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Realistic lower bounds for the factorization time of large numbers on a quantum computer
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We investigate the timd a quantum computer requires to factorize a given number dependent on the
number of bitsL required to represent this number. We stress the fact that in most cases one has to take into
account that the execution time of a single quantum gate is related to the decoherence time of the quantum bits
(qubitg that are involved in the computation. Although exhibited here only for special systems, this interde-
pendence of decoherence and computation time seems to be a restriction in many current models for quantum
computers and leads to the result that the computation Tinseales much stronger with than previously
expected.

PACS numbsgs): 03.65.Bz, 89.70tc

I. INTRODUCTION ToB

Tdeczﬁa (2
Since Shor’s discover}l,2] of an algorithm that allows

the factorization of a large number by a quantum computefvhere 75 denotes the decoherence time of a single qubit.

in polynomial time instead of an exponential time as in clas-The case of qubits coupling to the same bath leads to smaller

sical computing, interest in the practical realization of adecoherence timesy[8]. Combining Eqs(1) and(2), we
guantum computer has been much enhanced. Recent aghtain

vances in the preparation and manipulation of single ions as

well as the engineering of preselected cavity light fields have TQB> TeBeL?. 3
made quantum optics that field of physics which promises

the first experimental realization of a quantum computerUsually ¢ is not assumed to be related to the decoherence
Several proposals for possible experimental implementationéme of the quantum computer. As we will see later, this is
have been made relying on nuclear spins, quantum|[@jts ot true in general. We will show that the dependence of the
cavity QED[4], and ions in linear trapgs]. elementary time step, on the decoherence timg,. gives

One can estimate the tinie needed for a single run of rise to a much stronger dependence of the calculation time
Shor’s a|gorithm to be equa| to the t|m%| required to ex- on the bit sizeL. This results in a severe limitation of the
ecute an elementary logical operation multiplied by the remaximum size of the numbers to be factorized. In our inves-
quired number of elementary operations, which is of thetigation we focus on the model put forth by Cirac and Zoller
form eL3+O(L?) [6]. It should be noted that, in general, a [5],_but alsq show brieﬂ_y that similar restrictions apply for
single run of Shor’s algorithm will not be sufficient becausecavity QED implementations. We stress that the results apply
it is a stochastic algorithm. In the following we will discuss t0 & wide class of possible models as most of them rely on an
the time required to perform one run of Shor's a|g0rithm andatom-”ght interaction similar to that of the models discussed
if not stated explicitly the calculation time is just the time here. Of course, the actual form ®{L) may vary slightly
required for this. from model to model.

The calculation time has to be compared to the decoher- In Sec. Il we investigate the model of a quantum com-
ence timerge. Of the quantum computefe.g., the time in  Puter proposed by Cirac and Zoller for several possible
which on average one photon will be emitted by the quantuninethods to store the qubits as well as a cavity QED imple-
compute). As spontaneous emissions destroy the coherend@entation. In Sec. Ill we summarize our results and discuss
in the quantum computer, we need to make sure that practfheir implications to the realizability of quantum computers.
cally no spontaneous emission occurs during the whole com-
putation. To ensure this, the inequality [l. QUANTUM COMPUTATION IN A LINEAR ION TRAP

TaeS T = 7€l ® (1) In the Introduction we gave a simple estimate of the time
T a quantum computer requires to perform Shor’s algorithm.
has to be satisfied, which then gives rise to an upper limit folFrom this it is possible to obtain an upper limit for the num-
the numbers we are able to factorize on the quantum comnbers that we are able to factorize. However, in this estimate it
puter. For a given value of, that means that the total com- is usually assumed that the execution time for an elementary
putation time scales lik&3. To factorize a number repre- logical gate does not depend on the decoherence time of the
sentable byL quantum bits(qubit9, one requires B+2  quantum bits on which the operations are performed. This,
qubits(in what follows we neglect the 2 heras work space however, is not generally true. To see this note that all the
for the necessary calculatiof§]. If we assume that each proposals for the practical implementation of quantum com-
qubit couples to a different bath, the decoherence time oputers mentioned in the Introduction share a common fea-
5L qubits is given by7,8] ture. They rely on the interaction of light with atoms where
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either the atoms are used as a memory to store the qubits,
which are manipulated by light fields, or the light field is
used as the memory, which is manipulated by the interaction H H H H ﬂ H ﬂ H
with atoms. Therefore in all these schemes the atom-light
interaction represents the essential building block of all the
proposals made so far. In each of these interactions a tempo- Lo _!, _!, _!, _!, _!, _!, _!, _!, —

