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Relativistic oscillator of constant period
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A relativistic oscillator whose period is independent of its energy is of great fundamental importance in both
relativistic classical mechanics and relativistic quantum mechanics. In this work theoretical and computational
investigations of such a constant period oscillator are reported, with emphasis on basic mathematical and
physical properties of the oscillator.

PACS numbes): 03.30+p, 03.65-w

[. INTRODUCTION to determine the shape of the CPP in the relativistic region
was reported by Funke and Raf&]. They used the tech-
The simple harmonic oscillatdiSHO) is undoubtedly of nique of Laplace transform, a standard technique used in the
great importance in both classical mechanics and quantumautochrone problerf4], and obtained a general expression
mechanics. It represents the most fundamental system foelatingT(E) and the corresponding potential. Based on this
which the equation of motion, whether it is classical Hamil- expression, they obtained a power series expression for the
ton’s equations or guantum-mechanical Scimger equa- CPP.
tion, can be handled in a simple analytic way. Classically, In this work we investigate fundamental mathematical
the unique simplicity of the SHO stems from the fact that theand physical properties of the CPO. Since no simple analytic
period of oscillation is independent of the oscillator energy treatment can be given to the CPO, we first obtained the
This unique property manifests itself in the quantum worldcurve representing the CPP via numerical computation. This
as equally spaced energy levels. provides the “exact” potential against which theories of and
It should be noted, however, that the SHO no longer ocapproximations on the CPO can be tested. Analytic treat-
cupies such a unique place once one enters the relativistidents based on the technique of Laplace transform are, how-
regime. The period of oscillation is no longer independent ofever, still valuable because some fundamental mathematical
energy if the oscillator moves at relativistic velocit{dd. It ~ properties such as scaling properties and approximate behav-
can then be immediately suggested that in the relativistigor in the nonrelativistic and ultrarelativistic limits can be
regime the system that plays as a fundamental role as thfeund from them. Based upon these mathematical properties,
SHO is an oscillator whose period is independent of energwe were able to introduce approximate formulas that accu-
in the entire energy range, both nonrelativistic and relativisrately reproduce the CPP. Using the approximate formulas as
tic. Such an oscillator, which we refer to as the constanivell as the exact numerical potential, we then computed the
period oscillatofCPO), is the subject of this work. classical time evolution and the quantum energy eigenvalues
Despite the fundamental importance of the CPO in relaof the CPO.
tivistic classical and quantum mechanics, there appears to be We hope that the analysis presented here provides the
very little work on the subject of the CPO in the past. Thisbasic knowledge that should help to enhance our understand-
may be due partly to the fact that the potential that governing of relativistic classical mechanics and relativistic quan-
the motion of the CPO, which we refer to as the constantum mechanics. The direct motivation for this study came
period potentialCPB, cannot be expressed in a simple ana-from our previous study of the “relativistic chaog7,8],
lytic form. It is obvious that the CPP should behave like achaos exhibited by a system undergoing relativistic motion.
harmonic potential in the nonrelativistic limitv(q)<mc?] We have found that even a simple harmonic oscillator that is
and like a square-well potential in the ultrarelativistic limit free of chaos in the nonrelativistic regime can exhibit chaos
[V(g)>mcZ]. Thus the curve representing the CPP shouldf it is driven to relativistic velocitie§7]. This is essentially
increase asy? nearq=0 but should become continuously because the period of the SHO becomes energy dependent at
steeper at largay until it becomes practically a vertical line. relativistic energies. In general, the way the period depends
The problem of determining the shape of potential thaton energy takes a different form and consequently some in-
yields a constant period falls into the category of the “in- teresting new phenomena such as an appearance of new non-
verse problem.” In the inverse scattering problem, for ex-linear resonances leading to chd@& and zero dispersion
ample, the intermolecular potential is sought from givennonlinear phenomeni®,10] can occur, as one moves from
scattering dat§2,3]. Our problem, a special case of the in- the nonrelativistic region to the relativistic region. In any
verse problem in which the potential is determined from acase, at least according to the first-order resonance theory
given energy dependence of the peribg T(E), is similar  [11], in order for nonlinear resonances to be formed and
in mathematical structure to the well-known “tautochrone” chaos to be exhibited by an oscillator driven by an external
problem[4]. As our main interest lies in the relativistic mo- force, the period of oscillation should vary with respect to
tion, it has much in common in particular with the relativistic energy[7,8]. Thus the system that is completely free of
tautochrone problerfb]. To our knowledge the first attempt chaos, at least in the first-order theory, in both nonrelativistic
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and relativistic regions must be an oscillator whose period i€quation(8) is of convolution type to which the technique of
independent of energy in the entire energy range. Such baplace transform is often applied with success. We thus
system is obviously the CPO that we investigate in this worktake the Laplace transform of both sides of E). and ob-

