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even-dimensional systems~angular momenta and spins, bosons, and fermions! are considered separately.
Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed
out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from
composite ones.@S1050-2947~96!08605-2#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Already in the dawn of quantum mechanics people antici-
pated that atomic or, more generally, quantum objects would
be very different from the things we see as macroscopic ob-
servers@1#. The formalism was yet to be discovered but the
sheer existence of Planck’s quantum of action was proof
enough. Observers must interact with the objects they wish
to observe and this interaction changes microscopic things
significantly. If the overall measurement-induced backaction
cannot be reduced much below Planck’s constant then mi-
croscopic objects or features on the order of\ cannot be
resolved completely. We cannot see the thingsas they are.
They might rather resemble abstract ideas than things we call
visible and real. Instead, we see only particular aspects of the
physical objects—their quantum shadows~if this excursion
into Plato’s philosophy@2# is permitted!. There is a nice
illustration for this principle in terms of the Wigner repre-
sentation @3#. We express the quantum state of a one-
dimensional mechanical system according to Wigner’s for-
mula

W~q,p!5p21E
2`

1`

exp~2ipx!^q2xur̂uq1x&dx, ~1!

where r̂ denotes the density matrix. For simplicity we set
\51. Hereq andp denote position and momentum, respec-
tively, and uq& is an eigenstate ofq̂. The Wigner function
W(q,p) is a quasiprobability distribution forq and p. Any
predictable quantity, i.e., any expectation value can be rep-
resented as the overlap of the Wigner functionW(q,p) with
the Wigner representation of an operatorF̂,

Tr$r̂F̂%52pE
2`

1`E
2`

1`

W~q,p!WF~q,p!dq dp, ~2!

whereWF(q,p) is defined as in~1! with F̂ replacingr̂. This
means that predictable quantities are filtered projections, i.e.,
shadows, of the quantum state represented by the Wigner
functionW(q,p). These projections are particularly simple
for the so-called quadratures

q̂u5q̂ cosu1 p̂ sinu. ~3!

The probability distribution for observing a particular value
qu is simply the shadow of the Wigner function projected
onto a line in phase space,

pru~qu!5E
2`

p`

W~q cosu2p sin u,q sinu1p cosu!dp.

~4!

Although we are restrained to see only particular aspects of a
physical object in a single observation, nothing prevents us
in principle from changing actively the point of view in a
series of distinct measurements. The more different the
single observations are, or, in other words, the more comple-
mentary aspects we observe, the more information we gain
about all features of a quantum object. A complete set of
observations is sufficient for knowing the quantum state per-
fectly. Again, this is nicely illustrated in terms of the Wigner
representation. If we are able to change the viewpoint in
observing the quadraturesqu , i.e., if we can vary the phaseu,
then we can measure the probability distribution pru(qu) for
all quadrature variables. This is sufficient to infer the quan-
tum state@4–7# represented by the Wigner functionW(q,p)
@4#,

W~q,p!52
1P

2p2 E
0

pE
2`

1` pru~qu!dqu du

~q cosu1p sinu2qu!2
. ~5!

@Here P denotes Cauchy’s principle value. The integral trans-
formation~5! is known as the inverse Radon transformation.#
Changing the point of view in observations to infer the quan-
tum state is the very idea of quantum-state tomography@4#.
On the other hand, there are schemes@6,8# for measuring
so-called propensities@9#, i.e., probability distributions
pr (q0 ,p0) defined as

pr~q0 ,p0!52pE
2`

1`E
2`

1`

W~q,p!WF~q2q0 ,p2p0!dq dp.

~6!
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HereWF(q,p) denotes the Wigner function of a filter state
F̂. These schemes@6,8# are techniques for measuring posi-
tion and momentum simultaneously yet not precisely. Ac-
cording to Heisenberg’s uncertainty principle~in the version
given by Arthurs and Kelly@8#! the resolution of these ob-
servations cannot exceed\ ~which is unity in our units!. This
means that if we attempt to gain directly the complete picture
of a quantum object we are limited in precision.

It is quite natural to extend these ideas to objects other
than mechanical ones, and truly quantum systems like spins
would be interesting candidates. For this we could transcribe
the continuous Wigner formalism for discrete quantum me-
chanics@10#. A discrete version of quantum-state tomogra-
phy and a discrete Wigner representation was sketched in a
brief communication@11#. It is the intention of the present
paper to elaborate this theory in both more detail and intui-
tive insight. In this way the concept of discrete propensities
@12# finds a solid foundation as well. Note that discrete
Wigner functions can be also applied to define Wigner func-
tions for number and phase@13# and in the Weyl-Wigner
formalism for rotation-angle and angular-momentum vari-
ables@14#. Given a quantum system with dimensiond, which
sets of observables are sufficient to infer the state? There are
certainly plenty of possibilities@5#, yet we would like to
restrict ourselves to observables which are simple projections
of a discrete Wigner function like the quadratures in continu-
ous quantum-state tomography@4#. In this way we bridge the
idea of quantum-state reconstruction with the very concept
of a discrete Wigner representation. In addition, we can find
a simple way of realizing experimentally the necessary view-
point changes in the set of observations.

Discrete Wigner representations have been already intro-
duced by Wootters@15# for prime-dimensional systems and
by Cohendetet al. @16# for odd-dimensional objects. There
seems to be a subtle reason why primes, odd, or even dimen-
sions make a difference, why simple number theory gets in-
volved in the quantum mechanics of finite-dimensional sys-
tems. In the present paper we investigate this point in more
detail. To define a discrete Wigner function on a
d-dimensional state space, Wootters@15# proposed to de-
compose the space into factor spaces of prime dimension
according to the factorization ofd @17#. The Wigner function
of the system is given on the factor spaces@18#. In this paper
we take a different approach: We define a Wigner function
on the totald-dimensional state space without factorization
because this seems to be more natural. Our Wigner function
is identical with the previously studied functions@15,16# for
prime and odd dimensions, respectively, but we add a num-
ber of additional results to the known properties of discrete
Wigner functions. It is probably in the nature of things that
discrete Wigner functions for even-dimensional systems are
a bit odd, and apart from the two-dimensional case they have
never been defined before. Note that we have slightly modi-
fied the notation of the first communication@11#. More im-
portantly, instead of discrete quadratures we consider phase-
precession measurements to make the idea of discrete
quantum-state tomography more transparent and perhaps
more practical. Note, however, that this does not affect the
principal concept@11#. It means only that the parametrization
of the measured quantities is changed.

