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It is argued that the most appropriate definition of the local temperatureT(r ) for the ground state of an
electronic system is provided by the formula32r(r )kT(r )5

1
8( i@(“r i•“r i)/r i #, wherer(r ) is the total elec-

tron density and ther i are Kohn-Sham orbital densities.T(r ) is everywhere non-negative. For atoms,T(r ) is
nearly stepwise constant.T(r ) behaves very much like the Politzer average local ionization energy index.
Accordingly,T(r ) measures reactivity toward attack by an electron-attracting reagent. Exchange energies and
Compton profiles are calculated for several atoms using this definition of the local temperature.

PACS number~s!: 31.15.2p

I. INTRODUCTION

In Ref. @1# the local temperature in an electronic system
was introduced, and subsequently it has been found to be
useful in several connections@2–6#. Here we~a! argue for a
particular definition for the temperature~for which there are
options!, ~b! verify by calculations that the local temperature
is nearly piecewise constant in an atom~in agreement with
early findings of Ghosh and Balba´s @7#!, ~c! determine the
local temperature at the boundary of an atom or molecule
and show that it measures chemical reactivity in the same
sense as does the Politzer average local ionization energy
index @8#, and~d! compute exchange energies and Compton
profiles for several atoms using this local temperature defi-
nition.

II. DEFINITION OF LOCAL TEMPERATURE

The local temperaturekT(r ) is naturally defined as two-
thirds of the Kohn-Sham kinetic energy per electron at each
point in space,

Ekin5E t~r !dr5
3

2E r~r !kT~r !dr , ~1!

wherer(r ) is the electron density. Ambiguity arises in the
definition ofT(r ) because of ambiguity int(r ). If the func-
tionsui(r ) are the one-electron Kohn-Sham orbitals, one can
take
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wherer i5u¹ui u2 andr5(r i . Or, one can take any average
at all of these formulas, as, for example, the form favored in
the original Ghosh-Berkowitz-Parr theory@1#:
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Any amount of¹2r ~indeed¹2 of an arbitrary well-behaved
function! can be added tot(r ) without affecting the value of
Ekin .

Equation ~4! makes the local temperature zero at the
boundary of an atom or molecule and ordinarily positive
elsewhere. However, an exception is the midpoint of H2

1 for
large internuclear distances@9#. Inclusion of the¹2r term
also leads to difficulties in the calculation of directional
Compton profiles@2#. Similar unfavorable consequences
were reported in a recent calculation of the potential energy
curve for H2 @10#.

Equation~2! is clearly unacceptable because it would re-
quire the temperature to be negative at the boundaries of
atoms and molecules. Equation~4! received theoretical sup-
port from a derivation of it by Berkowitz@11#, who calcu-
lated the kinetic energy density from the expression
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and obtained Eq.~4!. However, if one instead uses the more
symmetrical expression
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one finds Eq.~3!.
A recent study concerning information entropy favors Eq.

~3! over Eq. ~4! @6#. Most importantly, Eq.~3! makes the
temperature everywhere positive:
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We take this formula as definingT(r ).
Close to an atomic nucleus,r is mainly r1s and satisfies

the cusp condition¹r/r522Z. Equation~7! thus gives

3

2
kT~r !'

1

2
Z2 ~near an atomic nucleus!. ~8!

Far from all nuclei,r is mainly the highest occupied orbital
densityrH andrH;exp(22A2Ir ), whereI is the ionization
energy. Equation~7! now gives

3

2
kT~r !'I ~ far from all nuclei!. ~9!

For hydrogenlike atoms, Eq.~8! is valid for all r . For other
atoms, one expects a more or less monotonic decrease of

T(r ) from the value given by Eq.~8! to the value given by
Eq. ~9!.

III. COMPARISON WITH THE POLITZER AVERAGE
LOCAL ORBITAL ENERGY INDEX

Equations~7!–~9! may be usefully compared with formu-
las governing what we may call the Politzer average local
orbital energy index@8#, «̄(r ). The definition is

«̄ ~r !5(
i

r i« i
r

52 Ī ~r !, ~10!

where the« i are Kohn-Sham orbital energies, Politzer em-
ploys Hartree-Fock orbitals and orbital energies, which are
somewhat different~but not much different! from Kohn-
Sham quantities.«̄(r ) is negative.u«̄(r )u is what Politzer
terms the average local ionization energy indexĪ (r ).

Now, again, close to an atomic nucleus,r is mainly
r1s , and Eq.~10! gives

«̄ ~r !'«1s ~near an atomic nucleus!. ~11!

Far from all nuclei,r is primarily rH and«H52I exactly.
Hence Eq.~10! gives

FIG. 1. 3
2kT(r ) and «̄(r ) for the Be atom. FIG. 2. 3

2kT(r ) and «̄(r ) for the Ne atom.

TABLE I. The Hartree-Fock~HF! and the exchange-only density-functional~DF! one-electron energies of
the Be, Ne, Ar, and Kr atoms in Ry.

