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The theory of discrete Wigner functions and of discrete quantum-state tomodrdplieonhardt, Phys.
Rev. Lett.74, 4101(1995] is studied in more detail guided by the picture of precession tomography. Odd- and
even-dimensional system@&ngular momenta and spins, bosons, and fermians considered separately.
Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed
out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from
composite oneq.S1050-2947®6)08605-3

PACS numbes): 03.65.Bz

. INTRODUCTION dy=0 cos9+ p sine. 3

Already in the dawn of quantum mechanics people antici-the probability distribution for observing a particular value
pated thaF atomic or, more g_enerally, guantum objects \_Noulqlg is simply the shadow of the Wigner function projected
be very different from the things we see as macroscopic obgnig a line in phase space,
serverg 1]. The formalism was yet to be discovered but the
sheer existence of Planck’s quantum of action was proof oo
enough. Observers must interact with the objects they wish prﬂ(qﬂ):f W(qg cosf—p sin 8,q sind+p cosd)dp.
to observe and this interaction changes microscopic things %
significantly. If the overall measurement-induced backaction (4)
cannot be reduced much below Planck’s constant then mi-
croscopic objects or features on the orderzotannot be Although we are restrained to see only particular aspects of a
resolved completely. We cannot see the thiagsthey are  physical object in a single observation, nothing prevents us
They might rather resemble abstract ideas than things we cdit principle from changing actively the point of view in a
visible and real. Instead, we see only particular aspects of thgeries of distinct measurements. The more different the
physical objects—their quantum shadoifsthis excursion ~ single observations are, or, in other words, the more comple-
into Plato’s philosophy[2] is permitted. There is a nice Mmentary aspects we observe, the more information we gain
illustration for this principle in terms of the Wigner repre- about all features of a quantum object. A complete set of
sentation[3]. We express the quantum state of a one-observations is sufficient for knowing the quantum state per-

dimensional mechanical system according to Wigner's forfectly. Again, this is nicely illustrated in terms of the Wigner
mula representation. If we are able to change the viewpoint in

observing the quadratureg, i.e., if we can vary the phasg
+o then we can measure the probability distributiog(gg) for
W(q,p)=7TflJ exp(2ipx)(q—x|plg+x)dx, (1)  all quadrature variables. This is sufficient to infer the quan-
o tum state{4—7] represented by the Wigner functia¥(q, p)
where p denotes the density matrix. For simplicity we set 4l
a=1. Hereq andp denote position and momentum, respec- 1P (7 [+
tively, and|q) is an eigenstate of.. The Wigner function W(q,p)=— f j
W(q,p) is a quasiprobability distribution foq and p. Any 2w Jo J-w (
predictable quantity, i.e., any expectation value can be rep-
resented as the overlap of the Wigner functitftg,p) with  [Here P denotes Cauchy’s principle value. The integral trans-
the Wigner representation of an operafqr formation(5) is known as the inverse Radon transformatjon.
Changing the point of view in observations to infer the quan-
A i tum state is the very idea of quantum-state tomogrdghy
Tr{PF}:ZWf_m f_w W(q,p)We(a,p)da dp. ()  On the other hand, there are scheri@s] for measuring
so-called propensitied9], i.e., probability distributions
pr (do,pPo) defined as

pro(de)ddgede
q cosf+p singd—q,)?"

©)

whereWg(q,p) is defined as ifl) with F replacingp. This
means that predictable quantities are filtered projections, i.e., e

shadows, of the quantum state represented by the Wigney, =2 f OOJ °°W We(g— —pada d
function W(q,p). These projections are particularly simple%(qo’pO) ). ). (4.P)We(d4=Go.P—Po)dq dp
for the so-called quadratures (6)
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Here W:(q,p) denotes the Wigner function of a filter state
F. These schemds$,8] are techniques for measuring posi-
tion and momentum simultaneously yet not precisely. Ac-
cording to Heisenberg's uncertainty princigla the version
given by Arthurs and Kell\j8]) the resolution of these ob-
servations cannot exceédwhich is unity in our units This
means that if we attempt to gain directly the complete picture
of a quantum object we are limited in precision.

It is quite natural to extend these ideas to objects other
than mechanical ones, and truly quantum systems like spins
would be interesting candidates. For this we could transcribe
the continuous Wigner formalism for discrete quantum me-
chanics[10]. A discrete version of quantum-state tomogra-
phy and a discrete Wigner representation was sketched in a
brief communication11]. It is the intention of the present
paper to elaborate this theory in both more detail and intui-
tive insight. In this way the concept of discrete propensities
[12] finds a solid foundation as well. Note that discrete
Wigner functions can be also applied to define Wigner func-
tions for number and phadd.3] and in the Weyl-Wigner
formalism for rotation-angle and angular-momentum vari-
ableg14]. Given a quantum system with dimensidywhich
sets of observables are sufficient to infer the state? There are
certainly plenty of possibilitieg5], yet we would like to
restrict ourselves to observables which are simple projections
of a discrete Wigner function like the quadratures in continu-
ous quantum-state tomograpfy. In this way we bridge the
idea of quantum-state reconstruction with the very concept 3
of a discrete Wigner representation. In addition, we can find -3 2 - 0 1 2
a simple way of realizing experimentally the necessary view- ) ©
point changes in the set of observations.

Discrete Wigner representations have been already intro- £ 1. spinning top symbolizing a classical angular momentum
duced by Wootter$15] for prime-dimensional systems and (q). It is represented in cylinder coordinates, i.e., in terms of the
by Cohendeet al. [16] for odd-dimensional objects. There phasey and the angular-momentum componentin (b) the cyl-
seems to be a subtle reason why primes, odd, or even dimelider has been rolled out onto the plane in order to show the phase-
sions make a difference, why simple number theory gets inspace density of a statistical ensemble of processing tops.
volved in the quantum mechanics of finite-dimensional sys-
tems. In the present paper we investigate this point in more
detail. To define a discrete Wigner function on a A. Precession tomography
d-dimensional state space, Woottdiib| proposed to de-
compose the space into factor spaces of prime dimensiogn

according to the factorization @f[17]. The Wigner function 1 mentym component as our system. Classically, this would
of the system is given on the factor spaf#8]. In this paper correspond to a spinning top with phageand angular mo-

