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We present a theoretical description of the formation of excited states H(n) due to the interaction of
relativistic H2 ions with thin foils. The classical transport theory based on a Monte Carlo solution of a
Langevin equation is generalized to relativistic speeds of the projectile. Relativistic corrections are introduced
to both collision dynamics and kinematics. Then distribution of excited states, H(n), is studied as a function
of the foil thickness and compared with recent experimental data.

PACS number~s!: 34.10.1x

I. INTRODUCTION

Conversion of moderately relativistic H2 beams with en-
ergies between 100 MeV and 1 GeV into H1 for injection
into proton storage rings~PSR! is accomplished by transmis-
sion through thin self-supporting foils. The thickness of these
foils is typically limited to a few hundredmg/cm2 ~1 mg/cm2

.50 Å .95 a.u.! in order to minimize the degrading of the
beam due to energy and angular straggling. This, in turn,
limits the efficiency of the conversion. Typically 10% of the
projectiles still exit as fast neutrals~H0! a fraction of which is
in an excited state H(n) @1#. A significant neutral component
is of considerable concern for high-current injection as envi-
sioned for spallation-neutron sources: Moderately excited
hydrogen, H~n>3!, can be easily field stripped in the first
bending magnet of the PSR, possessing therefore an ill-
defined magnetic rigidity and causing beam loss and high
levels of radiation near the first turn due to collisions with
the walls. The determination of the excited-state distribution
H(n) is therefore of considerable importance. We present in
the following the first microscopic simulation of the excited
formation for relativistic H2 beams. Our calculation employs
a relativistic generalization of a previously developed classi-
cal transport theory~CTT! @2#. This method employs a
Monte Carlo solution of a microscopic Langevin equation
describing multiple scattering inside the solid and can be
viewed as a stochastic version of the classical-trajectory
Monte Carlo~CTMC! method.

The extension to relativistic speeds discussed in this paper
refers to both the collision dynamics and kinematics. One
qualitatively new feature is the inclusion of transverse elec-
tromagnetic excitations of the dielectric medium. As we will
show below, their contribution at moderately relativistic en-
ergy&1 GeV corresponding to a relativisticg factor ofg<2
remains, however, small. We furthermore extend the classi-
cal transport simulation to the evolution of two-electron ini-
tial states of H2 by treating the detachment as a precursor to
the excited-state evolution of H(n).

We will apply the theoretical description to recent experi-
mental data@3# from the High-Resolution Atomic Beam Fa-

cility ~HIRAB! at the Los Alamos Meson Factory~LAMPF!
for H2 with energies between 200 and 800 MeV. We find
reasonably good agreement between experiment and theory.
Atomic units are used unless otherwise stated. A preliminary
report on this work has been given in Ref.@4#.

II. THEORY

The theoretical description of the excited-state formation
employs a number of simplifying assumptions which render
this seemingly complex problem numerically tractable.

~a! The conversion from H2 to H1 proceeds in a two-step
process of sequential collisions with the medium, i.e., with
electrons and/or nuclei of the atoms in the foil.

H2→H~n!1e2, ~1a!

H~n!→H11e2. ~1b!

This assumption is well justified in view of the observa-
tion that double ionization of H2 by a single charged-particle
collision or photon absorption in the gas phase accounts only
for about 1% of all ionizing collisions@5#. This so-called
‘‘shake-off’’ probability has been theoretically and experi-
mentally investigated for He, the closest isoelectronic part-
ner. The shake-off probabilities range, depending on the ion-
izing agent, between 0.26%@6,7# for the charged particles
and 1.66%@5,8,9# for photoionization at high energies. Since
H2 possesses only one bound state, the detachment@Eq.
~1a!# is assumed to be a one-step process occurring in a
single collision. It may result not only in the ground state but
in excited-state formation of hydrogen, H(n), due to
‘‘shakeup’’ of the second electron. The ionization of H(n) is,
on the other hand, a result of a sequence of collisions with
intermediate states H(n)→H~n8!•••→H1 @Eq. ~1b!# because
of the high density of states in a Coulomb field. The treat-
ment of this collisional redistribution of excited states due to
multiple scattering inside the foil is the primary goal of the
relativistic transport theory. The initial detachment and
shakeup provides initial conditions for the subsequent ran-
dom walk in state space. The detachment@Eq. ~1a!# and ion-
ization process@Eq. ~1b!# are treated as uncorrelated events.
Specifically, the detached electron is assumed to be well
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separated from H(n) such that it has no influence on the
subsequent collisional redistribution among hydrogenic
states.

~b! We employ classical relativistic dynamics in the trans-
port theory treating the multiple scattering sequence. Ac-
cordingly, the initial detachment process generates an initial
phase-space distribution which is then propagated according
to classical dynamics. The mapping onto initial and final
quantum states is performed by appropriate binning of the
phase space. The validity of a classical description of mul-
tiple scattering requires that the collisional momentum trans-
fer Dp satisfies the uncertainty relation@10#

Dp^r &n@1, ~2!

where ^r &n is the radius of the initial state. A useful and
somewhat more stringent criterion follows from the require-
ment @10# thatDp is of the order of the orbital momentum
pn , i.e.,Dp/pn*0.5. As will be shown below, this condition
is well satisfied for the collision systems under investigation
for excited states H~n.2! but only marginally so for the
ground state H~n51!. Possible quantum corrections would
have to be treated within a quantum version of the CTT.
Development of such a quantum transport theory for the
transport is a formidable task and a simplified version re-
stricted to low-lying bound states is currently being devel-
oped.

