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Sequential stationary phase, i.e., the replacement of a multidimensional stationary phase evaluation by an
ordered set of lower-dimensional stationary phase integrations, is applied to uniformly asymptotic path integral
forms for the semiclassical propagator. The results are useful formulas for computing trajectory indices~gen-
eralized Maslov indices! in any quantum representation for general types of time-dependent Hamiltonians.
Index connecting relations that relate the indices for the different representations are also obtained. We also
demonstrate a general canonical structure for the semiclassical phase indices that arises naturally through the
application of sequential stationary phase.

PACS number~s!: 03.65.Sq

I. INTRODUCTION

Semiclassical mechanics provides useful expressions for
quantum matrix elements and related quantities in the
\→0 limit. Of particular interest are matrix elements of the
propagator in various representations~i.e., coordinate space,
momentum space or mixed coordinate-momentum space rep-
resentations!. These are typically of the form of an ampli-
tude, which depends upon the classical stability matrix and
an exponent, which depends upon the classical action@1#. In
addition, the exponents contain important phase terms, gen-
erally referred to as Maslov indices, which arise from the
trajectory crossing various caustics. This semiclassical struc-
ture was demonstrated in early stationary-phase path-integral
treatments of the coordinate representation of the propagator
for kinetic-plus-potential-type Hamiltonians@2,3#. These im-
portant indices also arise within a much more general context
within semiclassical formulas.

Modern treatments of the theory of Maslov indices tend to
be complicated, relying upon sophisticated mathematical lan-
guage@4#. In a recent paper we provided a straightforward
derivation of the Maslov indices in various representations
@5#. Specifically, by concatenating uniform short-time propa-
gator formulas for the coordinate and/or momentum repre-
sentations and applying stationary-phase methods on the re-
sulting path-integral form we obtained general Maslov index
formula for any type of caustic and for quite general Hamil-
tonians. Our treatment@5# suggested the possibility of both
developing an underlying consistent canonical structure of
semiclassical matrix elements and obtaining the purely clas-
sical canonical properties of the general Maslov indices, with
the phase indices embedded in the semiclassical formulas in
a consistent manner. This paper provides such a development
for the propagator, starting from an asymptotic path-integral
formulation for more general types of time-dependent
Hamiltonians and making extensive use of a single tool: se-
quential stationary phase. By sequential stationary phase, ab-
breviated SSP, we mean the reliable stationary-phase evalu-
ation of multidimensional integrals via a set of stationary-
phase evaluations on integrals of lower dimension.

The formulation developed in this paper is essentially as
rigorous as that which relates asymptotic properties of wave
functions to Lagrangian manifolds in phase space@4#. Al-

though intimately connected to it, our work does not rely on
the formal language of differentiable manifolds, which, al-
though of geometrical appeal, requires sophisticated math-
ematical tools. The key point is that all that we require is the
implicit function theorem and basic tools in classical me-
chanics. Moreover, our treatment emphasizes simple and
computationally useful trajectory aspects of the theory.

The paper is organized as follows. In Sec. II we discuss
some formal aspects of sequential stationary phase that are
necessary for its validity. Section III contains the path-
integral development of the semiclassical propagator matrix
elements and of the trajectory index formulas for various
representations. The general formulas for the indices is given
in Sec. III A, where their inherent canonical structure is dis-
played. Moreover, we explore important index properties,
such as index contributions to a trajectory from the joining of
trajectory segments. Useful ‘‘connecting relationships’’ for
relating the various indices are given in Sec. III B. Section
IV contains a summary. Three appendixes provide support-
ing material: Appendix A discusses conditions for the valid-
ity of sequential stationary phase, Appendix B contains use-
ful equations on classical generators, and Appendix C
contains useful expressions relating to matrix signatures and
the symplectic properties of classical mechanics.

II. SEQUENTIAL STATIONARY PHASE

Consider a multidimensional integral of the form

I ~\;a!5E dxE dyg~x,y;a!expF i\ w~x,y;a!G , ~1!

where the integration is over a bounded or unbounded do-
main in d5m1n dimensions with (x,y)P(Rm,Rn), for in-
tegerm,n. The functionsg andw are real valued within the
domain of integration and sufficiently continuously differen-
tiable functions inx,y so that an asymptotic expansion fol-
lows via stationary phase. For generality, we have included
in Eq. ~1! a dependence on a space of parametersa, which is
not explicitly carried below but will be of use later.