we take a different approach: We define a Wigner function,enqmm in z direction as depicted in Fig. 1. We may also
on the totald-dimensional state space without factorizationp, e a statistical ensemble of tops where the phases and
because this seems to be more natural. Our Wigner functiofng,jar momenta are statistically distributed according to a
is _|dentlcal with t_he pre_wously studlgd functiofkb,16 for phase-space density(e,m). Although this picture is of
prime and odd dimensions, respectively, but we add a nuUMeg s not exactly correct for quantum tops it puts in a nut-
ber of additional results to the known properties of discrétgpe| the central idea of discrete quantum-state tomography,
W|gner fun.ctlons. It is probably in thg nature of things that 5 that iprecession tomograph§uppose we are restricted
discrete Wigner functions for even-dimensional systems arg, gpserve either the phase distribution or the angular-
a bit odd, and apart from the two-dimensional case they havg, s mentum distribution of an ensemble of tops. Suppose fur-

never been defined before. Note that we have slightly modig,ermore that the tops are precessing according to the clas-
fied the notation of the first communicatiphl]. More im- sical Hamiltonian

portantly, instead of discrete quadratures we consider phase-

precession measurements to make the idea of discrete m?

guantum-state tomography more transparent and perhaps H=7- (7)
more practical. Note, however, that this does not affect the

principal concepfl1]. It means only that the parametrization The probability distributionP(¢,m) is sheared when time
of the measured quantities is changed. progresses

9%}

II. SETTING THE SCENE

To get an intuitive picture for discrete Wigner functions
d quantum-state tomography, imagine a spin or angular-
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P(¢,m;t)=P(¢—mtm), (8)  Aswell known, the quantum numbgrcan be only integer or
half odd. Whenj is integer we call the system an angular
simply because tops with larger angular-momentum compomomentum(it is in the Bose sectdr22]) and whenj is half
nents precess faster than tops with smaller ones. The phaedd we call it a spin(in the Fermi sectof22]). The dimen-
distribution is given by sion of the system
+

| L
pr(so;t)Ef P(¢—mt,m)ydm. (9) d=2j+1 (16)

-1
is odd for bosons and even for fermions. To simplify future

Herel| denotes the total angular momentum. Consequentlyexpressions we introduce the following notations for the

the Fourier-transformed distribution eigenstates of th@, component: In the Bose sector we have
as usual
+a
= [ prenen—iende (10 SAmy=mim), me{-j,...j}, 17)
is related to the Fourier-transformed phase-space density FnE:]Z, (18

(also called characteristic functipn
while in the Fermi sector we define

—_ +a [+ . .
P(”'”)ELL P(e.mexf —igv—imnldm dp I m=(m-Hlm), me{-j+i,...i+3, (19

(11 o
m=J,+

N=

. . . (20
according to the simple rule
. - All angular-momentum or spin component eigenstdias
pr(vit)=P(v,vt). (12 short,spin statesare labeled by integer numbars Accord-

_ ing to Vourdas[22] the amplitudeJ, and the exponential
Precession shears the phase space of the top so that mea%f? c

: He I - -1 o ase operatde obey the relations
ing the phase distribution at the times ™" is sufficient to

infer the characteristic functio®(»,n) apart from values 3+ij+ij -JE
with v=0. Fortunately, the angular-momentum distribution

(invariant during precession -

J_=J,—id,=E'J,, (21)
pr(m) = J :MTP((p,m)dcp (13 with
3=3,3)¥2=[]-32+],]2 22
closes this gap. In fact = ) [ 23] (22)
1l and
ﬁ"r(n)zf pr(m)exp(—imn)dm=P(0,n). (14
- E=> |m+1)(m|=exp(i¢) (23

We see that we can reconstruct the characteristic function

from observations of the angular momentum and separately.v the Peqq-B th-t tioi2ol that |i+1
of the phase distribution during precession. So without ob-:I —) ien th?aggBosaems?actgrpznéT\l/inll)OL|1j +6;l> |iJn thzz
2 2

serving directly the phase-space denstyp,m) we can to- Fermi sector. The phase operatpris perfectly Hermitian,

mographically infer this distribution,_ i.e., the classi_cal state, - apart from a possible reference phase the phase eigen-
of an e_nsemble of tops. AIthou_gh this draws an entirely Clasilalues are discrete and given by the expression
sical picture for spin-precession tomography, the quantum
version is just a mere refinement which, however, involves 20

some subtleties. Pu="q M (24)

B. Quantization with integersu. The phase states.e., the eigenstates of the

Let us state more precisely what we mean by the phasghase operatop are discrete Fourier transformations of the

and the angular-momentum component of a quantum top. IApin stategmy,
contrast to the phase of a harmonic oscillgtd®,20, the _
phase of a spin or angular momentum does not involve much _g-veS _ 2mi
theoretical headaches, and it is easily defif@t,22. Here )= = ex g Hm jm).
we follow mostly Vourdas’ approadi22]. Suppose we have
a system described by the angular-momentum or spin opergyp distinguish phase and spin states we denote phases by
tors J,, Jy, andJ,. We consider states with fixed total spin greek lettersmostly . and ») and spins using latin letters

Ny m maia . (mostlym andn). In case of doubt we put labelsor m on

(I +Iy+I)p=i(j+1)p. (19 the state vector. We introduce the rescaled phase operator

(29



53 DISCRETE WIGNER FUNCTION AND QUANTUM-STATE TOMOGRAPHY 3001

d and using the expressidi33) we derive Wigner's formula
o =2 wlp)(pl (26) (1) for W(qg,p). The continuous Wigner function resembles

H many features of a classical phase-space density, although it
with integer eigenvalueg. The spin states are discrete Fou- Might become negative, indicating nonclassical behavior
rier transformations of the phase states [23]. Let us briefly summarize a few important properties of
the continuous Wigner representation for later comparison

P

1 i with the discrete version.
m)=d"2> exp| + g Mu | ). (27) Wigner functions are real and normalized to unity for nor-
g malized density operators. The Wigner functidig andW,
Phase states are of course periodic, for two arbitrary operator; andF, obey the overlap rela-
tion
|u+d)y=[u), (29

n A + oo + o
and, if we regard Eq(27) as a definition for spin states Tr{FlFZ}:Zﬂﬁw fﬁw Wi(a,p)W2(q,p)dq dp, (36)
outside the original quantization region, spin states are peri-
odic too, which proves the formulé2) mentioned in the Introduction.
The Wigner function has the quantum-mechanically correct
[m-+d)=[m). (29 marginal distributions

