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Threshold anomaly in S scattering with Coulomb charge exchange
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An exact solution to a quantum model for atoriccattering with constant coupling of ionic and covalent
states is found. The scattering cross-section anomaly near the ionization threshold is analyzed accurately.

PACS numbd(s): 03.65.Nk, 34.10+x, 34.50—s

I. INTRODUCTION HereR is interatomic separatiom) is reduced atomic mass,
anda>0 andD>0 are Coulomb diabatic potential param-

The steplike change of the inelastic-scattering cross se@ters representing the absolute value for the ionic charges
tion for inelastic channels at the corresponding thresholds iproduct and the diabatic asymptote of the ionic potential,
considered to be the best-known anomaly of multichannetespectively,V is the static coupling independent &hby
scattering of the particles subjected to Coulomb attraction. lssumption.
this case, due to the condensing Coulomb resonances, the The boundary conditions for our problem should be set
elastic-scattering cross section does not tend to a definiteonsidering adiabatic amplitudes; , which are uncoupled
limiting value when approaching the threshold from theasymptotically.¢, , are expressed in terms of the diabatic
below-threshold energy range. Meanwhile, this cross sectioamplitudesy, , by the following rotation formula:
is well defined above the threshoJd]. Such a picture is ™ 1o
based mostly on matching Coulomb asymptotes to the core ( uz ) ( Uy )
collision domain function$2], and it needs confirmation in @1 Us,— Uy U;— U, i
the framework of alternative approaches. Preference here ©) up |2 u, \¥2 1\,
should be given to models for which an explicit solution can _(u ~u ) (u ~u )

: . 1 2 2 1

be found. Moreover, these models are necessary in solving
the problem of the continuity of the average total scatteringyhere
cross section at thresholds of inelastic Coulomb channels,
which is expected for physical reasons but has not yet been 1 a vz
confirmed rigorously3]. Uio=5 D= R= 2.3

In addition, it should be noted that modern studies of
atomic and molecular collisions enable one to obtain experiare adiabatic potentials of the system. The boundary condi-
mental and numerical results in a close vicinity to ionictions take the forms
channels threshold&ee[4,5]), which makes it an urgent
issue to find suitable and explicitly soluble quantum models. ¢1(R)=¢2(R)=0, R—0, (2.4

), 2.2

2

a
D— 5| +4V2

R

1 :
I. FORMULATION OF THE PROBLEM 01 AR)= i [AL£xXpi 71 AR))
1,2

A natural target for possible two-state models is Coulomb
charge exchange of atoms and, under some restrictions, mol- —Byexp—in AR))], R—x. (2.5
ecules. In this case, the only essential problem in making a
choice is due to the necessity to take into account all thélerek; , are asymptotic wave vectors for adiabatic channels
collision orbital angular momenta. However, the specific ori- 1

in of the anomalies caused by long-range Coulomb forces _ 12
?esults in a similar behavior ofythe gnom%lies in all orbital k1= 7 {2ME=up A=) 15 2.8
channels, as well as in providing one with the opportunity to ]
consider, at the first stage, or/scattering. 7. AR) are the Coulomb phases of the wave-function as-

The argument above leads to a simple model for atomi¢Mptotes
collision with only one neutral and one ionic state of the

system with a minimum set of parameters. The correspond- mAR) =k R+ » In(2k, R), (2.7)
ing matrix Schrdinger equation for diabatic amplitudés , 1,281,2
in the atomic basis is ) N
corresponding to the Bohr radii
hed e +D-E \ 2
2mdRe R o ay = Ualee) 7 Ual®0) 2.9
2 42 ( =0. S ma fup=)]
v K d 2 ’
“omdrRe The coefficientsA; , and B, , are related by the scattering

(2.1) matrix S,
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A1= Sy By,

which is the main subject of our study. Hence we will restrict
our consideration to the continuous spectrum

E>Up(=)

and in particular to the spectrum range near the threshold for

inelastic scattering,

Epn=u1().

Ill. EVALUATION OF THE S MATRIX

(2.9

(2.10

(2.1)

We will seek a solution to the diabatic set of E¢&.1) in

the momentum representation

i
= fy exl{g pR) &1p)dp.