Semiclassical mechanics relies upon stationary-phase ap-
proximations to integrals such as those in Eq.~1!. The criti-
cal points of this integral are assumed to be nondegenerate,
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isolated real interior stationary-phase points ofw. These
stationary-phase points are a finite numbers of points
(x,y)5(x

*
(k) ,y

*
(k)), k51, . . . ,s, that solve the system

]xw50, ]yw50 ~2!

uniquely with det]
(x
*
(k) ,y

*
(k))

2
wÞ0. @Throughout this paper the

following compact notation is used:]vu and ]v]uf denote
matrices with elements in thei th row andj th column given
by ]ui /]v j and ]2f /]ui]v j , respectively, for any function
f (u,v) and vectorsu5(u1, . . . ,uM), v5(v1, . . . ,vN) with
(u,v)[(u1, . . . ,uM,v1, . . . ,vN). Hessian matrices are given
by (]w

2w) i j5]2w/]wj]wi for any vectorw. Vectors multi-
plying to the left ~right! of a matrix are taken as row~col-
umn! vectors. The notation] (x

*
,y
*
) , etc., denotes]x]y

evaluated atx5x* , y5y* .# The standard stationary-phase
method@6,7# gives the\→0 leading asymptotic term

I ~\!;ISP~\!5~2p\!d/2udet]~x*
,y
*

!
2 wu21/2g~x* ,y* !

3expF i\ w~x* ,y* !1 i
p

4
sig]~x*

,y
*

!
2 w G .

~3!

Here and below there is an implied sum over all stationary-
phase points, which are simply denoted by (x* ,y* ). Here
sigM5(d22m) is the signature ofM defined as the number
of positived2m minus the number of negativem eigenval-
ues of the real-symmetric matrixM . We refer toISP(\) as
the complete stationary-phase approximation toI (\).

In semiclassical mechanics it is common to apply the
stationary-phase approximation sequentially, i.e., to divide
up the integral in Eq.~1! into a stationary-phase approxima-
tion for the y integral first, followed by a stationary-phase
evaluation of the remainingx space integral. Conditions un-
der which this procedure, which we term ‘‘sequential
stationary-phase,’’ yields the full stationary-phase result@Eq.
~3!# are summarized below.~A full discussion of this ap-
proach is provided in Appendix A.! Moreover, we note some
simple differential properties, which will be exploited
throughout the entire phase index theory that follows.

First, let the continuously differentiable functionỹ map-
ping xPRm into ỹ(x)PRn be given by

]yw„x,ỹ~x!…50 for any x. ~4!

Assume thesub-Hessian condition

det]y
2w~x,y!uy5 ỹ~x!Þ0 for any x ~5!

and that the functionw̃„x…[w„x,ỹ(x)… has a critical point
x* ,

]xw̃~x* !50; ~6!

then three properties hold@8#: ~i! (x* ,y* )5„x* ,ỹ(x* )… is a
critical point ofw @i.e., satisfying Eqs.~2!#, ~ii ! the following
product formula for the Hessian determinants holds:

det]~x,y!
2 w„x,ỹ~x!…5det]y

2w„x,ỹ~x!…det]x
2w̃~x!, ~7!

~iii ! as does the signature property

sig]~x,y!
2 w„x,ỹ~x!…5sig]y

2w„x,ỹ~x!…1sig]x
2w̃~x!. ~8!

In particular, properties~ii ! and ~iii ! hold for x5x* . Note,
here and below, the particular compact notation, e.g.,
]x]yw„x,ỹ(x)…, which implies that one takes bothx and y
derivatives before substitutingy5 ỹ(x). Appendix A con-
tains a proof of properties~i!–~iii ! given Eqs.~4!–~6!. Of
importance is the implications of these properties to the util-
ity of sequential stationary-phase operations. In particular,
we have the important following corollary: if Eqs.~4!–~6!
hold, then the stationary-phase approximation in Eq.~3! ap-
plied successively ony and thenx subspaces to the integral
in Eq. ~1! gives the same result as the complete stationary-
phase approximation@Eq. ~3!#. This corollary follows by ap-
plying the stationary-phase on then-dimensionaly integral
first:

I 1
SP~\!5~2p\!n/2E dxudet]y

2w„x,ỹ~x!…u21/2g„x,ỹ~x!…

3expF i\ w̃~x!1 i
p

4
sig]y

2w„x,ỹ~x!…G . ~9!