rary excitation of the atoms is inevitableven in adiabatic

excitation, given a finite excitation timewhich can lead to FIG. 1. Schematic picture of the excitation of several ions in a
spontaneous decay. Obviously the interaction strength, prdinear ion trap. The translational degrees of freedom of the ions are
portional to the Rabi frequency), and the spontaneous assumed to be cooled to their respective ground states. To imple-
emission rate, proportional to the Einstein coefficient of thement quantum gates, standing-wave fields interact with the ions

excited level of the transition in question, are related suchhereby changing the inner state of the ions as well as the state of
that the center-of-mass mode, which leads to entanglement.

Standing wave laser fields

Q=pI''?2 (4) c.m. mode is excited because the closest lying mode has a
frequency\/§v and is therefore well separated from the c.m.

wherel is half the Einstein coefficient of the transition and mode frequency. In the model it is assumed that the laser is
p is a constant of proportionality. Certainly, for a given tran- detuned such that = — », so that the predominant contribu-
sition frequencyp cannot be made arbitrarily large. It is lim- tion comes from processes where with the excitation of the
ited due to the fact that at high intensities the two-level apion the c.m. mode is deexcited. Processes where the ion and
proximation breaks down, that the rotating-wavethe mode are excited simultaneously include rapidly oscillat-
approximation becomes invalid, and that for a sufficientlying phase factors and are neglected in the following
high laser intensity the atom ionizes practically immediately.(rotating-wave approximationOne then obtains the follow-
For optical transitions the latter effect gives rise to an uppeing Hamilton operator for an ion at the node of a standing
limit of the order of light field [5]:

Pmax= 10"%172, ) n Q
H=—=lleXgla+|g)(ela’], ®)
In practice, the limit will be much lower as both detuning V5L
and pulse duration have to be controllable quantities and we
have not included the other limitations mentioned above inwhere n= (27/\) VA/2Mv<1 is the Lamb-Dicke param-
Eq. (5). As the execution time, of a quantum gate depends eter. Thea anda' are the annihilation and creation operators
inversely on the Rabi frequencf while the decoherence of the c.m. mode. The Hamiltonian E¢) is correct for
time of a qubitrog depends inversely ofi, we immediately (Q/2v)?n?<1. This system allows the implementation of
observe via Eq(4) that both quantities are related to eachelementary logical gates such as the controlled-NOT gate
other. [1], which requires in this scheme the equivalent of faur
In the following we will investigate how this relationship pulses with the Hamiltonian E¢6). We use the time re-
affects the estimate for the factorization time of a numberquired for this as a lower bound for the elementary time step
that can be represented ly qubits. First we discuss the 7 and find
scheme proposed by Cirac and Zoller because it seems to be
the most promising proposal. Later we show that for cavity 4 5L
QED implementations similar problems arise. In similar Teffn—ﬂ- (7)
ways one may achieve estimates for other proposed schemes
as they mostly rely on atom-light interaction. The exact form
of T(L) might be different, but one will always find that the
scaling withL is much stronger than expected from E).

Now using the fact that Shor’s algorithm requires® el-
ementary steps we find for the total computation time

47Tﬂ

7}

A. Linear trap with two-level atoms as qubits T= el (8)

We now discuss the model proposed by Cirac and Zoller

[5]. Several ions of mask! are stored in a linear trafsee §s we want to minimizel, we insert the maximum value for

Fig. 1) and it is assumed that all translational degrees o according to Eq(4) and obtain

freedom of the ions are cooled to their respective groun
state and that especially the center-of-mé&ssn) motion

7
with frequencyv is in its ground state. This implies that the T= 4 e /il (9)
Lamb-Dicke regime is reached. To implement quantum gates np r

one then applies a sequence of laser pulses of wavelength

\ to the ions such that both the internal degrees of freedorin this expression not all the parameters are independent, as
as well as the degree of excitation of the c.m. mode may bwe have to make sure thdt is less than the decoherence
changed. As the c.m. mode is a collective motion of all ionstime 74, Of the quantum computer. The decoherence time of
its excitation can be used to yield entanglement between ditthe quantum computer is the decoherence time of a single
ferent ions. As an approximation it is assumed that only thejuantum bitrqg divided by the number of quantum bits con-
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tained in the quantum computer because in the course of the