II. SETTING THE SCENE

A. Precession tomography

To get an intuitive picture for discrete Wigner functions
and quantum-state tomography, imagine a spin or angular-
momentum component as our system. Classically, this would
correspond to a spinning top with phasew and angular mo-
mentumm in z direction as depicted in Fig. 1. We may also
have a statistical ensemble of tops where the phases and
angular momenta are statistically distributed according to a
phase-space densityP(w,m). Although this picture is of
course not exactly correct for quantum tops it puts in a nut-
shell the central idea of discrete quantum-state tomography,
and that isprecession tomography. Suppose we are restricted
to observe either the phase distribution or the angular-
momentum distribution of an ensemble of tops. Suppose fur-
thermore that the tops are precessing according to the clas-
sical Hamiltonian

H5
m2

2
. ~7!

The probability distributionP(w,m) is sheared when time
progresses

FIG. 1. Spinning top symbolizing a classical angular momentum
~a!. It is represented in cylinder coordinates, i.e., in terms of the
phasew and the angular-momentum componentm. In ~b! the cyl-
inder has been rolled out onto the plane in order to show the phase-
space density of a statistical ensemble of processing tops.
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P~w,m;t !5P~w2mt,m!, ~8!

simply because tops with larger angular-momentum compo-
nents precess faster than tops with smaller ones. The phase
distribution is given by

pr~w;t ![E
2 l

1 l

P~w2mt,m!dm. ~9!

Here l denotes the total angular momentum. Consequently,
the Fourier-transformed distribution

pr̃~n;t !5E
2p

1p

pr~w;t !exp~2 iwn!dw ~10!

is related to the Fourier-transformed phase-space density
~also called characteristic function!

P̃~n,n![E
2p

1pE
2 l

1 l

P~w,m!exp@2 iwn2 imn#dm dw

~11!

according to the simple rule

pr̃~n;t !5 P̃~n,nt !. ~12!

Precession shears the phase space of the top so that measur-
ing the phase distribution at the timesnn21 is sufficient to
infer the characteristic functionP̃(n,n) apart from values
with n50. Fortunately, the angular-momentum distribution
~invariant during precession!

pr~m!5E
2p

1p

P~w,m!dw ~13!

closes this gap. In fact

pr̃~n![E
2 l

1 l

pr~m!exp~2 imn!dm5 P̃~0,n!. ~14!

We see that we can reconstruct the characteristic function
from observations of the angular momentum and separately
of the phase distribution during precession. So without ob-
serving directly the phase-space densityP(w,m) we can to-
mographically infer this distribution, i.e., the classical state
of an ensemble of tops. Although this draws an entirely clas-
sical picture for spin-precession tomography, the quantum
version is just a mere refinement which, however, involves
some subtleties.

B. Quantization

Let us state more precisely what we mean by the phase
and the angular-momentum component of a quantum top. In
contrast to the phase of a harmonic oscillator@19,20#, the
phase of a spin or angular momentum does not involve much
theoretical headaches, and it is easily defined@21,22#. Here
we follow mostly Vourdas’ approach@22#. Suppose we have
a system described by the angular-momentum or spin opera-
tors Ĵx , Ĵy, and Ĵz . We consider states with fixed total spin

~ Ĵx
21 Ĵy

21 Ĵz
2!r̂5 j ~ j11!r̂. ~15!

As well known, the quantum numberj can be only integer or
half odd. Whenj is integer we call the system an angular
momentum~it is in the Bose sector@22#! and whenj is half
odd we call it a spin~in the Fermi sector@22#!. The dimen-
sion of the system

d52 j11 ~16!

is odd for bosons and even for fermions. To simplify future
expressions we introduce the following notations for the
eigenstates of theĴz component: In the Bose sector we have
as usual

Ĵzum&5mum&, mP$2 j ,...,j %, ~17!

m̂[ Ĵz , ~18!

while in the Fermi sector we define

Ĵzum&5~m2 1
2 !um&, mP$2 j1 1

2 ,...,j1
1
2 %, ~19!

m̂[ Ĵz1
1
2 . ~20!

All angular-momentum or spin component eigenstates~in
short,spin states! are labeled by integer numbersm. Accord-
ing to Vourdas@22# the amplitudeĴr and the exponential
phase operatorÊ obey the relations

Ĵ1[ Ĵx1 i Ĵy5 Ĵr Ê,

Ĵ2[ Ĵx2 i Ĵy5Ê†Ĵr , ~21!

with

Ĵr[~ Ĵ1Ĵ2!1/25@ Ĵ2 Ĵz
21 Ĵz#

1/2 ~22!

and

Ê5(
m

um11&^mu[exp~ i ŵ ! ~23!

with the Pegg-Barnett-type convention@20# that u j11&
5u2 j & in the Bose sector andu j1 1

211&5u2 j1 1
2 & in the

Fermi sector. The phase operatorŵ is perfectly Hermitian,
and apart from a possible reference phase the phase eigen-
values are discrete and given by the expression

wm5
2p

d
m ~24!

with integersm. Thephase states, i.e., the eigenstates of the
phase operatorŵ are discrete Fourier transformations of the
spin statesum&,

um&5d21/2(
m

expS 2
2p i

d
mmD um&. ~25!

To distinguish phase and spin states we denote phases by
greek letters~mostly m and n! and spins using latin letters
~mostlym andn!. In case of doubt we put labelsw or m on
the state vector. We introduce the rescaled phase operator
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m̂[
d

2p
ŵ5(

m
mum&^mu ~26!

with integer eigenvaluesm. The spin states are discrete Fou-
rier transformations of the phase states

um&5d21/2(
m

expS 1
2p i

d
mm D um&. ~27!

Phase states are of course periodic,

um1d&5um&, ~28!

and, if we regard Eq.~27! as a definition for spin states
outside the original quantization region, spin states are peri-
odic too,

um1d&5um&. ~29!

Note that this relation is just a convenient definition without
physical consequences. In this way we have seen that the
‘‘phase space’’ for a quantum top is a periodic lattice of
integers~m,m!. Finally, we introduce themodular Kronecker
symbol

d~k;a![ H1, k50 ~moda!

0, otherwise ~30!

5
1

a (
l5 l0

l01a21

expS 2p i

a
lk D ~31!

for integerk. This symbol will simplify future calculations.

C. Continuous Wigner representation

Of course, there is no true phase-space density in quantum
mechanics and the best compromise we can reach is prob-
ably the Wigner function. The quantum characteristic func-
tion for a mechanical system described by positionq̂ and
momentump̂ is defined as follows:

W̃ ~u,v ![Tr$r̂ exp~2 iuq̂2 iv p̂!% ~32!

