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We present a theoretical description of the formation of excited stated Hie to the interaction of
relativistic H ions with thin foils. The classical transport theory based on a Monte Carlo solution of a
Langevin equation is generalized to relativistic speeds of the projectile. Relativistic corrections are introduced
to both collision dynamics and kinematics. Thalistribution of excited states, i, is studied as a function
of the foil thickness and compared with recent experimental data.

PACS numbd(s): 34.10+x

I. INTRODUCTION cility (HIRAB) at the Los Alamos Meson Facto(gAMPF)
for H™ with energies between 200 and 800 MeV. We find

Conversion of moderately relativistic Hoeams with en-  reasonably good agreement between experiment and theory.
ergies between 100 MeV and 1 GeV intd Hor injection Atomic units are used unless ot_herw_|se stated. A preliminary
into proton storage ring@SR is accomplished by transmis- "€POrt on this work has been given in Rp4].
sion through thin self-supporting foils. The thickness of these
foils is typically limited to a few hundregg/cn? (1 ug/cn?
=50 A =95 a.u) in order to minimize the degrading of the ~ The theoretical description of the excited-state formation
beam due to energy and angular straggling. This, in turn€mploys a number of simplifying assumptions which render
limits the efficiency of the conversion. Typically 10% of the this seemingly complex problem numerically tractable.
projectiles still exit as fast neutralsi®) a fraction of which is (@) The conversion from Hto H” proceeds in a two-step

; ; o process of sequential collisions with the medium, i.e., with
in an exched state H() [1]. A S|gp|f|cant ”e“F“i" cqmponent .electrons and/or nuclei of the atoms in the foil.
is of considerable concern for high-current injection as envi-

II. THEORY

sioned for spallation-neutron sources: Moderately excited H —H(n)+e™, (1a
hydrogen, Hn=3), can be easily field stripped in the first L
bending magnet of the PSR, possessing therefore an ill- H(n)—H"+e". (1b)

defined magnetic rigidity and causing beam loss and high Thjs assumption is well justified in view of the observa-
levels of radiation near the first turn due to collisions with iy that double ionization of Hby a single charged-particle
the Wa.”s. The determination Of the eXCited'State distributiorbonision or photon absorption in the gas phase accounts Only
H(n) is therefore of considerable importance. We present ifor about 1% of all ionizing collisiong5]. This so-called
the following the first microscopic simulation of the excited “shake-off” probability has been theoretically and experi-
formation for relativistic H beams. Our calculation employs mentally investigated for He, the closest isoelectronic part-
a relativistic generalization of a previously developed classiner. The shake-off probabilities range, depending on the ion-
cal transport theory(CTT) [2]. This method employs a izing agent, between 0.26%%,7] for the charged particles
Monte Carlo solution of a microscopic Langevin equationand 1.66%45,8,9 for photoionization at high energies. Since
describing multiple scattering inside the solid and can beH™ possesses only one bound state, the detachifitemt
viewed as a stochastic version of the classical-trajectoryla)] is assumed to be a one-step process occurring in a
Monte Carlo(CTMC) method. single collision. It may result not only in the ground state but

The extension to relativistic speeds discussed in this papén excited-state formation of hydrogen, K due to
refers to both the collision dynamics and kinematics. Oné‘shakeup” of the second electron. The ionization ofri(s,
qualitatively new feature is the inclusion of transverse elecon the other hand, a result of a sequence of collisions with
tromagnetic excitations of the dielectric medium. As we will intermediate states Hj—H(n’)---—H" [Eq. (1b)] because
show below, their contribution at moderately relativistic en-of the high density of states in a Coulomb field. The treat-
ergy <1 GeV corresponding to a relativisticfactor of y<2  ment of this collisional redistribution of excited states due to
remains, however, small. We furthermore extend the classimultiple scattering inside the foil is the primary goal of the
cal transport simulation to the evolution of two-electron ini- relativistic transport theory. The initial detachment and
tial states of H by treating the detachment as a precursor tosshakeup provides initial conditions for the subsequent ran-
the excited-state evolution of Hf. dom walk in state space. The detachniétd. (18] and ion-

We will apply the theoretical description to recent experi-ization proces$Eq. (1b)] are treated as uncorrelated events.
mental datd 3] from the High-Resolution Atomic Beam Fa- Specifically, the detached electron is assumed to be well
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TABLE I. Mean free path for elastik,, longitudinal inelastic\;, and transverse inelastig, and total mean free pat, of a quasifree

electron as a function of velocity and equivalent proton energy in a.u. Also given are the relativistic paramgtetdc and
—12
y=[1-(v/c)?] 12

E (MeV) v B Y Nei N Ay Ao
226 81.10 0.592 1.24 4315 2261 1:200° 1467
500 103.85 0.758 1.53 7075 3523 0710° 2276
581 107.73 0.786 1.62 7614 3770 0680 2428
716 112.75 0.823 1.76 8340 4102 0:6D0° 2629
800 115.35 0.842 1.85 8729 4279 058P 2743

separated from H{() such that it has no influence on the valence electronsy; . The term(in)elastic process refers
subsequent collisional redistribution among hydrogenichere to the energy transfer to the medium. Calculation of
states. differential and integral inverse mean free patidFP) in