From assumptions in Eqs.~5! and ~6!, this integrand’s am-
plitude is continuous, withw̃ continuously differentiable, and
we can again apply the stationary-phase method to this inte-
gral. According to property~i! this picks up all of the com-
plete stationary-phase points ofw, giving the final sequential
result

I 1,2
SP~\!5~2p\!d/2

g~x* ,y* !

udet]y
2w~x* ,y* !det]x

*

2 w̃u1/2

3expF i\ w~x* ,y* !1 i
p

4
@sig]y

2w~x* ,y* !

1sig]x
*

2 w̃#G . ~10!

Properties~ii ! and~iii ! then finally prove the above corollary,
namely, thatI 1,2

SP5ISP.
This result makes the usual assumptions of stationary-

phase integration. The more subtle requirement to note is the
sub-Hessian condition in Eq.~5!. For general integrands this
condition may be violated, resulting in a sequential
stationary-phase result that differs from the full multidimen-
sional stationary-phase result. Generally, however, and most
importantly for the semiclassical theory below, the possible
violation of the sub-Hessian conditions can only occur at
special or particular subset values of measure zero ina,
where the inverse of the sub-Hessian]y

2w(x* ,y* ) simply
does not exist. A key point centers about making sure one
obtains all the real stationary-phase points of the complete
phasew when using a sequential procedure. The above result
ensures us that this is the case if the sub-Hessian condition in
Eq. ~5! is satisfied for the global domain of thex integration.

A subtle and most useful point now follows: If the sub-
Hessian condition is satisfiedlocally about all (x* ,y* ) @i.e.,
det]y

2w(x,y)Þ0 at x5x* , y5y* , but not necessarily glo-
bally in all x#, then properties~i!, ~ii !, and ~iii ! are alsolo-
cally valid. Therefore, one is solving for all the complete
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stationary-phase points via Eq.~4! followed by use of Eq.
~6!; this is equivalent to usinga priori knowledge of all the
(x* ,y* ) by solving Eqs.~2! directly. Putting this into Eq.
~10! and using properties~ii ! and~iii ! givesI 1,2

SP5ISP. Hence,
as long as the signature terms inI 1,2

SP, which are computed
only at critical points, are well defined~i.e., the Hessian ma-
trices involved there are nonsingular!, thenI 1,2

SP5ISP.
Note further that repeated application of the argument

above evidently shows that the above SSP process applies to
an arbitrary sequence of multiple integrals. In fact, it is pre-
cisely the repeated application of properties~ii ! and~iii ! that
we employ below within SSP operations to obtain a consis-
tent semiclassical structure for unitary matrix element trans-
formations and also to obtain general index formulas that
connect the generalized semiclassical phase indices.

III. SEMICLASSICAL PROPAGATOR MATRIX
ELEMENTS AND THE TRAJECTORY INDEX FORMULAS

We now show that by starting with an asymptotic path-
integral form in any chosen representation, then repeated se-
quential stationary-phase operations give rise to a closed ca-
nonical structure for the semiclassical propagator formulas in
any representation, with the Maslov indices clearly dis-
played. The key is that canonical transformations involve a
special class of integral transforms for which the stationary-
phase conditions are just classical generating function rela-
tions. In particular, it is also shown here that the sequential
stationary-phase process is a very general and simple method
for generating all the purely classical properties of trajectory-
phase indices and formulas that relate the Maslov index for
the semiclassical formula in any one representation to that in
any other. We explicitly prove and present the most useful
properties of the indices, including ‘‘connecting relation-
ships’’ that relate the various indices for the coordinate, mo-
mentum, and mixed representations. A canonical structure of
the trajectory indices is also exposed. An alternate path-
integral framework is invoked and all index formulas are
obtained solely on the basis of the SSP property, combined
with classical generator identities.