5TrH r̂ expS 2 i
uv
2 Dexp~2 iuq̂!

3exp~2 iv p̂!J ~33!

5TrH r̂ expS 1 i
uv
2 Dexp~2 iv p̂!

3exp~2 iuq̂!J , ~34!

where the Baker-Hausdorff formula has been used to obtain
the last two lines. The Wigner function is the Fourier-
transformed characteristic function

W~q,p!5
1

~2p!2
E

2`

1`E
2`

1`

W̃ ~u,v !exp~ iuq1 ivp!du dv

~35!

and using the expression~33! we derive Wigner’s formula
~1! for W(q,p). The continuous Wigner function resembles
many features of a classical phase-space density, although it
might become negative, indicating nonclassical behavior
@23#. Let us briefly summarize a few important properties of
the continuous Wigner representation for later comparison
with the discrete version.

Wigner functions are real and normalized to unity for nor-
malized density operators. The Wigner functionsW1 andW2
for two arbitrary operatorsF̂1 and F̂2 obey the overlap rela-
tion

Tr$F̂1F̂2%52pE
2`

1`E
2`

1`

W1~q,p!W2~q,p!dq dp, ~36!

which proves the formula~2! mentioned in the Introduction.
The Wigner function has the quantum-mechanically correct
marginal distributions

^qur̂uq&5E
2`

1`

W~q,p!dp,

^pur̂up&5E
2`

1`

W~q,p!dq, ~37!

where uq& and up& are the eigenstates ofq̂ and p̂, respec-
tively. Linear processes transform Wigner functions as if
they were classical probability distributions. In particular,
during free evolution described by the Hamiltonian

Ĥ5 1
2 p̂

2 ~38!

the Wigner function is sheared,

W~q,p;t !5W~q2pt,p!. ~39!

Apart from the overlap relation~2! there is another alterna-
tive way for calculating expectation values. We consider

Tr$r̂~aq̂1b p̂!k%5 i k
]k

]zk
W̃ ~za,zb!U

z51

5E
2`

1`E
2`

1`

W~q,p!~aq1bp!kdq dp.

~40!

In the first line we have used the definition~32! for the char-
acteristic functionW̃ (u,v) while in the second line we have
utilized the Fourier relationship~35! between W̃ (u,v) and
the Wigner function. Comparing the powers ofa andb we
see that

Tr$r̂S q̂mp̂n%5E
2`

1`E
2`

1`

W~q,p!qmpndq dp. ~41!

The symbolS means that we should symmetrize all possible
products of them operatorsq̂ and then operatorsp̂, i.e., we
should take the average over all products with the right
amount ofq̂’s andp̂’s. Obviously, this ordering~called Weyl
ordering! depends on the structure~32! of the continuous
characteristic function.
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D. Discrete characteristic function

Three major ingredients of our formalism have been pre-
sented: the picture of precession tomography, quantized tops,
and Wigner functions asquasi-phase-space distributions. To
find a discrete Wigner representation we must probably be-
gin with a guess. Let us define the discrete characteristic
function in a similar way as the continuous one,

W̃ ~n,n![TrH r̂ expS 2
4p i

d
nnDexpS 2

4p i

d
nm̂ D

3expS 2
4p i

d
nm̂D J ~42!

[TrH r̂ expS 1
4p i

d
nnDexpS 2

4p i

d
nm̂D

3expS 2
4p i

d
nm̂ D J , ~43!

using Vourdas’ identity, Ref.@22#, Eq. ~35!, for the last line.
Note, however, that the discrete characteristic function does
not equal Tr$r̂ exp@24p i (nm̂1nm̂)/d#% anymore, since the
commutation relation between phase and spin is different
from the canonic relation between position and momentum,
and the Baker-Hausdorff formula cannot be applied.~Ca-
nonical commutation relations imply a continuous spectrum
which violates, of course, the discrete nature of angular mo-
menta and spins.! Consequently, the Weyl ordering of ob-
servables is sacrificed in our discrete Wigner representation.
Nevertheless, most other important properties of continuous
Wigner functions are maintained yet sometimes in a subtly
modified form. To find explicit expressions for the discrete
characteristic function we note that

expS 2
4p i

d
nm̂D um&5um12n&w . ~44!

and

expS 2
4p i

d
nm̂ D um&5um22n&m , ~45!

which is easily verified using the relations~25! and~27! be-
tween spin and phase states. In this way we obtain directly
from the definition~42!, ~43! of the discrete characteristic
function the explicit formulas

W̃ ~n,n!5(
m

expF2
4p i

d
n~m1n!G^mur̂um12n&w

~46!

5(
m

expF2
4p i

d
n~m2n!G^mur̂um22n&m .

~47!

Now we are prepared to study discrete Wigner functions and
quantum-state tomography.

III. BOSE SECTOR

A. Discrete Wigner function

We have everything on hand to define directly the discrete
Wigner function forodd-dimensionalsystems~for genuine
angular momenta!, i.e., in the Bose sector. Even-dimensional
quantum objects require more thought and are considered in
the next section. The Wigner function for bosons is the
Fourier-transformed characteristic function

W~m,m![
1

d2 (
nn

expF4p i

d
~nm1nm!G W̃ ~n,n!.

~48!

Using the explicit expressions~46! and ~47! for the discrete
characteristic function we obtain familiar looking formulas
for the Wigner function,

W~m,m!5
1

d (
n

expS 1
4p i

d
mn D ^m2nur̂um1n&

~49!

5
1

d (
n

expS 2
4p i

d
mnD ^m2nur̂um1n&.

~50!

Bear in mind the periodicity relations~28! and ~29! for the
phase statesum& and spin statesum&, respectively, to obtain
meaningful results.

B. Examples

1. Line states

How do the discrete Wigner functions look? Let us con-
sider the simplest examples@24# first: line states, i.e., phase
or spin states. What would we expect? A phase state should
have a well-defined phase, of course, and a completely ran-
dom angular-momentum component. The Wigner function of
a phase state should be a line in the discrete lattice of~m,m!
values; see Fig. 2~a!. On the other hand, for a spin state we
expect a well-defined angular-momentum component and a
random phase as depicted in Fig. 2~b!. That this is indeed
correct is easily verified using the explicit expressions~49!
and ~50!. For a phase stateum& we get

W~m,m!5
1

d (
n

expS 4p i

d
mn D ^m2num0&^m0um1n&

5d21d~m2m0 ;d!, ~51!

while for a spin stateum& we obtain

W~m,m!5d21d~m2m0;d!. ~52!