Note that this relation is just a convenient definition without +oo

physical consequences. In this way we have seen that the <q|[)|q>=f W(q,p)dp,
“phase space” for a quantum top is a periodic lattice of m
integers(u,m). Finally, we introduce thenodular Kronecker

symbol (plplp)= J_:W(q,p)dq, (37)

1, k=0 (moda)
5(k;a)5[o, otherwise (30 where|q) and|p) are the eigenstates of and p, respec-
tively. Linear processes transform Wigner functions as if
q lota-1 i they were classical probability distributions. In particular,
== I; exp — Ik) (31  during free evolution described by the Hamiltonian
—'0

N1
for integerk. This symbol will simplify future calculations. H=2p (38)

the Wigner function is sheared,

Of course, there is no true phase-space density in quantum W(a.p;t) =W(q=pt,p). (39

mechanics and the best compromise we can reach is prolyart from the overlap relatiof?) there is another alterna-
ably the Wigner function. The quantum characteristic func+jye \ay for calculating expectation values. We consider
tion for a mechanical system described by positpand

C. Continuous Wigner representation

momentump is defined as follows: (B ) =i ;K — :
~ Trip(aq+Bp)}=i" - W ({a,{B
W (U,0)=Tr{p exp( —iug—ivh)} 32 9% (=1

+oo [+
:Lo Lo W(a,p)(aq+Bp)*dq dp.

(40)

Xexp —i Uﬁ)J 33 In the first line we have used the definiti@d2) for the char-
acteristic functionW (u,v) while in the second line we have

~ uv ~
=Tl’[p exp( —i 7)exp(—iuq)

—1rl 5 exd +i Uv exp(—ivh) utilized the Fourier relationshif35) betweenW(u,v) and
- e 2 vp the Wigner function. Comparing the powers @fand 8 we
see that
Xexq—iud)], (34) b [ 4o
Tr{p./q"p" = f ) f ~ W(g,p)q"p"dq dp.  (41)

where the Baker-Hausdorff formula has been used to obtain
the last two lines. The Wigner function is the Fourier- The symbol”” means that we should symmetrize all possible
transformed characteristic function products of them operatorsy and then operators, i.e., we
1 e i should taflae thedgverage ovler ?1” pr%duct; V\“trlj the Iright
_ W ; ; amount ofg’s andp’s. Obviously, this orderingcalled Wey
W(a.p) (2m)? f_m f_w W (u,p)expiug +ivp)du do ordering depends on the structurl@2) of the continuous
(35 characteristic function.
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D. Discrete characteristic function I1l. BOSE SECTOR

Three major ingredients of our formalism have been pre- A. Discrete Wigner function

sented: the picture of precession tomography, quantized tops, We have everything on hand to define directly the discrete

and Wigner functions aguasiphase-space distributions. To |, ,. . . . .
find a discrete Wigner representation we must probably be\_ngner function forodd-dimensionabystemsfor genuine

gin with a guess. Let us define the discrete characteristi("fmglJIar momenbaLe., n the Bose sector. Even-dlmer_lsmnal_
function in a similar way as the continuous one duantum objects require more thought and are considered in

the next section. The Wigner function for bosons is the

— A A Ami Fourier-transformed characteristic function
W (v,n)=Trip expg ——— vn|exp — — vu
d d 1 4rri —
. W(p,m)=— > exg—— (vu+nm) | W (v,n).
A4 d- <n d
Xexp — ' nm (42 (48)
Using the explicit expression@6) and (47) for the discrete
. Ai Aai characteristic function we obtain familiar looking formulas
=Tr|p exp +—g-vnjexp ——5—nm for the Wigner function,
Aai 1 4 i -
Xexp{—TV,uH, (43 W(M,m)ZHE ex +va)(M—V|P|M+V>
(49
using Vourdas’ identity, Ref.22], Eq. (35), for the last line. 1 -
Note, however, that the discrete characteristic function does _ m ) ~
’ 0 N N = exp — —— wn|{(m—n|p|m+n).
not equal T{p exd —4mi(va+nm)/d]} anymore, since the d ; da * ( a )
commutation relation between phase and spin is different (50

from the canonic relation between position and momentum ) ) o ]

and the Baker-Hausdorff formula cannot be applié@a- Bear in mind the perlqd|C|ty relation@8) ar_ld (29) for the_

nonical commutation relations imply a continuous spectrurPhase statef) and spin stategm), respectively, to obtain
which violates, of course, the discrete nature of angular moMeaningful results.

menta and spins.Consequently, the Weyl ordering of ob-

servables is sacrificed in our discrete Wigner representation. B. Examples

Nevertheless, most other important properties of continuous
Wigner functions are maintained yet sometimes in a subtly

modified form. To find explicit expressions for the discrete How do the discrete Wigner functions look? Let us con-
characteristic function we note that sider the simplest exampl¢24] first: line statesi.e., phase

or spin states. What would we expect? A phase state should
A have a well-defined phase, of course, and a completely ran-
ex;{ 9 nfn) |u)=|p+ 2n),. (44) dom angular-momentum component. The Wigner function of
a phase state should be a line in the discrete lattide.of)
values; see Fig.(3). On the other hand, for a spin state we
and expect a well-defined angular-momentum component and a
random phase as depicted in FigbR That this is indeed

1. Line states

4mi correct is easily verified using the explicit expressi¢fs)
exp( 49 V'“) [m)=Im=2v)n, (49 and(50). For a phase state) we get
. : - : : 1 4 i
which is easily verified using the relatio®5) and(27) be- W(p,m)== >, ex;{lI my)<,u,— v| o) pol e+ v)
tween spin and phase states. In this way we obtain directly d< d

from the definition(42), (43) of the discrete characteristic

_q-1 .
function the explicit formulas do(n=po:d), (51)

while for a spin statém) we obtain

A7i

W(r,m=2 exp — g vt (ulplpt2n), W(,m)=d~18(m—mg;d). (52)
) L J
(46) :
2. Broken-line states
[ 4 1 There is an interesting family of states if the dimensibn
=> exg - —5 (M=) (m|p|m=2v);,. is composite, i.e.,
m L ]
(47) d=ab, (53)