A. Semiclassical propagators and index formulas
via SSP on path integration

Consider anyN degree of freedom system with quantum
Hamiltonian Ĥ5H(q̂,p̂,t) with canonical operatorsq̂,p̂.
The operatorĤ and its corresponding classical Hamiltonian
in canonical variablesq,p is allowed to take on general
forms, including kinetic-plus-potential Hamiltonians, field-
dependent interactions with]p

2H5m21 ~inverse mass ten-
sor!, and more general forms in which]p

2H is not necessarily
constant. The canonical quantum operatorsq̂ and p̂ act on
coordinate and momentum eigenstatesq̂uq&5quq& and
p̂up&5pup&, with q,p values assumed on the infinite
domain and normalization chosen here aŝqup&
5(2p i\)2 N/2eiq•p/\. ~N.B. i[eip/2 is the chosen branch
throughout.! We assume a simply connected phase space
throughout this work.

Our starting point lies in the use of general infinitesimal-
time asymptotic formulas, which are concatenated to pro-
duce path-integral expressions for the propagator matrix el-

ements in any representation, for global time. We need only
use one such short-time formula, which for the initial mo-
mentum to final coordinate matrix element of the propagator
Û(t j11 ,t j ), is @5#

^qj11uÛ~ t j11 ,t j !upj&

;~2p i\!2N/2udet] q̃ jq~ q̃j ,pj ;t j11 ,t j !u21/2

3expH i\ @f~qj11 ,q̃j ;t j11 ,t j !1q̃j•pj #J
;~2p i\!2N/2expH i\ @f~qj11 ,q̃j ;t j11 ,t j !1q̃j•pj #J .

~11!

Here this is written in a form that will give rise to general
path-integral forms convenient for what follows. Equation
~11! involves a single classical root trajectory@9#, which be-
gins at timet j with momentumpj and ends at timet j11 with
coordinateqj11 after having evolved over an infinitesimal-
time interval (t j112t j )→0. The initial coordinate
q˜j5q̃j (qj11 ,pj ;t j11 ,t j ) is considered to be a function of
qj11 ,pj , t j11 , and t j and is given implicitly by the root
trajectory equationq(q̃j ,pj ;t j11 ,t j )5qj11 or by one of the
generator relations given in Appendix B,

pj52] q̃ jf~qj11 ,q̃j ;t j11 ,t j !. ~12!

The classical actionf is the generator of classical motion
expressed as a function of initial and final coordinates as
defined by Eq.~B1! in Appendix B. The tilde linking the left-
and right-hand sides of Eq.~11! indicates that the short-time
form is asymptotic in\→0, uniformly in t j112t j→0. This
can be shown for very general Hamiltonians by putting Eq.
~11! into the quantum evolution equation and using the usual
time-dependent WKB treatment@4#. Although this asymp-
totic property is all that is needed as a building block in what
follows, we note that for most Hamiltonians Eq.~11! also
represents, for given\, a uniformly asymptotic result in the
limit t j112t j→0 and approaches the exact plane-wave re-
sult in this limit whereinÛ(t j11 ,t j ) becomes the identity
operator.

Since this paper also deals with the general canonical
structure of the semiclassical propagator matrix elements, we
also introduce the following form, equivalent to Eq.~11!.
Specifically, the classical generator defined by the Legendre
transform @i.e., Eq. ~B4!# f̃5f̃(qj11 ,pj ;t j11 ,t j )
5f(qj11 ,q̃j ;t j11 ,t j )1q̃j•pj expresses the phase directly as
function of the given initial momentum and final coordinate.
The analogous generator relations are given by Eqs.~B5! and
using the properties in Eqs.~B6!, which follow, shows that
the short-time propagator@Eq. ~11!# has the alternate form

^qj11uÛ~ t j11 ,t j !upj&;~2p i\!2N/2udet]qj11
]pjf̃u1/2

3expF i\ f̃~qj11 ,pj ;t j11 ,t j !G .
~13!
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The canonical nature of the short-time matrix element is
therefore manifest solely in terms of the appropriate genera-
tor, namely,f̃. This aspect of the semiclassical formulas is
well known @10#. Although short-time expressions for other
representations also follow, they will not be explicitly
needed throughout the treatment given in this paper.