(b) We employ classical relativistic dynamics in the trans-linear response theory, or equivalently, in Born approxima-
port theory treating the multiple scattering sequence. Action, in the relativistic regime will be discussed in Sec. Ill.
cordingly, the initial detachment process generates an initidDifferential inverse mean free paths are sometimes referred
phase-space distribution which is then propagated accordinmg as collision kernels in the context of transport equations.
to classical dynamics. The mapping onto initial and finalThey provide the basic scattering information for the detach-
guantum states is performed by appropriate binning of thenent and the excitation and ionization by multiple scattering.
phase space. The validity of a classical description of mulThe quasifree electron approximatidB8) can be directly
tiple scattering requires that the collisional momentum transtested by comparing with the exponential decay rate of the
fer Ap satisfies the uncertainty relati¢f0] H™ fraction as a function of the foil thickness

Ap(ry,>1, (2) Py-(x)=e ¥ o=g=Zho, @

where(r), is the radius of the initial state. A useful and with the one calculated from the mean free path for free
somewhat more stringent criterion follows from the require-electrons(see Table). Experimental values fok 5 at 800
ment[10] that Ap is of the order of the orbital momentum MeV and theoretical values for,* (=3.7x10 %) are indis-
Pn.i.e.,Ap/p,=0.5. As will be shown below, this condition tinguishable within the experimental resolution. We there-
is well satisfied for the collision systems under investigationfore simulate the detachment step by the transport of a qua-
for excited states Hn>2) but only marginally so for the sifree electron through the solid whereby each elastic or
ground state Hn=1). Possible quantum corrections would inelastic collision event results in the destruction of.FAn
have to be treated within a quantum version of the CTTexplicit treatment of the two-electron classical dynamics of
Development of such a quantum transport theory for thed~ is thereby circumvented. Equatigd) gives directly the
transport is a formidable task and a simplified version re-source function of neutralS(x) per unit path length,
stricted to low-lying bound states is currently being devel-
oped. S(x)= deH(x) _ dPy-(x) | )

X dx

A. Collisional detachment and shakeup

of initial conditions for the transport of hydrogenic electrons.
In addition to the total source strength, information on the

relative distribution among hydrogenic stateg,,, is re-

nuclei of the carbon foil. The nonequivalent configuration qul_,ure_d. Starting point of the ana_ly3|s_ of th.'s shakeup” dis-
tribution is the first Born approximation with a two-electron

the two-electron state €11s’) of H™ plays a crucial role in transition amolitude
the description of “shakeup” and of the initial phase-space P
distribution. Because of the small binding energy _ P _
€, =0.0275 a.u. relative to the neutral hydrogen core and tic g mim = (ke nIM) V] ), ©)

the relativistic collision speet ,=80-115 a.y, the detach- ) .
ment cross section, , or equivalently the inverse mean free whereV denotes the sum over all interactions between the

path )\51 for collisional detachment of H can be deter- electrons in H with the screened target nuclei and with the
mined from the total inverse mean free paift of a quasi-  ¢°re and valence electrons of the carbon atoms. Highly cor-

The first stedEq. (13)], i.e., the collisional detachment of
H™ (1s,1s’), proceeds predominantly by ejection of the
loosely bound electrofils’) in collisions with electrons or

free electron in carbon related initial wave functionsy; for the H bound state as
’ well as approximately correlated final states representing ex-
AglzNngxal, ®) citation and detachment should be employed. The resulting

cross section must be integrated over all final momenta
whereN is the number densitfN=9.9x10?%cn®). The in-  k;. In practice, such calculations are very tedious and have
verse mean free path,® consists of contributions due to been rigorously performed only for double ionization of he-
quasielastic scattering at a screened nucleus of carbon atontism by a bare Coulomb interaction with a structureless pro-
Ao, and due to inelastic scattering at core electrons angectile [7]. A simpler approximation is provided by the gen-



53 SIMULATION OF EXCITED-STATE FORMATION CF. .. 3191

eralized shake approximatior{11]. Accordingly, the SA(F,p;x) =AS(E,—H(F,p))o(L—1)6(1+1—L)

. . . nitt n ' ’
probability for shakeup into a hydrogen staiém during (12
emission of a second electron with momentlkipdescribed .
by a plane wave is given by the projection whereH(r,p) is the hydrogenic Hamiltonian

Pim(ke) = C(kp) (ke ,nim] i) 2 @ P71
Hrp)=5—-1.

The normalization constarﬁ(lzf) is determined by the dif-
ferential oy (k) and integral single ionization cross sections| = p is the orbital angular momentung,is the unit step

(0y), as function, andA is the proper normalization constant such
that the integration of Eq(12) over phase-space variables
> PO (k) =0 (K)o, ®) (r,p) yields Eq.(11). Since in the sudden shakeup process

the initial position coordinate is confined to the radius of the
1s orbital, we have also tested the effect of the radial con-

leading to finement of the initial phase-space distribution to radii less
- _— thanry=1.5 a.u. by multiplying the right-hand side of Eq.
Ry = o (Kg) U & f By (F F’)e*i'sz' } (12) by a step functiord(r,—r). We find the simulations to
o, ne ' be quite insensitive to this modification of the initial condi-

(9)  tions within (=5%) and have therefore omitted this correc-

ti
where we have used the closure property for the complete
sum over bound and continuum stat&s,). A further sim-

e i B. Excitati d ionization b Itipl tteri
plification can be reached by neglecting the wave-nurtxer xeftation and fonization by muttiple scatiering

energy dependence of the normalization constatk;). Collisional detachment and the resulting shakeup provide
The inclusive shakeup probability irrespective of the mo-the initial conditions for the classical electron in hydrogen
mentum of the outgoing electrons is then given by which is subject to multiple collisions in the solid. As a result