2. Broken-line states

There is an interesting family of states if the dimensiond
is composite, i.e.,

d5ab, ~53!

with the integersa andb. Let us call thembroken-line states
defined as
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um0 ,m0&ab[b21/2(
m8

expS 2
2p i

b
m8m0D uam81m0&,

~54!

wherem8 ranges from2~b21!/2 to 1~b21!/2. We may
express these states also in a different way using the repre-
sentation~27! of the spin states in terms of phase states,

um0 ,m0&ab}(
m8

(
m

expF2p i

d
@m~am81m0!2am8m#G um&

}(
m

expS 2p i

d
mm0D d~m2m0 ;b!um&, ~55!

and utilizing the normalization ofum0 ,m0&ab ,

um0 ,m0&ab5a21/2(
m8

expS 1
2p i

a
m8m0D ubm81m0&,

~56!

wherem8 ranges from2~a21!/2 to 1~a21!/2. The Wigner
function for broken-line states is easily calculated using the
explicit expression~49!

W~m,m!5
1

da (
n

(
m18m28

expF2p i

d
@2nm1bm0

3~m182m28!#G
3d~m2n2m02bm18 ;d!d~m1n2m0

2bm28 ;d!. ~57!

The modular Kronecker symbol in this equation implies that

2n5b~m282m18! ~modd!,

2~m2m0!5b~m281m18! ~modd!. ~58!

Consequently,

W~m,m!5
1

da (
n8

expF4p i

d
~m2m0!n8Gd~m2m0 ;b!

~59!

and, finally,

W~m,m!5d21d~m2m0 ;a!d~m2m0 ;b!. ~60!

The Wigner function of broken-line states displays a lattice
of broken lines in the discrete phase space; see Fig. 3. The
period of this lattice isb in phase anda in spin direction and
the parametersm0 and m0 define the displacement of the
lattice. Although broken-line states are superpositions of a
few line states their Wigner function is non-negative, quite in
contrast to Wigner functions of superpositions in continuous
quantum mechanics@25#. Note that broken-line states are
only possible if the dimensiond is composite. In this paper

FIG. 2. Example of discrete Wigner functions~51!, ~52! for line
states in odd dimensions. Here the dimensiond57. In ~a! a phase
stateu0&w and in ~b! a spin stateu0&m is depicted.

FIG. 3. Example of discrete Wigner functions~60! for broken-
line states~54! in odd and composite dimensions. Here the dimen-
siond515. The state is13~u25&w1u0&w1u15&w! in phase representa-
tion. Three broken lines at the phases$25,0,15% are clearly visible.
They correspond to five lines at the spins$26,23,0,13,16% since
the state can be expressed as15(u26&m1u23&m1u0&m
1u13&m1u16&m) in spin representation.
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they give a first indication that simple number theory plays a
role in the quantum mechanics of finite-dimensional systems.

C. Properties

Let us study the properties of discrete Wigner functions in
the Bose sector. Of course, they are real-valued for Hermit-
ian density matricesr̂ and normalized to unity,

(
mm

W~m,m!51, ~61!

as we would expect for a suitable quasiprobability distribu-
tion.

3. Marginals

The marginal distribution of the discrete Wigner function
should yield the phase and spin histograms, respectively. In
fact, we obtain from the explicit formula~49!

(
m

W~m,m!5
1

d (
mn

expS 4p i

d
mn D ^m2nur̂um1n&

5(
n

d~2n;d!^m2nur̂um1n& ~62!

and since the dimensiond is odd in the Bose sector,

(
m

W~m,m!5^mur̂um&. ~63!

The other explicit expression~50! leads to the spin marginals

(
m

W~m,m![^mur̂um&. ~64!

This shows that discrete Wigner functions have the quantum-
mechanically correct marginal distributions.

4. Overlap relation

LetW1(m,m) andW2(m,m) be the discrete Wigner func-
tions for two ~not necessarily Hermitian! operatorsF̂1 and
F̂2. The overlap of two Wigner functions is given by

d(
mm

W1~m,m!W2~m,m!

5
1

d (
mn

(
n1n2

expF4p i

d
m~n11n2!G^m2n1uF̂1um1n1&

3^m2n2uF̂2um1n2&. ~65!

The summation with respect tom produces a modular Kro-
necker symbold~2n112n2;d! and so we obtain for the over-
lap of bosonic Wigner functions

d(
mm

W1~m,m!W2~m,m!

5(
mn

^m2nuF̂1um1n&^m1nuF̂2um2n&

5 (
m1m2

^m1uF̂1um2&^m2uF̂2um1&

5(
m1

^m1uF̂1F̂2um1& ~66!

using the completeness of the phase states in the last step.
Finally, we arrive at the overlap relation

Tr$F̂1F̂2%5d(
mm

W1~m,m!W2~m,m!. ~67!

In particular, we obtain

Tr$r̂F̂%5d(
mm

W~m,m!WF~m,m! ~68!

for the density operatorr̂ and an arbitrary operatorF̂. This
relation illustrates that also in the discrete case all predictable
quantities are filtered projections i.e., quantum shadows, of
the discrete Wigner function. The formula~68! provides us
with the key for calculating expectation values via Wigner
functions or, more generally, for formulating quantum me-
chanics without probability amplitudes@26#. The overlap re-
lation replaces fully the Weyl ordering ofm̂ andm̂ which has
been sacrificed from the very beginning. The relation also
shows that the Wigner functionsW1(m,m) andW2(m,m) of
two orthogonal statesuc1& and uc2& must be either disjoint or
must contain negative elements, since

d(
mm

W1~m,m!W2~m,m!5^c1uc2&50. ~69!

Later we will encounter other interesting applications of the
fundamental overlap relation.

D. Operations in discrete phase space

1. Displacement

The displacement of discrete Wigner functions in the
phase-space lattice was considered by Opatrnyet al. @12#.
For the sake of notation we define a phase-displacement op-
erator

D̂w~m0![expS 2
2p i

d
m0m̂D ~70!

and a spin-displacement operator

D̂m~m0![expS 1
2p i

d
m0m̂ D . ~71!