tain
Il. THEORETICAL ANALYSIS OF THE CONSTANT cT 1
PERIOD POTENTIAL fMNIN) =7 2 (9
Let V(q), assumed to be symmetric abayt 0, be the
constant period potential that we seek. The energy of a patvhere
ticle of massm oscillating under the influence of the poten- .
tial V(q) is f()\)zL{V‘l(E)}:J e "Ev-L(E)dE (10
0
E=pc’+m°c*—mc+V(q), (1) and
where p is the momentum and the speed of light. The E+mc " E+mc
action variabld is given by g(\) e — :f e ME—
JVE(E+2m¢c®) 0 VE(E+2m¢c®)
(11

1
I=I(E)=2—jgpdq . . . .
™ The functiong(\) can immediately be evaluated to yield

=icfbﬁﬂmcz—wq)]z—mzc“dq, (2) g\ =me " K, (AmE), (12)
7CJo

whereK; denotes the modified Bessel function of order one.
where b=V ~1(E) represents the amplitude of oscillation. Substituting Eq(12) into Eq. (9), we have
Alternatively, the action variable can be written as

= 1
f(x)=f e "BV Y(E)dE= .
1 4 (Pma 4mc? ) 2gAm¢
(€)= 5- § adp= 5 [ "V HE+mE 0 N2 (M)
2 2 ]o (13
—Jp2cZ+m?cHdp, (3)  This is the formula obtained by Funke and R&€% In prin-
ciple one can determiné(q) from Eq.(13) as follows. One
whereP, ., is the maximum momentum first determinesf(\) from Eq. (13). Taking the inverse

Laplace transform off(\), one then obtain/ 1. The
1 knowledge ofvV ! should allow determination d&f. In prac-
Pmax=—V(E+mc)?—m?c?. (4)  tice, however, difficulty arises because the inverse Laplace
¢ transform off (\) is extremely hard to evaluate and thus one
often needs to rely on direct numerical computation. Before

Letting closing the section we rewrite E@13) in a slightly more
convenient form
k=+p’c’+m’ct—md, (5)
; et iv—l(tmcz) dt= L (14)
we can rewrite Eq(3) as 0 cT y2eVK,(y) "
I(E)= ifEV_l(E— K) Kk+mc? dx. (6) I1l. MATHEMATICAL PROPERTIES OF THE CONSTANT
7CJo \/K(K+2mi?) PERIOD POTENTIAL

Let us recall that at a given enerd@vth tion variabl In this section we first present the constant period poten-
et us recall that at a given ener@ythe action variable tial evaluated numerically using a computer. We then present

I(E) and the periodT(E) of oscillation are related by ; : :
. : a theoretical analysis of the fundamental mathematical prop-
Jl(E)/0E= T(E)/27. For our constant period oscillator, erties of the CPPy prop

T(E) is just a constant, which we denote simply By Thus
we have, for the case of the CPO, . . ) .
A. Numerical evaluation of the constant period potential

In order to obtain the actual shape of the CPP, it is much

(B)=5_E. (7)  easier and more straightforward to employ direct numerical
computation than to use Eq1l3) or (14). Basically, one
Equations(6) and (7) yield starts withV(qy=0)=0 and determine¥(q,=Aq) by as-

suming that the curve is harmoni¥(q,) = im(27q,/T)?.
With V(q,) andV(qgy) known, we then determine the next
k= -—E. (8) point V(q,=2Aq) by a_ssuming that the thr_ee_ points
k(k+2mc) 4 V(qo), V(g1), andV(g,) lie on a parabola and finding the

