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An exact solution to a quantum model for atomicS scattering with constant coupling of ionic and covalent
states is found. The scattering cross-section anomaly near the ionization threshold is analyzed accurately.
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I. INTRODUCTION

The steplike change of the inelastic-scattering cross sec-
tion for inelastic channels at the corresponding thresholds is
considered to be the best-known anomaly of multichannel
scattering of the particles subjected to Coulomb attraction. In
this case, due to the condensing Coulomb resonances, the
elastic-scattering cross section does not tend to a definite
limiting value when approaching the threshold from the
below-threshold energy range. Meanwhile, this cross section
is well defined above the threshold@1#. Such a picture is
based mostly on matching Coulomb asymptotes to the core
collision domain functions@2#, and it needs confirmation in
the framework of alternative approaches. Preference here
should be given to models for which an explicit solution can
be found. Moreover, these models are necessary in solving
the problem of the continuity of the average total scattering
cross section at thresholds of inelastic Coulomb channels,
which is expected for physical reasons but has not yet been
confirmed rigorously@3#.

In addition, it should be noted that modern studies of
atomic and molecular collisions enable one to obtain experi-
mental and numerical results in a close vicinity to ionic
channels thresholds~see @4,5#!, which makes it an urgent
issue to find suitable and explicitly soluble quantum models.

II. FORMULATION OF THE PROBLEM

A natural target for possible two-state models is Coulomb
charge exchange of atoms and, under some restrictions, mol-
ecules. In this case, the only essential problem in making a
choice is due to the necessity to take into account all the
collision orbital angular momenta. However, the specific ori-
gin of the anomalies caused by long-range Coulomb forces
results in a similar behavior of the anomalies in all orbital
channels, as well as in providing one with the opportunity to
consider, at the first stage, onlyS scattering.

The argument above leads to a simple model for atomic
collision with only one neutral and one ionic state of the
system with a minimum set of parameters. The correspond-
ing matrix Schro¨dinger equation for diabatic amplitudesc1,2
in the atomic basis is
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~2.1!

HereR is interatomic separation,m is reduced atomic mass,
and a.0 andD.0 are Coulomb diabatic potential param-
eters representing the absolute value for the ionic charges
product and the diabatic asymptote of the ionic potential,
respectively,V is the static coupling independent onR by
assumption.

The boundary conditions for our problem should be set
considering adiabatic amplitudesw1,2 which are uncoupled
asymptotically.w1,2 are expressed in terms of the diabatic
amplitudesc1,2 by the following rotation formula:
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where
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a

RD 214V2G1/2J ~2.3!

are adiabatic potentials of the system. The boundary condi-
tions take the forms

w1~R!5w2~R!50, R→0, ~2.4!

w1,2~R!5
1

k1,2
1/2 @A1,2exp~ ih1,2~R!!

2B1,2exp~2 ih1,2~R!!#, R→`. ~2.5!

Herek1,2 are asymptotic wave vectors for adiabatic channels

k1,25
1

\
$2m@E2u1,2~`!#%1/2, ~2.6!

h1,2(R) are the Coulomb phases of the wave-function as-
ymptotes

h1,2~R!5k1,2R1
1

k1,2a1,2
ln~2k1,2R!, ~2.7!

corresponding to the Bohr radii

a1,25
\2

ma

u1~`!2u2~`!

uu1,2~`!u
, ~2.8!

The coefficientsA1,2 andB1,2 are related by the scattering
matrix S,
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A15S1kBk , ~2.9!

which is the main subject of our study. Hence we will restrict
our consideration to the continuous spectrum

E.u2~`! ~2.10!

and in particular to the spectrum range near the threshold for
inelastic scattering,

Eth5u1~`!. ~2.11!

III. EVALUATION OF THE S MATRIX

We will seek a solution to the diabatic set of Eqs.~2.1! in
the momentum representation

c1,25E
L

expS i\ pRD j1,2~p!dp. ~3.1!