, the distribution of bound states created by the shake process
L s -, is modified and ultimately ionized. We describe the evolution
Pﬁr)ﬂ:f d°r f Erg(r) ¢am()| - (10 of the hydrogenic electron by a stochastic version of New-
ton’s equation of motion, i.e., a microscopic Langevin equa-
This generalized shake approximation has been prevition [2],
ously used for relating the shakeup process by charged-
particle collisions with the corresponding process by photon
scattering beyond the dipole approximatidr?]. This addi-
tional approximation tends to overemphasize the shakeup
contribution resulting from fast electron emission. However,where the first term describes the unscreened interaction with
since the generalized shake approximation neglects correléie electron with the proton arfé,(t) is a stochastic force
tions between the two electrons in the final state which aravhich describes multiple scattering in the solid. Here and in
most important for slow electrons, it is not obvious how the following (,v) denote the position and velocity vector
much of an improvement Eq7) compared to Eq.(10) of the electron in the projectile frame. At relativistic speeds
would represent. We have therefore employed in our simufv,=c) relative to the laboratory frame, dynamical screen-
lation the approximatiori10) with the initial wave function ing in the medium(the solid is strongly suppressed and the
i of Chandrasekhdrl3]. This three-parameter wave func- bare electron-projectile nucleus Coulomb interaction can be
tion with the asymmetric exponents for nonequivalent elecused. We generate an ensemble of initial conditions with
trons gives the binding enerdgffinity) to within 6% of the  strength per unit lengtinumber of phase pointsiccording
exact value. The final wave functions are hydrogenic. Weo Eq.(11). Their distribution in phase space is given by Eq.
limit our calculation to the first excited states uprne=3.  (12). Each phase-space point is propagated in tiraecord-
Higher excited states as well as double ionization are neing to Eq. (13). The physical description of the classical
glected since their shake probabilities are very small. Thdéransport theory can be visualized as a “random flight” prob-
sudden approximation underlying the shake description ofem along a sequence of Kepler orhjifSg. 1(a)] or equiva-
detachmenfEqgs.(7) and(10)] is in line with the description lently as a random walk through bound and continuum states
of multiple collisions in terms of impulse momentum trans- of the Coulomb problenfFig. 1(b)]. During evolution in

-

= roo.
U=_r_3+Fc(t)v (13

fers employed in the CTTsee Eq.(14) below]. time t, the hydrogen atom travels a distange=vty,
The source strength per unit path length for a given exthrough the solid where/p=[1—(vp/c)2]‘1’2. The point to
cited statenIm follows from Egs.(5) and (10) as be noted is that the collision dynamics in the projectile frame

is entirely nonrelativistic since <c. Relativistic effects en-
0= dPy-(X) © 11 ter through the stochastic forde,(t) since the v’eﬂocity of
dx nim the electron in the laboratory frame is closectw’'=v,<c
and therefore scattering of the projectile electron with the
This source strength can now be mapped onto a souramedium is governed by relativistic dynamics.
strength of classical initial conditions, i.e., of phase-space We describe the stochastic force in terms of a sequence of
density per unit length, impulsive momentum transfefskicks” )
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core scattering while the othef&=2,3) refer to inelastic

a electron-electron scattering resulting in longitudinal and
transverse excitations of the medium. The sequence of colli-
/ sional momentum transfers and collision times in the target
- -T —~ N frame Ap{“,t/“) is determined by relativistic collision dy-
/| Ap \7\ namics. Lorentz transformation into the rest frame of the

proton provides the input to E@l4). Details for the calcu-
lation of the Ap; andt/ will be given below. We neglect
electron capture from the target. Capture cross sections are
extremely smal(<10 * a.u) in the range of velocities con-
sidered here. This applies to both mechanical capflne-

mas scatterin14]) and radiative capturgl5]. The mapping

of the evolved classical phase-space distribution back onto
final quantum states proceeds via binning techniques well
known from the CTMC method. If the classical action
n.=(2|E|) " *2lies in the interva[16]

[n(n—2)(n—1)]*<ne<[n(n+;)(n+1]** (19

the event is ascribed the final quantum numbefor con-
tinuum states, which are included in the simulation, the ki-
netic energy at asympotically large distances should be

attenuation length of the initial Hcomponent, the probabil-

— ity distribution of collisional momentum transfeAsp/*, and

the time intervals(flight timeg At/“=t/{, —t/“, between

these “kicks.” The DIMFP’s are calculated in the frame of

the medium and have to be Lorentz transformed to the pro-

jectile frame for use as input in E¢L3). For notational sim-

( plicity we will omit all primes in this section with the under-
standing that all quantities refer to the laboratory frame. The

DIMFP’ in the classical simulation will I-
FIG. 1. Random walk of an electron in the hydrogen atom due s to be used in the classical simulatio be ca