K+mdc? cT

foEv—l(E—K)
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Equation(19) indicates thatv scales linearly with mass
m and depends not aipand T separately but og/T . Thus,
if V(q) represents the potential that yields a periodor a
particle of massn, the potential that yields the same period
T for a particle of mass@ is 2V(q), while the potential that
yields a period 2 for a particle of the same masa is
V(g/2). In other words, le¥(q) be the potential that yields
a period of 1 for an oscillator of mass 1. Then the potential
that yields a period of for an oscillator of mass must be
given bymV(qg/T). We note that the above scaling proper-
ties of the CPP are shared by the simple harmonic potential
V(q)=im(27q/T)2.

FIG. 1. Constant period potentiah=T=c=1.
C. Nonrelativistic limit
SviLat;orLapfiT:é: gs:t é’;e_ld;rétigjﬁge?hgesrgt: é t\?\lz;(]g:c:m The pehayior of the.CPP 'in the vicinity gf=0 [or in the
nAq) can be determined from the previously determined?ONrelativistic region in whichV(q) <mc?] can be deter-
points V(q,,_;) and V(q,_,) by the method of parabolic mined by noting that the modified Bessel functidn can be
fiting. In our computation of the CPP for the case&XPanded as

m=T=c=1, we divided the interval betweeq=0 and - 15 105
Ki(2)= Ze‘z

g=cT/4=0.25 into 10 000 equal segments, i.Agq was — ...
1 82 2822 20822 :

taken to be 2.5 10 °. The computation of period was car-
ried out using the Runge-Kutta method with a time step of (20
1/20 000. At each interval, the correct poikfi(q,) was
sought until the computed period yields the correct value of ) ) _
1 within an error of 10°5. Using Eg.(20) to expand the right-hand side of E{.3) in

In Fig. 1 we present the CPP we obtained via direct nuseries of 12= 1/Amc and evaluating the inverse Laplace
merical computation for the case=T=c=1. In the vicin-  transform of each term in the series separately, we obtain a
ity of q=0 the curve is harmonic, i.e., series solution for the CPP, which reads

v 1 277q21 1(2mq\? 3 (2mq\*
@=5m =) |13\ a0l
whereas it is almost a vertical line ag approaches

+cT/4==13 ie, +£ 2mq\®
448\ cT

2
=27%q% as q—0, (15)

1 [2wq
Vig)~gm| —=—

(21)

cT

V(q)—® asq—*r—== (16

1
4 T4
As expected, the leading term in E1) coincides with the

B. Scaling properties harmonic potential of the same period.

The scaling properties of the CPP can best be analyzed
with Eq. (14). Since the right-hand side of Eq@l4) is a D. Ultrarelativistic limit
function only of y, we conclude that the quantity in the
square brackets on the left-hand side must be a function onl
of t, i.e.,

When the oscillator moves with ultrarelativistic energy
%/E>mc2), its motion near the turning points is governed by
the potential neag=*=cT/4 . The approximate behavior of
4 1 the CPP in the vicinity ofj= cT/4 [or in the ultrarelativistic
C—_I_V_l(tmcz)=L_1[ —W]EF(U. (17 region in whichV(q)>mc?] can be found by utilizing the

y power series of the modified Bessel function
Equation(17) can be expressed as 1 2 7 Al 2 5
ot Kl(z):E 1+E |n§—’y—z +l—6 |n§—’y—2)+'-~},
V(TF(t)) =mct (18) (22)
or, settingg= (cT/4) F(t), as where y is the Euler constany=0.577. Substituting Eq.

(22) into Eg. (14) and evaluating the inverse Laplace trans-
form term by term, one obtains after lengthy but straightfor-
ward algebra