The increments along the contourL are assumed to satisfy
the following conditions:

j1,2~p!expS 1\ pRD U
L

50, p2j1,2~p!expS i\ pRD U
L

50.

~3.2!

Then

d

dp F S p22m1D2ED j11Vj2G1
ia

\
j150,

~3.3!

Vj11S p22m2ED j250.

Introducing dimensionless Coulomb variables and asymp-
totic parameters

z5p~mV!21/2, r5~mV!1/2R/\, e5E/V, d5D/V,
~3.4!

eq5
ma2

\2V
, k5eq

1/2, ~3.5!

we rewrite Eqs.~3.3! in the form

d

dz F S z222e1dD j11j2G1 ikj150,

~3.6!

j11S z222eD j250.

These equations have the following solution:

j1~z!5
}~z!

g~z!
expS ikEz }~z8!

g~z8!
dz8D ,

~3.7!

j2~z!5
1
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dz8D ,

where

}~z!5e2z2/2, g~z!5 1
4 ~z22z1

2!~z22z2
2!

z1,25@2~e2}1,2!#
1/2, ~3.8!

}1,25
1
2 @d6~d214!1/2#; }1.0, }2,0.

As is seen from Eqs.~2.3!, ~2.6!, and~3.4!,

}1,25u1,2~`!/V, z1,25\k1,2~mV!21/2. ~3.9!

Returning to theR representation gives

c1~r !5E
L

dz eizr
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g~z! S z2z1
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D iaS z2z2
z1z2

D ib,
~3.10!
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D ib.
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~3.11!

b52
}2

}22}1

k

z2
,

and, as can be noted,

a521/k1a1 , b521/k2a2 , ~3.12!

which is in accordance with Eq.~2.8!. The z1,2 momenta
branches are assigned by the formulas

z1.0, a,0, e.}1 ,
~3.13!

z15 i uz1u, a5 i uau, }2,e,}1 ,

and

z2.0, b,0. ~3.14!

Due to Eqs.~2.2! and~2.4!, solutions~3.10! must satisfy the
boundary conditions

c1~0!5c2~0!50, ~3.15!

and, according to the asymptotic form of the wave function
~2.5!, be finite whenR→`. Thus the physical solution to Eq.
~2.1! can be selected using in expressions~3.10! contours
such asL which ensure the restrictions~3.2!, ~3.15!, and
~2.5!. Conditions~3.2! and the first of Eqs.~3.15! are fulfilled
for the contoursL1 arranged as follows~see Fig. 1!: L1 is a
simple loop starting at a pointA on the real axis, which is
located either betweenz1 andz2 for e.}1 or between 0 and
z2 for }2,e,}1, and circumventing onlyz1 and2z1 in the
negative direction.L2 is a simple loop starting at a pointA
on the real axis to the right ofz2, and circumventing onlyz2
and2z2 in the negative direction.L3 is a double loop start-
ing at a pointA on the real axis to the right ofz2 and cir-
cumventing successively onlyz2 in the negative direction,z1
in the positive direction,z2 in the positive direction, andz1 in
the negative direction.

Indeed, the integrands of Eqs.~3.10! are obviously single
valued alongL1, therefore Eqs.~3.2! are satisfied sinceL1
are closed. The equalityc1~0!50 follows from the relation
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c1~0!5E
L

dz
}~z!
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expS ikEz }~z8!

g~z8!
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5
1

ik S z2z1
z1z1

D iaS z2z2
z1z2

D ibU
L

, ~3.16!

and from the above-mentioned single valuedness.
The solutions to Eqs.~2.1!,

CW 0
~ i ![S c1

c2
D
L1

[S c1
~ i !

c2
~ i !D , ~3.17!

corresponding to the contoursL1, are linearly independent.
This follows from the asymptotic behavior ofc1,2 in the limit
R→`. This behavior is defined by the contributions from
branch points into the integrals in Eqs.~3.10!, sinceL1 can
be displaced into the upper half-plane ofz so that their tails,
after circumventingz1,2, were running to1i` where the
integrand behavior is defined basically by the exponential
decrease of exp(izr).