Now we are prepared to study discrete Wigner functions anavith the integersa andb. Let us call thenbroken-line states
guantum-state tomography. defined as



53 DISCRETE WIGNER FUNCTION AND QUANTUM-STATE TOMOGRAPHY 3003

3 |
+6
+2
+1 +3 %
m 0
_1 m 0 .
9 b
-3 =2 -1 0 +1 +2 +3 =0 h e
(a) H )
-0 -3 0 +3 +6
+3 I
+2 FIG. 3. Example of discrete Wigner functio(®0) for broken-
line stateg54) in odd and composite dimensions. Here the dimen-
+1 siond=15. The state ig(|—5),+|0),+|+5),) in phase representa-
0 tion. Three broken lines at the phages,0,+5} are clearly visible.
g e They correspond to five lines at the spirs6,—3,0,+3,+6} since
1 the state can be expressed a¥|—6)m+|—3)m+|0)m
+|+3)y+|+6)y) in spin representation.
—2
Y 1 2i
-9 W(,u,m)z—z > ex — [2vm+bmy
da <’ <, d
L)
-3 =2 -1 0 41 42 43
r__ !
(b) 1 ><(Iu’l MZ)]}
FIG. 2. Example of discrete Wigner functiot&l), (52) for line X 8(pu—v—po—bui;d)S(u+v—muo
states in odd dimensions. Here the dimengie#7. In (a) a phase
—bus;d). (57)

state|0),, and in(b) a spin statg0), is depicted.

o The modular Kronecker symbol in this equation implies that
an

|10, MoYap=b 12>, ex _Tmlﬂo lam’ +mo),
m/

(59

2v=b(up—p;) (modd),

2(p—po)=b(uy+ui)  (modd). (58)
where m’ ranges from—(b—1)/2 to +(b—1)/2. We may
express these states also in a different way using the repr&onsequently,
sentation(27) of the spin states in terms of phase states,

1 Ai
W(p,m)= Z ex;{T (m—mg) v |8(p— po;b)

2i
|M> (59)

|10, Mo)ab™ 2 2 eXF{T[M(am""mo)_am'ﬂ]
m &

2ri and, finally,
x>, ex Tﬂmo>5(u—uo;b)|u>, (55
a W(p,m)=d ts(m—mg;a)8(u—poib).  (60)

and utilizing the normalization dfuo,Mg)ap, The Wigner function of broken-line states displays a lattice
of broken lines in the discrete phase space; see Fig. 3. The
period of this lattice i$ in phase ana in spin direction and
the parametergy, and m, define the displacement of the
(56) lattice. Although broken-line states are superpositions of a
few line states their Wigner function is non-negative, quite in
whereu' ranges from—(a—1)/2 to +(a—1)/2. The Wigner contrast to Wigner functions of superpositions in continuous
function for broken-line states is easily calculated using thequantum mechanicf25]. Note that broken-line states are
explicit expression(49) only possible if the dimensiod is composite. In this paper

_ 2i
| ko Mo)ap=2 1/22 ex +TM'mo>|bM’+Mo>y
N
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they give a first indication that simple number theory plays a
role in the quantum mechanics of finite-dimensional systems.

C. Properties

Let us study the properties of discrete Wigner functions in

ULF LEONHARDT

= E <M1| F1|,U«2><M2| I:2| ,U«1>
)

:ME (palF1Folpe) (66)

the Bose sector. Of course, they are real-valued for Hermit-

ian density matricep and normalized to unity,

> W(p,m)=1, (61)
um

using the completeness of the phase states in the last step.
Finally, we arrive at the overlap relation

as we would expect for a suitable quasiprobability distribu-

tion.

3. Marginals

The marginal distribution of the discrete Wigner function

should yield the phase and spin histograms, respectively.
fact, we obtain from the explicit formul&t9)

S o 7 mo G slilact )

mv

1
2 Wp,m)=g

=§V) S(2v;d)(w—v|p|p+v) (62)

and since the dimensiath is odd in the Bose sector,

; W(p,m)=(u|plpm). (63

The other explicit expressid®0) leads to the spin marginals

; W(p,m)=(m|p|m). (64)

TH{FIF=d> Wy, mWo(u,m).  (67)
wm
In particular, we obtain
Tr{pF}=d>, W(u,m)We(u,m) (68)
um

IﬂJr the density operatop and an arbitrary operatdf. This
relation illustrates that also in the discrete case all predictable
gquantities are filtered projections i.e., quantum shadows, of
the discrete Wigner function. The formul&8) provides us
with the key for calculating expectation values via Wigner
functions or, more generally, for formulating quantum me-
chanics without probability amplitudg¢&6]. The overlap re-
lation replaces fully the Weyl ordering @f andm which has
been sacrificed from the very beginning. The relation also
shows that the Wigner functio®, (u,m) andW,(u,m) of

two orthogonal statelg/;) and|i,) must be either disjoint or
must contain negative elements, since

d#Emvvlw,m>vv2<u,m>=<¢1|w2>=o. (69)

Later we will encounter other interesting applications of the
fundamental overlap relation.

This shows that discrete Wigner functions have the quantum-

mechanically correct marginal distributions.

4. Overlap relation

Let W, (u,m) andW,(u«,m) be the discrete Wigner func-
tions for two (not necessarily HermitignoperatorsF, and
F,. The overlap of two Wigner functions is given by

dﬂEm W (2, M) Wo( e, m)

P33 eq

my vivo

mM(vy+v,) [(— ve|Fqpnt vy)

X(M_V2||Ez|ﬂ+V2>- (65)

The summation with respect ta produces a modular Kro-
necker symbol(2v,+2v,;d) and so we obtain for the over-
lap of bosonic Wigner functions

dMZm W (2, M) Wa( e, m)

=2 (= v|Falut v)(u+v|Fylu—v)
y3%

D. Operations in discrete phase space
1. Displacement

The displacement of discrete Wigner functions in the
phase-space lattice was considered by Opaéigl. [12].
For the sake of notation we define a phase-displacement op-

erator

A 2i R

Do(mo)=exp — —5= mom (70)
and a spin-displacement operator

“ 2i R

Dm(mo)zex;{ + ' mo,u). (72

The effect of the displacemenlﬁ,ﬁl&r in discrete phase
space is obvious,

W (u,m)=W(u—pug,m) (72)
and

Win(,m) =W(u,m—mg) (73

i.e., the Wigner functions are simply displaced.
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2. Precession

