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A relativistic oscillator whose period is independent of its energy is of great fundamental importance in both
relativistic classical mechanics and relativistic quantum mechanics. In this work theoretical and computational
investigations of such a constant period oscillator are reported, with emphasis on basic mathematical and
physical properties of the oscillator.
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I. INTRODUCTION

The simple harmonic oscillator~SHO! is undoubtedly of
great importance in both classical mechanics and quantum
mechanics. It represents the most fundamental system for
which the equation of motion, whether it is classical Hamil-
ton’s equations or quantum-mechanical Schro¨dinger equa-
tion, can be handled in a simple analytic way. Classically,
the unique simplicity of the SHO stems from the fact that the
period of oscillation is independent of the oscillator energy.
This unique property manifests itself in the quantum world
as equally spaced energy levels.

It should be noted, however, that the SHO no longer oc-
cupies such a unique place once one enters the relativistic
regime. The period of oscillation is no longer independent of
energy if the oscillator moves at relativistic velocities@1#. It
can then be immediately suggested that in the relativistic
regime the system that plays as a fundamental role as the
SHO is an oscillator whose period is independent of energy
in the entire energy range, both nonrelativistic and relativis-
tic. Such an oscillator, which we refer to as the constant
period oscillator~CPO!, is the subject of this work.

Despite the fundamental importance of the CPO in rela-
tivistic classical and quantum mechanics, there appears to be
very little work on the subject of the CPO in the past. This
may be due partly to the fact that the potential that governs
the motion of the CPO, which we refer to as the constant
period potential~CPP!, cannot be expressed in a simple ana-
lytic form. It is obvious that the CPP should behave like a
harmonic potential in the nonrelativistic limit@V(q)!mc2#
and like a square-well potential in the ultrarelativistic limit
@V(q)@mc2#. Thus the curve representing the CPP should
increase asq2 nearq50 but should become continuously
steeper at largerq until it becomes practically a vertical line.

The problem of determining the shape of potential that
yields a constant period falls into the category of the ‘‘in-
verse problem.’’ In the inverse scattering problem, for ex-
ample, the intermolecular potential is sought from given
scattering data@2,3#. Our problem, a special case of the in-
verse problem in which the potential is determined from a
given energy dependence of the periodT5T(E), is similar
in mathematical structure to the well-known ‘‘tautochrone’’
problem@4#. As our main interest lies in the relativistic mo-
tion, it has much in common in particular with the relativistic
tautochrone problem@5#. To our knowledge the first attempt

to determine the shape of the CPP in the relativistic region
was reported by Funke and Ratis@6#. They used the tech-
nique of Laplace transform, a standard technique used in the
tautochrone problem@4#, and obtained a general expression
relatingT(E) and the corresponding potential. Based on this
expression, they obtained a power series expression for the
CPP.

In this work we investigate fundamental mathematical
and physical properties of the CPO. Since no simple analytic
treatment can be given to the CPO, we first obtained the
curve representing the CPP via numerical computation. This
provides the ‘‘exact’’ potential against which theories of and
approximations on the CPO can be tested. Analytic treat-
ments based on the technique of Laplace transform are, how-
ever, still valuable because some fundamental mathematical
properties such as scaling properties and approximate behav-
ior in the nonrelativistic and ultrarelativistic limits can be
found from them. Based upon these mathematical properties,
we were able to introduce approximate formulas that accu-
rately reproduce the CPP. Using the approximate formulas as
well as the exact numerical potential, we then computed the
classical time evolution and the quantum energy eigenvalues
of the CPO.

We hope that the analysis presented here provides the
basic knowledge that should help to enhance our understand-
ing of relativistic classical mechanics and relativistic quan-
tum mechanics. The direct motivation for this study came
from our previous study of the ‘‘relativistic chaos’’@7,8#,
chaos exhibited by a system undergoing relativistic motion.
We have found that even a simple harmonic oscillator that is
free of chaos in the nonrelativistic regime can exhibit chaos
if it is driven to relativistic velocities@7#. This is essentially
because the period of the SHO becomes energy dependent at
relativistic energies. In general, the way the period depends
on energy takes a different form and consequently some in-
teresting new phenomena such as an appearance of new non-
linear resonances leading to chaos@8# and zero dispersion
nonlinear phenomena@9,10# can occur, as one moves from
the nonrelativistic region to the relativistic region. In any
case, at least according to the first-order resonance theory
@11#, in order for nonlinear resonances to be formed and
chaos to be exhibited by an oscillator driven by an external
force, the period of oscillation should vary with respect to
energy @7,8#. Thus the system that is completely free of
chaos, at least in the first-order theory, in both nonrelativistic
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and relativistic regions must be an oscillator whose period is
independent of energy in the entire energy range. Such a
system is obviously the CPO that we investigate in this work.