3 4
calculation most of the qubits will be partially excited. We ® i
find
TQB~ 1 "4 T
Tdec 5L~ LT 10
. . . °
and obtain the inequality 1) 12)
4me [5L7 1 FIG. 2. Aj=1/2~j=1/2 transition. The qubit is represented by
p T <ET" (11 the two lower levels 1 and 2. Population transfer requires two dif-

ferent lasers. Adiabatic population transfer minimizes unwanted

We observe that due to E6f) the decay constant of a single PoPulation in the upper level.

qubit appears on both sides of the equation and we find [9]. However, in the following we will show that this scheme

T 1 p\21 suffers from similar drawbacks as the previously investigated
—<z——|=| =3 :
7 <2000772<€ o (12)  system

which is far more restrictive than the estimate E8). ob- B. The j=1/2—)=1/2 transition

tained when we assume that an elementary time sigfs The level scheme we now investigate is depicted in Fig. 2.

independent ofrqec. TO be able to perform Shor’s algorithm A qubit is represented by the levels 1 and 2, which are as-
without having spontaneous emissions Ef2) has to be  symed to be stable. The transition to the two upper levels,
satisfied. Using this to eliminatE in Eq. (9) then gives a powever, may be strong to allow for rapid transitions. As the

lower bound for the calculation time, which is implementation of quantum gates requires the excitation of
2 one phonon in the c.m. mode, we need to transfer population
T> 400572 i) L8. (13  between the two lower levels with a simultaneous excitation

(or deexcitationof the c.m. mode. To be able to perform this

) . population transfer without appreciable population of the up-
To olgtamllzexpllcn values f_orT we assumen=0.1 and per levels, which would lead to spontaneous emissions, one
p=10" s 7% The value ofe is of the order of 10006] SO  has to use the method of adiabatic population trar{sf}.
that we obtain The energy levels shown in Fig. 3 are the most relevant. The
vertical axis gives the energy of the bare stdtes), where

-1 o . - .

L Toin () Limax (877) i is an atomic level ana is the number of phonons in the
2 1 10t c.m. mode. Assume that initially the population is in level
4 259 19¢10°% |2;0) and we want to transfer it to levél;1). During the

guasiadiabatic population transfer one first applies a
One observes that even with the rather large valup tife ~ o-polarized laser pulse with a detunidg= —v; we assume
factorization of a four-bit numbefe.g., 15, which is the that the ion rests at the node of the light field. The duration
smallest composite number for which Shor’s algorithm ap-of this pulse is a fixed fraction of the total lengih of the
plies [2]) seems to be practically impossible when we takeprocess while the lengtfi,q of the process may be varied.
into account that, for example, the metastable transition ir-ater, but still overlapping with the-polarized laser pulse, a
barium has a lifetime of 45 s and therefdre=0.044 s 1. pulse ofr-polarized light is applied to the same ion and it is
Note that we have not taken into account the influence of alassumed that the ion is situated at the antinode of this field.
other possible sources of error such as counterrotating termidis pulse, in leading order, preserves the excitation number
in the Hamilton operator, excitations of modes other than the
c.m. mode, and errors in the pulse lengths and in the Rabi 13 1) 1)
frequencies of the pulses. One should also realize that al-
though a heroic experimental effort might make the factor-
ization of a four-bit number possible, the factorization of any
number of relevant size seems completely out of question as o
the execution time of Shor’s algorithm for a 40 bit number is
10° times larger. For a 400-bit number, which represents the T, =Ty
upper limit that classical computers can factorize, Shor’s al-
gorithm requires 1% times longer than for a four-bit num-
ber. . . FIG. 3. Thej=1/2—]=1/2 transition including the quantized

The main problem in the model seems to be that a metasenter-of-mass motioni;n) denotes an atomic levélandn pho-

stable transition cannot be driven very strongly, which innon in the center-of-mass mode. For the implementation of a
turn severely limits the execution time of an elementary gatecontrolled-NOT gate we need to be able to transfer population from
As a possible way to improve the above model, it was prostate|2;0) to state|1;1) and vice versa. To minimize population in
posed to consider p=1/2— j = 1/2 transition, where the qu- the excited levels population transfer is performed using adiabatic
bit is represented by the two lower levels of the transitionpopulation transfer with counterintuitive pulse sequence.