The central intuitive idea of discrete quantum-state to-
mography is precession tomography. What is the effect of
the precession Hamiltonian

i
:

ﬁ:

A2
> (74)

in discrete phase space? Let us consider the precession of

erator
P(t)=exp —iHt), (75) E.

i.e., the time evolution operator corresponding to the Hamil-

tonianH, at times .—H
oy 1.
t=—1r1 (76) -

d

1
.
-

N

with integer7[27]. To see the effect of precession in discrete H |
phase space we use the explicit express&i for the dis-
crete Wigner function and obtain

FIG. 4. Schematic diagram to show the precession in discrete
. phase space for a prime-dimensional systen7). A precessing
We( u,m)= E E exd — 4l' n,u)(m—n||5ﬁl5f|m+n> phas:_a stateP(t)|O>q,, see Eq.75), is depicted at _the timesm/d _

d 5 d with integer . The picture shows that precession takes place in
steps of two. It also illustrates that the precession states together
with the spin statg0),, cover the whole phase space completely.
This remarkable feature reveals theulticomplementarityof the
precession states in prime dimension. It indicates that the precession
R states combined with the spin states represent all complementary
(m— n|p|m+ n, (77 aspects of a prime-dimensional quantum system.

1 27
=3 ; exr{— TW [2np+ 7(m—n)?

+T(m+n)2]

yet provided that-is indeed integer so that we can apply the Phase state€25) are discrete Fourier transformations and
same modular arithmetic in the exponent as in the notation dheir experimental realization depends, of course, on the par-

the spin state$29). For this subtle reason we obtain ticular systen{30]. It has been much discussed in the context
of quantum computing31]. Given the set of phase histo-
Wp(u,m)=W(u—2ms,m) (78 grams pg(u;7) at the timeg76) we can reconstruct the char-

acteristic function. According to the overlap relati@Y) the
only if 7is integer. Precession in discrete phase space takefhase histograms can be seen as

place in steps dfwo (in the Bose sectgr Or, more precisely,

the relation between the precessed and the original Wigner Pro(po; ) ={ ol PPP'| o)

function is less simple for times which do not match the

condition(76). A precessing phase state, for instance, would =D W(u,m)S(u—po+2mzd). (79
produce oscillations and negative values in the Wigner func- um

tion between the times#rd %, but as soon asapproaches

477d~! the picture becomes clear, and finally the simpleConsequently, the Fourier transformation,(or; 7) of the
precessior(78) of the discrete Wigner function is apparent; histogram pg(u;7)

see Fig. 4. This series of clear pictures during precession

resembles the Talbot effe€®8] or fractional revivalg29] 5 (rin=3 4ri _
and it is of course periodic id when the initial state returns Pro(v;7)= < eXp — g~ MoV | Ple(4o:7)
to itself.

W(u,m
E. Tomography ()

Ai
:E exp{—lv(,quZmr)
am d

How can we reconstruct the quantum state, i.e., the char- (80)
acteristic or the Wigner function, from observations of a pre-
cessing spin? The central idea was already sketched in thie the characteristic function at the poirtis27v),
remarks on classical precession tomography. Only some .y
subtle modifications are required. First of all, the phase his- ﬁ¢(v;r)= W (v,27v). (81
tograms should be observed at the tingé6) provided the
Hamiltonian (74) is acting. (If the scale of the precession Like in classical precession tomography we cannot infer the
Hamiltonian is different theh should be scaled accordingly. characteristic function from phase observations only. The
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conjugate quantity, i.e., the angular-momentum component
must be measured as well. In fact, the Fourier-transformed
spin distribution pg(m) yields

_ 4q7i
Pin(N)=2, exg — —— Mon | pry(Mo)
& d

=> exp — 4dll mon>2 W( e, m) 3
Mo "
='W (o). (82)

If the dimensiond is prime we can represent every lattice
point (v,n) of the characteristic function in terms @f),27v)

or (0,) modulo d since primes define &eld [32]. This ‘
means that we can reconstruct every point of the character-
istic function from observations of the precessed phase and |
of the angular-momentum component. However, this is not
true for composite dimensions. Then we can repreéen)

as (vy,27v9) modulo donly if », and the dimension have no
common factora. Otherwise, ify, contained the factoa,
27y, would be proportional to the number as well, and
points (v,n) which do not meet this condition are missed in
the reconstruction of the characteristic function. There is a
simple reason for this: Precession shears layers with equal
angular-momentum components and we observe the phase
distribution. This(Schralinger-like) picture is equivalent to
letting the phase states precess and leaving the system state
unchanged(He|Senberg_“ke p|Ctu|)e |f the dlmens|on |S FIG. 5. Schematic d|agram tO ShOW the preceSSion in discrete
prime, the precessing phase states and the angula?has_e space for a composne-dlmt_ansmnal_ sydies). The pre- _
momentum states will cover the complete phase space; s&8SSing phase states leave gaps in the discrete phase space which
Fig. 4. If the dimension is composite, some points in discreté'e to be closed by proken-llng states to gain sufficient information
phase space are never reached by the precessing spin sta{f_gSState reconstruction. The picture also illustrates that the preces-

. . . ion m verlap in thr ints or may have zero overlap in
and these regions remain unexplored; see Fig. 5. Howevep o States may overlap in three points or may have zero overlap

precessing broken-line states fill these gaps. Suppose we O%’gcordance with their lack efulticomplementaritysee Eq(91).

serve the probability distribution

XW(p,m)é(m—mg;a)

P20, Mo; 7) A
=2 exp{ — —— v(ap+™m)|W(u,m)
A1) A + A ~ t um d
E<Mo,0 P(‘) Dm(mo)po(mo)PT<—) O,Mo> ~
a a = W (av,27v) (84)
=> W(M,m)ﬁ(M—MoJr 2(m—my) g;b> S(m—mg;a). reveals the missing elements of the discrete characteristic
um function, and finally, using the relatiori81), (82), and(84)
(83)  the quantum state can be reconstructed.
Note that we have divided the tintedefined |n(76) by a. F. Primes and mu|ticomp|ementarity

Even in this case the discrete Wigner function of broken-line
states is transformed according to the classical-like (&8
as is easily verified. The histogram(pg,mg;7) is a-periodic
in mg andb-periodic inug and 7. Performing a discrete Fou-