II. THEORETICAL ANALYSIS OF THE CONSTANT
PERIOD POTENTIAL

Let V(q), assumed to be symmetric aboutq50, be the
constant period potential that we seek. The energy of a par-
ticle of massm oscillating under the influence of the poten-
tial V(q) is

E5Ap2c21m2c42mc21V~q!, ~1!

where p is the momentum andc the speed of light. The
action variableI is given by

I5I ~E!5
1

2p R pdq

5
2

pcE0
b
A@E1mc22V~q!#22m2c4dq, ~2!

where b5V21(E) represents the amplitude of oscillation.
Alternatively, the action variable can be written as

I ~E!5
1

2p R qdp5
4

2pE0
Pmax

V21~E1mc2

2Ap2c21m2c4!dp, ~3!

wherePmax is the maximum momentum

Pmax5
1

c
A~E1mc2!22m2c4. ~4!

Letting

k5Ap2c21m2c42mc2, ~5!

we can rewrite Eq.~3! as

I ~E!5
2

pcE0
E

V21~E2k!
k1mc2

Ak~k12mc2!
dk. ~6!

Let us recall that at a given energyE the action variable
I (E) and the periodT(E) of oscillation are related by
]I (E)/]E5 T(E)/2p . For our constant period oscillator,
T(E) is just a constant, which we denote simply byT. Thus
we have, for the case of the CPO,

I ~E!5
T

2p
E. ~7!

Equations~6! and ~7! yield

E
0

E

V21~E2k!
k1mc2

Ak~k12mc2!
dk5

cT

4
E. ~8!

Equation~8! is of convolution type to which the technique of
Laplace transform is often applied with success. We thus
take the Laplace transform of both sides of Eq.~8! and ob-
tain

f ~l!g~l!5
cT

4

1

l2 , ~9!

where

f ~l!5L$V21~E!%5E
0

`

e2lEV21~E!dE ~10!

and

g~l!5LH E1mc2

AE~E12mc2!
J 5E

0

`

e2lE
E1mc2

AE~E12mc2!
.

~11!

The functiong(l) can immediately be evaluated to yield

g~l!5mc2elmc2K1~lmc2!, ~12!

whereK1 denotes the modified Bessel function of order one.
Substituting Eq.~12! into Eq. ~9!, we have

f ~l!5E
0

`

e2lEV21~E!dE5
cT

4mc2
1

l2elmc2K1~lmc2!
.

~13!

This is the formula obtained by Funke and Ratis@6#. In prin-
ciple one can determineV(q) from Eq. ~13! as follows. One
first determinesf (l) from Eq. ~13!. Taking the inverse
Laplace transform off (l), one then obtainsV21. The
knowledge ofV21 should allow determination ofV. In prac-
tice, however, difficulty arises because the inverse Laplace
transform off (l) is extremely hard to evaluate and thus one
often needs to rely on direct numerical computation. Before
closing the section we rewrite Eq.~13! in a slightly more
convenient form

E
0

`

e2ytF 4cTV21~ tmc2!Gdt5 1

y2eyK1~y!
. ~14!

III. MATHEMATICAL PROPERTIES OF THE CONSTANT
PERIOD POTENTIAL

In this section we first present the constant period poten-
tial evaluated numerically using a computer. We then present
a theoretical analysis of the fundamental mathematical prop-
erties of the CPP.