The increments along the contouf are assumed to satisfy

the following conditions:

1
&1 p)exp(g pR)

A

Then
d il D—-E \% a =0
dp|l2m TP~ §+VE |+ 5 6=0,
Vé + P e £,=0
1 2m 2 .

=0, P p)expu— pR)

(3.9

=0.

4

- (3.2

(3.3

e(z)=e—2%12, 9(z)=3%(—-22) (- 2))

21 =[2(e—¢€19]"% (3.8
e1o=5[d*(d?+4)12];  €,>0, &,<0.
As is seen from Eq92.3), (2.6), and(3.4),

10— Uy )V, Z1,=Fiky (mV) 12 (3.9

Returning to theR representation gives

" (r)=f PRGN b AN b
! o 9(z) \z+z,) \z+z,
. . 3.1
Yalr)= 0% 9(z) \z+z,) \z+z,
Here
_ €1 K
“ €17 € 2_1’
) . (3.11
2
A== €27¢ Z_2
and, as can be noted,
a=— 1/k1a1, ,8: - 1/k2a2, (312

which is in accordance with Eq2.8). The z; , momenta
branches are assigned by the formulas

Introducing dimensionless Coulomb variables and asympand

totic parameters

z=p(mV)"Y2  r=(mWVWYRIA, e=ElV,
Qﬁ%, k=eg?,
we rewrite Egs(3.3) in the form
Z2
o (E—e+d)§l+§2 +iké& =0,
2
§i+|5—€]6=0.

These equations have the following solution:

k@ re@)
gy o i 07|

BESONNEECIN
A TE) exp("‘f a(z) % )

where

d=D/V,

(3.9

(3.9

(3.6

3.7

z,>0, a<0, e>gq,
3.1
Zl:i|21|, a=||01|, 82<e<81, ( 3
z,>0, B<O0. (3.19

Due to Eqgs(2.2) and(2.4), solutions(3.10 must satisfy the
boundary conditions

#1(0)=1,(0)=0, (3.195

and, according to the asymptotic form of the wave function
(2.5), be finite wherR—. Thus the physical solution to Eqg.
(2.1 can be selected using in expressidBsl0 contours
such as% which ensure the restriction8.2), (3.19, and
(2.5). Conditions(3.2) and the first of Eq9.3.15) are fulfilled
for the contours¥; arranged as followésee Fig. - %4, is a
simple loop starting at a poik on the real axis, which is
located either betweerny andz, for e>¢, or between 0 and
z, for g,<e<g,, and circumventing onlyg, and —z, in the
negative direction.”, is a simple loop starting at a poiat
on the real axis to the right a,, and circumventing only,
and —z, in the negative direction”3 is a double loop start-
ing at a pointA on the real axis to the right of, and cir-
cumventing successively onfy in the negative directiorg;
in the positive directionz, in the positive direction, ang, in
the negative direction.

Indeed, the integrands of Eq8.10 are obviously single
valued along%;, therefore Eqs(3.2) are satisfied sincés;
are closed. The equality;(0)=0 follows from the relation
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1 1
(@) -
/A \ Wel1 1
€1 €&
-2, KJ 22
2,
1 51/2 gll72(R)+67]

$@ ! 7z R
0= elz Elz 12,2 e ilmaR+a) [ R

1 1
1 1
€1 &

pZy
2,12 gmitm(R+ay) | R— oo,

(a)

=

_Zz% B
(b)_/—‘\ (e%
T &

( 12 gllmR)+4,]

pVZI 1/2 ei[7’1<R)+ 51]
12 ilna(RI+3] | R— o,

(3.19

and condition(2.5) is satisfied automatically. Here the fol-
lowing notations are used:

(c) o
m 6 or=ard (ia)— B In w,
W -z z (3-20)

z; —TUZy

&

il

e S=ard’'(iB)—a In w;

-z,

FIG. 1. The integration contours in E.10. Curvesa, b, and w= Zpt 2
¢ present the contour¥’;, %5, and %3 in the case>g;. Curves
d, e, and f present the contour$s;, %,, and 25 in the case
€,<e<g,. The asterisk denotes the beginning of the contours, and m=exp—27a)—1, (3.21
the arrows indicate the direction of circumventing.