A. Collisional detachment and shakeup

The first step@Eq. ~1a!#, i.e., the collisional detachment of
H2 (1s,1s8), proceeds predominantly by ejection of the
loosely bound electron~1s8! in collisions with electrons or
nuclei of the carbon foil. The nonequivalent configuration of
the two-electron state (1s,1s8) of H2 plays a crucial role in
the description of ‘‘shakeup’’ and of the initial phase-space
distribution. Because of the small binding energy
e1s850.0275 a.u. relative to the neutral hydrogen core and
the relativistic collision speed~vp580–115 a.u.!, the detach-
ment cross sectionsD , or equivalently the inverse mean free
path lD

21 for collisional detachment of H2, can be deter-
mined from the total inverse mean free pathl0

21 of a quasi-
free electron in carbon,

lD
215NsD>l0

21, ~3!

whereN is the number density~N.9.931022/cm3!. The in-
verse mean free pathl0

21 consists of contributions due to
quasielastic scattering at a screened nucleus of carbon atoms,
lel

21 , and due to inelastic scattering at core electrons and

valence electrons,l i
21. The term~in!elastic process refers

here to the energy transfer to the medium. Calculation of
differential and integral inverse mean free paths~IMFP! in
linear response theory, or equivalently, in Born approxima-
tion, in the relativistic regime will be discussed in Sec. III.
Differential inverse mean free paths are sometimes referred
to as collision kernels in the context of transport equations.
They provide the basic scattering information for the detach-
ment and the excitation and ionization by multiple scattering.
The quasifree electron approximation~3! can be directly
tested by comparing with the exponential decay rate of the
H2 fraction as a function of the foil thicknessx,

PH2~x!5e2x/lD.e2z/l0, ~4!

with the one calculated from the mean free path for free
electrons~see Table I!. Experimental values forlD

21 at 800
MeV and theoretical values forl0

21 ~>3.731024! are indis-
tinguishable within the experimental resolution. We there-
fore simulate the detachment step by the transport of a qua-
sifree electron through the solid whereby each elastic or
inelastic collision event results in the destruction of H2. An
explicit treatment of the two-electron classical dynamics of
H2 is thereby circumvented. Equation~4! gives directly the
source function of neutralsS(x) per unit path length,

S~x!5
dPH~x!

dx
52

dPH2~x!

dx
, ~5!

of initial conditions for the transport of hydrogenic electrons.
In addition to the total source strength, information on the

relative distribution among hydrogenic statesPnlm is re-
quired. Starting point of the analysis of this ‘‘shakeup’’ dis-
tribution is the first Born approximation with a two-electron
transition amplitude

t i→~kf ,nlm!5^c~kW f ,nlm!uVuc i&, ~6!

whereV denotes the sum over all interactions between the
electrons in H2 with the screened target nuclei and with the
core and valence electrons of the carbon atoms. Highly cor-
related initial wave functions,ci for the H2 bound state as
well as approximately correlated final states representing ex-
citation and detachment should be employed. The resulting
cross section must be integrated over all final momenta
kW f . In practice, such calculations are very tedious and have
been rigorously performed only for double ionization of he-
lium by a bare Coulomb interaction with a structureless pro-
jectile @7#. A simpler approximation is provided by the gen-

TABLE I. Mean free path for elasticlel , longitudinal inelasticll , and transverse inelasticltr, and total mean free pathl0 of a quasifree
electron as a function of velocityv and equivalent proton energy in a.u. Also given are the relativistic parametersb5v/c and
g5@12(v/c)2#21/2.

E ~MeV! v b g lel ll ltr l0

226 81.10 0.592 1.24 4315 2261 1.293105 1467
500 103.85 0.758 1.53 7075 3523 0.713105 2276
581 107.73 0.786 1.62 7614 3770 0.663105 2428
716 112.75 0.823 1.76 8340 4102 0.603105 2629
800 115.35 0.842 1.85 8729 4279 0.583105 2743
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eralized shake approximation@11#. Accordingly, the
probability for shakeup into a hydrogen statenlm during
emission of a second electron with momentumkW f described
by a plane wave is given by the projection

Pnlm
~S! ~kW f !5C~kW f !z^kW f ,nlmuc i& z2. ~7!

The normalization constantC(kW f) is determined by the dif-
ferentials I(kW f) and integral single ionization cross sections
~sI!, as

(
nlm

Pnlm
~S! ~kW f !5s I~kW f !/s I ~8!

leading to

C~kW f !5
s I~kW f !

s I
F E d3rU E d3r 8c i~rW,rW8!e2 ikW f r$8U2G21

,

~9!

where we have used the closure property for the complete
sum over bound and continuum states~(nlm!. A further sim-
plification can be reached by neglecting the wave-number~or
energy! dependence of the normalization constantC(kW f).
The inclusive shakeup probability irrespective of the mo-
mentum of the outgoing electrons is then given by

Pnlm
~S! 5E d3rU E d3r 8c i~rW,rW8!fnlm* ~rW8!U2. ~10!

This generalized shake approximation has been previ-
ously used for relating the shakeup process by charged-
particle collisions with the corresponding process by photon
scattering beyond the dipole approximation@12#. This addi-
tional approximation tends to overemphasize the shakeup
contribution resulting from fast electron emission. However,
since the generalized shake approximation neglects correla-
tions between the two electrons in the final state which are
most important for slow electrons, it is not obvious how
much of an improvement Eq.~7! compared to Eq.~10!
would represent. We have therefore employed in our simu-
lation the approximation~10! with the initial wave function
ci of Chandrasekhar@13#. This three-parameter wave func-
tion with the asymmetric exponents for nonequivalent elec-
trons gives the binding energy~affinity! to within 6% of the
exact value. The final wave functions are hydrogenic. We
limit our calculation to the first excited states up ton53.
Higher excited states as well as double ionization are ne-
glected since their shake probabilities are very small. The
sudden approximation underlying the shake description of
detachment@Eqs.~7! and~10!# is in line with the description
of multiple collisions in terms of impulse momentum trans-
fers employed in the CTT@see Eq.~14! below#.