A. Numerical evaluation of the constant period potential

In order to obtain the actual shape of the CPP, it is much
easier and more straightforward to employ direct numerical
computation than to use Eq.~13! or ~14!. Basically, one
starts withV(q050)50 and determinesV(q15Dq) by as-
suming that the curve is harmonic,V(q1)5

1
2m(2pq1/T)

2.
With V(q1) andV(q0) known, we then determine the next
point V(q252Dq) by assuming that the three points
V(q0), V(q1), andV(q2) lie on a parabola and finding the
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parabola that best yields the desired periodT for the motion
with amplitudeb5q2 . Proceeding the same way,V(qn5
nDq) can be determined from the previously determined
points V(qn21) and V(qn22) by the method of parabolic
fitting. In our computation of the CPP for the case
m5T5c51, we divided the interval betweenq50 and
q5 cT/450.25 into 10 000 equal segments, i.e.,Dq was
taken to be 2.531025. The computation of period was car-
ried out using the Runge-Kutta method with a time step of
1/20 000. At each interval, the correct pointV(qn) was
sought until the computed period yields the correct value of
1 within an error of 1025.

In Fig. 1 we present the CPP we obtained via direct nu-
merical computation for the casem5T5c51. In the vicin-
ity of q50 the curve is harmonic, i.e.,

V~q!;
1

2
mS 2pq

T D 252p2q2 as q→0, ~15!

whereas it is almost a vertical line asq approaches
6cT/456 1

4, i.e.,

V~q!→` as q→6
cT

4
56

1

4
. ~16!

B. Scaling properties

The scaling properties of the CPP can best be analyzed
with Eq. ~14!. Since the right-hand side of Eq.~14! is a
function only of y, we conclude that the quantity in the
square brackets on the left-hand side must be a function only
of t, i.e.,

4

cT
V21~ tmc2!5L21H 1

y2eyK1~y! J [F~ t !. ~17!

Equation~17! can be expressed as

VS cT4 F~ t ! D5mc2t ~18!

or, settingq5 (cT/4)F(t), as

V~q!5mc2F21S 4qcTD . ~19!

Equation~19! indicates thatV scales linearly with mass
m and depends not onq andT separately but onq/T . Thus,
if V(q) represents the potential that yields a periodT for a
particle of massm, the potential that yields the same period
T for a particle of mass 2m is 2V(q), while the potential that
yields a period 2T for a particle of the same massm is
V(q/2). In other words, letV(q) be the potential that yields
a period of 1 for an oscillator of mass 1. Then the potential
that yields a period ofT for an oscillator of massm must be
given bymV(q/T). We note that the above scaling proper-
ties of the CPP are shared by the simple harmonic potential
V(q)5 1

2m(2pq/T)2.

C. Nonrelativistic limit

The behavior of the CPP in the vicinity ofq50 @or in the
nonrelativistic region in whichV(q)!mc2# can be deter-
mined by noting that the modified Bessel functionK1 can be
expanded as

K1~z!5Ap

2z
e2zF11

3

8z
2

15

2~8z!2
1

105

2~8z!3
2••• G .

~20!

Using Eq.~20! to expand the right-hand side of Eq.~13! in
series of 1/z5 1/lmc2 and evaluating the inverse Laplace
transform of each term in the series separately, we obtain a
series solution for the CPP, which reads

V~q!5
1

2
mS 2pq

T D 2F11
1

4 S 2pq

cT D 21 3

40S 2pq

cT D 4

1
11

448S 2pq

cT D 61••• G . ~21!

As expected, the leading term in Eq.~21! coincides with the
harmonic potential of the same period.

D. Ultrarelativistic limit

When the oscillator moves with ultrarelativistic energy
(E@mc2), its motion near the turning points is governed by
the potential nearq56cT/4 . The approximate behavior of
the CPP in the vicinity ofq5 cT/4 @or in the ultrarelativistic
region in whichV(q)@mc2# can be found by utilizing the
power series of the modified Bessel function

K1~z!5
1

z F11
z2

2 S lnz22g2
1

2D1
z4

16S lnz22g2
5

4D1••• G ,
~22!

where g is the Euler constantg>0.577. Substituting Eq.
~22! into Eq. ~14! and evaluating the inverse Laplace trans-
form term by term, one obtains after lengthy but straightfor-
ward algebra

FIG. 1. Constant period potential.m5T5c51.

53 2993RELATIVISTIC OSCILLATOR OF CONSTANT PERIOD



V~q!5mc21
mc2

A2
1

A12
4q

cT
F 116S 12

4q

cT
D

3 ln
1

A2A12
4q

cT

2
1

8
~58248 ln2!S 12

4q

cT
D 1•••G . ~23!

In the immediate vicinity ofq5 cT/4 , it often is sufficient
to keep only the leading term in Eq.~23! and take

V~q!>mc21
mc2

A2
1

A12
4q

cT

. ~24!