After assigning the phases to the branching factors in the
integrands of Eq.~3.10! at pointA with the conditions

uarg~z6z1!u,p/2,
~3.18!

arg~z1z2!50, arg~z2z2!5 H 2p,
0,

APL1

APL2,3,

we calculate the contributions from the branch points using
the well-known Hanckel representation for theg function.

Above the thresholde.}1 the asymptotic behavior of the
diabatic vectors~3.17! is given by

CW 0
~1!5S 11
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1
1
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D S rz1
21/2

rz1
21/2

ei @h1~R!1d1#
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1
1
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e2 i @h2~R!1d2#D , R→`,

CW 0
~3!5S 11

}1

1
1
}2

D S rnz1
21/2

2tmz2
21/2

ei @h1~R!1d1#

ei @h2~R!1d2#D , R→`,

~3.19!

and condition~2.5! is satisfied automatically. Here the fol-
lowing notations are used:

d15argG~ ia!2b ln v,
~3.20!

d25argG~ ib!2a ln v;

v5
z21z1
z22z1

,

m5exp~22pa!21, ~3.21!

n5exp~22pa!@exp~22pb!21#;

r52
}1z1

21/2

}22}1
exp@p~b1a/2!#sinh~pa!uG~ ia!u,

~3.22!

t52
}2z2

21/2

}12}2
exp~pb/2!sinh~pb!uG~ ib!u.

In the energy range for elastic scattering,}2,e,}1, CW 0
(1)(R)

increases exponentially withR→`, and hence should be
omitted. The asymptotic behavior of the rest of the solutions,

CW 0
~2!5S 11

}2

1
1
}2

D S rz2
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rz2
21/2

ei @h2~R!1d2#
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~3!5S 11

}1

1
1
}2

D S 0
2rmz2

21/2ei @h2~R!1d2#D , R→`,

~3.23!

satisfy Eq.~2.5!. Here exponentially small elements inCW 0
~3!

are omitted, and the analytical continuation~3.13! is implied.
We transform the initial basisCW 0

( i ) to the symmetrized

form C̃W0
( i ) :

C̃W0
~ i ![S c̃ 1

~ i !

c̃ 2
~ i !D ;

~3.24!

C̃W0
~1,2!5CW 0

~1,2! , C̃W0
~3!5CW 0

~3!2CW 0
~3!* ; e.}1

C̃W0
~1!5CW 0

~3! , C̃W0
~2!5CW 0

~3!* , }2,e,}1

.

FIG. 1. The integration contours in Eq.~3.10!. Curvesa, b, and
c present the contoursL1, L2, andL3 in the casee.}1. Curves
d, e, and f present the contoursL1, L2, andL3 in the case
}2,e,}1. The asterisk denotes the beginning of the contours, and
the arrows indicate the direction of circumventing.
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Using this basis we impose the second condition from the set
~3.15! on the solution~3.10!. This can be done if the general
solution with an arbitrary constantc1,

CW 5(
i
c1C̃

W
0
~ i ! , ~3.25!

is subjected to the restriction

(
i
c1c̃ 2

~ i !~0!50. ~3.26!

This procedure enables us to introduce a physical basis for
the diabatic system of Eqs.~2.1!, e.g., in the form

CW ~1!5C̃W0
~1!2

c̃ 2
~1!~0!

c̃ 2
~3!~0!

C̃W0
~3! ,

CW ~2!5C̃W0
~2!2

c̃ 2
~2!~0!

c̃ 2
~3!~0!

C̃W0
~3! , e.}1

CW ~1!5C̃W0
~1!2

c̃ 2
~1!~0!

c̃ 2
~2!~0!

C̃W0
~2! , }2,e,}1 . ~3.27!