The source strength per unit path length for a given ex-
cited statenlm follows from Eqs.~5! and ~10! as

Snlm~x!52
dPH2~x!

dx
Pnlm

~S! . ~11!

This source strength can now be mapped onto a source
strength of classical initial conditions, i.e., of phase-space
density per unit length,

Snl
cl ~rW,pW ;x!5Ad„En2H~rW,pW !…u~L2 l !u~ l112L !,

~12!

whereH(rW,pW ) is the hydrogenic Hamiltonian

H~rW,pW !5
p2

2
2
1

r
,

LW 5rW3pW is the orbital angular momentum,u is the unit step
function, andA is the proper normalization constant such
that the integration of Eq.~12! over phase-space variables
(rW,pW ) yields Eq.~11!. Since in the sudden shakeup process
the initial position coordinate is confined to the radius of the
1s orbital, we have also tested the effect of the radial con-
finement of the initial phase-space distribution to radii less
than r 0.1.5 a.u. by multiplying the right-hand side of Eq.
~12! by a step functionu(r 02r ). We find the simulations to
be quite insensitive to this modification of the initial condi-
tions within ~.5%! and have therefore omitted this correc-
tion.

B. Excitation and ionization by multiple scattering

Collisional detachment and the resulting shakeup provide
the initial conditions for the classical electron in hydrogen
which is subject to multiple collisions in the solid. As a result
the distribution of bound states created by the shake process
is modified and ultimately ionized. We describe the evolution
of the hydrogenic electron by a stochastic version of New-
ton’s equation of motion, i.e., a microscopic Langevin equa-
tion @2#,

vẆ 52
rW

r 3
1FW c~ t !, ~13!

where the first term describes the unscreened interaction with
the electron with the proton andFW c(t) is a stochastic force
which describes multiple scattering in the solid. Here and in
the following (rW,vW ) denote the position and velocity vector
of the electron in the projectile frame. At relativistic speeds
(vp&c) relative to the laboratory frame, dynamical screen-
ing in the medium~the solid! is strongly suppressed and the
bare electron-projectile nucleus Coulomb interaction can be
used. We generate an ensemble of initial conditions with
strength per unit length~number of phase points! according
to Eq. ~11!. Their distribution in phase space is given by Eq.
~12!. Each phase-space point is propagated in timet accord-
ing to Eq. ~13!. The physical description of the classical
transport theory can be visualized as a ‘‘random flight’’ prob-
lem along a sequence of Kepler orbits@Fig. 1~a!# or equiva-
lently as a random walk through bound and continuum states
of the Coulomb problem@Fig. 1~b!#. During evolution in
time t, the hydrogen atom travels a distancex5vptgp
through the solid wheregp5[12(vp/c)

2]21/2. The point to
be noted is that the collision dynamics in the projectile frame
is entirely nonrelativistic sincev!c. Relativistic effects en-
ter through the stochastic forceFW c(t) since the velocity of
the electron in the laboratory frame is close toc, v8.vp&c
and therefore scattering of the projectile electron with the
medium is governed by relativistic dynamics.

We describe the stochastic force in terms of a sequence of
impulsive momentum transfers~‘‘kicks’’ !
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FW c~ t !5(
a

(
i

DpW i
ad~ t2t i

a!, ~14!

whereDpW i
a is the stochastic momentum transfer per collision

at the timet t
a. The determination ofFW c(t) is thereby reduced

to that of a stochastic sequence of pairs (DpW i
a ,t i

a). The ap-
proximation of the collisional interactions of fast electrons
with target atoms in terms of instantaneous momentum trans-
fers is based on the observation that the interaction is short
ranged with the range determined by the static screening
length in the medium~typically of the order of 1 a.u.!. The
corresponding collision timetc.1/vp is short compared to

the orbital periodtn52pv n
2152pn3.

In Eq. ~14! we have decomposed the sequence of colli-
sional momentum transfers into three independent subse-
quences. One sequence~a51! refers to elastic electron-target

core scattering while the others~a52,3! refer to inelastic
electron-electron scattering resulting in longitudinal and
transverse excitations of the medium. The sequence of colli-
sional momentum transfers and collision times in the target
frame (Dpi8

a ,t i8
a) is determined by relativistic collision dy-

namics. Lorentz transformation into the rest frame of the
proton provides the input to Eq.~14!. Details for the calcu-
lation of theDpi8 and t i8 will be given below. We neglect
electron capture from the target. Capture cross sections are
extremely small~<10214 a.u.! in the range of velocities con-
sidered here. This applies to both mechanical capture~Tho-
mas scattering@14#! and radiative capture@15#. The mapping
of the evolved classical phase-space distribution back onto
final quantum states proceeds via binning techniques well
known from the CTMC method. If the classical action
nc5(2uEu)21/2 lies in the interval@16#

@n~n2 1
2 !~n21!#1/3<nc<@n~n1 1

2 !~n11!#1/3 ~15!

the event is ascribed the final quantum numbern. For con-
tinuum states, which are included in the simulation, the ki-
netic energy at asympotically large distances should be
binned.