The effect of the displacementsD̂ r̂D̂† in discrete phase
space is obvious,

Ww~m,m!5W~m2m0 ,m! ~72!

and

Wm~m,m!5W~m,m2m0! ~73!

i.e., the Wigner functions are simply displaced.
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2. Precession

The central intuitive idea of discrete quantum-state to-
mography is precession tomography. What is the effect of
the precession Hamiltonian

Ĥ5
m̂2

2
~74!

in discrete phase space? Let us consider the precession op-
erator

P̂~ t !5exp~2 iĤ t !, ~75!

i.e., the time evolution operator corresponding to the Hamil-
tonian Ĥ, at times

t5
4p

d
t ~76!

with integert @27#. To see the effect of precession in discrete
phase space we use the explicit expression~50! for the dis-
crete Wigner function and obtain

WP~m,m!5
1

d (
n

expS 2
4p i

d
nm D ^m2nuP̂r̂ P̂†um1n&

5
1

d (
n

expF2
2p i

d
@2nm1t~m2n!2

1t~m1n!2#G^m2nur̂um1n&, ~77!

yet provided thatt is indeed integer so that we can apply the
same modular arithmetic in the exponent as in the notation of
the spin states~29!. For this subtle reason we obtain

WP~m,m!5W~m22mt,m! ~78!

only if t is integer. Precession in discrete phase space takes
place in steps oftwo ~in the Bose sector!. Or, more precisely,
the relation between the precessed and the original Wigner
function is less simple for timest which do not match the
condition~76!. A precessing phase state, for instance, would
produce oscillations and negative values in the Wigner func-
tion between the times 4ptd21, but as soon ast approaches
4ptd21 the picture becomes clear, and finally the simple
precession~78! of the discrete Wigner function is apparent;
see Fig. 4. This series of clear pictures during precession
resembles the Talbot effect@28# or fractional revivals@29#
and it is of course periodic ind when the initial state returns
to itself.

E. Tomography

How can we reconstruct the quantum state, i.e., the char-
acteristic or the Wigner function, from observations of a pre-
cessing spin? The central idea was already sketched in the
remarks on classical precession tomography. Only some
subtle modifications are required. First of all, the phase his-
tograms should be observed at the times~76! provided the
Hamiltonian ~74! is acting. ~If the scale of the precession
Hamiltonian is different thent should be scaled accordingly.!

Phase states~25! are discrete Fourier transformations and
their experimental realization depends, of course, on the par-
ticular system@30#. It has been much discussed in the context
of quantum computing@31#. Given the set of phase histo-
grams prw~m;t! at the times~76! we can reconstruct the char-
acteristic function. According to the overlap relation~67! the
phase histograms can be seen as

prw~m0 ;t![^m0uP̂r̂ P̂†um0&

5(
mm

W~m,m!d~m2m012mt;d!. ~79!

Consequently, the Fourier transformation pr˜w(n;t) of the
histogram prw~m;t!

pr̃w~n;t![(
m0

expS 2
4p i

d
m0n Dprw~m0 ;t!

5(
mm

expF2
4p i

d
n~m12mt!GW~m,m!

~80!

is the characteristic function at the points~n,2tn!,

pr̃w~n;t!5 W̃ ~n,2tn!. ~81!

Like in classical precession tomography we cannot infer the
characteristic function from phase observations only. The

FIG. 4. Schematic diagram to show the precession in discrete
phase space for a prime-dimensional system~d57!. A precessing
phase stateP̂(t) u0&w , see Eq.~75!, is depicted at the times 4pt/d
with integer t. The picture shows that precession takes place in
steps of two. It also illustrates that the precession states together
with the spin stateu0&m cover the whole phase space completely.
This remarkable feature reveals themulticomplementarityof the
precession states in prime dimension. It indicates that the precession
states combined with the spin states represent all complementary
aspects of a prime-dimensional quantum system.
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conjugate quantity, i.e., the angular-momentum component
must be measured as well. In fact, the Fourier-transformed
spin distribution prm(m) yields

pr̃m~n![(
m0

expS 2
4p i

d
m0nDprm~m0!

5(
m0

expS 2
4p i

d
m0nD(

m
W~m,m!

5 W̃ ~0,n!. ~82!

If the dimensiond is prime we can represent every lattice
point ~n,n! of the characteristic function in terms of~n0,2tn0!
or ~0,m! modulo d, since primes define afield @32#. This
means that we can reconstruct every point of the character-
istic function from observations of the precessed phase and
of the angular-momentum component. However, this is not
true for composite dimensions. Then we can represent~n,n!
as ~n0,2tn0! modulo donly if n0 and the dimension have no
common factora. Otherwise, ifn0 contained the factora,
2tn0 would be proportional to the numbera as well, and
points ~n,n! which do not meet this condition are missed in
the reconstruction of the characteristic function. There is a
simple reason for this: Precession shears layers with equal
angular-momentum components and we observe the phase
distribution. This~Schrödinger-like! picture is equivalent to
letting the phase states precess and leaving the system state
unchanged~Heisenberg-like picture!. If the dimension is
prime, the precessing phase states and the angular-
momentum states will cover the complete phase space; see
Fig. 4. If the dimension is composite, some points in discrete
phase space are never reached by the precessing spin states
and these regions remain unexplored; see Fig. 5. However,
precessing broken-line states fill these gaps. Suppose we ob-
serve the probability distribution

pr~m0,m0 ;t!

[ K m0,0UP̂S taD D̂m
† ~m0!r̂D̂m~m0!P̂

†S taD U0,m0L
5(

mm
W~m,m!dS m2m012~m2m0!

t

a
;bD d~m2m0 ;a!.

~83!

Note that we have divided the timet defined in~76! by a.
Even in this case the discrete Wigner function of broken-line
states is transformed according to the classical-like law~78!
as is easily verified. The histogram pr~m0,m0;t! is a-periodic
in m0 andb-periodic inm0 andt. Performing a discrete Fou-
rier transformation of the broken-line distribution

pr̃~m0,m0 ;t!

[
1

a (
m0m0

expF2
4p i

d
n~am01tm0!Gpr~m0 ,m0 ;t!

5
1

a (
m0

(
mm

expF2
4p i

d
n~am1tm!G

3W~m,m!d~m2m0 ;a!

5(
mm

expF2
4p i

d
n~am1tm!GW~m,m!

5 W̃ ~an,2tn! ~84!

reveals the missing elements of the discrete characteristic
function, and finally, using the relations~81!, ~82!, and~84!
the quantum state can be reconstructed.

F. Primes and multicomplementarity

There is another way of understanding the distinction of
prime dimensions in precessing tomography@34#. The pre-
cession states aremulticomplementary. Let us denote these
states by

um;t&[ P̂~ t !um&. ~85!