. . . ) culated in first-order quantum perturbation theory, i.e., in
to multiple scattering(a) Sequence of classical Kepler orbits gen- . . .
S . ” Born approximation. In other words, the evolution of the
erated by collisional momentum transfdfslingshot effect”), (b)

random walk in the Coulomb state spaed plane. atomic electron is calculate.d classicglly while the driving
force for the random walk is determined by the quantum
mechanics of electron-solid interactions.
ﬁc(t)ZE E APES(t—t%), (14) We cons_ider the f_oIIowing scatteri_ng processes. _
a (a) Elastic scattering ¢4=1). Elastic scattering refers in
the present context to zero energy transfer to target electrons.
whereAp ? is the stochastic momentum transfer per collisionFor elastic scatteringr=1) we calculatex ;' from scattering
at the timet {*. The determination of .(t) is thereby reduced at an exponentially screened Coulomb potential,
to that of a stochastic sequence of paidp(*,t%). The ap- V(r)=—Z;exp(-r/a)/r, with a Thomas-Fermi screening
proximation of the collisional interactions of fast electronsradius a=0.88& ;Y% and Z; the charge of the target
with target atoms in terms of instantaneous momentum trangiucleus(Z+=6 for carbon. In the first-order Born approxi-
fers is based on the observation that the interaction is shorhation we havd2]
ranged with the range determined by the static screening
length in the mediunitypically of the order of 1 a.).. The drgt 8wZiN q
corresponding collision timé,=1/v, is short compared to dqg 02 [q*+ (L)
the orbital periodt,,=27w, 1=2mn>.
In Eq. (14) we have decomposed the sequence of colli-The nonrelativistic expression in terms of tlrelativistic)
sional momentum transfers into three independent subseromentum transfeq agrees with the relativistic counterpart
guences. One sequenge=1) refers to elastic electron-target to a good degree of approximatiph?7]. Nontrivial relativis-

c binned.
b
N
; § lll. INVERSE MEAN FREE PATH
T § The essential input for the simulation of the detachment
e=0 \ _ . process[Eq. (4)] as well as of the excited-state evolution
== = - described by the Langevin equatifiggs.(13) and(14)] are
— the relativistic differential(DIMFP) and integral inverse
c=- %2 mean free paths for quasi-free electrons. They determine the
2n —

(16)
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tic corrections become important only for “hard” collisions

at small impact parameters which contribute little to the total

cross section. They are, furthermore, of no relevance to the
transport problem since hard collisions remove a phase-space 3
point immediately from the relevant region in phase space

near the projectile. According to E¢L6), the integral IMFP

o S b
scales a® 4,
N t=4mwZiNa?/v2. 17) g !
£
(b) Longitudinal excitation ¢=2). Inelastic collisions ‘: 4 : ' :
of the projectile electron with the medium lead to electronic 'S
excitations in the medium, and hence, to modifications of the & 3 £ (@)
5 r 2

electromagnetic field due to the polarization of the medium.
The dielectric response can be decomposed into_a field com-
ponent parallel and perpendicular to the wave vektof the
electromagnetic field. The parall@r longitudina) compo-
nent E, describes the electrostatigrotational, V X E;=0)
response while the transverse componEgt (divergence-
free, VE,=0) describes the electrodynamic response. At
nonrelativistic velocities the electrostatic response com-
pletely dominates the energy transfer to the medium while at
relativistic speeds the transverse electromagnetic excitations
become increasingly important. The DIMFP as a function of
energy transfew and momentum transfeyfor electron scat- FIG. 2. Real and imaginary parts of the dielectric fupction of
tering associated with longitudinal excitations is given inCarbon versus the energy transiere,(w,q), andey(w,q) for differ-
terms of the inverse dielectric function f&3,19 ent momentum transfeg=0.1, 0.3, 0.5, and 1.

2.5 3

vt o2
dw dq mv?

(-1 4Nz 2v? 2

- | =z N,

q Im( e(q,w))' (18) v (wo)

where(wy) denotes the average excitation energy.

(c) Transverse excitatiorm(=3). The DIMFP for trans-
rse excitation is given in terms of the complex dielectric

For the dielectric function we use a modified form of the
approximation in terms of Drude functions due to Ashleyve

etal.[20], function e(q, ) = e,(q, )+ €5(q, ) by [18,19

5

d>\, ' 2B°N (1-c0$8) €,c08 5
-1 ’ =1— . , , 19 tr _ 2
¢ () iZl xi(G.) 19 do dqg  mc’q (1— B%€,c086)%+ B*escod s’ 22
where each partial polarizability. is given by the plasmon- Wwhere§ is the angle betweep, andd,
pole approximation which includes dispersion, (02— p2)+ ¢
—p2)+
) cosd= M, (23)
Xi= —.
" [woi+ (Vo +1-1) P - 0P~ ipw p, and p, are the momenta of the incident electron before

and after the collisiong=p,—p,, B=v/c, andp,=yv.
We use here the relativistic rather than the nonrelativistic One prominent feature in the transverse excitation spec-
w(q) relation which describes the plasmon-pole position intrum is the @renkov singularity. For small energy and mo-
the (@, ) plane in the limit of largeq. The parameters for mentum transferss, is small anddz)\tjllda) dq peaks near
the first four plasmon-pole termsw(;,w,;,7;) are taken
from Ref.[20]. A further term is added to account for the 1— B%€,c086=0, (24)
carbonK-shell excitation with the relevant parameters de- .
duced from optical absorption ddtal1—23. The real and the which gives the dispersion relation fore@nkov radiation.
imaginary parts of the dielectric function are shown in Fig. 2For energy transfers which are very small compared &3,
as a function ofw for different values ofy. This approxima- Eq. (24) reduces to
tion reproduces the main collective resonances and shell ex-
citations observed in the optical energy loss spectrum. How-
ever, it does not properly represent low-frequency interband
and intraband excitationf24]. The approximation§Egs.
(19 and (20)] satisfy the Thomas-Reiche-Kuhn sum rule. In the “optical” limit of small momentum transferg®<w
The integrated IMFP for longitudinal excitation scales as the dispersion relation reads

2ycq

er(w,q)?=[ Cog]fl*m-

(29
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£,(w.9) |

d*,/dwdg "

(arb. units)
[\

0 0.02 004 006 008 0.1

FIG. 3. Gerenkov peak im®\; Y/dw dq versus the energy trans-
fer o for q=10*3. Also shown ares (w,9), €(w,q), and the disper-
sion relation(26) for the Gerenkov effect ab =100 a.u.