2,7y’

v=exp —2ma)[exp —27B)—1];

(0)= j q [{ jz e(z') )
z— ex
" a@) ¢ ez 2
1 (z-7 '“(Z 2, 516 p=2 - EX[[W (B+ al2)]sinh(7a)|T (ia)|,
Tik\zt+z) \z+z, %' ' (322
and from the above-mentioned single valuedness €22, v
: - ' =2 12)si r'iB).
The solutions to Eqg2.1), T T exp(mBI2)sinh(7B)|T'(i )]
_ Y In the energy range for elastic scatteringse<e;, ¥ §)(R)
\Pg)z(w ) E( m), (3.17  increases exponentially witR—o, and hence should be
2l 2 omitted. The asymptotic behavior of the rest of the solutions,

corresponding to the contours’, are linearly independent.

This follows from the asymptotic behavior ¢f ,in the limit ‘I’(Z ( 1
R—o. This behavior is defined by the contributions from
branch points into the integrals in Eq8.10), since.%; can

1 1 pz_llz ei[WZ(R)+52]
pz, 12 e ilmR+ o | R— o,

be displaced into the upper half-planez$o that their tails, - (101 0
after circumventingz, ,, were running to+ie where the Vo= el l — ppz, Y2llna(R)+ o] R—c,
integrand behavior is defined basically by the exponential ! (3.23

decrease of exjpfr).
After assigning the phases to the branching factors in thgatisfy Eq.(2.5). Here exponentially small elements ¥
integrands of Eq(3.10 at pointA with the conditions are omitted, and the analytical continuati@?13 is implied.

We transform the initial ba5|slf(') to the symmetrized

larg z+zy)|<7/2,

(|).

(3.19 form\If0 :

-7, Ae % _ o
aYz+2,)=0, agz-z)=\y  aA. . ‘58)5( =i
* 28 ¥y’

(3.29

we calculate the contributions from the branch points using_. .
the well-known Hanckel representation for tigdunction. N I T S 1

Above the thresholé>¢, the asymptotic behavior of the .
diabatic vectorg3.17) is given by
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Using this basis we impose the second condition from the set
(3.15 on the solution(3.10. This can be done if the general

solution with an arbitrary constaat,

V=2 c, v, (3.25
I
is subjected to the restriction
> ¢y 3(0)=0. (3.26

This procedure enables us to introduce a physical basis fJ

the diabatic system of Eqf2.1), e.g., in the form

go—gw_ 27 Fe
° ¥ °

L = UR0) =,
‘I’(Z):\P( ) ¢(3)(0) \P(O)' e>81
2
R R 2 i ()
P =p D) ¢<2)(0)\PE’2)’ g,<e<g;.  (3.27
2

Now we can define the physical adiabatic babi8 with the
corresponding asymptotic amplitudag” andB {, and de-
rive an equation for th& matrix,

AP=s,B, (3.28

The values of4$)(0) which define thes matrix together with

combinationg3.20—(3.22 obey the relation
P5P(0)=—y7(0). (3.29

The topological symmetry Eq3.29 follows from the rela-

tionship

$52(0)= ¢ (0)— y5M(0), (3.30
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&A=& (-2"). (3.3

Thus the boundary conditions determine tBematrix for

inelastic collisions in terms of two parameters,

= y5"(0), (3.32

and through a single parameter for elastic collisions,

w=Im[¢5¥(0)],

s=ard y5”(0)], (3.33

For the model under consideration these parameters can be
pund in an explicit form, since the required integrads (0)

are reduced to the usual integral representation of the hyper-
geometric Gauss function. With this purpose we rewrite
,(0) in the form

¢2(0)=f dZ(i f1(2)+i fé(Z))eXp{iK(f1(2)+fz(Z)]},
7 €1 €2
(3.39

where

z—z;
z+2z4

Z
z+2,

o
fi=—In , f,=—1In ) (3.3

K

and introduce the variablg=(z—z, ;))/(z+z; ) into (3.34.
The result of the calculation is

€17 8& 2’770{[)’

v2'(0)= == — — (@~ 1)eTu!
XF(l—ia,1+iB,2,1— w?), (3.39
0= 2 U
LUl (i pysinh(za)sinh(7 )
T(1+ia+ip)
X "TPE(a,iBltia+iB,lw?). (3.37

where ¥(0)=0 is calculated along the contour embracingwhereF is the Gauss function. Herg(0) for e,<e<eg; is