Now we can define the physical adiabatic basisF( i ) with the
corresponding asymptotic amplitudesA 1

( i ) andB 1
( i ), and de-

rive an equation for theSmatrix,

A1
~ i !5S1kBk

~ i ! , ~3.28!

The values ofc 2
( i )~0! which define theSmatrix together with

combinations~3.20!–~3.22! obey the relation

c2
~1!~0!52c2

~2!~0!. ~3.29!

The topological symmetry Eq.~3.29! follows from the rela-
tionship

c2
~2!~0!5c2

~0!~0!2c2
~1!~0!, ~3.30!

wherec2
~0!~0!50 is calculated along the contour embracing

all four branch points6z1,2. Note thatc2
~1,2!~0! are real val-

ued due to the property

j2~z!5j2* ~2z* !. ~3.31!

Thus the boundary conditions determine theS matrix for
inelastic collisions in terms of two parameters,

q5c2
~1!~0!, w5Im@c2

~3!~0!#, ~3.32!

and through a single parameter for elastic collisions,

d5arg@c2
~3!~0!#, ~3.33!

For the model under consideration these parameters can be
found in an explicit form, since the required integralsc 2

( i )~0!
are reduced to the usual integral representation of the hyper-
geometric Gauss function. With this purpose we rewrite
c2~0! in the form

c2~0!5E
L

dzS 1
}1

f 18~z!1
1

}2
f 28~z! Dexp$ ik~ f 1~z!1 f 2~z!#%,

~3.34!

where

f 15
a

k
lnS z2z1

z1z1
D , f 25

b

k
lnS z2z2

z1z2
D , ~3.35!

and introduce the variablez5(z2z1,2)/(z1z1,2) into ~3.34!.
The result of the calculation is

c2
~1!~0!5

}12}2

}1}2

2pab

k
~v221!epbv i ~b2a!

3F~12 ia,11 ib,2,12v2!, ~3.36!

c2
~3!~0!5

}12}2

}1}2

4iab

k
e2pa

3
G~ ia!G~ ib!sinh~pa!sinh~pb!

G~11 ia1 ib!

3v2 i ~a1b!F~ ia,ib,11 ia1 ib,1/v2!. ~3.37!

whereF is the Gauss function. Herec2
~3!~0! for }2,e,}1 is

specified according to formulas~3.13!.
The solution to Eq.~3.28! has the form

S5
21

12 i
q

2w
~m1n!

S exp~2id1!S 12 i
q

2w
~m2n! D

2 i
q

w
Amn exp@ i ~d11d2!#

2 i
q

w
Amn exp@ i ~d11d2!#

exp~2id2!S 11 i
q

2w
~m2n! D D , e.}1 ~3.38!

S5exp$2i @d21arg~m!2d#%, }2,e,}1 . ~3.39!
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Thus the construction of theSmatrix in a rigorously unitary
form is completed.

Some idea about this result is given by Fig. 2, where the
nonadiabatic transition probabilityP5uS12u

2 calculated from
Eq. ~3.38! is shown along with the modified Landau-Zener-
Stueckelberg approximation. The parameters which are used
in the calculation correspond to the process
H(1s)1H(2s)→H11H2, and appear to be in quasiclassical
rangeeq@d@1. This gives us an opportunity to use the

matching procedure for the construction of a modified Stu-
eckelberg result, taking into account both quantum regions of
the collision under consideration, namely the nonadiabatic
region in the crossing vicinity, and the adiabatic one near
R50. The result of this approach is presented in Fig. 2.

IV. SCATTERING CROSS SECTION.
THRESHOLD ANOMALIES

Let us now consider the scattering cross sections for neu-
tral particles~channel 2! near the ionization threshold using
Eqs.~3.38! and~3.39!. We begin by introducing limiting val-
ues of the cross sections for elastic~se! and inelastic~sr!
scattering:

se15
p

k2
2 u12S22u2, s r15

p

k2
2 ~12uS22u2!, e→}110.

~4.1!

se25
2p

k2
2 @12Re~S!#, e→}120. ~4.2!