Note thatt and t are related according to the formula~76!.
The precession states have the remarkable property@35# that

z^m2 ;t2um1 ;t1& z25d21 for t1Þt2 ~modd!,

z^mum;t& z25d21, ~86!

FIG. 5. Schematic diagram to show the precession in discrete
phase space for a composite-dimensional system~d59!. The pre-
cessing phase states leave gaps in the discrete phase space which
are to be closed by broken-line states to gain sufficient information
for state reconstruction. The picture also illustrates that the preces-
sion states may overlap in three points or may have zero overlap in
accordance with their lack ofmulticomplementarity, see Eq.~91!.
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if and only if the dimensiond is prime. What does this prop-
erty ~86! mean? The probability of finding the stateum2;t2& in
um1;t1& is completely uniform, so that theum2;t2& state con-
tains no information at all about theum1;t1& state and vice
versa, a phenomenon familiar from position and momentum
eigenstates. Thed11 sets of statesum;t& and um& are mutu-
ally complementary. They cover the complete phase space
~see Fig. 4!, and they represent all complementary aspects
@36# of the quantum system. The knowledge of the distribu-
tions of all complementary features is equivalent to the
knowledge of the quantum state.

To verify the property~86! for precession states in prime
dimensions we recall that according to the overlap relation
~67! the transition probability betweenum2;t2& and um1;t1& is
given by the overlap of the corresponding Wigner functions.
A glance at Fig. 4 shows that the precession states have
exactly one element in phase space in common and the over-
lap of the two Wigner functions multiplied withd yields the
valued21 of the transition probability~86!.

What happens if the dimension is not prime?
Obviously, the scalar product ^m2;t2um1;t1& equals
^m22m1uP̂

†(t22t1) u0&w , and it is sufficient to consider only

z^muP̂†~ t !u0&wz25
1

d2 U(m expF2p i

d
~tm21mm!GU2.

~87!

There are two cases to distinguish. First,t andd may have
no common factor. Then we can always representm as 2tm8
modulo dand obtain

z^muP̂†~ t !u0&wz25
1

d2 U(m expF2p i

d
t~m1m8!2GU2

5
1

d2 U(m expF2p i

d
tm2GU2

5d21, ~88!

using in the last line a result found by GauX @37#. Second,
supposet andd have the greatest common factora, i.e.,

t5at8, d5ab. ~89!

We representm asbm81m9 modulo dand obtain from Eq.
~87!

z^muP̂†~ t !u0&wz2

5
1

d2 U (
m8m9

expF2p i

d
~at8m921mm91mbm8!GU2

5
1

b2 U(m9
expF2p i

d
~at8m921mm9!Gd~m;a!U2 ~90!

and using the same arguments as in the previous case

z^muP̂†~ t !u0&wz25b21d~m;a!. ~91!

The overlap vanishes ifm is not divisible bya. It is accord-
ingly larger thand21 if m contains the factora. Figure 5
illustrates that precession states may not overlap at all or

they may overlap in more than just one element in phase
space. The precession states contain mutual information
about each other and so they are not strictly complementary.
Consequently, there is more than the precessing phases and
angular momenta to be measured for inferring the quantum
state of a system with composite dimension.

IV. FERMI SECTOR

A. Problems

Why is the definition~48! of the discrete Wigner function
not suitable for even-dimensional systems? What is odd with
even dimensions? This is most easily seen by considering the
marginal distribution

(
m

W~m,m!5(
n

d~2n;d!^m2nur̂um1n&; ~92!

cf. Eq. ~62!. If the dimensiond is even there are two cases,
n50 andn5d/2, whered~2n;d! is different from zero and we
obtain

(
m

W~m,m!5^mur̂um&1^m2d/2ur̂um1d/2&

5^mur̂um&1^m1d/2ur̂um1d/2& ~93!

because of the periodicity~28! of the phase states. This is not
the desired result~63!. It indicates already that spins require
more thought in defining a discrete Wigner function than
angular momenta. There is another reason: Wigner functions
expressed as~49! or ~50! depend entirely on matrix elements
with even index difference~m1n!2~m2n!52n modulo the
dimensiond. This matters ifd is even because then 2n ~mod
d! is an absolute even number. For even dimensions, Wigner
functions ~49! and ~50! lack the information about density-
matrix elements with odd index differences and so the
Wigner functions do not represent uniquely quantum states
anymore. There is another way of seeing this: If the dimen-
siond is even the characteristic function~42! is periodic with
respect tod/2

W̃ ~n1d/2,n!5 W̃ ~n,n1d/2!5 W̃ ~n,n!, ~94!

provided of course thatn andn are integer. The characteris-
tic function contains redundant information. It seems likely
that these oddities of the even-dimensional Wigner function
have a deeper topological reason.~Spins require a 4p rota-
tion to return to the initial state while 2p is sufficient for
angular momenta.!

B. Two dimensions

For two-dimensional systems~spin 1
2! the characteristic

function would contain just one independent element
W̃ ~0,0! if n andn are assumed to be integer. What about
half-integer arguments? This changes the situation signifi-
cantly because then we obtain from the explicit expressions
~46! and ~47!

W̃ ~0,0!5Tr$r̂%, ~95!

W̃ ~0,12 !5Tr$r̂sx
w%5Tr$r̂sz

m%,
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W̃ ~ 1
2 ,0!5Tr$r̂sz

w%5Tr$r̂sx
m%,

W̃ ~ 1
2 ,

1
2 !5Tr$r̂sy

w%52Tr$r̂sy
m%,

with s x
w, s y

w, s z
w ands x

m, s y
m, s z

m being the Pauli matrices in
the phase and spin representation, respectively,

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D .
~96!

The characteristic function for half-integer arguments is the
Bloch vector. The discrete Wigner function should be the
Fourier-transformed characteristic function

W~m,m!5
1

4 (
nn

exp@2p i ~nm1nm!# W̃ ~n,n!. ~97!

Here n and n take on half-integer values whilem andm
should be integer. Explicitly,

W~0,0!5 1
4 @2^0ur̂u0&1~11 i !^1ur̂u0&1~12 i !^0ur̂u1&#,

W~0,1!5 1
4 @2^0ur̂u0&2~11 i !^1ur̂u0&2~12 i !^0ur̂u1&#,

W~1,0!5 1
4 @2^1ur̂u1&1~12 i !^1ur̂u0&1~11 i !^0ur̂u1&#,

W~1,1!5 1
4 @2^1ur̂u1&2~12 i !^1ur̂u0&2~11 i !^0ur̂u1&#

~98!

in phase representation. This is precisely Wootters’ expres-
sion @15# of a Wigner function for two-dimensional systems.
We have seen that it can be derived from the characteristic
function ~42!, ~43! by allowing half-integer arguments.