2

all four branch pointstz, , Note thatys-?(0) are real val-

ued due to the property

specified according to formuld8.13).
The solution to Eq(3.28 has the form

. .0 U .
1 exp(2|51)(1—| ﬂ(,L—v)> - v exfi(8;+ 8,)]
S= 5 9 9 y e>€l (338
=i (uty) | —i g Vuv exdi(81+6,)]  exp2ioy)| 1+ ﬁ(u—w)
S=exp(2i[ S, +arg u)— 8]}, er<e<e;. (3.39
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matching procedure for the construction of a modified Stu-
0.05 +p eckelberg result, taking into account both quantum regions of

the collision under consideration, namely the nonadiabatic
0.04 — region in the crossing vicinity, and the adiabatic one near

R=0. The result of this approach is presented in Fig. 2.
0.03 1 IV. SCATTERING CROSS SECTION.

THRESHOLD ANOMALIES

0.02 7 Let us now consider the scattering cross sections for neu-

tral particles(channel 2 near the ionization threshold using
0.01 Eqgs.(3.38 and(3.39. We begin by introducing limiting val-

ues of the cross sections for elastie,) and inelastic(a;)
0.00 AL scattering:

2.7 T 2 ™ 2
Ue+:F|l_822| ) Ur+:P(1_|822| ), €e—e+0.
2 2
FIG. 2. Nonadiabatic transition probability as a function of col- (4.1
lision energy near ionic channel threshold for the T
H(1s)+H(2s)—H*+H~ process. Solid line—exact quantum re- Te-=17 [1-RegS)], e—e;—0. (4.2
sult from Eq. (3.38; dotted line—modified Landau-Zener- 2
Stueckelberg approximation. In order to calculate them, we need the following asymptotic
Thus the construction of th®& matrix in a rigorously unitary expressions. Foe—e; +0:
I'l+ia+iBy)

form is completed. oo _ 2o
Some idea about this result is given by Fig. 2, where the Flaigl+iatifllw)=—-2ir

F1l+ia)
nonadiabatic transition probabilif§y=|S,,|? calculated from _ _
Eqg. (3.38 is shown along with the modified Landau-Zener- XW(1+iB0,2,—2iN),
Stueckelberg approximation. The parameters which are used  F(1—jq,1+i3,2,1- 02 =®(1+i8y,2,— 2i\).
in the calculation correspond to the process 4.3
H(1s) +H(2s)—H"+H™, and appear to be in quasiclassical
range e,>d>1. This gives us an opportunity to use the For e—g;—0:

i 7|

F(ia,iﬁ,l-l—ia-i—iﬁ,l/wz): —ZI)\ %H—;;)BO) (\I’(1+iﬁo,2,—2i)\)+ m <I>(1+|,80,2,—2|)\)) .
(4.9
Here
B €1 eq 1/2
)\_251_52 (2(51_52)) ,
B €5 eq 1/2
30_81_82 (2(81_82)) ’ (45)
B € eq )1/2
|a|—81_82 2e—¢| o

and ®(1+i8y,2,—2iN) and ¥(1+iBy,2,—2iN) are confluent hypergeometric functions. Equati¢hs) and (4.4) result
from a representation of the Gauss function in terms of an integral over a simplg6lp@ee the Appendix The asymptotes
for the required elements of tf@matrix are obtained from Eq$3.38 and(3.39 using Eqs.(4.3 and(4.4) as follows:

_1-iK[2 exg 7mBo) —exp(— mfB)]
2 1+iK exq_’ﬂﬁo)

exp[2i[N+argl'(1+iBy)]}, e—e+0 (4.6

where

1 e D(1+iBg,2,—2iN)
K=3 T W(14180,2,—2iN) “.7
Im| e

F(1=iBo)
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and

i 7|

sin(|a|)I'(i Bo)

In addition, the simplifying relationship betwedn and the confluent hypergeometric functithcan be usedsee[6]),