A path-integral propagator based solely on the above
short-time propagator follows for any representation by con-
catenating Eq.~11! @or Eq.~13!# for a set of time subintervals

@ t j ,t j11#. In particular, to construct a path integral for the
initial to the final coordinate we start with a given initial
coordinate, switch to all intermediate initial momenta, and
propagate within a single subinterval time to all intermediate
final coordinates using Eq.~11!. Repeating this propagation
for all infinitesimal subintervals in the time partition
t0 , . . . ,t j ,t j11 , . . . ,t, with t j11.t j , until the final pre-
scribed time and coordinate gives

^quÛ~ t,t0!uq0&5~2p\!2nNE •••E dqn21dpn21•••dq1dp1dp0)
j50

n21

expH i

\
$f~qj11 ,q̃j ;t j11 ,t j !1pj•@ q̃j2qj #%J , ~14!

with qn[q, initial time t0 , and final timetn[t; the limit
(t j112t j )→0 (n→`) is implied throughout. Similar inte-
gral forms follow for all other representations. For semiclas-
sical purposes it is important to emphasize that this path-
integral formula is uniformly asymptotic. As mentioned for
the above short-time form, Eq.~14! also turns out to be exact
for most Hamiltonian operator forms. This path-integral
form involves purely classical quantities, a useful feature that
we exploit below. It may be contrasted with the more usual,
and less general, coordinate space path-integral expressions
@11# to which it is equivalent when]p

2H is a positive-definite
constant.

We now apply SSP to the path integral in Eq.~14!. In
particular, we do the integrals in the sequence of ordered
pairs pj followed by qj for all subintervals, with
j51, . . . ,n21; we need only do one SSP integral and the
overall sequence of SSP integrals follows by induction. This
approach, as we shall see below, leads to general properties
for the indices and gives the complete stationary phase ap-
proximation to the overall path integral. The procedure is
similar to our recent derivation@5#; however, here we begin
with an alternate path-integral expression and specifically
emphasize that theSSPis the only tool needed to obtain the
result. Hence we only need evaluate the integral

^qj11uÛ~ t j11 ,t0!uq0&sc;E dqj F E dpj^qj11uÛ~ t j11 ,t j !upj&

3^pj uqj&G^qj uÛ~ t j ,t0!uq0&sc ~15!

by stationary phase, where for every givenj>1 the induc-
tion assumption is

^qj uÛ~ t j ,t0!uq0&sc5~2p i\!2N/2udet]p0q~q0 ,p0 ;t j ,t0!u21/2

3expS i\ f~qj ,q0 ;t j ,t0!

2 i
p

2
n@qj ,q0 ;t j ,t0# D . ~16!

Here SC stands for semiclassical approximation. In Eq.~16!
a finite sum is implied over all separate root trajectories,

which can be labeled by a superscript (k), i.e., all
p(t0)5p05p0

(k) given implicitly by
q(t)5q(q0 ,p0 ;t j ,t0)5qj or explicitly using the first rela-
tion in Eqs.~B2! for all functionsf5f (k). The amplitude
term in Eq. ~16! has been rewritten in terms of a stability
matrix, but can be written explicitly as function ofqj ,q0 in
terms of]qj]q0f by simply using the first identity in Eqs.
~B3!.

One remark on notation is in order. We denote a particu-
lar index for a propagator matrix element byn@#, where the
argument within the square brackets denotes the particular
representation being considered. For instance, in Eq.~16! the
index along with the classical action generatorf are those
for a given initial to final coordinate representation of the
propagator within given end-point times.

Equation ~16! is true for t j→t0
1 (5t01e, e.0 and

small! since this is precisely the form taken by the short-time
propagator for initial to final coordinate by doing stationary
phase on thep0 to q0 transformation integral@doing only the
first integral in Eq.~14!# while using Eq.~11!. Indeed this is
readily shown to give the initial trajectory index in Eq.~16!
for t2t0→01 as

n@q~ t0
1!,q0 ;t0

1 ,t0#5 1
2 @sig$@]q0q~ t0

1!#21]p0q~ t0
1!%2N#

5 1
2 @sig]p0q~ t0

1!2N#, ~17!

which is zero for cases in which]p
2H is positive definite.

Note that the initial index can also be reexpressed using the
identities in Eq.~C9!.

Putting Eq.~16! into Eq. ~15! gives

^qj11uÛ~ t j11 ,t0!uq0&sc

;
~2p i\!2N/2

~2p\!N
E dqjE dpj udet]p0q~q0 ,p0 ;t j ,t0!u21/2

3expH i

\
$f~qj11 ,q̃j ;t j11 ,t j !1f~qj ,q0 ;t j ,t0!