Bl
i, Mdo (au)

ratio

o (a.u.)

FIG. 4. d\; Ydw for different projectile velocities correspond-

ing to proton energies o) E,=800 MeV, (b) E;=716 MeV, (c)

El(w!q)llzw

cq E,=581 MeV, (d) E,=500 MeV, (e) E,=226 MeV. The lower part
o (26) of the figure shows the ratio of the DIMFP at a given enefy

relative to DIMFP at 500 MeV multiplied by the inverse squared

Sincege is of the order of 1, the €&enkov peak appears at
very small momentum transfes. On the other hand, the
minimum momentum transfer in a collision,,,, may be
well approximated byg,~w/v at large velocities. There-
fore the relevant region in they(w) dispersion plane is de-
lineated by

ratio of the velocitiegv (500 MeW)/v (E,) I~

ately relativistic valuesy=2, the contribution of transverse
excitation is still relatively small compared to the longitudi-
nal excitation.

The DIMFP serves as input for the distribution functions
of the collisional momentum transfé¥ _(Ap). In order to

construct Ap=—q), the energy transfes and momentum

ex(0,q) = =g, @7

The size of this region is limited further by the fact that with
increasingy, ; (w,q) 2 decrease¢see Fig. 2 The behavior

of d®\;Ydw dq in the region of the €renkov singularity is
illustrated in Fig. 3. The IMFP for transverse excitation
scales in the region=2 asv? (see Table) and eventually
dominates over the longitudinal excitatiofiwhose IMFP
scales a® ~2nv?) in the highly relativistic regime. At mod-
erate values of=<2 the two contributions are of comparable
order of magnitude, i.e., this regime is close to the stopping
power minimum.

The scaling behavior af, ! is illustrated in terms of the
ratio of the DIMFP for several velocities relative to the
DIMFP at v=103.85 (Fig. 4). For the lowest velocity(v
=80, E,=226 MeV) we note, however, a drastic change of
shape of the DIMFP, in particular at low-energy transfers.
The latter is due to the disappearance of tlere@kov sin-
gularity [see Eq.(27)]. A comparison ofd\ ~Y/dw, inte-
grated overq, for longitudinal and transverse excitations
(Fig. 5 indicates that transverse excitations contribute com-

transfer q=|Ap| must satisfy the relativistidon shel)

-4 [ n . .
3x10 I longitudinal

——transverse (x10)

2107

d\Ydo (a.u)

1104

010°¢

FIG. 5. DIMFP versusw for the transverse and longitudinal

paratively little to the energy loss of a fast electrom at100 inelastic excitations at =100 a.u. The DIMFP for transverse exci-
a.u. The mean values of the energy transfefajg=0.8 and  tations has been multiplied by 10 in order to facilitate comparison
(w)=2. The comparison shows, furthermore, that at moderef the shapes of both curves.
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energy-momentum dispersion relation for enerdigs and ftr At dt’
N = v'dt' = f
t

momentap, , before and after the collision, v’ — dt, (35

'(0) o dt

= _ — = (n2r2 N2 _ (A _A)V2A~2 411/2
AE=Ei~Ep=w=(picttch [(Pr—aq) e e, and the transformation between the target frame and projec-

(28) tile frame,
hich yield U
which yields dt’_ Gy o
Apy= w? P o 29 dt  7p c? | (36
T2 2w
v v the flight time becomes
and N
At=\"Typ'| 1- 28 3
Ap?=q?—Ap?. (30 =Ny 1= ) 37

The azimuthal angle ok p, is cyclic and therfore uniformly  Since the speed of the electron in the projectile frame is
distributed. The probability distributions are proportional tosmall (v<c) the path lengths of the electron and of the

the DIMFP, projectile are approximately equal and E87) reduces to
2y —1 ' '
W (Aﬁ)ocl d°n, (314 At=N"1ypu,=At"]y,. (38
“« do d
400 Al_sp0-ae Note that the flight time in the projectile frame is contracted
for a=2. 3 and because of the contraction of the mean free path, as seen in

the projectile frame.
Expressed in terms of the velocity of the electron before
(B1b  (gj=v") and after the collisiont}) in the laboratory frame,
a=4p the momentum transfexp’, as determined by Eq&29) and
for a=1. (30) and now denoted by primed quantities, can be expressed

The elastic DIMFHEQq. (31b)] depends only o p while ~ 3S
the inelastic DIMFP[Eq. (313] depends on botlAE and

WG 1drgt
el( p)oca dq

Ap. Accordingly, we construct one-or two-dimensional non- Y202= 7101+ AP, (39)
uniform random number distributions representing the,here

DIMFP. The normalization is fixed through the relation be-

tween the IMFP and the time interval between collisions of i3 Y2

the same type, V1= ( 1- ?> (40)

(=) =Ate=x/v. (32) The initial velocity in the target frame; is given by the
Assuming a homogeneous medium, the flight tixig,, or ~ Lorentz transformation ob,

the distancex’ traveled, between successive collisions fol- I
1T VUp

lows a Poisson probability distribution P 0 P
ET] T+v50,/c2" (41)
P (X)=\_exp—x'/\,). (33
, U1l
Since inverse mean free paths are additive, the total inverse UMZW’ (42)
mean free path for quasifree electron scattering is P P
3 The velocity after the collision in the laboratory frame is
)\51: 2 )\;1, (34) therefore
a=1
., vwitAp
which determines the statistical distribution function for sur- U= \/(7,5 AP+ 1 (43)
1Y1

vival of the H™ fraction[Egs.(3) and (4)].