1s 2s 2p 3s 3p 3d 4s 4p

Be HF 29.465 20.619
DF 28.251 20.619

Ne HF 265.545 23.864 21.701
DF 261.639 23.436 21.701

Ar HF 2237.221 224.644 219.143 22.555 21.182
DF 2228.911 222.313 217.474 22.199 21.182

Kr HF 21040.331 2139.806 2126.020 221.699 216.663 27.650 22.306 21.048
DF 21022.120 2133.210 2120.468 219.329 214.777 26.633 21.987 21.048
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«̄ ~r !'«H52I ~ far from all nuclei!. ~12!

For hydrogenlike atoms, Eq.~11! is valid for all r . Further-
more,«1s52 1

2Z
2 exactly. Accordingly,
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~13!

Up to a constant multiplier«̄(r ) andT(r ) are one and the
same.

For other systems, we infer from Eqs.~8! and ~11! that
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~near an atomic nucleus!, ~14!

and from Eqs.~9! and ~12! that

2
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'1 ~ far from all nuclei!. ~15!

Since of course«1s is reasonably close to
1
2Z

2, it appears that
2 «̄(r ) and 3

2kT(r ) are much the same for allr . The calcu-
lations reported below confirm this suggestion.

IV. METHOD OF CALCULATION AND RESULTS

As the exact forms of the exchange-correlation energy
and potential functionals are not known, one cannot easily
get the exact solution of the Kohn-Sham~KS! equations

F2
1

2
¹21yKS~r !Gui~r !5« iui~r !, ~16!

(
i

~ui !
25r. ~17!

However, when the electron density itself is known, it is
possible to obtain an exact solution. The Kohn-Sham poten-

tial, the one-electron orbitals, and the orbital energy can be
determined from the density, and several methods are known
for solving this inverse problem@12–18#. The procedure
used in the present work is as follows. We know that the
solution is unique whenever it exists. That means that start-
ing out from any appropriate starting potential we can obtain
the true Kohn-Sham potential~within a constant! and one-
electron energies and wave functions if the procedure con-
verges.

What we have done here is to take a simpleXa potential
as a starting potential. The Kohn-Sham equations~16! and
~17! are then solved self-consistently and the orbitalsui

(1)

and the densityr (1) of the first iteration are obtained. If the
maximum relative difference of this densityr (1) and the in-
put densityr is larger than an appropriately chosen small
constant the Kohn-Sham potential of the next iteration is
constructed.„A useful convergent construction of the poten-
tial of the (i11)th iteration isV( i11)5V( i )@r/r ( i )#.… Then
the Kohn-Sham equations are solved again self-consistently.
The process is continued until the Kohn-Sham potential lead-
ing to the input density is obtained. In the present work the
exchange-only scheme is employed and so the Hartree-Fock
density is the input. The very accurate Hartree-Fock wave
functions of Bunge@18# are used. Inclusion of electron cor-
relation would have very small effects on the computed tem-
peratures.

In Table I are presented the exchange-only density-
functional and the Hartree-Fock~HF! one-electron energies
for the Be, Ne, Ar, and Kr atoms. As has already been
pointed out@15,17#, with the exception of the highest occu-
pied orbital, the density functional and the HF orbital ener-
gies are different, with the HF energies more negative.~Ac-
curate density-functional orbital energies, including
correlation, have recently been determined by Zhao, Morri-
son, and Parr@19#.! In Figs. 1–4, 32kT(r ) and 2 «̄(r ) are
shown for these atoms, as calculated from Eqs.~7! and~10!,
respectively. Atomic units are used in the figures.

In order to compare our new and our older definitions of
the local temperature, we recalculate the exchange energy
from @14#

FIG. 3. 3
2kT(r ) and «̄(r ) for the Ar atom. FIG. 4. 3

2kT(r ) and «̄(r ) for the Kr atom.
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Ex@r#5
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with b(r )51/kT(r ), following Ghosh and Parr@3#, and also
recalculate noble-gas Compton profiles from the formula

J~q!5
1

2Euqu

`

x~p!p21d3p5~2p!21E d3rb~r !1/2r~r !

3exp@2b~r !q2/2#, ~19!

following Parr, Rupnik, and Ghosh@2#. Results are shown in
Tables II and III. Given that Eqs.~18! and ~19! are them-
selves necessarily approximate, the calculations do not
clearly discriminate between the new and old formulas for
T(r ).

V. DISCUSSION

The first conclusion is that the local temperature has a
near piecewise constancy similar to the piecewise constancy
of the Hartree-Fock local kinetic energy per particle earlier
reported by Ghosh and Balba´s @7#. This behavior closely
follows the piecewise exponential nature of the density@20#.
Different shells of atoms can be described as having differ-
ent, more or less constant, temperatures. In the hydrogen
atom there is a single constant temperature given by Eq.
~13!. Atoms with higher atomic numbers possess character-
istic values of the temperature for theK,L,M , . . . shells.