V(q)=mc2F‘1(2—_?_). (19
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mc 1 4 TABLE |. Exact constant period potentislq) and the approxi-
V(q)zmcz+ - | 1+6l1- _) mate potentiald/,(q) with N=0.25 andV,(q). m=T=c=1.
V2 4q cT
1-— q V(a) Vi(a) V()
cT
0 0 0 0
1 0.025 0.0124 0.0124 0.0124
x In—4 0.050 0.0506 0.0506 0.0506
\/E 1— _q 0.075 0.1176 0.1177 0.1176
cT 0.100 0.2195 0.2199 0.2195
L 49 0.125 0.3671 0.3680 0.3670
0.150 0.5801 0.5825 0.5800
8(58 48 InZ)(l cT * 23 0.175 0.8990 0.9047 0.8988
0.200 1.422 1.436 1.423
0.225 2.503 2.540 2.511
In the immediate vicinity ofg= cT/4, it often is sufficient
to keep only the leading term in E(R3) and take period of oscillation is concerned, the detailed shape of the
potential nearg= *£cT/4 does not matter much as long as
V() =ma ﬁ 1 o4 the potential diverges sufficiently fast whep=+cT/4 is
(@)=mc+ \/E 40 (24 approached. Thus the dynamics of the CPO can be described
\/1- _q with high accuracy even if computation is performed using
cT the approximate potentil,(q) or V,(q).

In Table | we tabulate values &f;(q) (with N=0.25)
E. Approximate formulas andV,(q) at some representative points and compare with
. . . . _the exact numerical values obtained by direct computation as
Since no simple analytic formula exists for the CPP, it ascribed in Sec. 1l A for the casa=T=c=1. It is seen
will be useful if one finds an approximate formula that i, bothV,(q) and V,(q) agree well with the exact CPP,
closely reproduce the exact CPP for the entire range Oéxcept neag=*cT/4=+0.25. A more detailed compari-
9~ pT/4<q<cT/4. It of course is_ desirable .that the aP- son in the region neag= cT/4=0.25 is given in Table II,
proximate formula be consistent V.V!th the SC"’%"”Q Properties, here the exact numerical potentM(q), the approximate
represented by Eq19) and the limiting forms indicated by potentialsV,(q) andV,(q), and the approximate formulas
EqZ. (21) and (23)'” | tested tound the foll Egs. (23) and (24) are computed for 0.2489<0.25. As
. tmorlg severat :)rmu as wet tT]S eCﬁ)\FI;/'e ound the fo 0W'expected Eqs(23) and (24) give a better fit to the exact
INg two 1o accurately represent the : potential than V.(q) or V,(q) in the region near

m 2 1 gq==*cT/4.
Vi(q)= 8N 4q)2 N1 (25
{1—((:—_'_) IV. PHYSICAL PROPERTIES OF THE CONSTANT
PERIOD OSCILLATOR
and In this section fundamental physical properties of both the
) classical CPO and the quantum-mechanical CPO are inves-
cosr{ﬁ(zﬂ) } tigated. Our computations have been performed using the
cT approximate potentiaV,(q) as well as the exact numerical
Va(a)= "o —27-rq_1 : (26) potential. In all cases, the approximate potentia{q) and

cos' F) the exact potential produced essentially the identical results.

_ _ TABLE Il. Exact constant period potenti&l(q), the approxi-
In Eq. (26), « and /5 are constants=0.3 and3=0.05. In mate potentiald/,(q) with N=0.25 andV,(q), and the approxi-

Eq. (25 the constaniN can be chosen to fit the exact CPP e
best. Our numerical analysis showed that the choicémlte formulas Eqs23) and(24). m=T=c=1

N=0.24 yields the best fit. WitN=0.24 Eq.(25) was found
to yield ya constant period within 023%. The choice . V@ V@) Vo FEa(29 Eq (4
N=0.25 is also very good with a fractional error in period 0.24800  9.265 8.954 9.149 9.495 8.906
within 0.2%. Equation(26) works even better and yields a 0.24825  9.830  9.424 9.660 10.03 9.452
constant period within 0.08%. 0.24850  10.52  9.986 10.28 10.69 10.13
Both formulas(25) and (26) satisfy the scaling condition 0.24875  11.41 10.68 11.04 11.54 11.00
Eq. (19) and yield the correct leading teram(27q/T)? at  0.24900  12.60 11.57 12.04 12.69 12.18
smallg. The main source of error in Eq&5) and(26) lies  0.24925  14.33 12.80 13.42 14.38 13.91
in their behavior neag= *=cT/4 . Although they diverge as 0.24950 17.21 14.69 15.59 17.24 16.81
g=*cT/4 is approached, neither of the two formulas isg.24975 23.70 18.40 19.97 23.71 23.36

quite consistent with Eq(24). Nevertheless, as far as the
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A. Classical dynamics of the constant period oscillator 0.3

