) are subject to a higher effective phase modu-
tuations and change the line spectra to continuous ones, is fation due to their increased wave numbers and that this part
start, in addition to lettingr go to infinity, with an incident  of the spectrum extends to higher valuegrgf On the other
beam of wave packets instead of a plane wave. The spectr@and, partial waves with higher energies are reflected less,
of the outgoing waves in this case are calculated by convolvwhich is expressed by, in Eq. (20). Thus the amplitudes of
ing Eg. (13) with the energy distribution of the incident the upscattered harmonics are, on the average, smaller than
packets. If the mean width of this distributichEy'"™ ex-  the downscattered ones. A more detailed survey reveals that
ceeds the line spacingE,, the line spectrum characteristic the first effect is dominating and that the mean energy is
is washed out and both cases, PB and MW, coincide asymgrcreased after passing the oscillating step.
totically. Up to now we have discussed the MW spectra in terms of
The spectra would be equally smeared out if we start wittsimultaneous phase and amplitude modulations. The phase
an incoherent polychromatic mixture of plane waves insteadnodulation is caused by the motion of the step, and the am-
of coherent wave packets. In our experiment we actually diglitude modulation is due to the different reflection and
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20F 120 neutron  velocity position sensitive
region of E; <V, (E'<B), beam  selector detector
transmitted partial waves are (‘Handmonitor")
15F evanescent inside this region 4 10

collimating
slit S1

nickel coated
glass mirror

piezo drive

——— 2650 mm 2850 mm |

FIG. 4. Schematic experimental setup.

an appropriate superposition of states with different occupa-
tion numbers. Indeed, the mean occupation number is very
high in our experimentroughly 1¢* phonons, so the mirror
that represents the potential step in the experiment is really
in a highly classical state.

=
o 20F 2 ©
o _g VI. EXPERIMENT WITH VERY COLD NEUTRONS
Lﬁ L5y = 0 é We performed an experiment to demonstrate some of the
m S results of the previous sections. The measurements were
@ 1.0} °© made at the research reactors of Munich and Geesthacht
£ 4 (FRM and FRG. Here we only describe the basic setup of
2 o5t 108 the experiment, details can be found[iv].
k5 8 Figure 4 shows the schematic setup. A beam of very cold
& oob— . , : i 90 B neutrons(VCN) with a mean wavelength of 24 A is re-
Ls 1005 00 1070710 10'10°10° 10% 107 = flected by a mirror that is excited to an oscillation perpen-
reflected flux transmitted flux dicular to its surface by a piezo drive. The resulting energy
Ee'lkr’ Bl e® g sling? HloTE) spectrum is analyzed by determining the profile of the out-

going beam.

FIG. 3. Comparison of particle beam and matter wave spectrain 10 S€t UP an experiment with a one to one correspondence
the vicinity of critical reflection for different values of the step (© the discussed one-dimensional problem one would have to
height 8 («=15.0, 5=0.05, y=0.1875 kept constantThe re- US€ ultracold neutron@JCN) because their energies<@00
flected and transmitted flux spectra are plotted to the left and righti€V) are comparable to the mean Fermi pseudopotential of
respectively. The histograms give the results of the quantumMOst materials, thus allowing a perpendicular incidence on a
mechanical calculations, while the dark shaded areas represent tRelrface that represents the potential step.
classical spectra. The light shaded areas represent the potential step.However, due to intensity arguments and the large sample
On the left ordinate the final relative energy is shown. The right onesizes that would be necessary in UCN experiments it is easier
gives the corresponding number of exchanged phonons. to use VCN Ey=~100ueV) under grazing incidence. In this

case we can bring the experiment into coincidence with the

one-dimensional problem by transforming to a reference
transmission indices that the distinct partial waves are sulframe that is moving with-vg (cf. Fig. 4 for a definition of
ject to. The discreteness of the spectra results from the pennvolved quantities In consequence we have to replace the
odicity of these modulations. quantities in Eq.(2) by the perpendicular components of

Another possible interpretation is to regard the wave functheir analogs in the experiment.
tions of Eq.(12) as coherent superpositions of partial waves An energy transfer oAE, by the mirror that changes
V¥, that have absorbed or emittedohonons at the potential only the perpendicular velocity component of the neutrons
step. This interpretation is emphasized in our experimentauses a beam deflection of
where the incidence of the matter wave is not perpendicular
to the potential step, which leads to a splitting of the partial v AE
waves not only in energy but also with respect to the outgo- tand;r:ﬁ:tanq‘)(,\/ 1+ — , (22
ing direction. In consequence, suggestions have been made Vo Eo.
to use this effect for coherent beam splitting in interferom-
etry with neutrong22] and atomic beamf3]. whereEy, = EysirP¢y is the “perpendicular” energy compo-

In our case the oscillation of the step is described by anent of the incident beam.
well defined oscillation amplitude. Thus the step is not in an Becausep, andAE, are relatively small in our setup, we
eigenstate of the phonon number, but has to be modeled asn linearize
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Ap= b, — o= AE, , (23 40 30 0 0 0 10 20 30 4
Mpv v 600

n=0v 0L ] “ experiment

theory

wherem, is the neutron mass.