Since the Wigner function is the Fourier transform of the
Bloch vector it represents the quantum state uniquely. Using
the explicit expression~98! we see that the Wigner function
has interesting marginal distributions,

W~0,0!1W~0,1!5^0ur̂u0&w5 1
2 ~^0u1^1u!r̂~ u0&1u1&!m ,

W~0,1!1W~1,1!5^1ur̂u1&w5 1
2 ~^0u2^1u!r̂~ u0&2u1&!m .

~99!

The phase marginal distribution yields the phase probabili-
ties or, in other words, the probabilities for the eigenstates of
s z

w5s x
m. Furthermore,

W~0,0!1W~1,0!5 1
2 ~^0u1^1u!r̂~ u0&1u1&!w5^0ur̂u0&m ,

W~0,1!1W~1,1!5 1
2 ~^0u2^1u!r̂~ u0&2u1&!w5^1ur̂u1&m .

~100!

The spin marginal distribution yields the spin probabilities,
i.e., the probabilities for the eigenstatess x

w5s z
m. Finally,

W~0,1!1W~1,0!5 1
2 ~^0u2 i ^1u!r̂~ u0&1 i u1&!w

5 1
2 ~^0u1 i ^1u!r̂~ u0&2 i u1&!m ,

W~0,0!1W~1,1!5 1
2 ~^0u1 i ^1u!r̂~ u0&2 i u1&!w

5 1
2 ~^0u2 i ^1u!r̂~ u0&1 i u1&!m .

~101!

The diagonal sums of the Wigner functionW(m,m) yield the
probabilities for the eigenstates ofs y

w52s y
m. We have seen

that the two-dimensional Wigner functionW(m,m) has
properties of a magic square, i.e., the sums across lines in
W(m,m) give certain physically meaningful results.

C. Even dimensions

It turns out that a second step is necessary to define a
discrete Wigner function in arbitrary even dimensions. We
introduce half odds between the integer elements of the dis-
crete phase space for both the characteristic and the Wigner
function, i.e.,

W~m,m![
1

2d (
nn

expF4p i

d
~nm1nm!G W̃ ~n,n!, ~102!

wheren andn run from2d/211
2 to d/2 in steps of12 andm

andm take on half-integer values~integers and half odds!.
Explicitly,

W~m,m!5
1

2d (
n

expF1
4p i

d
nmG^m2nur̂um1n&

~103!

5
1

2d (
n

expF2
4p i

d
nmG^m2nur̂um1n&

~104!

with the convention that the matrix elements with half-odd
arguments should vanish. The definition~102! and the ex-
plicit expressions~103! and~104! include of course the pre-
viously considered Wigner functions for spin12. However,
half-odd elements likeW~0,12!, W~12,0!,... have been supple-
mented.

D. Properties

1. Marginals

Does this procedure of supplementing the discrete phase
space with half-odd elements solve the problem~93! with the
marginal distributions? We consider

(
m

W~m,m!5
1

2d (
mn

expS 4p i

d
nmD ^m2nur̂um1n&

~105!

and see that since

(
m

expS 4p i

d
nmD5 (

k52d11

d

expS 2p i

2d
2nkD

52d d~2n;2d! ~106!

with m5k/2 and integerk, the indexn must be zero in the
summation~105!. Consequently,

(
m

W~m,m!5^mur̂um& ~107!

if m is integer, and because of the matrix-element convention
in the explicit expression~103!
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(
m

W~m,m!50 ~108!

for half-odd m. Using the expression~104! we obtain the
equivalent result for the spin distribution. Although the half-
odd elements do their duty in the mathematical construction
of fermionic Wigner functions, they do not appear as physi-
cal observables. They are ghost variables of zero probability
for observation.

2. Overlap relation

We can also prove that fermionic Wigner functions obey
the same overlap relation~67! as the Wigner functions in the
Bose sector. We use the explicit expression~103! for the
Wigner functionsW1 andW2 of the arbitrary operatorsF̂1
and F̂2 to obtain

d(
mm

W1~m,m!W2~m,m!

5
1

4d (
mm

(
n1n2

expF4p i

d
m~n11n2!G^m2n1uF̂1um1n1&

3^m2n2uF̂2um1n2&

5
1

2 (
mn

^m2nuF̂1um1n&^m1nuF̂2um2n&. ~109!

We representm1n by m1 andm2n by m2 and note thatm1
andm2 must be integer for nonvanishing matrix elements. If
m1 is integer,m2 must be integer as well, and we obtain

d(
mm

W1~m,m!W2~m,m!5 (
m1m2

^m1uF̂1um2&^m2uF̂2um1&

5Tr$F̂1F̂2%. ~110!

We have seen that fermionic Wigner functions obey the
same overlap relation~67! as bosonic ones@38#.

E. Examples

1. Line states

What is the fermionic Wigner function for phase states
um0&?

W~m,m!5
1

2d (
n

expS 4p i

d
mn D ^m2num0&^m0um1n&.

~111!

There are two possibilities so that botĥm2num0& and
^m0um1n& do not vanish. Eithern50 and simultaneously
m5m0 or n5d/2 andm5m01d/2. Consequently,

W~m,m!5
1

2d
d~m2m0 ;d!1

1

2d
~21!2m

3dS m2m02
d

2
;dD . ~112!

The Wigner function for a phase state appears as a phase line
at m5m0 accompanied by a ghost line atm5m01d/2, see
Fig. 6. The ghost line exhibits positive values for integer
elementsm and negative values for half-odd spin elements.
That this odd behavior is indeed reasonable is seen on the
marginal distributions. SummingW(m,m) with respect tom
yields zero apart fromm5m0 ~modd! since either the values
of W(m,m) are zero or the values on the ghost line cancel
each other,

(
m

W~m,m!5d~m2m0 ;d!. ~113!

This is what we would expect for a phase state. On the other
hand, summingW(m,m) with respect tom yields d21 for
integerm and zero for half-oddm,

(
m

W~m,m!5d21d~m;1!. ~114!