The second conclusion is that the local temperature and
the Politzer local average orbital energy index behave simi-
larly. They are proportional at long distances from all nuclei.
Where the local temperature is high, the average local ion-
ization energy is high~average local orbital energy is very
negative!. Politzer and co-workers already have argued that
small Ī (r ) values characterize molecular sites most reactive
to electrophilic reagents@8#. Low local temperature serves
the same purpose. It is easier for a site to donate electrons the
less bound its highest-energy electron are—the lower the lo-
cal temperature is at its boundaries. This conforms with the
fact that electronegativity is lowered if the ionization poten-
tial is lowered. In density-functional language, the local
chemical potential is increased if the local ionization poten-
tial is decreased.

In our work, the idea of a local temperature first came up
in a use of entropy of information in the construction of an
approximate density-functional theory@1#, and that provided
interesting numerical predictions@2,3#. Direct use of a more
simple entropy appears to be of value@6#. If either a tem-
perature or an entropy is useful, the other must be as well.

In the present work, we have pinned down what appears

TABLE III. Compton profilesJ(q) for noble-gas atoms. PRG denotes the calculations reported in Ref.@2#, in which local temperatures
were defined using Eq.~4! of the present text. The present calculations use Eq.~3! to define the local temperature. HF labels Hartree-Fock
results.

He Ne Ar Kr Xe
q PRG Present HF PRG Present HF PRG Present HF PRG Present HF PRG Present HF

0.0 1.02 0.823 1.07 2.98 2.50 2.73 5.49 4.78 5.06 7.93 6.79 7.19 10.82 9.34 9.74
0.1 1.01 0.819 1.06 2.96 2.49 2.72 5.44 4.75 5.04 7.85 6.75 7.15 10.69 9.28 9.69
0.2 0.976 0.806 1.02 2.91 2.47 2.70 5.27 4.66 4.96 7.62 6.64 7.05 10.35 9.12 9.52
0.3 0.924 0.784 0.956 2.83 2.43 2.65 5.02 4.52 4.82 7.27 6.46 6.86 9.84 8.86 9.22
0.4 0.858 0.755 0.878 2.72 2.38 2.59 4.70 4.33 4.62 6.84 6.23 6.57 9.21 8.52 8.77
0.5 0.781 0.719 0.791 2.59 2.31 2.51 4.34 4.10 4.35 6.36 6.95 6.20 8.54 8.12 8.21
0.6 0.700 0.678 0.700 2.45 2.24 2.41 3.96 3.84 4.04 5.87 5.64 5.77 7.89 7.69 7.59
0.8 0.540 0.583 0.527 2.14 2.06 2.17 3.22 3.28 3.33 4.97 4.98 4.85 6.73 6.79 6.38
1.0 0.399 0.481 0.382 1.82 1.86 1.89 2.59 2.72 2.66 4.24 4.33 4.04 5.83 5.96 5.45
1.2 0.288 0.380 0.271 1.53 1.64 1.61 2.10 2.22 2.11 3.68 3.77 3.44 5.16 5.26 4.84
1.4 0.205 0.289 0.191 1.27 1.42 1.35 1.74 1.81 1.70 3.26 3.32 3.03 4.65 4.71 4.44
1.6 0.145 0.210 0.134 1.06 1.22 1.12 1.47 1.49 1.42 2.95 2.97 2.76 4.23 4.27 4.16
1.8 0.103 0.147 0.095 0.876 1.03 0.927 1.27 1.27 1.22 2.69 2.70 2.58 3.88 3.92 3.91
2.0 0.073 0.099 0.068 0.730 0.855 0.771 1.12 1.11 1.08 2.49 2.50 2.44 3.57 3.63 3.68
3.0 0.015 0.008 0.015 0.331 0.347 0.346 0.712 0.740 0.736 1.74 1.81 1.86 2.42 2.48 2.50
4.0 0.004 0.000 0.004 0.187 0.187 0.194 0.486 0.536 0.520 1.22 1.30 1.33 1.72 1.74 1.71
5.0 0.001 0.000 0.001 0.123 0.131 0.124 0.333 0.376 0.359 0.873 0.924 0.933 1.30 1.31 1.30
10.0 0.000 0.000 0.000 0.024 0.031 0.022 0.073 0.078 0.075 0.246 0.260 0.260 0.47 0.498 0.510

TABLE II. Exchange energies for noble-gas atoms~a.u.!.

Atom Exact LDAa GPb Presentc

He 1.03 0.88 0.91 1.09
Ne 12.11 11.03 11.57 12.81
Ar 30.18 27.86 29.24 31.70
Kr 93.9 88.62 94.26 97.31
Xe 179.1 170.6 181.7 185.89

aLDA indicates the Thomas-Fermi-Dirac results.
bThe GP calculations are from Ref.@3#. These employed Eq.~4! of
the present text to define the local temperature.
cThe present calculations employ Eq.~3! to define the local tem-
perature.
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to be the best local temperature definition. The result we
have found, that temperature is approximately piecewise
constant in an atom, is unexpected, as is the result that when-
ever atomic nuclei are present the temperature does not fall
off to zero at infinity. But note that there is a classical analog
to the stepwise constant temperature, in a system separated
into parts by adiabatic semipermeable walls~for which the
equilibrium condition can bem/T5 const).
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