III. INVERSE MEAN FREE PATH

The essential input for the simulation of the detachment
process@Eq. ~4!# as well as of the excited-state evolution
described by the Langevin equation@Eqs.~13! and~14!# are
the relativistic differential~DIMFP! and integral inverse
mean free paths for quasi-free electrons. They determine the
attenuation length of the initial H2 component, the probabil-
ity distribution of collisional momentum transfersD p̄i8

a , and
the time intervals~flight times! Dt i8

a5t i118a 2t i8
a , between

these ‘‘kicks.’’ The DIMFP’s are calculated in the frame of
the medium and have to be Lorentz transformed to the pro-
jectile frame for use as input in Eq.~13!. For notational sim-
plicity we will omit all primes in this section with the under-
standing that all quantities refer to the laboratory frame. The
DIMFP’s to be used in the classical simulation will be cal-
culated in first-order quantum perturbation theory, i.e., in
Born approximation. In other words, the evolution of the
atomic electron is calculated classically while the driving
force for the random walk is determined by the quantum
mechanics of electron-solid interactions.

We consider the following scattering processes.
(a) Elastic scattering (a51). Elastic scattering refers in

the present context to zero energy transfer to target electrons.
For elastic scattering~a51! we calculatelel

21 from scattering
at an exponentially screened Coulomb potential,
V(r )52ZT exp(2r /a)/r , with a Thomas-Fermi screening
radius a50.886Z T

21/3 and ZT the charge of the target
nucleus~ZT56 for carbon!. In the first-order Born approxi-
mation we have@2#

dlel
21

dq
5
8pZT

2N

v2
q

@q21~1/a!2#2
. ~16!

The nonrelativistic expression in terms of the~relativistic!
momentum transferq agrees with the relativistic counterpart
to a good degree of approximation@17#. Nontrivial relativis-

FIG. 1. Random walk of an electron in the hydrogen atom due
to multiple scattering.~a! Sequence of classical Kepler orbits gen-
erated by collisional momentum transfers~‘‘slingshot effect’’!, ~b!
random walk in the Coulomb state space~e-l plane!.
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tic corrections become important only for ‘‘hard’’ collisions
at small impact parameters which contribute little to the total
cross section. They are, furthermore, of no relevance to the
transport problem since hard collisions remove a phase-space
point immediately from the relevant region in phase space
near the projectile. According to Eq.~16!, the integral IMFP
scales asv22,

lel
2154pZT

2Na2/v2. ~17!

(b) Longitudinal excitation (a52). Inelastic collisions
of the projectile electron with the medium lead to electronic
excitations in the medium, and hence, to modifications of the
electromagnetic field due to the polarization of the medium.
The dielectric response can be decomposed into a field com-
ponent parallel and perpendicular to the wave vectorkW of the
electromagnetic field. The parallel~or longitudinal! compo-
nent El describes the electrostatic~irrotational, ¹W 3EW l50!
response while the transverse componentEtr ~divergence-
free, ¹W EW tr50! describes the electrodynamic response. At
nonrelativistic velocities the electrostatic response com-
pletely dominates the energy transfer to the medium while at
relativistic speeds the transverse electromagnetic excitations
become increasingly important. The DIMFP as a function of
energy transferv and momentum transferq for electron scat-
tering associated with longitudinal excitations is given in
terms of the inverse dielectric function as@18,19#

d2l l
21

dv dq
5

2

pv2q
ImS 2

1

e~q,v! D . ~18!

For the dielectric function we use a modified form of the
approximation in terms of Drude functions due to Ashley
et al. @20#,

e21~q,v!512(
i51

5

x i~q,v!, ~19!

where each partial polarizabilityxi is given by the plasmon-
pole approximation which includes dispersion,

x i5
vpi
2

@voi1c2~Aq2/c21121!#22v22 ih iv
. ~20!

We use here the relativistic rather than the nonrelativistic
v(q) relation which describes the plasmon-pole position in
the (q,v) plane in the limit of largeq. The parameters for
the first four plasmon-pole terms (vpi ,voi ,h i) are taken
from Ref. @20#. A further term is added to account for the
carbonK-shell excitation with the relevant parameters de-
duced from optical absorption data@21–23#. The real and the
imaginary parts of the dielectric function are shown in Fig. 2
as a function ofv for different values ofq. This approxima-
tion reproduces the main collective resonances and shell ex-
citations observed in the optical energy loss spectrum. How-
ever, it does not properly represent low-frequency interband
and intraband excitations@24#. The approximations@Eqs.
~19! and ~20!# satisfy the Thomas-Reiche-Kuhn sum rule.
The integrated IMFP for longitudinal excitation scales as

l l
215

4pNZT
v2

ln
2v2

^v0&
, ~21!

where^v0& denotes the average excitation energy.
(c) Transverse excitation (a53). The DIMFP for trans-

verse excitation is given in terms of the complex dielectric
function e(q,v)5e1(q,v)1 i e2(q,v) by @18,19#

d2l tr
21

dv dq
5
2b2N

pc2q

~12cos2d!e2cos
2d

~12b2e1cos
2d!21b4e2

2cos4d
, ~22!

whered is the angle betweenpW 1 andqW ,

cosd5
~p1

22p2
2!1q2

2p1q
, ~23!

pW 1 and pW 2 are the momenta of the incident electron before
and after the collision,qW 5pW 12pW 2 , b5v/c, andpW 15gvW .

One prominent feature in the transverse excitation spec-
trum is the C̆erenkov singularity. For small energy and mo-
mentum transfers,e2 is small andd

2ltr
21/dv dq peaks near

12b2e1cos
2d.0, ~24!

which gives the dispersion relation for C˘ erenkov radiation.
For energy transfersv which are very small compared toc2,
Eq. ~24! reduces to

e1~v,q!1/25@b cosd#21'
2gcq

~2vg1q2!
. ~25!