S=—exp[—2i ar%\lf(lJri,Bo,Z,—Zi)\)Jr <I>(1+i,80,2,—2i)\))], e—e,—0. (4.8

. . i | ‘I'(l+iﬁo,2,—2i>\))
®(1+iBg,2,—2iN)=—2e™Po~ 1 Re(e'” - 4.9
(1+iBo ) e (4.9
resulting in the following explicit expressions for the scattering cross sections above the ionization threshold:
4
Ue+:k_72T (e?™Poco{ard W (1+iB0,2,— 2iN) |} + (1—e?™Poysir{\ +ard ' (1+iBo) 1)) — o 4 ,
2
4w ) . i )

o=z e mho(1—e2™Poyco{ard W (1+iB,2,— 2iN) ]+ N+ard T'(1+iB)]}. (4.10

2

Both cross sections are finite, and the inelastic one has the form typical to twofold localized Landau-Zener transitions.
The elastic cross section has no limiting value dese,—0 because of the condensing resonances. When approaching the
threshold,o._ behavior is given by

47 {[x—Ytan(«| a|) + X}2
Oe- =77 TTv_ 2 2 (4.11
ks {[x—Y]tan 7| a|)+ X}*+{[y+X]tan 7| a|) + Y}
|
where the relationshipg4.9) for & and ¥ hyperfunctions as in the

derivation of Eq.(4.10, gives an explicit relationship
X=m RED(1+iBq,2,— 2iN)T " 1(i Boy)],

(Oe_)=0ert oy (4.17
Y=m Im[®(1+iBq,2,— 2iN)T (i By)],

(4.12 Equations(4.10—(4.12 provide a complete description of

Xx=RegW¥(1+ipBy,2,—2iN)], the Coulomb anomaly in the scattering cross sections near
_ . the threshold of the inelastic channel. The relationship in
y=Im[W¥(1+iB0,2,—2iN)]. (4.17 answers the question about the correlation between the

result of the regularization procedure applied to the Coulomb
The resonances are located at energies satisfying the equgoss sectior(4.11) and the quantum-mechanical statement
tion about the continuity of the total scattering cross section as a
v function of collision energy.

yIx (4.13

tanr|a| = —
V. CONCLUSION

In a sufficient vicinity of the threshold they are represented Equation (4.10 is remarkable not only as a rigorous
by the Coulomb series quantum-mechanical result, but also in view of apparent op-
portunities for generalizations of the model considered. One
4.14 of them i; associatgd with 't.he Landau—Zer]er form of the
cross sectiorv, ., which testifies to the localized nature of
the transition. In the case of weak dependence of the state
where coupling upon interatomic separation, tBematrix can be
obtained by performing matching procedures using adiabatic

Ae— 1 a tar(L (415  9eneralizations of the model studied. When the state cou-
T y+X/' ' pling behaves exponentially, matchings of solutions to the
exponential mod€]7] and those to moddP.1) are possible.
andE, is the energy unit Another possibility for generalization relates to the scat-
. tering with nonzero angular momenta. It is provoked by the
E _( €1 ma 4.16 gualitative nature of the famous conclusion that the Coulomb
O \e—e,) A% ’ anomaly takes the same form for all orbital stdt28]. The

corresponding explicit result seems to be essential, and prob-
Averaging o._ over the energy interval covering a single ably can be obtained for the intersection model considered
resonance in between two adjacent zerogof, and using above. The type of possible total cross section can even be
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predicted, keeping in mind the localized nature of the transi-

tions. Just as in the energy range allowing the semiclassical @

description, the threshold cross section should be formed

mainly by the momenta for which the intersection is classi-

cally accessiblg8]. 2
The above arguments imply that accurate analytical re- * 1

sults can be obtained for realistic models of atomic scattering N0}

near thresholds of ion formation. One of these models used

for chemi-ionization collisions includes the exchange inter-

action of ionic and covalent states, and is described by the FIG. 3. The integration contol in Eq. (A.3) and its deforma-