The relativistic classical dynamics of the CPO is governed
by the Hamilton’s equations of motion

da _ p 27 a o

dt  m?+p?/c?’

dp  dV(q)

dt  dq @8 03 - : : o

whereV(q) represents the constant period potential of Sec.
lll. Even if we use the approximate potentia] or V, for the (a)
potentialV(q), it is not possible to obtain an analytic solu-
tion to Egs.(27) and (28). The data reported in this section
were thus obtained by numerically integrating E() and 1.2 ' '
(28).

In Fig. 2 we show the time development of the position
g, velocity v, and momentunp=ymuv of the CPO for six
different values of the initial energy for the case v o
m=T=c=1. The corresponding phase-space trajectories in
the g-v plane and they-p plane, respectively, are shown in
Figs. 3a) and 3b). One can clearly see that the CPO be-
haves like the SHO of the same period at low energies _; , [
(E<mc®) and like a particle in a square-well potential of
half-width cT/4 at ultrahigh energiesE>c?).

At all energiesg, v, andp are all periodic with a given (b)
period T and can be expanded in Fourier series. Thus one
can writeq(t) as

2mnt
q(t)= >, a,cos—, (29
n odd T

wherea,’s in general depend on energy=a,(E). At non-
relativistic energiesE<mc?), we have

ET?
an= W&ﬂ_, (30)

representing a sinusoidal wave, while in the ultrarelativistic t
limit (E>md)
(©)
2c
an= 2.2 n=135..., (31 FIG. 2. Time development of the positrap velocity v, and

momentump of the constant period ocsillator for six different ini-
tial conditions q,po)=(0.04,0, (0.08,0, (0.12,0, (0.16,0,

representing a sawtooth wave.
(0.2,0, and(0.24,0. m=T=c=1.

In Figs. 4a) and 4b) we plot the first six nonzero coef-
ficientsa, obtained by numerical computation as a function ) _
of energy for the casm=T=c=1. It can be seen that all the spaced energy levels. This quantum-classical correspondence
coefficients plotted tend to the values given by E3f) as  can best be seen by applying the Bohr-Sommerfeld quanti-
energy is increased to a high value. As energy is lowered, afation rule[12,13
coefficients decrease, but those with a largedecrease 1 1\ h
faster. At low energies therefore high-order coefficients are |= — doa=|n+ =] — 32

. ) pdq (32
relatively unimportant and a small number of low-order 27 2) 2w
a,’s are sufficient to describe the motion.
to the SHO. Since Ed7) is valid for the SHO as long as we

B. Quantum energy eigenvalues limit our consideration to nonrelativistic motion, we have
of the constant period oscillator from Egs.(7) and (32
We now turn to a quantum-mechanical analysis of the
CPO. In the nonrelativistic case, the constant period of the E :2_7T| —[n+ E E (33)
SHO manifests itself in quantum mechanics as equally T on 2/ T
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FIG. 3. (a) Phase-space trajectories in tp@ plane. Parameters
(dg,Po),m, T andc are the same as in Fig. &) Phase-space tra-
jectories in theg-p plane. Parametersyf,pg),m,T, andc are the

same as in Fig. 2.

FIG. 4. (a) Fourier coefficientsa;,a;, and as vs energyE.
m=T=c=1. (b) Fourier coefficientsa;,ay, and a;; vs energy
E. m=T=c=1.

Thus, for the case of an ultrarelativistic CP®/ T>md),

We see therefore that. for the case of the SHO. the Bohl1_he Bohr-Sommerfeld quantization rule holds with the factor
’ ’ 1

Sommerfeld quantization rule agrees exactly with the2
guantum-mechanical solution of the Soflirmger equation.