E. Approximate formulas

Since no simple analytic formula exists for the CPP, it
will be useful if one finds an approximate formula that
closely reproduce the exact CPP for the entire range of
q,2 cT/4,q,cT/4 . It of course is desirable that the ap-
proximate formula be consistent with the scaling properties
represented by Eq.~19! and the limiting forms indicated by
Eqs.~21! and ~23!.

Among several formulas we tested, we found the follow-
ing two to accurately represent the CPP:

V1~q!5
mc2p2

8N H 1

F12S 4qcTD
2GN 21J ~25!

and

V2~q!5
mc2

a H coshFbS 2pq

cT D 2G
cosaS 2pq

cT D 21J . ~26!

In Eq. ~26!, a andb are constantsa50.3 andb50.05. In
Eq. ~25! the constantN can be chosen to fit the exact CPP
best. Our numerical analysis showed that the choice
N50.24 yields the best fit. WithN50.24 Eq.~25! was found
to yield a constant period within 0.13%. The choice
N50.25 is also very good with a fractional error in period
within 0.2%. Equation~26! works even better and yields a
constant period within 0.08%.

Both formulas~25! and ~26! satisfy the scaling condition
Eq. ~19! and yield the correct leading term12m(2pq/T)2 at
smallq. The main source of error in Eqs.~25! and~26! lies
in their behavior nearq56cT/4 . Although they diverge as
q56cT/4 is approached, neither of the two formulas is
quite consistent with Eq.~24!. Nevertheless, as far as the

period of oscillation is concerned, the detailed shape of the
potential nearq56cT/4 does not matter much as long as
the potential diverges sufficiently fast whenq56cT/4 is
approached. Thus the dynamics of the CPO can be described
with high accuracy even if computation is performed using
the approximate potentialV1(q) or V2(q).

In Table I we tabulate values ofV1(q) ~with N50.25)
andV2(q) at some representative points and compare with
the exact numerical values obtained by direct computation as
described in Sec. III A for the casem5T5c51. It is seen
that bothV1(q) andV2(q) agree well with the exact CPP,
except nearq56cT/4560.25. A more detailed compari-
son in the region nearq5 cT/450.25 is given in Table II,
where the exact numerical potentialV(q), the approximate
potentialsV1(q) andV2(q), and the approximate formulas
Eqs. ~23! and ~24! are computed for 0.248<q,0.25. As
expected Eqs.~23! and ~24! give a better fit to the exact
potential than V1(q) or V2(q) in the region near
q56cT/4 .

IV. PHYSICAL PROPERTIES OF THE CONSTANT
PERIOD OSCILLATOR

In this section fundamental physical properties of both the
classical CPO and the quantum-mechanical CPO are inves-
tigated. Our computations have been performed using the
approximate potentialV2(q) as well as the exact numerical
potential. In all cases, the approximate potentialV2(q) and
the exact potential produced essentially the identical results.

TABLE I. Exact constant period potentialV(q) and the approxi-
mate potentialsV1(q) with N50.25 andV2(q). m5T5c51.

q V(q) V1(q) V2(q)

0 0 0 0
0.025 0.0124 0.0124 0.0124
0.050 0.0506 0.0506 0.0506
0.075 0.1176 0.1177 0.1176
0.100 0.2195 0.2199 0.2195
0.125 0.3671 0.3680 0.3670
0.150 0.5801 0.5825 0.5800
0.175 0.8990 0.9047 0.8988
0.200 1.422 1.436 1.423
0.225 2.503 2.540 2.511

TABLE II. Exact constant period potentialV(q), the approxi-
mate potentialsV1(q) with N50.25 andV2(q), and the approxi-
mate formulas Eqs.~23! and ~24!. m5T5c51.

q V(q) V1(q) V2(q) Eq. ~23! Eq. ~24!