1pj•@ q̃j2qj #%2 i
p

2
n@qj ,q0 ;t j ,t0#J , ~18!
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which is an integral of the form in Eq.~1! where
we can identify x[qj and y[pj , w(qj ,pj ;a)
[f(qj11 ,q̃j ;t j11 ,t j )1f(qj ,q0 ;t j ,t0)1pj•@ q̃j2qj #, with
the space of parametersa5(qj11 ,q0 ,t j11 ,t j ,t0). We now
apply the SSP formula@Eq. ~10!# to Eq.~18!. The stationary-
phase condition for thepj integral is@Eq. ~4!#

]pjw5@] q̃ jf~qj11 ,q̃j ;t j11 ,t j !1pj #•]pj q̃j1q̃j2qj

[q̃j2qj50, ~19!

where Eq.~12! has been used. This stationary-phase condi-
tion therefore gives stationary phase pointspj as function of
qj given by Eq.~12! with q̃j5qj . Using Eqs.~12! and~19!,
the sub-Hessian atpj52]qjf(qj11 ,qj ;t j11 ,t j ) is then

]pj
2 w5]pj q̃j52@]qj

2 f~qj11 ,qj ;t j11 ,t j !#
21

52@]qjq~qj ,pj ;t j11 ,t j !#
21]pjq~qj ,pj ;t j11 ,t j !.

~20!

In the latter expression the second identity in Eqs.~B3! was
used. Using Eq.~19!, the phase function@e.g., w̃(x) of Eq.
~6!# becomesw̃5f(qj11 ,qj ;t j11 ,t j )1f(qj ,q0 ;t j ,t0). The
stationary-phase condition for the remainingqj integral is
@e.g., Eq.~6!#

]qjw̃uqj5q
j
~k!5@]qjf~qj11 ,qj ;t j11 ,t j !

1]qjf~qj ,q0 ;t j ,t0!#qj5q
j
~k!

[]qjf~qj ,q0 ;t j ,t0!uqj5q
j
~k!2pj

~k!50. ~21!

We have denoted the stationary-phase points with superscript
labels, e.g., (qj

(k) ,pj
(k)). The labeling (k) here is understood

to correspond to a new set of root trajectories given by com-
bining Eqs. ~12!, ~19!, and and~21!. Indeed, upon using
the second generator relation in Eq.~B2! and
q(q0 ,p0

(k) ;t j ,t0)5qj
(k) , then p(q0 ,p0

(k) ;t j ,t0)5pj
(k) and

q(qj
(k) ,pj

(k) ;t j11 ,t j )5q(q0 ,p0
(k) ;t j11 ,t0)5qj11 . Hence,

at every stationary-phase point the phase
is w(qj

(k) ,pj
(k))5f(qj11 ,qj

(k) ;t j11 ,t j )1f(qj
(k) ,q0 ;t j ,t0),

which, using Eq. ~B1!, is also equal to
f (k)(qj11 ,q0 ;t j11 ,t0), the classical action for every root
trajectory satisfyingq(q0 ,p0

(k) ;t j11 ,t0)5qj11 .
It remains to determine]qj

2 w̃. This is given by differenti-

ating the expression in Eq.~21! with respect toqj and using
the third identity in Eqs.~B3!. Equivalently, we use the
analog of Eq. ~A2! while using Eq. ~20!, ]qj]pjw

5IN , and the third identity in Eqs. ~B3!,
]qj
2 w5]qj

2 f(qj ,q0 ;t j ,t0)5]p0p(t j )@]p0q(t j )#
21; then

]qj
2 w̃5]qj

2 w2]pj]qjw•@]pj
2 w#21

•@]pj]qjw#T

5]p0p~ t j !•@]p0q~ t j !#
21

1@]pjq~qj ,pj ;t j11 ,t j !#
21
•]qjq~qj ,pj ;t j11 ,t j !.

~22!

~Note: For compactness, the explicit dependence on initial
conditionsq0 ,p0 ,t0 is dropped for the coordinate and mo-
mentum of any trajectory beginning att0 .) We can now
rewrite this expression by using the composite function
property for any classical trajectory: q(t j11)
5q(qj ,pj ;t j11 ,t j )[q„q(t j ),p(t j );t j11 ,t j…. Differentiating
this with respect top0 ~for fixedq0 and time variables! gives

]p0q~ t j11!5]qjq~qj ,pj ;t j11 ,t j !•]p0q~ t j !