[3;0) 4;0)

@
[1;0) [2;0)
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of the c.m. mode. Again its length is a certain fraction of thewhich indicates that even the factorization of a four-bit num-
total timeT,4and we assume that tleepolarized laser pulse ber will be extremely difficult to achieve, although the esti-
terminates earlier than the-polarized pulse. If the time mate seems to be a little more promising than in the previous
T.q in which this process is performed is sufficiently long scheme. Again we have neglected all other sources of error,
then the population in the upper le\8l;0) will be small and  such as higher-order contributions in the Lamb-Dicke param-
therefore spontaneous emissions rare. This method certainter to the Hamilton operator as well as counterrotating con-
has the advantage that the exact pulse shape of the lasertiibutions neglected in the rotating-wave approximation. Be-
not as important as in the previously discussed scheme. Atause the expression E@.7) contains the ratid’/Q?, again

first glance it also appears to be possible that the populatiowe have similar problems as before as this ratio cannot be
transfer can be made extremely fast as the Rabi frequency ivade arbitrarily small.

not related to the lifetime of the lower levels. However, there
is a limit to the Rabi frequency. To see this we have to
realize that an adiabatic process requires infinite time. How-
ever, if we want to be able to perform the factorization in  Now we would like to show briefly that in cavity QED
finite time we have to take into account small deviationsrealizations of quantum computing expressions similar to
from the adiabatic behavior. In this case some populatiof=gs. (13) and (17) can be obtained. In cavity QED imple-
will end up in the excited levels, which may subsequentlymentations of quantum gates the atom-light interaction does
lead to spontaneous emissions. We find for the probabilitynot involve a classical laser field but a quantized mode of a
Pemthat at least one spontaneous emission takes place duriggvity. Before and after the cavity we may use Ramsey zones

C. Cavity QED implementation

the quasiadiabatic process to rotate the Bloch vector of the atoms passing the cddity
To perform quantum computations such as Shor’s algorithm,
- sL 1 (14 Mmany cavities are required and this obviously poses immense
Pem= 7202 Tad' experimental difficulties. In the following we neglect the re-

strictions arising from these problems as well as all difficul-
where the constang depends on the peak value of the Rabities that arise in the realization of exactly one atom passing
frequency() . of the -polarized laser, the pulse shapes, andwith a well-defined velocity through the cavity. We will
the delay between the pulseQ., is the peak value of the briefly show that again the lower bound for the computation
Rabi frequency of ther-polarized laser. If) _ is larger than  time scales much stronger thad with the bit sizeL of the
7Q, andI" [which we implicitly assume in Eq14)] we find  number to be factorized. Neglecting decay of the cavity
for sin*-pulse shapeg3~100. Analytically as well as nu- mode, we can estimate that the minimal computation time is
merically one finds thaB exhibits a very slow increase with of the order of
increasing{},,. We have assumed that the quasiadiabatic 3
process is sufficiently slow so that thel'llaw applies. This . :i
is the case when the right-hand side of Ef) is small meQ
compared to one. As we do not want to find any spontaneous
emission during the whole computation the inequality

(18

where () is the Rabi frequency in the cavity-atom interac-
B T 5el tion. While traveling in the Ramsey zones and between cavi-
— — —— =PemeL 3<1 (15  ties the atoms may decay. No decay should occur during the
7° Q5 Tag guantum computation, which leads to the condition

needs to be satisfied. This gives an estimate for the length of
i ich i al
an elementary time steq,, which is UGL3<1' (19
r
o~ Tad> Ez ?5&4. (16)
Kt where @ depends on the ratio between the time the ion
spends inside the cavityvhere we neglect spontaneous de-

Therefore we obtain for the total calculation time the estl-ca” to the time it spends outside the cavityhere it may

mate decay. Using Eq.(4) we then obtain
e T ;
T>5B—2 @L i (17) a/62|_6
KERT ™7 (20)