There is another way of understanding the distinction of
prime dimensions in precessing tomogragBy]. The pre-
cession states amaulticomplementarylLet us denote these

rier transformation of the broken-line distribution states by
B o, Mo ) i m)=P(1)| ). (85
L i Note thatr andt are related according to the formuia).
_- _4m ) The precession states have the remarkable prop&siythat
T a S EXF{ d v(apo+ Mg) |Pr(to,Mo; 7)

|<M2;7'2|,U~1§7'1>|2=d71 for my#7, (modd),

_1 '{ 4ri + rm)
=3 2 2 ex d v(ap+m |(m|,u;7>|2=d_1, 86)
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if and only if the dimensiom is prime. What does this prop-
erty (86) mean? The probability of finding the stdte;r,) in

|pe1;7) is completely uniform, so that thig,;7,) state con-
tains no information at all about the,;7,) state and vice
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they may overlap in more than just one element in phase
space. The precession states contain mutual information
about each other and so they are not strictly complementary.
Consequently, there is more than the precessing phases and

versa, a phenomenon familiar from position and momentunangular momenta to be measured for inferring the quantum

eigenstates. Thd+1 sets of statefu;7) and|m) are mutu-

state of a system with composite dimension.

ally complementaryThey cover the complete phase space

(see Fig. 4, and they represent all complementary aspects
[36] of the quantum system. The knowledge of the distribu-
tions of all complementary features is equivalent to the

knowledge of the quantum state.

IV. FERMI SECTOR

A. Problems
Why is the definition(48) of the discrete Wigner function

To verify the property(86) for precession states in prime not suitable for even-dimensional systems? What is odd with
dimensions we recall that according to the overlap relatioreven dimensions? This is most easily seen by considering the

(67) the transition probability betwegp,;7,) and|u,;7) is

marginal distribution

given by the overlap of the corresponding Wigner functions.

A glance at Fig. 4 shows that the precession states have
exactly one element in phase space in common and the over-

lap of the two Wigner functions multiplied witl yields the
valued™? of the transition probability86).

E\MMﬁUZEDNQWdXM—WMM+V% (92)

cf. Eq. (62). If the dimensiond is even there are two cases,

What happens if the dimension is not prime?»=0andv=d/2, where&2v;d) is different from zero and we

Obviously, the scalar product{u,;m|u.;7) equals
(o= m|PT(t,—11)[0),, and it is sufficient to consider only

> ex;{% (rm2+,um)}

2

87

There are two cases to distinguish. Firsgndd may have
no common factor. Then we can always represens 2ru’
modulo dand obtain

A 1
KulPT(0)[0) =5

KulPT(0]0) =2

d
=d 1, (88)

using in the last line a result found by GaiB37]. Second,
supposer andd have the greatest common factori.e.,
r=ar’, d=ab. (89

We represenin asbm’ +m” modulo dand obtain from Eq.

(87)

K PT(t)]0),[2

1 27” 1 A2 " ’ 2
ary 2 ex T(arm +pum”’+ubm’)
mlmH
1 27” 1 AAI12 " 2
=b2 E ex o (ar'm"“+um”) | 5(u;a) (90
m/!

and using the same arguments as in the previous case

K| PT(1)]0) P=b"t8(u;a).

The overlap vanishes j& is not divisible bya. It is accord-
ingly larger thand ™! if « contains the factom. Figure 5

91

illustrates that precession states may not overlap at all or

obtain

2 W, m)={p|pl ) + (= di2lpl e+ dr2)

=(ulp|lp)+{u+di2plutd2) (93

because of the periodicit28) of the phase states. This is not
the desired resuli63). It indicates already that spins require
more thought in defining a discrete Wigner function than
angular momenta. There is another reason: Wigner functions
expressed agl9) or (50) depend entirely on matrix elements
with even index differencéu+v)—(u—v)=2v modulothe
dimensiond. This matters ifd is even because then-2mod

d) is an absolute even number. For even dimensions, Wigner
functions (49) and (50) lack the information about density-
matrix elements with odd index differences and so the
Wigner functions do not represent uniquely quantum states
anymore. There is another way of seeing this: If the dimen-
siond is even the characteristic functiéf?) is periodic with
respect tad/2

W (v+di2,n)="W (v,n+d2)="W (v,n), (94

provided of course that andn are integer. The characteris-
tic function contains redundant information. It seems likely
that these oddities of the even-dimensional Wigner function
have a deeper topological reas@8pins require a # rota-
tion to return to the initial state whiles2is sufficient for
angular momenta.

B. Two dimensions

For two-dimensional system@pin 3) the characteristic
function would contain just one independent element
W(0,0) if vandn are assumed to be integer. What about
half-integer arguments? This changes the situation signifi-
cantly because then we obtain from the explicit expressions
(46) and (47)

‘W (0,0=Tr{p}, (95)

‘W (0,2)=Tr{pof}=Tr{poT},
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(L OV Trf S @l — Tef 5 M The diagonal sums of the Wigner functitv( u,m) yield the

W (2.0 =Tripoz}=Tripo probabilities for the eigenstates @ff = — o . We have seen
that the two-dimensional Wigner functioWV(u,m) has
properties of a magic square, i.e., the sums across lines in
W(ux,m) give certain physically meaningful results.

W (3.5 =Tr{pog)=—Tr{pol),

with o§, 0§, 0f andoy, oy, o7 being the Pauli matrices in
the phase and spin representation, respectively, ) _
C. Even dimensions

P 01 _ 0 - o= 10 It turns out that a second step is necessary to define a
*\12 0/ Y \li o) TP \0 -1/ discrete Wigner function in arbitrary even dimensions. We
(96) introduce half odds between the integer elements of the dis-

. ) ) . crete phase space for both the characteristic and the Wigner
The characteristic function for half-integer arguments is the,ction. i e.