FIG. 6. Example of discrete Wigner functions~112! for line
states in even dimensions. Here the dimensiond54. In ~a! a phase
state u0&w and in ~b! a spin stateu0&m is depicted. Note that gray
color is used to indicate negative values.
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Phase states have uniform spin distributions and the half-odd
ghost variables do not appear as physical quantities. Again,
this is accomplished by the ghost line in the fermionic
Wigner function of a phase state. In the same way we obtain
the equivalent Wigner function for a spin state,

W~m,m!5
1

2d
d~m2m0 ;d!1

1

2d
~21!2m

3dSm2m02
d

2
;dD . ~115!

2. Broken-line states

If the dimensiond is composite, i.e.,d5ab with integers
a andb, we can introduce broken-line states~54!, ~56!. Their
fermionic Wigner function is obtained from the explicit ex-
pression~103!

W~m,m!5
1

2da (
n

(
m1m2

3expF2p i

d
@2nm1bm0~m182m28!#G

3d~m2n2m02bm18 ;d!

3d~m1n2m02bm28 ;d!. ~116!

As for line states, there are two possibilities to obtain non-
zero matrix elements: Eithern50 andm5m0 ~modb! ~which
means thatm182m28 must be even! or n5b/2 andm5m01b/2
~mod b! ~which implies thatm182m28 must be odd!. Conse-
quently, we obtain

W~m,m!5
1

2d
~21!4~m2m0!~m2m0!/dd~2m22m0 ;b!

3d~2m22m0 ;a!. ~117!

We see that fermionic broken-line states exhibit in addition
to the familiar lattice in phase space a ghost lattice which
does its duty to guarantee the right marginal properties.

F. Precession tomography

How is the idea of precession tomography modified for
spins? Let us consider the precession operator

P̂~ t !5expS 2 i
m̂2

2
t D ~118!

at half of the precession times~76! as for angular momenta
~in the Bose sector!

t5
2p

d
t ~119!

with integert. How is the Wigner function transformed?

W~m,m;t !5
1

d (
n

expS 2
4p i

d
nm D ^m2nuP̂r̂ P̂†um1n&

~120!

5
1

d (
n

expF2
2p i

d S 2nm1
t

2
~m2n!2

2
t

2
~m1n!2D G^m2nur̂um1n&. ~121!

There is a subtle reason why we can perform the last math-
ematical transformation for even-dimensional systems and
not necessarily in the odd-dimensional case. We notice that
the spin-state indexm1n in the summation~120! might be
out of the original parameter range$2d/21 1

2 ,1d/2%. Then
the spin-periodicity condition~29! is applied to define a
meaningful state, i.e.,m1n is replaced bym1n2d to lie
again in the original parameter range. In this case we obtain

P̂†um1n&5expFp id t~m1n2d!2G um1n&

5expFp id t@~m1n!222d~m1n!1d2#G um1n&

5expFp id t~m1n!2G um1n& ~122!

sinced is even. Of course, the same might happen ifm2n is
out of the original parameter range. For this subtle reason the
discrete Wigner function of spins precesses in steps ofone
and not in steps oftwo as in the bosonic case,

W~m,m;t !5W~m2tm,m!. ~123!

All other features of the precession tomography require only
minor modifications. We should perform discrete Fourier
transformations of the measured phase and spin distributions
and see again that

pr̃wS n

2
;t D5 W̃ S n

2
,t

n

2D ,
pr̃mS n2D5 W̃ S 0, n2D

or

pr̃S n

2
,
n

2
;t D5 W̃ S n

2
a,t

n

2D ~124!

for the observation of broken-line states. The half-integer
arguments in the discrete Fourier transformation are neces-
sary because the characteristic functionW̃(n,n) should be
reconstructed for half-integer arguments. Otherwise, insuffi-
cient information is gained because of the redundancy

W̃ S n1
d

2
,nD5~21!2n W̃ ~n,n!,

W̃ S n,n1
d

2D5~21!2n W̃ ~n,n! ~125!

of the characteristic function for spins.
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V. SUMMARY

Quantum objects cannot be seenas they are. We may
observe only particular aspects of a quantum system in a
single experimental setting. Quantum-state tomography is a
method for building up a complete picture of a quantum
object from a set of distinct observations, i.e., by seeing the
object from different points of view. In precession tomogra-
phy the phase distribution of a precessing angular momen-
tum or spin is measured to reconstruct the state. This is pos-
sible because precession mixes the state space sufficiently so
that phase observations explore almost all aspects of the sys-
tem. If in addition the angular momentum or spin compo-
nents are measured the complete picture of the object can be
inferred. In this paper a fully quantum version of precession
tomography is elaborated. As the basic theoretical tool a dis-
crete Wigner formalism is developed. The discrete Wigner
function represents the complete picture of an angular mo-
mentum or spin or, more generally, of a finite-dimensional
quantum system. This picture is to be reconstructed in
quantum-state tomography. Seen from a more abstract point
of view, the Wigner function serves as a guideline for finding
a complete set of observables which is sufficient for state
determination. These observables correspond to a set of basis
systems in state space, the set of precession states. It turns
out that in precession tomography prime-dimensional sys-
tems are favored in the sense that the precession states are
mutually complementary~in the precise sense defined in this
paper!. The precession states together with the angular-
momentum eigenstates represent indeed all complementary
aspects of the system. If the dimension of the state space is
composite some features are missing. They can be inferred
by observing the precessing angular momentum in terms of

the broken-line states defined in this paper. It is not clear,
however, whether this distinction of prime-dimensional sys-
tems is generic or just an artificial feature of the method
presented. Possible relations between number theory and
quantum mechanics are certainly a challenge for much future
work. In quantum computing@39#, for instance, quantum me-
chanics is used for solving number-theoretical puzzles like
the factorization of large numbers in a computationally effi-
cient way@40#. In this paper odd- and even-dimensional sys-
tems~angular momenta and spins, bosons, and fermions! are
distinguished. The Wigner function for odd-dimensional
quantum objects is easily guessed~and has been given before
@15,16#!, being transcribed from Wigner’s original formula
~1! for discrete variables. The Wigner function for even-
dimensional systems requires more thought. In this paper the
discrete phase space is supplemented by ghost variables to
solve the problems of fermionic Wigner functions. Like in
Wigner’s paper @3# the discrete quasiprobabilities were
‘‘chosen from all possible expressions because@they seem#
to be the simples.’’ It is not clear which properties define
them uniquely. Finally, almost needless to say, discrete
Wigner functions might find also other applications apart
from the originally intended purpose.
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@25# V. Bužek and P. L. Knight, Prog. Opt.34, 1 ~1995!.
@26# W. K. Wootters, Found. Phys.16, 391 ~1986!.
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