The velocity in the projectile frame follows from the inverse
IV. KINEMATICS Lorentz transformation

The collisional momentum transfers determined in the
preceding section refer to the laboratory frame and will be Vy=———
denoted by primesAp’, in the following. Their incorpora- 1-vyuplc
tion into the Langevin equatiofEg. (13)] of the CTT re-
guires the Lorentz transformation of both the momentumand
transfer distribution and the flight time distributions.

From the definition of the mean free path in the laboratory Uy =— .
frame, Yp(l=vvp/co)

Uéu_vp (44)

v ’
21 (45)
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Finally, the collisional momentum transfer in the projec- 14

tile frame is given for small velocities by ——rel. inelastic
----- nonrel inelastic
--o--rel. elastic

Ap=v,~0;. (46) b2

- nonrel elastic

It is instructive to compare the resulting relativistic with the
nonrelativistic collisional momentum transfeérp [2]. To
simplify the analysis we consider the case of an electron
initially at rest in the projectile framé& ;=0). To the lowest
order inAp;/c and inAp’?/2c we obtain the following ex-
pressions for the parallel and the perpendicular components
of the velocity and momentum transfer:

probability density

Aoy, AP v AP
Pi=vy= ¥y C 2C

(47)

and 0 0.5 1 1.5 2

, ap, (102 a.n)
Ap, =vy =Ap; . (48)

FIG. 6. Influence of the frame transformation on the distribution
function W(Ap,) for the parallel component of the momentum
transfer Ap, for inelastic longitudinal and elastic collisions at
v=100 a.u. Shown ar&/,(Ap;) with relativistic and nonrelativis-
tic frame transformations for elastic collisions and inelastic longi-
(49) tudinal excitations.

Using the expression aip; in terms of the energy and
momentum transfefEq. (29)], we find to first order in
Ap'lv,

Ap/z wr
U2 va Yp.
The angle of deflection of the electrod,, is reduced by a
This agrees with the nonrelativistic countergage Ref[2],  factor y, compared to the nonrelativistic angle of deflection.
Eq. (37)] up to a factory, in the denominator in the second This effect is due to the effective mass increase of the elec-
term of Eq.(49). This observation has the following impli- tron at relativistic velocities.
cations. Characteristic differences in the distribution functions,
(a) For elastic scatteringow’=0) the second term in Eq. W,_(|Ap|), for elastic, longitudinal, and transverse inelastic
(49) is absent. The relativistic and nonrelativistic transversamomentum transfers are displayed in Fig. 7. For inelastic
[Eq. (48)] and longitudinallEq. (49)] momentum transfers transfers, the distribution functio, [Eq. (313] are inte-

are identicgl. _ _ _ o grated over alAE. The transverse excitation peaks at small
(b) For inelastic scattering, the _domlnant region in themomentum transferfAp|<1 while the largest momentum
energy-momentum transfer plane lies nedr=Ap’?<w’.  transfers result from elastic scattering. At100 a.u. the

Therefore, the longitudinal momentum transfer is com-mean values are(Ap),=1.11x10% (Ap)~1.6, and
pressed by a factor 4} [Eq. (49)] while the transverse mo- (Ap),=3.2. These differences play a significant role in as-
mentum transfer remains unchanged.

Figure 6 illustrates the compression effect of the frame
transformation on the distributiodV(Ap,) of the parallel 10!
component of the momentum transfer for elastic and inelas-
tic collisions. While the longitudinal momentum transfer for
elastic collisions is unchanged, it is compressed by approxi-
mately the factor 1y, for inelastic collisions. In both cases
of elastic and inelastic scattering the perpendicular momen-
tum transfer is only marginally changed. Since, furthermore,
the perpendicular component is larger than the parallel com-
ponent of the momentum transfer, the total momentum trans-
fer remains almost unaffected by the frame transformation.

The invariance of the transverse momentip, under
frame transformatiofEq. (48)] should not be confused with
the compression of scattering angledue to relativistic ki-
nematics. The relation between the anglethe momentum 102 L7 ,
transfer, and the velocity may be derived from the conserva- 102 107! 10°
tion of momentum for the collision in the laboratory frame. Ap (au)

In the case of elastic collisions we have

——transverse
------- longitudinal
~-----elastic

10° L

probability density

, , FIG. 7. Momentum transfer distributioW/,(Ap) versus the
sin 9_ _ Ap (50) magnitudeAp for inelastic transverse, inelastic longitudinal, and
2y’ elastic collisions ab =100 a.u.

2
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TABLE Il. Shake probability for producing H{) during detach-
ment of H™ [using Eq.(10)].

n 1 2 3

P, (shake 0.801 0.18 0.002

of the bound states versus the thickness is that the maxima of
the n=1 and 2 distributions are shifted towards smaller
thicknesses relative to that of the highestates. This indi-
cates that the mechanism of production of higlstates is
different from that of lown states. The shakeup during the
detachment of H produces predominantly=1 and 2 states

of H (see Table Il while excitation ton=3 occurs with a
probability of <0.5%. Then=1 and 2 states are therefore
produced in a single step, while higheistates are produced

0 1 2 3 in (at leas}t two steps, which requires an increased path
length, or equivalently, a larger thickness. The population of
the ground state serves as a source which feeds the hgher
shells inaccessible by shakeup. Accordingly, the position of
the maximum oh=3 lies at a thickness which is a factor 1.7
larger than that fon=1. Similar results hold for highen
shells.