The mirror that was used in the experiment was a disk
(4 mm thicknessx 40 mm diameterof nickel coated glass
(layer thickness= 200 nm). We keptvg, (=~5.7 m/9 of the
beam well below the critical velocity of nickel
(v¢rit=6.7 m/9 to ensure total reflection. The mirror was
mounted on a piezo ceramic transdu@ernd zircon titanate,

3 mm X 50 mm diameter The thicknesses of both disks
were chosen to match their acoustic resonances. We used two
different thickness resonance modes: the fundamental mode
at 693 kHz, that allowed higher amplitudes, and its third
harmonic at 2.22 MHz, that produced a higher line separa-
tion at the expense of reduced amplitudes.

To prevent a spreading of the reflected beam the mirror
has to be sufficiently planar. This becomes a problem when
vibrations are excited, because then a curving of the surface
arises due to thermal tensions caused by dissipative heating.
We observed the mirror’s flatnegs situ by an autocollima-
tion telescope and applied appropriate cooling by com-
pressed air. The piezo disk was excited in series resonance
by means of a crystal stabilized sine wave generator and an
impedance matching network. To calibrate the ultrasound
amplitude with respect to the applied power and determine
the modal structure of the oscillation we built a special light
interferometer of Michelson type and scanned the mirror sur-
face. The measurements showed a strong coupling of thick-
ness and higher harmonics radial modes which results in a
structure of concentric areas of minimum and maximum am-
plitudes. We applied a special edge beveling technique
[24,25 to suppress this coupling and to produce a pistonlike
motion, which also raised the quality factor of the resonances
and thus reduced heating of the sample. With optimum bev-
eling the width of the surface amplitude distribution was
about 25% full width at half maximurtFWHM). This inho-
mogeneity was sufficiently low to neglect beam deflection
due to the dynamic curving of the mirror surface, but had to
be considered in the comparison of experiment and theory by
averaging over adequate distributionsaof

Evaluating Eq.(23) with the experimental parameters we
can estimate the angular separation of two lines to be about
3% 10 “ rad in the case of the fundamental resonafGas
kHz), corresponding to a spatial distance of about 0.8 mm at
the detector plane. To resolve this minute deflection we re- FIG. 5. Results of the experiment in comparison to the theory.
stricted the beam divergence in the direction perpendicular t§he value of the modulation index is increased from M1 to M5
the mirror by means of two slits to values of abgatg—  (Cf- Table I for experimental parametgrs
4.1)x 10 * rad, depending on which mode we examined.

The beam divergence perpendicular to the plane of Fig. 4

does not degrade the resolution and we used a neutron guidstical reflection and are slightly tilted with respect to each
(two parallel pieces of nickel coated glass separated 2% mnother to tune the bandwidtfsee[17] for details.

for intensity gain. We were able to increase the efficiency of the measure-

From Eq.(23) it is obvious thatA ¢ depends o, i.e., ment with respect to the usual method of scanning a narrow
the resolution is decreased by the velocity spread of the inslit by using a recently developed two-dimensional position
cident beam. To get rid of this effect, which would have beersensitive detectafPSD) [26]. This PSD is distinguished by a
visible when using the full spectrum of the neutron guidesuperb resolutiorfabout 35< 35 um?), a high efficiency of
that was defined to about 109% ¢/v) by a velocity selector, about 90% at 24 A, and a high noise angray
we used an additional filter that was set to a bandwidth ofmmunity—no background was subtracted in the measure-
about 2%. The filter uses a successive transmission and resents shown in Fig. 5 although the neutron count rate was
flection by mirrors that were optimized for a steep cutoff atonly a few neutrons per second or less. The measurements

counts

-0 0 10
energy shift AE (neV)
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TABLE I. Experimental parameters. were applied to the mirror: The fit gave a line spacipgo-
non energyof AE, = 2.864* 0.011(10) neV for the 693
kHz mode which is to be compared withw,= 2.866 neV,
and 9.16+ 0.05 neV for the 2.22 MHz mode, whose theo-
retical value is 9.18 neV.