0.24800 9.265 8.954 9.149 9.495 8.906
0.24825 9.830 9.424 9.660 10.03 9.452
0.24850 10.52 9.986 10.28 10.69 10.13
0.24875 11.41 10.68 11.04 11.54 11.00
0.24900 12.60 11.57 12.04 12.69 12.18
0.24925 14.33 12.80 13.42 14.38 13.91
0.24950 17.21 14.69 15.59 17.24 16.81
0.24975 23.70 18.40 19.97 23.71 23.36
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A. Classical dynamics of the constant period oscillator

The relativistic classical dynamics of the CPO is governed
by the Hamilton’s equations of motion

dq

dt
5

p

Am21p2/c2
, ~27!

dp

dt
52

dV~q!

dq
, ~28!

whereV(q) represents the constant period potential of Sec.
III. Even if we use the approximate potentialV1 orV2 for the
potentialV(q), it is not possible to obtain an analytic solu-
tion to Eqs.~27! and ~28!. The data reported in this section
were thus obtained by numerically integrating Eqs.~27! and
~28!.

In Fig. 2 we show the time development of the position
q, velocity v, and momentump5gmv of the CPO for six
different values of the initial energy for the case
m5T5c51. The corresponding phase-space trajectories in
the q-v plane and theq-p plane, respectively, are shown in
Figs. 3~a! and 3~b!. One can clearly see that the CPO be-
haves like the SHO of the same period at low energies
(E!mc2) and like a particle in a square-well potential of
half-width cT/4 at ultrahigh energies (E@c2).

At all energies,q, v, andp are all periodic with a given
period T and can be expanded in Fourier series. Thus one
can writeq(t) as

q~ t !5 (
n odd

ancos
2pnt

T
, ~29!

wherean’s in general depend on energyan5an(E). At non-
relativistic energies (E!mc2), we have

an5A ET2

2mp2dn1, ~30!

representing a sinusoidal wave, while in the ultrarelativistic
limit (E@mc2)

an5
2cT

p2n2
, n51,3,5, . . . , ~31!

representing a sawtooth wave.
In Figs. 4~a! and 4~b! we plot the first six nonzero coef-

ficientsan obtained by numerical computation as a function
of energy for the casem5T5c51. It can be seen that all the
coefficients plotted tend to the values given by Eq.~31! as
energy is increased to a high value. As energy is lowered, all
coefficients decrease, but those with a largern decrease
faster. At low energies therefore high-order coefficients are
relatively unimportant and a small number of low-order
an’s are sufficient to describe the motion.

B. Quantum energy eigenvalues
of the constant period oscillator

We now turn to a quantum-mechanical analysis of the
CPO. In the nonrelativistic case, the constant period of the
SHO manifests itself in quantum mechanics as equally

spaced energy levels. This quantum-classical correspondence
can best be seen by applying the Bohr-Sommerfeld quanti-
zation rule@12,13#

I5
1

2p R pdq5S n1
1

2D h

2p
~32!

to the SHO. Since Eq.~7! is valid for the SHO as long as we
limit our consideration to nonrelativistic motion, we have
from Eqs.~7! and ~32!

En5
2p

T
I n5S n1

1

2D hT . ~33!

FIG. 2. Time development of the positronq, velocity v, and
momentump of the constant period ocsillator for six different ini-
tial conditions (q0 ,p0)5~0.04,0!, ~0.08,0!, ~0.12,0!, ~0.16,0!,
~0.2,0!, and~0.24,0!. m5T5c51.
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We see therefore that, for the case of the SHO, the Bohr-
Sommerfeld quantization rule agrees exactly with the
quantum-mechanical solution of the Schro¨dinger equation.

It is of interest to see if the above quantum-classical cor-
respondence holds also for the CPO. In order to determine
the energy eigenvalues of the CPO, we choose to solve the
time-independent Klein-Gordon equation

2c2\2
]2c

]q2
1m2c4c5@E1mc22V~q!#2c~q!. ~34!

Let us first consider Eq.~34! in the ultrarelativistic limit
(En@mc2 for all n), in which case Eq.~34! can be written
approximately as

2c2\2
]2c

]q2
>E2c. ~35!

Solving Eq.~35! for c and applying the boundary condition
c(q56cT/4)50, one can immediately obtain

En5~n11!
h

T
. ~36!

Thus, for the case of an ultrarelativistic CPO (h/T@mc2),
the Bohr-Sommerfeld quantization rule holds with the factor
1
2 replaced by 1 and all energy levels of the CPO are equally
spaced.