In the ‘‘optical’’ limit of small momentum transfersq2!v
the dispersion relation reads

FIG. 2. Real and imaginary parts of the dielectric function of
carbon versus the energy transferv, e1~v,q!, ande2~v,q! for differ-
ent momentum transfersq50.1, 0.3, 0.5, and 1.

53 3193SIMULATION OF EXCITED-STATE FORMATION OF . . .



e1~v,q!1/2'
cq

v
. ~26!

Sincee1 is of the order of 1, the C˘ erenkov peak appears at
very small momentum transfersq. On the other hand, the
minimum momentum transfer in a collision,qmin , may be
well approximated byqmin'v/v at large velocities. There-
fore the relevant region in the (q,v) dispersion plane is de-
lineated by

e1~v,q!1/2'
cq

v
*b21. ~27!

The size of this region is limited further by the fact that with
increasingq,e1(v,q)

1/2 decreases~see Fig. 2!. The behavior
of d2ltr

21/dv dq in the region of the C˘ erenkov singularity is
illustrated in Fig. 3. The IMFP for transverse excitation
scales in the regiong&2 asv2 ~see Table I! and eventually
dominates over the longitudinal excitations~whose IMFP
scales asv22lnv2! in the highly relativistic regime. At mod-
erate values ofg<2 the two contributions are of comparable
order of magnitude, i.e., this regime is close to the stopping
power minimum.

The scaling behavior ofltr
21 is illustrated in terms of the

ratio of the DIMFP for several velocities relative to the
DIMFP at v5103.85 ~Fig. 4!. For the lowest velocity~v
580, Ep5226 MeV! we note, however, a drastic change of
shape of the DIMFP, in particular at low-energy transfers.
The latter is due to the disappearance of the C˘ erenkov sin-
gularity @see Eq.~27!#. A comparison ofdl21/dv, inte-
grated overq, for longitudinal and transverse excitations
~Fig. 5! indicates that transverse excitations contribute com-
paratively little to the energy loss of a fast electron atv5100
a.u. The mean values of the energy transfer are^v&tr50.8 and
^v&l.2. The comparison shows, furthermore, that at moder-

ately relativistic valuesg&2, the contribution of transverse
excitation is still relatively small compared to the longitudi-
nal excitation.

The DIMFP serves as input for the distribution functions
of the collisional momentum transferWa(DpW ). In order to
construct (DpW 52qW ), the energy transferv and momentum
transfer q5uDpW u must satisfy the relativistic~on shell!

FIG. 3. C̆erenkov peak ind2ltr
21/dv dq versus the energy trans-

fer v for q51023. Also shown aree1~v,q!, e2~v,q!, and the disper-
sion relation~26! for the C̆erenkov effect atv5100 a.u. FIG. 4. dl tr

21/dv for different projectile velocities correspond-
ing to proton energies of~a! Ep5800 MeV, ~b! Ep5716 MeV, ~c!
Ep5581 MeV,~d! Ep5500 MeV,~e! Ep5226 MeV. The lower part
of the figure shows the ratio of the DIMFP at a given energyE
relative to DIMFP at 500 MeV multiplied by the inverse squared
ratio of the velocities@v~500 MeV!/v(Ep)#

2.

FIG. 5. DIMFP versusv for the transverse and longitudinal
inelastic excitations atv5100 a.u. The DIMFP for transverse exci-
tations has been multiplied by 10 in order to facilitate comparison
of the shapes of both curves.
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energy-momentum dispersion relation for energiesE1,2 and
momentapW 1,2 before and after the collision,

DE5E12E25v5~p1
2c21c4!1/22@~pW 12qW !2c21c4#1/2,

~28!

which yields

Dpi5
v2

2c2gv
2

q2

2gv
2

v

v
~29!

and

Dp'
25q22Dpi

2. ~30!

The azimuthal angle ofDpW' is cyclic and therfore uniformly
distributed. The probability distributions are proportional to
the DIMFP,

Wa~DpW !}
1

q

d2la
21

dv dq
U
q5Dp,v5DE

~31a!

for a52, 3 and

Wel~DpW !}
1

q

dlel
21

dq
U
q5Dp

~31b!

for a51.
The elastic DIMFP@Eq. ~31b!# depends only onDp while

the inelastic DIMFP@Eq. ~31a!# depends on bothDE and
Dp. Accordingly, we construct one-or two-dimensional non-
uniform random number distributions representing the
DIMFP. The normalization is fixed through the relation be-
tween the IMFP and the time interval between collisions of
the same typea,

~ t i11
a 2t i

a!5Dta5x8/v. ~32!

Assuming a homogeneous medium, the flight timeDta , or
the distancex8 traveled, between successive collisions fol-
lows a Poisson probability distribution

Pa~x8!5la
21exp~2x8/la!. ~33!

Since inverse mean free paths are additive, the total inverse
mean free path for quasifree electron scattering is

l0
215 (

a51

3

la
21, ~34!

which determines the statistical distribution function for sur-
vival of the H2 fraction @Eqs.~3! and ~4!#.

IV. KINEMATICS

The collisional momentum transfers determined in the
preceding section refer to the laboratory frame and will be
denoted by primes,DpW 8, in the following. Their incorpora-
tion into the Langevin equation@Eq. ~13!# of the CTT re-
quires the Lorentz transformation of both the momentum
transfer distribution and the flight time distributions.

From the definition of the mean free path in the laboratory
frame,

l85E
t8~0!

t8
v8dt85E

0

Dt

v8
dt8

dt
dt, ~35!

and the transformation between the target frame and projec-
tile frame,

dt8

dt
5gpS 12

vW p•vW

c2 D , ~36!

the flight time becomes

Dt5l8/gpv8S 12
vW pvW

c2 D . ~37!