In order to calculate them, we need the following asymptotic
expressions. Fore→}110:

F~ ia,ib,11 ia1 ib,1/v2!522il
G~11 ia1 ib0!

G~11 ia!

3C~11 ib0,2,22il!,

F~12 ia,11 ib,2,12v2!5F~11 ib0,2,22il!.
~4.3!

For e→}120:

F~ ia,ib,11 ia1 ib,1/v2!522il
G~12uau1 ib0!

G~12uau! S C~11 ib0,2,22il!1
peipuau

sin~puau!G~ ib0!
F~11 ib0,2,22il! D .

~4.4!

Here

l52
}1

}12}2
S eq
2~}12}2!

D 1/2,
b05

}2

}12}2
S eq
2~}12}2!

D 1/2, ~4.5!

uau5
}1

}12}2
S eq
2ue2}1u

D 1/2→`

andF(11 ib0,2,22il) andC(11 ib0,2,22il) are confluent hypergeometric functions. Equations~4.3! and ~4.4! result
from a representation of the Gauss function in terms of an integral over a simple loop@6# ~see the Appendix!. The asymptotes
for the required elements of theSmatrix are obtained from Eqs.~3.38! and ~3.39! using Eqs.~4.3! and ~4.4! as follows:

S225
12 iK @2 exp~pb0!2exp~2pb0!#

11 iK exp~2pb0!
exp$2i @l1argG~11 ib0!#%, e→}110 ~4.6!

where

K5
1

2

eilF~11 ib0,2,22il!

ImS eil C~11 ib0,2,22il!

G~12 ib0!
D ~4.7!

FIG. 2. Nonadiabatic transition probability as a function of col-
lision energy near ionic channel threshold for the
H(1s)1H(2s)→H11H2 process. Solid line—exact quantum re-
sult from Eq. ~3.38!; dotted line—modified Landau-Zener-
Stueckelberg approximation.
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and

S52expH 22i argS C~11 ib0,2,22il!1
peipuau

sin~puau!G~ ib0!
F~11 ib0,2,22il! D J , e→}120. ~4.8!

In addition, the simplifying relationship betweenF and the confluent hypergeometric functionC can be used~see@6#!,

F~11 ib0,2,22il!522epb02 il ReS eil C~11 ib0,2,22il!

G~12 ib0!
D ~4.9!

resulting in the following explicit expressions for the scattering cross sections above the ionization threshold:

se15
4p

k2
2 „e2pb0cos2$arg@C~11 ib0,2,22il!#%1~12e2pb0!sin2$l1arg@G~11 ib0!#%…2s r1 ,

s r15
4p

k2
2 e2pb0~12e2pb0!cos2$arg@C~11 ib0,2,22il!#1l1arg@G~11 ib0!#%. ~4.10!

Both cross sections are finite, and the inelastic one has the form typical to twofold localized Landau-Zener transitions.
The elastic cross section has no limiting value fore→}120 because of the condensing resonances. When approaching the

threshold,se2 behavior is given by

se25
4p

k2
2

$@x2Y#tan~puau!1X%2

$@x2Y#tan~puau!1X%21$@y1X#tan~puau!1Y%2
, ~4.11!

where

X5p Re@F~11 ib0,2,22il!G21~ ib0!#,

Y5p Im@F~11 ib0,2,22il!G21~ ib0!#,
~4.12!

x5Re@C~11 ib0,2,22il!#,

y5Im@C~11 ib0,2,22il!#.

The resonances are located at energies satisfying the equa-
tion

tanpuau52
Y

y1X
. ~4.13!

In a sufficient vicinity of the threshold they are represented
by the Coulomb series

En5u1~`!2
1

2~n1D!2
Eq , ~4.14!

where

D52
1

p
a tanS Y

y1XD , ~4.15!

andEq is the energy unit

Eq5S }1

}12}2
D 2 ma2

\2 . ~4.16!