1]pjq~qj ,pj ;t j11 ,t j !•]p0p~ t j !.

Multiplying this equation by@]pjq(qj ,pj ;t j11 ,t j )#
21 on the

left and by @]p0q(t j )#
21 on the right then also gives the

identity

]p0p~ t j !•@]p0q~ t j !#
21

1@]pjq~qj ,pj ;t j11 ,t j !#
21]qjq~qj ,pj ;t j11 ,t j !

5@]pjq~qj ,pj ;t j11 ,t j !#
21
•]p0q~ t j11!•@]p0q~ t j !#

21.

Hence Eq.~22! also reads

]qj
2 w̃5@]pjq~qj ,pj ;t j11 ,t j !#

21
•]p0q~ t j11!•@]p0q~ t j !#

21.

~23!

Finally, we can substitute the matrix determinants and
signatures of]pj

2 w and]qj
2 w̃ obtained from Eqs.~20! and~23!

into the SSP formula of Eq.~24! below. Before doing so we
make note of a subtle point concerning the sub-Hessian con-
dition. That is, according to Eq.~20!, the relevant sub-
Hessian condition that allows the use of sequential stationary
phase is det]pjq(qj ,pj ;t j11 ,t j )Þ0, in which
we have used the fact that thelocal stability matrix
]qjq(qj ,pj ;t j11 ,t j ) is positive definite and approachesIN
within the limit t j112t j→0. This sub-Hessian condition can
always be satisfied. Indeed, the trajectories and classical sta-
bility matrix elements are analytic functions of their argu-
ments and hence along any trajectory, the value of the func-
tion det]pjq(qj ,pj ;t,t j ) can be zero only at a finite number
of measure zero points. Thus there always exist time parti-
tions t j for which all the above stability matrices are nons-
ingular at those times as long as the end-point timest0 ,t are
nonfocal. That is, only a finite number of focal or caustic
points exist within any trajectory segment unless the deter-
minant function is identically zero~a trivial nonphysical
case!. It is hence to be understood that all phase-space end-
points used in all index equations are unequal to focal points
where the stability matrices occurring in the equations would
otherwise be singular and the indices simply undefined.

Now using Eqs.~20! and ~23! in the SSP formula

2962 53G. CAMPOLIETI AND PAUL BRUMER



^qj11uÛ~ t j11 ,t0!uq0&sc

5~2p i\!2N/2udet]p0q~ t j !det]pj
2 wdet]qj

2 w̃u21/2

3expH i

\
f~qj11 ,q0 ;t j11 ,t0!2 i

p

2
$n@qj ,q0 ;t j ,t0#

2 1
2 @sig]pj

2 w1sig]qj
2 w̃#%J ~24!

gives

^qj11uÛ~ t j11 ,t0!uq0&sc

5~2p i\!2N/2udet]p0q~ t j11!u21/2

3expS i\ f~qj11 ,q0 ;t j11 ,t0!

2 i
p

2
n@qj11 ,q0 ;t j11 ,t0# D . ~25!

This is of the same form as the induction Eq.~16!, for
j→ j11, again with implied sum over allp05p0

(k) and ac-
tions f5f (k), i.e., all root trajectories now satisfying
q(t0)5q0 andq(t j11)5qj11 . The index in Eq.~25! is given
by

n@qj11 ,q0 ;t j11 ,t0#5n@qj ,q0 ;t j ,t0#1
1

2
~m j2s j !, ~26!

where the integer quantitiesm j and s j are given by the
equivalent expressions

m j5sig$@]qjq~qj ,pj ;t j11 ,t j !#
21]pjq~qj ,pj ;t j11 ,t j !%

5sig$@]pjq~qj ,pj ;t j11 ,t j !
21]qjq~qj ,pj ;t j11 ,t j !#%

5sig]pjq~qj ,pj ;t j11 ,t j ![sigA~ t j11 ,t j !
21B~ t j11 ,t j !