Again this estimate scales much stronger with the bit size
L of the input than expected. To see the orders of magnitud
we give explicit values for T. Assuming
7=0.1, B=100, e=1000, andp= 10" s~ Y2 we obtain

e . _ -
Although this estimate seems much more promising than
Egs.(13) and(17), it should be noted that it is certainly an
unrealistically low limit because we have neglected major

L T (9 sources of experimental uncertainty mentioned above. We
mn only intend to illustrate that again an expression similar to
2 0.05 Eq. (13) and (17) is found, although we have discussed a

4 6.5 completely different realization.
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These examples show that it seems to be a general feature . SUMMARY
that the control of population always leads to the appearance
of a factor of the formI'/Q?, which, for a given transition

frequency, has an upper limit. There seems to be only ONSumber depends on several physical parameters. It was
way out of this dilemma. Instead of employing optical tran-shown thatT will scale much more strongly with. than

sitions to represent qubits one could use low-frequency tran- """ 3 )
sitions (e.g., microwave transitiopsas it was done in the previously expected. Instead of bni dependence we find an

cavity QED implementation of Sleator and Weinfurfdi, L6 or L pehawor In t_he propqsal qf Cirac and Zol!er_and
because this can considerably decrease the ratib for cavity QED. realizations in which, h_owe_ver, this limit
I'/Q2=1/p? due to thew? dependence df. However, since IS more of theoretical nature than of practical importance due

in their proposal one would need a tremendous number dP oth_er expe”m‘?”.ta' problems. In the models that we h_ave
cavities it does not seem very promising. To overcome thi nvestigated explicitly, it also turns out that the computation

problem one might use the cavity field in the manner imple-'me is always dependent on the ralTon , wherel" and
mentation by Cirac and Zolld5]. Instead of using the c.m. () are the decay constant and the Rabi frequency of one of

mode to entangle different ions this task could be performe&Ee tr%nfsmozsfthat are Ireqwfrgd tq[. transtfﬁy populatltt)n.bAI—
by the cavity mode. This could be done using a linear trap tgnough found for special configurations, this Seems 10 be a
store the ions inside a microwave cavity. This scheme thegeneral result, which "m'§5 the length of the elementary time
resembles that of Sleator and Weinfurter, but differs as Wi:ep because the raid 2” cannot be made arbitrarily small

In this paper we have investigated how the computation
gme that a quantum computer needs to factorizeldpit

only require one cavity and we do not need atomic beam or an optical transitior_L As a possible way to circymvent
with all their associated problems. The c.m. mode will not bel ese _problems, we bkr)'.Eﬂy dl_scut?_sed the #se;mf@rglct:)rowave
excited during the calculation as for the long wavelength ofif@nsitions to store qubits as in this case the r e-

the radiation the Lamb-Dicke parameter is extremely smallcOMes extremely small. However, practical problems occur
However, smaller frequencies of the incident fields mearinat seem to make the experimental realization of this idea

larger wavelengths, which will make it more difficult to ad- difficult, although it might lead at least to the possibility to

dress single ions with the microwave radiation. The promen{actorize numbers that are several bits long, a task that seems

of addressing a single ion, given many are within a wavel0 P€ impossible with the present proposals. .
Note added in prooflt was brought to our attention, in-

length of the incident radiation, may be solved by applying .
local magnetic or electric field@r a suitable field gradient dependently by C Monroe and ‘]: I. Cirac, that Raman pulges
ave been used in current experiments to transfer population

that drive all but one ion out of resonance. However, due t . i

the small spatial separation of the ions this might be difficult etween Io_wer levels in & system. However, an analy5|s

to realize experimentally. If it would be possible to imple- ak_)ng the lines presel_wted. herg shows th_at the conclusions of
ment this idea then the lowest limit for the computation timeiS Paper remain valid with minor modifications.

could become as low as E0) with a value ofp that can

be much larger than that for an optical transition. However,
this idea should serve rather as a basis for discussions than aWe would like to thank A. Ekert and A. Barenco for
serious proposal as we still expect the experimental difficuldiscussions. This work was supported by the Alexander von
ties to be enormous. We are therefore not very optimistic thadumboldt Foundation, the EC Network “Nonclassical
factorization of nontrivial numbers will be possible in the Light,” and by the United Kingdom Engineering and Physi-
near future. cal Sciences Research Council.
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