Averaging se2 over the energy interval covering a single
resonance in between two adjacent zeros ofse2 , and using

the relationship~4.9! for F andC hyperfunctions as in the
derivation of Eq.~4.10!, gives an explicit relationship

^se2&5se11s r1 . ~4.17!

Equations~4.10!–~4.12! provide a complete description of
the Coulomb anomaly in the scattering cross sections near
the threshold of the inelastic channel. The relationship in
~4.17! answers the question about the correlation between the
result of the regularization procedure applied to the Coulomb
cross section~4.11! and the quantum-mechanical statement
about the continuity of the total scattering cross section as a
function of collision energy.

V. CONCLUSION

Equation ~4.10! is remarkable not only as a rigorous
quantum-mechanical result, but also in view of apparent op-
portunities for generalizations of the model considered. One
of them is associated with the Landau-Zener form of the
cross sectionsr1 , which testifies to the localized nature of
the transition. In the case of weak dependence of the state
coupling upon interatomic separation, theS matrix can be
obtained by performing matching procedures using adiabatic
generalizations of the model studied. When the state cou-
pling behaves exponentially, matchings of solutions to the
exponential model@7# and those to model~2.1! are possible.

Another possibility for generalization relates to the scat-
tering with nonzero angular momenta. It is provoked by the
qualitative nature of the famous conclusion that the Coulomb
anomaly takes the same form for all orbital states@2,3#. The
corresponding explicit result seems to be essential, and prob-
ably can be obtained for the intersection model considered
above. The type of possible total cross section can even be
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predicted, keeping in mind the localized nature of the transi-
tions. Just as in the energy range allowing the semiclassical
description, the threshold cross section should be formed
mainly by the momenta for which the intersection is classi-
cally accessible@8#.

The above arguments imply that accurate analytical re-
sults can be obtained for realistic models of atomic scattering
near thresholds of ion formation. One of these models used
for chemi-ionization collisions includes the exchange inter-
action of ionic and covalent states, and is described by the
equation

S 2
\2

2m

d2

dR2
2
a

R
1D2E V expS 2

R

R0
D

V expS 2
R

R0
D 2

\2

2m

d2

dR2
2E

D S c1

c2
D50,

whereR0 is the characteristic atomic distance.
The chemi-ionization is the collision process with far-off

crossingR
*

@R0 (R*
5a/D) that causes the stratification of

the transition region into two separate pieces in the vicinity
of R0 andR*

. The quantum Demkov model with diabatic
splittingD2a/R0 is adequate to describe the transitions near
R0. The exact solution of the Coulomb intersection problem
~20! with V exp~2R/R0! coupling may be used in the vicin-
ity of R

*
. Being in the main quasiclassical due to inequality

eq@1, the real atomic collisions admit the matching of exact
quantum solutions in the vicinitiesR0 andR*

, with quasi-
classical adiabatic wave functions for the region between
these vicinities. Additive matchings nearR50 and in the
asymptotic regionR→` provide the conditions~3.15!, and
also the physical limitE→D for the inelastic cross section.

In theR0 region, the basis set of exact solutions which is
necessary for the matchings may be constructed of Meijer
functions@7#. Solutions~20! along four independent contours
going around the branch points6z1,2 form the basis set in
theR

*
region.

To describe the collisions with any angular momentum,
the centrifugal repulsion must be included. As a result diffi-
culties arise only in a situation when the turning pointsRt are
in the transition regions. AtRt.R0 the correct description
can be made when using the wave functions which satisfy
the physical boundary condition forR→0 as in@7#.

The caseRt.R
*
is a standard problem. Probably the rig-

orous solution for it may be found analytically, although the
contribution of these momenta to the total cross section can
be estimated in the framework of the localized transition idea
according to formula~4.10!.
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APPENDIX

We consider the hypergeometric Gauss functionF(a,b,
11a1b,z), z5exp(2il/a), in the limit uau→`. We begin
from the integral representation for this function@6#,

F~a,b,11a1b,z!5
e2 ipa

2p i

G~12a!G~11a1b!