Since the speed of the electron in the projectile frame is
small (v!c) the path lengths of the electron and of the
projectile are approximately equal and Eq.~37! reduces to

Dt5l8/gpvp5Dt8/gp . ~38!

Note that the flight time in the projectile frame is contracted
because of the contraction of the mean free path, as seen in
the projectile frame.

Expressed in terms of the velocity of the electron before
(vW 185vW 8) and after the collision (vW 28) in the laboratory frame,
the momentum transferDpW 8, as determined by Eqs.~29! and
~30! and now denoted by primed quantities, can be expressed
as

g28vW 285g18vW 181DpW 8, ~39!

where

g1,28 5S 12
v1,282

c2 D 21/2

. ~40!

The initial velocity in the target framevW 18 is given by the
Lorentz transformation ofvW 1,

v1i8 5
v1i1vp

11v1ivp /c
2 , ~41!

v1'8 5
v1'

gp~11v1ivp /c
2!
, ~42!

The velocity after the collision in the laboratory frame is
therefore

vW 285
g18vW 181DpW 8

A~g18vW 181DpW 8!2/c211
. ~43!

The velocity in the projectile frame follows from the inverse
Lorentz transformation

v2i5
v2i8 2vp

12v2i8 vp /c
2 ~44!

and

v2'5
v2'8

gp~12v2i8 vp /c
2!
. ~45!
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Finally, the collisional momentum transfer in the projec-
tile frame is given for small velocities by

DpW 5vW 22vW 1 . ~46!

It is instructive to compare the resulting relativistic with the
nonrelativistic collisional momentum transferDpW @2#. To
simplify the analysis we consider the case of an electron
initially at rest in the projectile frame~vW 150!. To the lowest
order inDpi8/c and inDp82/2c we obtain the following ex-
pressions for the parallel and the perpendicular components
of the velocity and momentum transfer:

Dpi5v2i5
Dpi8

gp
2
v
c

Dp82

2c
~47!

and

Dp'5v2'5Dp'8 . ~48!

Using the expression ofDpi8 in terms of the energy and
momentum transfer@Eq. ~29!#, we find to first order in
Dp8/vp

v2i52
Dp82

2vp
2

v8

gp
. ~49!

This agrees with the nonrelativistic counterpart@see Ref.@2#,
Eq. ~37!# up to a factorgp in the denominator in the second
term of Eq.~49!. This observation has the following impli-
cations.

~a! For elastic scattering~v850! the second term in Eq.
~49! is absent. The relativistic and nonrelativistic transverse
@Eq. ~48!# and longitudinal@Eq. ~49!# momentum transfers
are identical.

~b! For inelastic scattering, the dominant region in the
energy-momentum transfer plane lies nearq25Dp82!v8.
Therefore, the longitudinal momentum transfer is com-
pressed by a factor 1/gp @Eq. ~49!# while the transverse mo-
mentum transfer remains unchanged.

Figure 6 illustrates the compression effect of the frame
transformation on the distributionW(Dpi) of the parallel
component of the momentum transfer for elastic and inelas-
tic collisions. While the longitudinal momentum transfer for
elastic collisions is unchanged, it is compressed by approxi-
mately the factor 1/gp for inelastic collisions. In both cases
of elastic and inelastic scattering the perpendicular momen-
tum transfer is only marginally changed. Since, furthermore,
the perpendicular component is larger than the parallel com-
ponent of the momentum transfer, the total momentum trans-
fer remains almost unaffected by the frame transformation.

The invariance of the transverse momentumDp' under
frame transformation@Eq. ~48!# should not be confused with
the compression of scattering angleu8 due to relativistic ki-
nematics. The relation between the angleu8, the momentum
transfer, and the velocity may be derived from the conserva-
tion of momentum for the collision in the laboratory frame.
In the case of elastic collisions we have

sinS u8

2 D5
Dp8

2gv8
. ~50!

The angle of deflection of the electron,u8, is reduced by a
factorg, compared to the nonrelativistic angle of deflection.
This effect is due to the effective mass increase of the elec-
tron at relativistic velocities.

Characteristic differences in the distribution functions,
Wa(uDpu), for elastic, longitudinal, and transverse inelastic
momentum transfers are displayed in Fig. 7. For inelastic
transfers, the distribution functionsWa @Eq. ~31a!# are inte-
grated over allDE. The transverse excitation peaks at small
momentum transfersuDpu!1 while the largest momentum
transfers result from elastic scattering. Atv5100 a.u. the
mean values are^Dp& tr51.1131022, ^Dp& l'1.6, and
^Dp&el53.2. These differences play a significant role in as-

FIG. 6. Influence of the frame transformation on the distribution
function W(Dpi) for the parallel component of the momentum
transfer Dpi for inelastic longitudinal and elastic collisions at
v5100 a.u. Shown areWa(Dpi) with relativistic and nonrelativis-
tic frame transformations for elastic collisions and inelastic longi-
tudinal excitations.