Bloch vector. The discrete Wigner function should be the
Fourier-transformed characteristic function —~
W(v,n), (102

1 47i
W(u,m)= 2d 2 exp{T (vpu+nm)

vn

1 _ —
W(p,m)=7 > exd2m@i(vu+nm)] W (v,n). (97)

vn wherev andn run from —d/2+3 to d/2 in steps ofs and u
Here v and n take on half-integer values whilg and m Z%Eitt@ke on half-integer valuegntegers and half odds
should be integer. Explicitly, ’
R . “ . " 1 [ 4 ] R
W(0,0)= [2(0|p|0)+(1+1)(1|p|0)+(1—i)(0[p|1)], W, m)= 5o S exg + = vm|(u—v|plut )
W(0,1)=7[2(0|p[0)— (1+i)(1[p[0)—(1—i)(0[p|1)], (103
W(1,00=2[2(1|p| 1)+ (1—i)(1|p|0)+ (1+i)(0|p| 1)1, 1 4w .
(1,0=1z[ < |P| > ( )< |P| > ( )< |P| >] :% > GXP—THM (m—n|p|m+n>
W(1,1)=%[2<1Iﬁ|1>—(1—i)<1|f>|0>—(1+i)<0|f>|1>(]98) ’ ‘ (104)

: . o ) , with the convention that the matrix elements with half-odd
in phase representation. This is precisely Wootters’ expresyrguments should vanish. The definitiét02) and the ex-

sion[15] of a Wigner. function for t.wo-dimensional system_s. plicit expressiong103 and(104) include of course the pre-
We have seen that it can be derived from the character|st|(;ious|y considered Wigner functions for spin However,

function (42), (43) by allowing half-integer arguments. half-odd elements likaV(0,3), W(3,0),... have been supple-
Since the Wigner function is the Fourier transform of the anted.

Bloch vector it represents the quantum state uniquely. Using

the explicit expressiof98) we see that the Wigner function

has interesting marginal distributions,

W(0,0)+W(0,1)=(0|p[0),=3({0] +(1})p(|0) +|1))m,

D. Properties
1. Marginals

Does this procedure of supplementing the discrete phase

W(0,1) +W(L,2) =(1|p|1),=5((0| = (1)) p(|0) = | 1)) . space with half-odd elements solve the probl@®3) with the
¢ r(“9 marginal distributions? We consider

The phase marginal distribution yields the phase probabili- 1 A -

ties or, in other words, the probabilities for the eigenstates of % W(p.m)= 55 % exp —g~ vm|(u- vlplutv)

o ¥¢=acy. Furthermore, (105
W(0,0)+W(1,0 = z({0] +(1])p(|0)+[1)),=(0[p| O}, and see that since

47i d 27i
> expg—— vm|= D,  exp = 2vk

W(0,1)+W(1,1)=3({0[—(1))p(|0) = [1)),=(1|p|L)m-
(100 = d k="d+1 2d

The spin marginal distribution yields the spin probabilities,

i.e., the probabilities for the eigenstate§=o1". Finally, =2d &(2v;2d) (106

W(0,1) +W(1,00=3({0|—i{1)p(|0) +i|1)), \évlljtr?wr;na:tigﬁl?)g)d géi%?;htehnil;ndexv must be zero in the
=2(0[+i(1Dp(|0)=i|1))m,

W(0,0)+W(1,)=3((0[+i(1))p(|0)—i|1)), 2 Wogm)=(ulplp) (107

_1 s ~ ;
=2((01=i1DA(|0) +i]1))m. if wis integer, and because of the matrix-element convention

(101 in the explicit expressiof103
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2 W(u,m)=0 (108 +2
m
+
for half-odd . Using the expressiofl04) we obtain the 41
equivalent result for the spin distribution. Although the half-
odd elements do their duty in the mathematical construction +%
of fermionic Wigner functions, they do not appear as physi-
cal observables. They are ghost variables of zero probability mo0
for observation. 1
2
2. Overlap relation —1
We can also prove that fermionic Wigner functions obey -3
the same overlap relatig7) as the Wigner functions in the
Bose sector. We use the explicit expressi@03 for the 3 1 g 4l 41 43 49
Wigner functionsW; and W, of the arbitrary operatorf, 2 2
andF, to obtain @ K
+2
A Wyl m)Wa(p,m)
um 3
2
+1
2 > ex m(V1+ vo) (= va|Fal w1 .
P«m vivo +;_;
Pl v » o
1 _ 1
- - 2
=§E (u=v|[Fi|ut+v)(utv|Falu—v). (109 :
uv —
We represeni+v by u, and u—v by u, and note thaju, -3
and u, must be integer for nonvanishing matrix elements. If
M4 IS integer,u, must be integer as well, and we obtain -3 -1 =0 4+ 41 43 2
(b) H

dE Wi (e, MWo(p,m)= 2 (] Fal o) (ol Fol 1) _ _ _ _
H1k2 FIG. 6. Example of discrete Wigner functiori$12 for line

T F F 110 states in even dimensions. Here the dimensiert. In (a) a phase
=Tr{F1Fa}. (110 state|0), and in (b) a spin statg0),, is depicted. Note that gray

color is used to indicate negative values.
We have seen that fermionic Wigner functions obey the

same overlap relati as bosonic on . . .
P 0f67) as b e£38] The Wigner function for a phase state appears as a phase line

at u=uy accompanied by a ghost line at=uy,+d/2, see
E. Examples Fig. 6. The ghost line exhibits positive values for integer
1. Line states elementsm and negative values for half-odd spin elements.
That this odd behavior is indeed reasonable is seen on the

What is the fermionic Wigner function for phase Statesmarginal distributions. Summing/(,m) with respect tam

|u0)? yields zero apart fronu=u, (modd) since either the values
of W(u,m) are zero or the values on the ghost line cancel
W( g2, m) 2 ex mv)w Vo) (ol +v).  €ach other,
(111
> W(p,m)=5(p— po;d). (113
There are two possibilities so that botu—v|u, and m °

(uolu+v) do not vanish. Eitherr=0 and simultaneously

u=po OF v=d/2 and u=uoy+d/2. Consequently, This is what we would expect for a phase state. On the other

L L hand, summingV(«,m) with respect tou yields d~?* for
W( @, m) = 54 Spu—po:d)+ — (— 1)2m integerm and zero for half-oddn,

X

M—Mo—g:d)- (112 % W(u,m)=d"*6(m;1). (114



3010 ULF LEONHARDT 53

ghost variables do not appear as physical quantities. Again, =

Phase states have uniform spin distributions and the half-odd 1 Z ;{ 2 i
this is accomplished by the ghost line in the fermionic d*a

= a4 (Zn,qu (m—n)?