All IMFP’s with the exception of the IMFP for transverse

probability

thickness (104 au.)

FIG. 8. Population of H, H*, and Hn), n=1,...,10 versus the
thickness a€,=500 MeV.

sessing the validity of classical dynamics for calculating
atomic excitation and ionization. As was shown previously,, .itations scale approximately with velocity agz (ne-

[10], classical dynamics is valid when the scaled momentu : - : .
transfer (Ap)/p,=(Ap)n=Ap,=05. The momentum rrElectlng the slowly varying log terjnSince transverse exci

; ) ... _tations are still relatively unimportant gt<2, this scaling
transfers due to elastic scattering lie well above the critical roperty can be employed to determine universal population
momentum tra_nsf_er. However, the momentum transfe_r due t9 ves In Fig. 9 we give the results for HH (n=1+2), and
transverse excitation as well as the low momentum tail of the, (n=3) for different collision velocitiesy ,=80—115 as a
longitudinal inelastic excitations lie below this threshold for P

the lowestn states(e.g..n—1,2 while they approach the function of thickness in units of the mean free path It is
X SIS s clear that the population distribution depends only on the
classical regime in the Rydberg limit=>1. For example, at Pop P y

- ) : T scaled thickness/\y. The influence of relativistic correc-
v—l_OO a.u. we find that 6% of elastic CO"'S'OUS but .68% O_ftions is illustrated in Fig. 10, in which we compare survival
longitudinal and nearly 100% of transverse inelastic colli-

sions with momentum transfers below the critical value for

n=1, Apo=Ap=0.5. This deficiency is partially compen- 10°
sated by the fact that the mean free path for transverse exci-
tation(see Table | and Fig.)@s well as the partial mean free
path for soft longitudinal collisions is large. Their statistical
weight in the multiple scattering is therefore reduced. Taking
into account the respective weight of the different interac-
tions (see Table), we obtain a total probability of 43% for a
momentum transfer lower thakp, for the ground state and 10
smaller values for excited states. Classical dynamics can
therefore be expected to be valid with the possible exception
of the excitation functions for low-lying statege.g.,
n=1—n=2). The quantum-mechanical treatment of this
problem is currently under investigatigml].

probability

1073

1074
V. EXCITED-STATE FORMATION AND SURVIVAL

The evolution of different charge states and different ex- 10°
cited states, H{f), of an incident H beam as a function of
the thickness of the foil is displayed in Fig. 8. The survival number of collisions
probability of H™ follows an exponential decay law. Fluctua-
tions around the exponential curve are a measure of the sta- |G, 9. Fractions of H, H (n=1+2), and H(n=3) versus the
tistical uncertainty of the Monte Cari®C) ensemble simu-  scaled thicknesg/\,, corresponding to the number of collisions,
lation. The fraction of fully stripped H increases for different energiesE=800, 716, 581, 500, and 226 M&\VThe
monotonically. All excited-state fractions of HY display a statistical error of the MC simulation is comparable to the differ-
maximum. One significant feature of the survival probability ences between curves.
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former are formed in a single-step process while the latter
require multistep excitation paths. There are, however, a few
noticeable deviations, in particular, in the populations at
small thicknesses for which, on the average, only one or two
collisions have occurred. This suggests the need of improve-
ments of our simulations along two different lines: an im-
proved treatment of the initial shakeup process and a quan-
tum treatment of the excitation of low-lying states since a
fraction of characteristic momentum transfers is below the
critical threshold where excitation proceeds classically.

---- nonrelativistic
— relativistic

probability

VI. RATE EQUATION MODEL

The observation of the universality of the populations as a
function of thickness suggests that a simple rate equation
model would be capable of describing some of their main
features. While less complete than the full simulation, the
rate equation model allows the parametrization in terms of a
. . few dominant inverse mean free paths, or equivalently, cross

thickness (10” a.u.) sections which can be compared with the experiment.
_ o ~ For all states, the population is determined by the compe-

FIG_. 10. _Companson between the relativistic and nonrelativisticiition between the production by a source teB(x) per unit
CTT simulation at£,=800 MeV for H" and H(n=1, 2, 3,and 4  |ongth and the probability per unit length to leave the state
as a function of the thickness. which is proportional to the population of the stateThus
the populationp,, of a given staten at a given thicknesg
satisfies the following differential equation:

probabilities for H and H{) (n=1,...,9 employing rela-
tivistic and nonrelativistic dynamics. Obviously, for moder-
ate values ofy relativistic corrections are not yet important. dp, .
For larger energies beyond the stopping power minimum, W:S_)\“ Pn s (51
however, the excitation and ionization would be drastically
different when the transverse excitations begin to dominatgynere) ;% is the probability per unit length for leaving the
the IMFP. staten. The solutionp,, is then given by the convolution of
A comparison between our CTT and recent experimentajhe source term with the decay term
data of Gulley and co-workef8] (see accompanying paper
is presented in Fig. 11. Overall, the agreement is remarkably
good considering the fact that our simulation represents a
fully microscopic theory with no adjustable parameter. The
difference between the peak position of populations of the |f we neglect the contribution of the higher levels to
n=1 and 2 and of highen shells clearly indicates that the produce then=1 state, the source for the ground state
may be represented by an exponential function
S(X) = g\ o 1po(X) where po(x) =exp(—\g x) to account
for the H™ decay. Hereyy, is the probability for decay to the
n=1 state. Equatiori52) leads to

Pr(X)= fXS(x’)e‘”rTl(X‘X/)dx’. (52)
0

— X =1, =1 .
P1(X)=agiNg 1f e Mo X e M (XX gy’
0

-1
= T (e Km0 ) (53

probability

in agreement with the result given by Mohagheghal. [1].