FIG. 7. Momentum transfer distributionWa(Dp) versus the
magnitudeDp for inelastic transverse, inelastic longitudinal, and
elastic collisions atv5100 a.u.
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sessing the validity of classical dynamics for calculating
atomic excitation and ionization. As was shown previously
@10#, classical dynamics is valid when the scaled momentum
transfer ^Dp&/pn5^Dp&n*Dp050.5. The momentum
transfers due to elastic scattering lie well above the critical
momentum transfer. However, the momentum transfer due to
transverse excitation as well as the low momentum tail of the
longitudinal inelastic excitations lie below this threshold for
the lowestn states~e.g., n51,2! while they approach the
classical regime in the Rydberg limitn@1. For example, at
v5100 a.u. we find that 6% of elastic collisions but 68% of
longitudinal and nearly 100% of transverse inelastic colli-
sions with momentum transfers below the critical value for
n51, Dp05Dp.0.5. This deficiency is partially compen-
sated by the fact that the mean free path for transverse exci-
tation~see Table I and Fig. 5! as well as the partial mean free
path for soft longitudinal collisions is large. Their statistical
weight in the multiple scattering is therefore reduced. Taking
into account the respective weight of the different interac-
tions ~see Table I!, we obtain a total probability of 43% for a
momentum transfer lower thanDp0 for the ground state and
smaller values for excited states. Classical dynamics can
therefore be expected to be valid with the possible exception
of the excitation functions for low-lying states~e.g.,
n51→n52!. The quantum-mechanical treatment of this
problem is currently under investigation@11#.

V. EXCITED-STATE FORMATION AND SURVIVAL

The evolution of different charge states and different ex-
cited states, H(n), of an incident H2 beam as a function of
the thickness of the foil is displayed in Fig. 8. The survival
probability of H2 follows an exponential decay law. Fluctua-
tions around the exponential curve are a measure of the sta-
tistical uncertainty of the Monte Carlo~MC! ensemble simu-
lation. The fraction of fully stripped H1 increases
monotonically. All excited-state fractions of H(n) display a
maximum. One significant feature of the survival probability

of the bound states versus the thickness is that the maxima of
the n51 and 2 distributions are shifted towards smaller
thicknesses relative to that of the highern states. This indi-
cates that the mechanism of production of highn states is
different from that of lown states. The shakeup during the
detachment of H2 produces predominantlyn51 and 2 states
of H ~see Table II! while excitation ton*3 occurs with a
probability of ,0.5%. Then51 and 2 states are therefore
produced in a single step, while highern states are produced
in ~at least! two steps, which requires an increased path
length, or equivalently, a larger thickness. The population of
the ground state serves as a source which feeds the highern
shells inaccessible by shakeup. Accordingly, the position of
the maximum ofn53 lies at a thickness which is a factor 1.7
larger than that forn51. Similar results hold for highern
shells.

All IMFP’s with the exception of the IMFP for transverse
excitations scale approximately with velocity asv p

22 ~ne-
glecting the slowly varying log term!. Since transverse exci-
tations are still relatively unimportant atg&2, this scaling
property can be employed to determine universal population
curves. In Fig. 9 we give the results for H2, H ~n5112!, and
H ~n53! for different collision velocities~vp580–115! as a
function of thickness in units of the mean free pathl0. It is
clear that the population distribution depends only on the
scaled thicknessx/l0. The influence of relativistic correc-
tions is illustrated in Fig. 10, in which we compare survival

FIG. 8. Population of H2, H1, and H(n), n51,...,10 versus the
thickness atEp5500 MeV.

TABLE II. Shake probability for producing H(n) during detach-
ment of H2 @using Eq.~10!#.

n 1 2 3

Pn ~shake! 0.801 0.18 0.002

FIG. 9. Fractions of H2, H ~n5112!, and H~n53! versus the
scaled thicknessx/l0, corresponding to the number of collisions,
for different energies~E5800, 716, 581, 500, and 226 MeV!. The
statistical error of the MC simulation is comparable to the differ-
ences between curves.
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probabilities for H2 and H(n) ~n51,. . .,4! employing rela-
tivistic and nonrelativistic dynamics. Obviously, for moder-
ate values ofg relativistic corrections are not yet important.
For larger energies beyond the stopping power minimum,
however, the excitation and ionization would be drastically
different when the transverse excitations begin to dominate
the IMFP.

A comparison between our CTT and recent experimental
data of Gulley and co-workers@3# ~see accompanying paper!
is presented in Fig. 11. Overall, the agreement is remarkably
good considering the fact that our simulation represents a
fully microscopic theory with no adjustable parameter. The
difference between the peak position of populations of the
n51 and 2 and of highern shells clearly indicates that the

former are formed in a single-step process while the latter
require multistep excitation paths. There are, however, a few
noticeable deviations, in particular, in the populations at
small thicknesses for which, on the average, only one or two
collisions have occurred. This suggests the need of improve-
ments of our simulations along two different lines: an im-
proved treatment of the initial shakeup process and a quan-
tum treatment of the excitation of low-lying states since a
fraction of characteristic momentum transfers is below the
critical threshold where excitation proceeds classically.

VI. RATE EQUATION MODEL

The observation of the universality of the populations as a
function of thickness suggests that a simple rate equation
model would be capable of describing some of their main
features. While less complete than the full simulation, the
rate equation model allows the parametrization in terms of a
few dominant inverse mean free paths, or equivalently, cross
sections which can be compared with the experiment.

For all states, the population is determined by the compe-
tition between the production by a source termS(x) per unit
length and the probability per unit length to leave the staten,
which is proportional to the population of the staten. Thus
the populationpn of a given staten at a given thicknessx
satisfies the following differential equation:

dpn
dx

5S2ln
21pn , ~51!

wherel n
21 is the probability per unit length for leaving the

staten. The solutionpn is then given by the convolution of
the source term with the decay term

pn~x!5E
0

x

S~x8!e2ln
21

~x2x8!dx8. ~52!