27 3

equation tion in the case Re()<0. PartsC;, C,, and C3 of the whole
contourC are labeled 1, 2, and 3. The asterisk denotes the branch
22 92 a R pointy=—2i\/a.
smare R P°E Vex’]( RO) o Cnbdiaip gt TA-ArArath)
R hz d2 lpz :01 (a! ] a 12)_ 277_' F(1+b) 1 ( )
Vexpg — = = . .
Ro 2mdR wherel is the contour integral
whereR; is the characteristic atomic distance. | = é ta-1(1—t)P(1—tz) P dt. (A2)
The chemi-ionization is the collision process with far-off

crossingR, >R, (R, =a/D) that causes the stratification of he jntegration contour ifA2) is a simple loop starting at a
the transition region into two separate pieces in the vicinitynoint t—1 and circumventing the branch poitt0 in the
of Ry andR, . The quantum Demkov model with diabatic positive direction. The branch poirit=1/z is outside this

splitting D —a/R, is adequate to describe the transitions neafpop. After the variable change=exp(y), the integrall is
Ry. The exact solution of the Coulomb intersection problemyyritten in the form

(20) with V exp(—R/Ry) coupling may be used in the vicin-

ity of R, . Being in the main quasiclassical due to inequality _ ay/ 1 _ ay\brq _ ay+(2in/a)y —b

e4,>1, the real atomic collisions admit the matching of exact ! fce (1-e)1-e )y, (A3)
guantum solutions in the vicinitieR, and R, , with quasi- ) )
classical adiabatic wave functions for the region betweenvhere the contou€ connects the pointg=0 andy =2 i
these vicinities. Additive matchings ne®=0 and in the N the case R&{)<0, the branch poiny,=—2i\/a lies
asymptotic regiorR— provide the conditiong3.15, and in the upper half-plane of complex variable and the inte-

also the physical limiE— D for the inelastic cross section. grat.ion contourC circumve.nts this po!nt if‘ the negative di-
In the R, region, the basis set of exact solutions which isrection. After the deformation shown in Fig. 3 the cont@ur

necessary for the matchings may be constructed of Meije?an be partitioned into three parts; is a straight line start-

functions[7]. Solutions(20) along four independent contours Ing at the_ poiny=0 and going along the re_al axisye-+ec;
going around the branch pointsz, , form the basis set in Cyisa S'”?P'e loop starting Y=o and C.'VCU"_“’e”.“”Q the
the R, region. : branch pointsy=0 ar)dy=y0 in the negative direction; and

To describe the collisions with any angular momentum,C3 €ONNects the pointg=-+x andy=2ami. In accordance
the centrifugal repulsion must be included. As a result diffi—Wlth this partition, the integral is represented asasum of
culties arise only in a situation when the turning poiRisare three termsi_= l1+15+13, where the integrand is a single-
in the transition regions. AR,=R, the correct description valued function along the contog,.

can be made when using the wave functions which satisf¥ The prinlci‘ip.al. qtontrfibutir?_nhtq inﬁgralbl dand fl %qor?hes
the physical boundary condition f&—0 as in[7]. rom a small vicinity oty which IS of the order of & in the

The caseR,~R, is a standard problem. Probably the rig- limit |a|—, Re@)<0. Calculating these contributions, we

orous solution for it may be found analytically, although theObtaln

contribution of these momenta to the total cross section can +oo

be estimated in the framework of the localized transition idea = f e?yP(y+2in/a)~P dy
according to formulg4.10. 0

2i\ .
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47b\ )
=—— ®(1+b,2,—-2iN), (A5)
APPENDIX a

We consider the hypergeometric Gauss functif@,b,  whereW and® are confluent hypergeometric functions. The
1+a+b,z), z=exp(2\/a), in the limit |a|] —~. We begin  principal contribution to the integrdl from the vicinity of
from the integral representation for this functii, the pointy=2mi has the form
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[+ _
|3:—e2"'af e?%eP(e+2iNa) P de=—e?™|,.
0

(A6)
As a result, we obtain
—iF(1+a) F(a,b,1 b,1+2iN/
IN[(1+1a+h) (a,b,1+a+b,1+2ir/a)
T e—i'n'a
=‘P(1+b,2,—2|7\ _WW
X®(1+Db,2,—-2iN), |a]—», Rga)<O. (A7)
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In the case R&()=0, a#ilal, contourC can be parti-
tioned into two contours: contout 4, starting at the point
y=0 and going to/=—», and contoulC j, starting aty=—x
and going to the poiny=2i. The contributions of these
contours to integral are similar to those of, and |5 as
before, and this leads to

iT(1+a)

m F(a,b,1+ at b,1+ 2|)\/a)

=W(1+b,2,—2iN), |a|—,

Rea)=0, a#ilal.
(A8)
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