For then=2 state the source term may be approximated
by S(X)= g g *Po(X) + a1k 1 1p1(X), if we neglect the
contribution from highemn states.«y, is the fraction of the
population of H shaken up intoy=2 while a;, is the frac-
tion of the population of the state=1 excited ton=2. The
second term in the source function should be smaller than the

thickness (10* a.u.) first since for small thicknesses (x) <po(x). Furthermore,
the IMFP for ionization of H, Ay !, is larger than the IMFP

FIG. 11. Comparison of present CTT simulation with absolutefor destruction of the state=1, ;! because of the smaller
experimental datéRef.[3]) at E,=800 MeV for H", H (n=1+2), binding energy of the detached electron. On the other hand,
H (n=3), and H(n=4). the branching ratiay,, which should be of the order of the

0 1

to
[}
=
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TABLE Ill. Inverse mean free paths ! and cross sections determined by fitting the population curves
of the CTT to the rate equatioh&gs.(4), (53), and(56)], E=800 MeV. Experimental data from R€f].

Process A1 (@) Tiheory (CNP) Texpt, (€M)
Destruction of H Ao l=3.7x10"* 6.9x10 19 7.03x1071°
Destruction of H(n=1 or 2 AL 1=1.4x107% 2.7x107%° 2.75x10 1°
Destruction of H(n=3) A3 1=3%x10"* 5.5x10 19 4.5x10°19
H —H (n=1and 2 6.4x10 19 6.7X1071°
H (n=1 or 2—H (n=3) 1.8x10 20 1.2x107%°

dipole oscillator strength in the Bethe-Born limit fos42p
excitation=0.42[25], is larger than the branching ratio for same functional forniEq. (56)], however, with different pa-

shakeupay,=0.18. Neglecting the second term $(x), the

population functionp,(x) for n=2 coincides with Eq(53)
upon replacing the subscript 1 by 2. The shapes ofthé )
and 2 curves therefore closely resemble each other. For boigrse mean free pathe,, A;, andA; corresponding to de-

curves the maximum is at

X\g t=In(N"H/(N1-1),

whereX 1=\{ ¥\ *. Since bothh; * and\, 2 scale approxi-
mately asv , 2 with projectile velocity, the position of the
maximum in units of the MFPx/\,, is independent of pro-
jectile velocity. According to our simulation, for both curves

(59

Populations of highh shells can also be described by the

rameters.
Equationg4), (53), and(56) can be fitted to the numerical
results of the CTT(Fig. 11 to extract estimates for the in-

struction cross sections,, o4, o5 for the initial states H, H

(n=1 or 2, and H(n=3). Furthermore, through determina-
tion of the branching ratiosy, a few state-selective cross
sections for stripping from Hto H (n=1 and 2, 0¢.1,, and
excitation H(n=1 or 2 to H (n=3), o, ,.3can be estimated.
Results and a comparison with the experim@jtare given

in Table lll. The overall agreement is satisfactory. As ex-
pected, the largest discrepancy appears in the excitation cross
section for smalh (n=1 and 2.

VIl. SUMMARY

the maximum occurs at the same thickness, implying that

A= =g Y2

We have presented a theoretical description of excited-

For higher-lying states we can assume that the maitate formation of H and of ionization of Hons penetrating
source term fom=3 is provided by the population of the Solid targets at moderately relativistic speeds wit2

states 1 and 2 instead of HSince\; '~\* the source term

IS

S(X) = a1 P1(X) + azgh; TPa(X)
Ao At

Consequently, the fraction of atoms in the state3 (or

highey is

Ao Int

0o M

Pa(X) = oIt (ap2a23t agi1s)
0 1

-1 -1
ef)\o x_ef>\3 X

P

|

-1 -1
-\ -\
N (@gppst agiagg)(e "t *—e "o ).
1

(59

-1 -1
e—)\l x_e—}\3 X

e Vi

(56)

(E,=1 GeV). We show that relativistic corrections of the
collisional momentum transfer due to the onset of transverse
electromagnetic excitations in the medium are not yet impor-
tant in this energy regime but may become so at higher en-
ergiesE,>1 GeV. Formation of low-lying states of H pro-
ceeds predominantly by a single collision resulting in
detachment and shakeup of the second electron. Higher-lying
states are predominantly formed in a multiple scattering se-
guence requiring at least two steps. We find good agreement
with recent experimental data for 800-MeV projectiles pen-
etrating thin carbon foils.

The present calculation deals with the populationsof
shells. Since stripping by external fields is highly state selec-
tive with respect to parabolic substates, future investigations
will focus on the calculation of the thickness dependence of
the population of individual substates. A reliable determina-
tion of substate populations will require a more detailed
treatment of the primary shake process. Furthermore, we
plan to study the redistributions among low-lying states
within the framework of a quantum transport theory.
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