Angle of incidenceip,=2.00°

Velocity: vo=164+=3 m/s, v, =5.71+0.11 m/s
Mean energy: Ey=140ueV E, =171 neV
Potential height: V=235 neV B=1.37

Measurement M1 M2 M3 M4 M5
Frequency §) 2.2206 MHz(0.0538  692.95 kHz(0.016%
Mean amplitude 5.3 8.0 10.9 23.2 321 VIIl. CONCLUSIONS
(nm)
@ 0.95 145 198 4.21 5.82 We have discussed the problem of the reflection and trans-
Y 0.013 0.020 0.027 0.018 0.024  mission of a particle by an oscillating potential step. We

present both classical and quantum-mechanical calculations.
The classical model is expected to be valid in the region
were carried out using the detector only as a one-dimensionathere the vibration amplitude is large compared to the par-
PSD by summing up all counts in columns perpendicular tdicle wavelength, and shows a very rich behavior approach-

the plane of Fig. 4. ing that of chaotic systems in the region of parameter space
where the particles can make several collisitgee[17] for
details.
V1. EXPERIMENTAL RESULTS The quantum-mechanical calculations show that with

small vibration amplitudes the energy of the reflected neu-

In Fig. 5 the results of different measurements are showg.gns is changed by w, (one phonon exchangeAs the
by plotting the neutron counts in each detector column ver- P

amplitude increases, one sees additional sidebands corre-
Sus th? energy tr_ansfer that was calculated from the bea@bonding to two and higher numbers of phonons. Eventually
deflection according to Eq22). These measurements are

compared to what is expected from thedshaded histo- the spectrum of the reflected neutrons approaches that of a

grams. The relevant experimental parameters of the difrer_classical particle. As mentioned above in Sec. V and has
: p P een discussed by Perg&l], the classical limit only arises

ent measurements are listed in Table |. Each data point coE— . i o )
responds to a spatial distance of about 0.2 ¥@i mm in y neglecting or averaging the C.)SC'"at'OnS V.Vh'Ch appear as
the case of M4 and Mgat the detector plane. one takgs the quantgm-mechanlcal calculations to the limit.

The measurements clearly show that the beam profile@ pract!c_e these o_scnlatlons are _always eventually averaged
consist of several peaks, thus proving the quantization of th8Y the finite experimental resolution. _ _
energy transfer by the oscillating mirror. The width of the ~We have presented the results of a series of experiments
single peaks can be fully explained by the experimental resghere very cold neutrons are reflected from a glass surface
lution, thus they conform to the assumption that the transwhich was vibrated by a piezoelectric transducer. Our mea-
ferred energy spectrum is discrete. The position of the peakdurements were able to span the parameter region corre-
is in close agreement with what is expected from theory. sponding to both one phonon and multiphon@pproxi-

This is also true for the typical excitation pattern of the mately +12) exchange. Although we have not yet been able
sidebands as a function ef However, the surface inhomo- to go into the strong classical limit, we see clearly the ap-
geneity of the mirror oscillation has to be considered byproach to the spectrum expected classically. The results are
averaging the theory spectra calculated from Ef) over in all cases compatible with the quantum-mechanical de-
appropriate distribution ofr. The width A« and shape of scription whose validity is clearly a function of the experi-
these distributions was deduced from the optical measurenental resolution.
ment of the surface modes. This aVeraging degl’ades the vis- Thus in th|S System we can observe a Continuous transi_
|b|l|ty of the strong modulation of the intensities of neigh' tion from quantum(few phonon exchangeto classical
boring Sidebands that ShOWS in the theoretical I’esults in F|g¥many phonon exchangé‘)eha\/ior by S|mp|y adjusting an

2 and 3. . o experimental parameter.
We have made least-squares fits for a quantitative com-

parison of experiment and theory. In addition to the distribu-

tion of «, the finite resolution caused by the beam diver-

gence and the incident beam velocity spectrum were taken ACKNOWLEDGMENTS
into concern. The fitting parameters were 5, andA .

The results of the fit showed a close agreement of theory We thank Professor H. Stuhrmann and Professor R. Wag-
and experiment. The relative deviation @fandA« was on  ner for allowing us access to neutron beam facilities and for
the order of 5%. The main errors in these parameters cantheir hospitality during our stay in Geesthacht. We are grate-
from ambiguities in the optical determination of the oscilla- ful to the staff of the research reactor GeesthdERG) for
tion amplitudes. The parametér i.e., the separation of the their friendly help and support. This work would not have
distinct lines of the energy spectra is not influenced by thesbeen possible without the help of the Muni@fRM) reactor
errors. Indeed, we found an excellent agreement of the valgroup. We gratefully acknowledge financial support by the
ues of § that we got from the neutron experiment comparedGerman Federal Minister for Research and Technology
to its expected values calculated from the frequencies thdBMFT) under Contract No. 03 GI 3 TUM.
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