If we neglect the contribution of the highern levels to
produce then51 state, the source for the ground state
may be represented by an exponential function
S(x)5a01l 0

21p0(x) wherep0(x)5exp~2l0
21x! to account

for the H2 decay. Herea01 is the probability for decay to the
n51 state. Equation~52! leads to

p1~x!5a01l0
21E

0

x

e2l0
21x8e2l1

21
~x2x8!dx8

5
a01l0

21

l0
212l1

21 ~e2l1
21x2e2l0

21x! ~53!

in agreement with the result given by Mohagheghiet al. @1#.
For then52 state the source term may be approximated

by S(x)5a02l 0
21p0(x)1a12l 1

21p1(x), if we neglect the
contribution from highern states.a02 is the fraction of the
population of H2 shaken up inton52 while a12 is the frac-
tion of the population of the staten51 excited ton52. The
second term in the source function should be smaller than the
first since for small thicknessesp1(x)!p0(x). Furthermore,
the IMFP for ionization of H2, l0

21, is larger than the IMFP
for destruction of the staten51, l1

21 because of the smaller
binding energy of the detached electron. On the other hand,
the branching ratioa12, which should be of the order of the

FIG. 10. Comparison between the relativistic and nonrelativistic
CTT simulation atEp5800 MeV for H2 and H~n51, 2, 3, and 4!
as a function of the thickness.

FIG. 11. Comparison of present CTT simulation with absolute
experimental data~Ref. @3#! atEp5800 MeV for H2, H ~n5112!,
H ~n53!, and H~n54!.
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dipole oscillator strength in the Bethe-Born limit for 1s→2p
excitation.0.42 @25#, is larger than the branching ratio for
shakeupa02.0.18. Neglecting the second term inS(x), the
population functionp2(x) for n52 coincides with Eq.~53!
upon replacing the subscript 1 by 2. The shapes of then51
and 2 curves therefore closely resemble each other. For both
curves the maximum is at

xl0
215 ln~ l̃21!/~ l̃2121!, ~54!

wherel̃215l1,2
21/l0

21. Since bothl1
21 andl2

22 scale approxi-

mately asv p
22 with projectile velocity, the position of the

maximum in units of the MFP,x/l0, is independent of pro-
jectile velocity. According to our simulation, for both curves
the maximum occurs at the same thickness, implying that
l1

21'l2
21'l0

21/2.
For higher-lying states we can assume that the main

source term forn53 is provided by the population of the
states 1 and 2 instead of H2. Sincel1

21'l2
21 the source term

is

S~x!5a13l1
21p1~x!1a23l2

21p2~x!

'
l0

21l1
21

l0
212l1

21 ~a02a231a01a13!~e
2l1

21x2e2l0
21x!.

~55!

Consequently, the fraction of atoms in the staten53 ~or
higher! is

p3~x!5
l0

21l1
21

l0
212l1

21 ~a02a231a01a13!S e2l1
21x2e2l3

21x

l3
212l1

21

2
e2l0

21x2e2l3
21x

l3
212l0

21 D . ~56!

The population curvep3(x) reaches its maximum at larger
values ofx which serves as a clear signature that this state is
formed by a multistep rather than a single-step process.

Populations of highn shells can also be described by the
same functional form@Eq. ~56!#, however, with different pa-
rameters.

Equations~4!, ~53!, and~56! can be fitted to the numerical
results of the CTT~Fig. 11! to extract estimates for the in-
verse mean free pathsl0, l1, andl3 corresponding to de-
struction cross sectionss0, s1, s3 for the initial states H

2, H
~n51 or 2!, and H~n53!. Furthermore, through determina-
tion of the branching ratiosa0i a few state-selective cross
sections for stripping from H2 to H ~n51 and 2!, s0;112 and
excitation H~n51 or 2! to H ~n53!, s1,2;3 can be estimated.
Results and a comparison with the experiment@3# are given
in Table III. The overall agreement is satisfactory. As ex-
pected, the largest discrepancy appears in the excitation cross
section for smalln ~n51 and 2!.

VII. SUMMARY

We have presented a theoretical description of excited-
state formation of H and of ionization of H2 ions penetrating
solid targets at moderately relativistic speeds withg<2
~Ep&1 GeV!. We show that relativistic corrections of the
collisional momentum transfer due to the onset of transverse
electromagnetic excitations in the medium are not yet impor-
tant in this energy regime but may become so at higher en-
ergiesEp.1 GeV. Formation of low-lying states of H pro-
ceeds predominantly by a single collision resulting in
detachment and shakeup of the second electron. Higher-lying
states are predominantly formed in a multiple scattering se-
quence requiring at least two steps. We find good agreement
with recent experimental data for 800-MeV projectiles pen-
etrating thin carbon foils.

The present calculation deals with the populations ofn
shells. Since stripping by external fields is highly state selec-
tive with respect to parabolic substates, future investigations
will focus on the calculation of the thickness dependence of
the population of individual substates. A reliable determina-
tion of substate populations will require a more detailed
treatment of the primary shake process. Furthermore, we
plan to study the redistributions among low-lying states
within the framework of a quantum transport theory.
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TABLE III. Inverse mean free pathsl21 and cross sectionss determined by fitting the population curves
of the CTT to the rate equations@Eqs.~4!, ~53!, and~56!#, E5800 MeV. Experimental data from Ref.@3#.

Process l21 ~a.u.! stheory ~cm2! sexpt. ~cm
2!

Destruction of H2 l0
2153.731024 6.9310219 7.03310219

Destruction of H~n51 or 2! l1
21.1.431024 2.7310219 2.75310219

Destruction of H~n53! l3
21.331024 5.5310219 4.5310219

H2→H ~n51 and 2! 6.4310219 6.7310219

H ~n51 or 2!→H ~n53! 1.8310220 1.2310220
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