G~11b!
I , ~A1!

whereI is the contour integral

I5 R ta21~12t !b~12tz!2b dt. ~A2!

The integration contour in~A2! is a simple loop starting at a
point t51 and circumventing the branch pointt50 in the
positive direction. The branch pointt51/z is outside this
loop. After the variable changet5exp(y), the integralI is
written in the form

I5E
C
eay~12ey!b~12ey1~2il/a!!2b dy, ~A3!

where the contourC connects the pointsy50 andy52p i
In the case Re(a),0, the branch pointy0522il/a lies

in the upper half-plane of complex variabley, and the inte-
gration contourC circumvents this point in the negative di-
rection. After the deformation shown in Fig. 3 the contourC
can be partitioned into three parts:C1 is a straight line start-
ing at the pointy50 and going along the real axis toy→1`;
C2 is a simple loop starting aty51` and circumventing the
branch pointsy50 andy5y0 in the negative direction; and
C3 connects the pointsy51` and y52p i . In accordance
with this partition, the integralI is represented as a sum of
three terms:I5I 11I 21I 3 , where the integrand is a single-
valued function along the contourC2.

The principal contribution to integralsI 1 and I 2 comes
from a small vicinity ofy which is of the order of 1/a in the
limit uau→`, Re(a),0. Calculating these contributions, we
obtain

I 15E
0

1`

eayyb~y12il/a!2b dy

5
2il

a
G~11b!C~11b,2,22il!, ~A4!

I 25 R
C2

eayyb~y12il/a!2b dy

5
4pbl

a
F~11b,2,22il!, ~A5!

whereC andF are confluent hypergeometric functions. The
principal contribution to the integralI 3 from the vicinity of
the pointy52p i has the form

FIG. 3. The integration contourC in Eq. ~A.3! and its deforma-
tion in the case Re(a),0. PartsC1, C2, and C3 of the whole
contourC are labeled 1, 2, and 3. The asterisk denotes the branch
point y522il/a.
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I 352e2p iaE
0

1`

ea}}b~}12il/a!2b d}52e2p iaI 1 .

~A6!

As a result, we obtain

iG~11a!

2lG~11a1b!
F~a,b,11a1b,112il/a!

5C~11b,2,22il!2
p

G~b!

e2 ipa

sin~pa!

3F~11b,2,22il!, uau→`, Re~a!,0. ~A7!

In the case Re(a)>0, aÞ i uau, contourC can be parti-
tioned into two contours: contourC̃ 1, starting at the point
y50 and going toy52`, and contourC̃ 3, starting aty52`
and going to the pointy52p i . The contributions of these
contours to integralI are similar to those ofI 1 and I 3 as
before, and this leads to

iG~11a!

2lG~11a1b!
F~a,b,11a1b,112il/a!

5C~11b,2,22il!, uau→`, Re~a!>0, aÞ i uau.

~A8!

@1# L. Fonda and R. G. Newton, Ann. Phys.7, 133 ~1959!.
@2# L. D. Landau and E. M. Lifshitz,Quantum Mechanics, 3rd ed.

~Pergamon, Oxford, 1977!.
@3# N. F. Mott and H. S. W. Massey,Theory of Atomic Collisions,

3rd ed.~Clarendon, Oxford, 1965!.
@4# A. P. M. Baede, D. J. Auerback, and J. Los, Physica64, 137

~1973!.

@5# A. Andersen, A. Kupperman, and A. E. de Vries, Z. Phys. A
289, 1 ~1978!.

@6# A. Erdelyi, Higher Transcendental Functions~McGraw-Hill,
New York, 1953!.

@7# V. I. Osherov and A. I. Voronin, Phys. Rev. A49, 265 ~1994!.
@8# D. R. Bates and T. J. M. Boyd, Proc. Phys. Soc.69A, 910

~1956!.

3164 53V. I. OSHEROV AND V. G. USHAKOV