At arbitrary relativistic energies, the Klein-Gordon equa-
tion cannot be dealt with analytically in general. We thus
integrated Eq.~34! numerically to determine energy eigen-
values. The eigenvalues thus obtained are presented in Table
III for the casem5T51 andh50.1 for three different val-
ues ofc. At c510 all energy eigenvalues listed are seen to
be equally spaced. In this case the eigenvalues are well be-
low mc25100 and thus the CPO behaves almost like the
corresponding SHO. At bothc50.6 andc50.2 deviations
from equal spacing are clearly indicated. Atc50.2, in par-
ticular, the lowest-energy eigenvalue is already higher than
mc2 and thus relativistic effects cannot be neglected even
when calculating the lowest-energy eigenvalue. We note,
however, that, as we move to higher-energy levels, energy
spacing tends to the valueh/T . This is in agreement with the
above analysis leading to Eq.~36! for an ultrarelativistic
CPO. We also note that the energy eigenvalue of the lowest
state is in general different from 0.5(h/T) .

In order to better understand the numerical data presented
in Table III, we need to look closely at the Bohr-Sommerfeld

FIG. 3. ~a! Phase-space trajectories in theq-v plane. Parameters
(q0 ,p0),m,T andc are the same as in Fig. 2.~b! Phase-space tra-
jectories in theq-p plane. Parameters (q0 ,p0),m,T, andc are the
same as in Fig. 2.

FIG. 4. ~a! Fourier coefficientsa1 ,a3 , and a5 vs energyE.
m5T5c51. ~b! Fourier coefficientsa7 ,a9 , and a11 vs energy
E. m5T5c51.
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quantization rule. The Bohr-Sommerfeld quantization rule,
as expressed in Eq.~32!, can be understood to arise as a
consequence of the fact that any adiabatically invariant quan-
tity should be quantized and that the action variableI is an
adiabatic invariant@14,15#. The integern in Eq. ~32! coin-
cides with the number of de Broglie half waves contained
between two classical turning points. The constant1

2 is re-
lated to penetration of the wave function into classically for-
bidden regions@15,16#. It should be noted, however, that this
value of 1

2 is obtained within the WKB approximation of
nonrelativistic quantum mechanics under the condition that
the potential can be sufficiently well approximated by a lin-
ear function in the immediate neighborhood of each turning
point. One can thus suggest that a more accurate version of
the Bohr-Sommerfeld quantization rule can be written as

I5
1

2p R pdq5~n112a!
h

2p
, ~37!

where the constanta takes on a different value depending on
the degree of penetration of the wave function into classi-
cally forbidden regions. For a nonrelativistic simple har-
monic oscillator,a is exactly12, whereas, for a nonrelativistic
particle in an infinite potential well for which no penetration
exists, it is exactly zero. For the case of a potential of com-

plex shape, such as the CPP being considered here, the con-
stanta does not necessarily take on a single fixed value@16#.
Rather, it is a function of energy or of the quantum number
n, i.e.,a5an . If we consider a nonrelativistic particle mov-
ing under the influence of the CPP,a should be a decreasing
function ofn because the potential becomes steeper and pen-
etration weaker as energy is increased, leading eventually to
a nonuniform spacing of energy levels. For a relativistic par-
ticle moving under the influence of the CPP, however, one
may intuitively expect that associated energy levels are
equally spaced. Our numerical data of Table III indicate,
however, that they are not. Energy eigenvalues of the CPO
are equally spaced only in the nonrelativistic and ultrarela-
tivistic limits. Furthermore, the ground-state energy can be
either higher or lower than 0.5(h/T) . The Bohr-Sommerfeld
quantization rule Eq.~32! is not in exact agreement with the
solution of the Klein-Gordon equation for the case of the
CPO.
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TABLE III. Energy eigenvalues of the constant period oscillator.m5T51 andh50.1.

c510 c50.6 c50.2

n
En
h/T

DEn
h/T

En
h/T

DEn
h/T

En
h/T

DEn
h/T

0 0.500 0.496 0.752
1 1.500 1.000 1.490 0.995 1.824 1.072
2 2.500 1.000 2.488 0.998 2.860 1.036
3 3.500 1.000 3.490 1.002 3.882 1.022
4 4.500 1.000 4.496 1.006 4.897 1.015
5 5.500 1.000 5.505 1.009 5.908 1.010
6 6.500 1.000 6.516 1.011 6.916 1.008
7 7.500 1.000 7.528 1.013 7.923 1.007
8 8.500 1.000 8.542 1.013 8.928 1.005
9 9.500 1.000 9.555 1.013 9.933 1.004
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