Wigner function of a phase state. In the same way we obtain . A
the equivalent Wigner function for a spin state, 3 (m+n)2| [{m—n|p|m+n). (121
W(u,m)= % S(m—mg; d)+ ( 1)%+ There is a subtle reason why we can perform the last math-
ematical transformation for even-dimensional systems and
d not necessarily in the odd-dimensional case. We notice that
X 8l m—my— E;d) (115 the spin-state inderm+n in the summatior(120 might be

out of the original parameter range-d/2+3,+d/2}. Then
_ the spin-periodicity condition29) is applied to define a
2. Broken-line states meaningful state, i.em+n is replaced bym+n—d to lie
If the dimensiond is composite, i.e.=ab with integers  again in the original parameter range. In this case we obtain
a andb, we can introduce broken-line staté@s}), (56). Their

fermionic Wigner function is obtained from the explicit ex- ~+ _ 1' N2
pression(103) P |m+n>—exp_ g 7(m+n—d)*||m+n)
[ i
W(u,m)= d > =eprT[(m+n)2—2d(m+n)+d2] |m+n)
2da <y i, i
2mi [ ari
XeXF{T[ZVm‘Fbrno(Mi_Mé)] —exH 7(m+n)?|[m+n) (122
X O(pu—v—po—buy;d) sinced is even. Of course, the same might happem+f n is
. out of the original parameter range. For this subtle reason the
X(ptv—po—buy;d). (118 giscrete Wigner function of spins precesses in stepsnef

and not in steps aofwo as in the bosonic case,
As for line states, there are two possibilities to obtain non- P

zero matrix elements: Either=0 andu= uy (modb) (which W( e, m:t)=W(u— 7m,m). (123
means thaj; — u, must be evenor v=b/2 andu=puy+b/2 Y ’

(mod b) (which implies thatu; —u; must be odil Conse- Al other features of the precession tomography require only

quently, we obtain minor modifications. We should perform discrete Fourier
transformations of the measured phase and spin distributions
W(g,m)= 74 (= 1)4r=ro)m-molid 52, 2 - ) and see again that
v ~ [V v
X 8(2m—2mg;a). (117 pr¢,(§;r)=w(§,r§),

We see that fermionic broken-line states exhibit in addition
to the familiar lattice in phase space a ghost lattice which — (N ~( . N
P 7]= W |0,

does its duty to guarantee the right marginal properties. 2
F. Precession tomography or
How is the idea of precession tomography modified for ’n i v
spins? Let us consider the precession operator ’|5'r(§, 5;7) =W > T 5) (124
- m?
P(I)ZEXI{ —i 7t> (118  for the observation of broken-line states. The half-integer

arguments in the discrete Fourier transformation are neces-
at half of the precession time&6) as for angular momenta S&Ty because the characteristic functdfr,n) should be
(in the Bose sector reconstructed for half-integer arguments. Otherwise, insuffi-
cient information is gained because of the redundancy
27

t=— 1 (119 —
d W

d —
vt N =(—1)"W (»,n),
with integerr. How is the Wigner function transformed?

‘W

A vn+d)—( 1)2"'W (v,n) (125
W(,u,m;t)— 2 ex —Tn,u)<m n|PpPT|m+n)

(120 of the characteristic function for spins.
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V. SUMMARY the broken-line states defined in this paper. It is not clear,
however, whether this distinction of prime-dimensional sys-
tems is generic or just an artificial feature of the method
gresented. Possible relations between number theory and

uantum mechanics are certainly a challenge for much future

Quantum objects cannot be seas they are We may
observe only particular aspects of a quantum system in
single experimental setting. Quantum-state tomography is

mgthod for building up a complete'pictu.re of a quantumwork_ In quantum computinfB9], for instance, quantum me-
object from a set of distinct observations, i.e., by seeing th%hanics is used for solving number-theoretical puzzles like

object from d|ﬁer_ent_ points of view. In precession tomogra-the factorization of large numbers in a computationally effi-
phy the phase distribution of a precessing angular momen-.

tum or spin is measured to reconstruct the state. This is po cient way[40]. In this paper odd- and even-dimensional sys-

sible because precession mixes the state space sufficiently%ems(angmar momenta and spins, bosons, and fermiares

Q.. . . . . .
that phase observations explore almost all aspects of the Sya[stmgwshed. The Wigner function for odd-dimensional

tem. If in addition the angular momentum or spin compo- uantum objects is easily guessadd has been given before
: 9 : pin b 15,16]), being transcribed from Wigner's original formula
nents are measured the complete picture of the object can

inferred. In this paper a fully quantum version of precession ?) for discrete variables. The Wigner function for even-
X bap ya b dimensional systems requires more thought. In this paper the

tomography is elaborated. As the basic theoretical tool a disdiscrete phase space is supplemented by ghost variables to

crete Wigner formalism is developed. The discrete W'gnersolve the problems of fermionic Wigner functions. Like in

mgﬁif:q roerp;e?r?rgrs mrgmﬁggnplcyz gLi?en- d?r?wgetrllgironmzfl\wignerys paper[3] the discrete quasiprobabilities were
P ! 9 Y “‘chosen from all possible expressions beca[tbey seem

qﬂgntﬂm-sstﬁéet@r.nghrg r? 'Ctgreeer:s}rct)?n zemggogstsrtl:;ﬁd oliq be the simples.” It is not clear which properties define
9 grapny. PO em uniquely. Finally, almost needless to say, discrete

of view, the Wigner function serves as qgwde!me for flndlngWigner functions might find also other applications apart
a complete set of observables which is sufficient for Statefrom the originally intended purpose

determination. These observables correspond to a set of basis ’
systems in state space, the set of precession states. It turns
out that in precession tomography prime-dimensional sys-
tems are favored in the sense that the precession states arel would like to thank U. Bandelow, A. Barenco, V.
mutually complementargin the precise sense defined in this Buzek, R. Hvass Hansen, U. Janicke, I. Jex, . Leonhardt, C.
pape). The precession states together with the angularMdiller, T. Opatrny H. Paul, M. G. Raymer, W. P. Schleich,
momentum eigenstates represent indeed all complementa8; Stenholm, J. A. Vaccaro, A. Vourdas, M. Wilkens, and P.
aspects of the system. If the dimension of the state space Boller for their encouragement and help. My work at the
composite some features are missing. They can be inferrddniversity of Oregon was supported by the Max Planck So-
by observing the precessing angular momentum in terms dfiety.
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