It is of interest to see if the above quantum-classical cor-.
respondence holds also for the CPO. In order to determin
the energy eigenvalues of the CPO, we choose to solve tHB

time-independent Klein-Gordon equation

2

—c2ﬁ2M+mzc4w=[E+mcz—wq)]Zw(q). (39

J9°

Let us first consider Eq34) in the ultrarelativistic limit
(E,>m¢ for all n), in which case Eq(34) can be written

approximately as

02
_ CZﬁZ% =~ E2¢/

Solving Eq.(35) for ¢ and applying the boundary condition
Y(gq==xcT/4)=0, one can immediately obtain

h
En=(n+1)=.

replaced by 1 and all energy levels of the CPO are equally
spaced.
At arbitrary relativistic energies, the Klein-Gordon equa-
fion cannot be dealt with analytically in general. We thus
tegrated Eq(34) numerically to determine energy eigen-
values. The eigenvalues thus obtained are presented in Table
Il for the casem=T=1 andh=0.1 for three different val-
ues ofc. At c=10 all energy eigenvalues listed are seen to
be equally spaced. In this case the eigenvalues are well be-
low mcZ=100 and thus the CPO behaves almost like the
corresponding SHO. At botb=0.6 andc=0.2 deviations
from equal spacing are clearly indicated. &£ 0.2, in par-
ticular, the lowest-energy eigenvalue is already higher than
mc® and thus relativistic effects cannot be neglected even
when calculating the lowest-energy eigenvalue. We note,
however, that, as we move to higher-energy levels, energy
spacing tends to the valleT . This is in agreement with the
above analysis leading to E@36) for an ultrarelativistic
CPO. We also note that the energy eigenvalue of the lowest
state is in general different from OI(T) .

In order to better understand the numerical data presented
in Table lll, we need to look closely at the Bohr-Sommerfeld

(39

(36)
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TABLE lll. Energy eigenvalues of the constant period oscillatoe= T=1 andh=0.1.

c=10 c=0.6 c=0.2

n E, AE, E, AE, E, AE,

hT T hT T hT hT
0 0.500 0.496 0.752
1 1.500 1.000 1.490 0.995 1.824 1.072
2 2.500 1.000 2.488 0.998 2.860 1.036
3 3.500 1.000 3.490 1.002 3.882 1.022
4 4.500 1.000 4.496 1.006 4.897 1.015
5 5.500 1.000 5.505 1.009 5.908 1.010
6 6.500 1.000 6.516 1.011 6.916 1.008
7 7.500 1.000 7.528 1.013 7.923 1.007
8 8.500 1.000 8.542 1.013 8.928 1.005
9 9.500 1.000 9.555 1.013 9.933 1.004

guantization rule. The Bohr-Sommerfeld quantization rule plex shape, such as the CPP being considered here, the con-
as expressed in Eq32), can be understood to arise as astanta does not necessarily take on a single fixed valié.
consequence of the fact that any adiabatically invariant quarRather, it is a function of energy or of the quantum number
tity should be quantized and that the action varidblse an  n, i.e.,a= «, . If we consider a nonrelativistic particle mov-
adiabatic invarianf14,15. The integem in Eq. (32) coin-  ing under the influence of the CPR,should be a decreasing
cides with the number of de Broglie half waves containedfunction ofn because the potential becomes steeper and pen-
between two classical turning points. The constang re-  etration weaker as energy is increased, leading eventually to
lated to penetration of the wave function into classically for-a nonuniform spacing of energy levels. For a relativistic par-
bidden region$15,16. It should be noted, however, that this ticle moving under the influence of the CPP, however, one
value of 3 is obtained within the WKB approximation of may intuitively expect that associated energy levels are
nonrelativistic quantum mechanics under the condition thaequally spaced. Our numerical data of Table Ill indicate,
the potential can be sufficiently well approximated by a lin-however, that they are not. Energy eigenvalues of the CPO
ear function in the immediate neighborhood of each turningare equally spaced only in the nonrelativistic and ultrarela-
point. One can thus suggest that a more accurate version tfistic limits. Furthermore, the ground-state energy can be
the Bohr-Sommerfeld quantization rule can be written as either higher or lower than 0.6(T) . The Bohr-Sommerfeld
1 h guantization rule Eq(32) is not in exact agreement with the
_ - _ N solution of the Klein-Gordon equation for the case of the
1= SE pda=(n+1-a)57, @) cpo.

where the constant takgs on a different value 'dep'ending on ACKNOWLEDGMENTS
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