5sigB~ t j11 ,t j !
21A~ t j11 ,t j ! ~27!

and

s j5sig$@]pjq~qj ,pj ;t j11 ,t j !#
21]p0q~ t j11!@]p0q~ t j !#

21%

5sig$]p0q~ t j !@]p0q~ t j11!#
21]pjq~qj ,pj ;t j11 ,t j !%

[sig$B~ t j11 ,t j !
21B~ t j11!B~ t j !

21%

5sig$B~ t j !B~ t j11!
21B~ t j11 ,t j !%. ~28!

The second expression fors j arises from the property
sigS5sigS21 for any nonsingular symmetric matrixS. The
last equality on the second line of Eq.~27! follows in the
limit t j112t j→0 since ]qjq(qj ,pj ;t j11 ,t j )→IN , whereas
the second equality follows from the general properties in
Eqs.~C6! and ~C9!. Note also that we have reexpressed the
index property using the compact matrix notation of Appen-
dix C and that the local stability matrices are also expressed
in compact notation.

Equation~26! therefore gives a generalinfinitesimal addi-
tive propertyof the index. It expresses, in algebraic form, the

change in the trajectory’s index due to its further evolution,
over an infinitesimal timet j112t j , from any phase-space
end point (qj ,pj ) at time t jÞt0 to an end point
(qj11 ,pj11) at time t j11 . By induction, we see that these
subinterval contributions are added up, via Eq.~26!, together
with the nonzero initial index given in Eq.~17!. Hence the
SSP process proves that the index for a total time interval
@ t0 ,t# is given by

n@q,q0 ;t,t0#5n@q~ t0
1!,q0 ;t0

1 ,t0#1
1

2(j ~m j2s j !. ~29!

We note here, as is shown immediately below, that Eq.~26!,
and hence Eq.~29!, holds for sufficiently small, yet finite,
time segments@ t j ,t j11#. This property turns out to be a use-
ful one for computational purposes, as discussed briefly be-
low. Based on Eqs.~25!–~28! and induction, the above SSP
proof therefore gives the~nonuniform at caustics! semiclas-
sical propagator for the initial to final coordinate representa-
tion in familiar form @2,3,5,13#

^quÛ~ t,t0!uq0&sc5~2p i\!2N/2udet]p0q~ t !u21/2

3expF i\ f~q,q0 ;t,t0!2 i
p

2
n@q,q0 ;t,t0#G ,

~30!

with, as always, an implied sum over similar terms for every
trajectory satisfying two-point coordinate boundary value
conditions:q(t)[q(q0 ,p0 ;t,t0)5q. Here, however, in con-
trast to earlier developments, we are dealing with more gen-
eralH forms and our approach allows us to readily develop
additional index properties.

These additional index properties follow in a simple man-
ner. For instance, Eq.~28! readily gives the known result that
within any time interval a change in the trajectory index can
only occur if a focal point lies within the interval, since
otherwise ]p0q(t j11)@]p0q(t j )#

21→IN , giving s j5m j ;

from Eq. ~26! we would obtain n@qj11 ,q0 ;t j11 ,t0#
5n@qj ,q0 ;t j ,t0#. As usual, these focal points are defined by
singularities in the matrix inverse or zero determinants of
]p0q(t) existing at focal times denoted byt5t i*.t0 . The
index for any given trajectory can therefore be written in
terms of a sum over index changes due to all such possibly
encountered focal points:

n@q,q0 ;t,t0#5
1

2
@sig]p0q~ t0

1!2N#

1
1

2(i @sig]p
i*
q~qi* ,pi* ;t i*1e,t i*2e!2s i* #

~31!

where

s i*5sig$]p0q~ t i*2e!@]p0q~ t i*1e!#21

3]p
i*
q~qi* ,pi* ;t i*1e,t i*2e!%, ~32!

and qi*5q(t i*2e), pi*5p(t i*2e), and the limite→01 is
implied, where1 denotes approaching 0 from above.
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Before displaying other properties that result from SSP
operations, we note that for Hamiltonians with]p

2H5m21

~or positive-definite constant matrix! these index formulas
can be further recast by taking into account the short-time
stability matrix property stated just above Eq.~24!.
This allows us to put, for the local stability
matrices, sig]pjq(qj ,pj ;t j11 ,t j )5m j5N and then

s j5sig$]p0q(t j11)@]p0q(t j )#
21% or s i*5sig$]p0q(t i*

1e)@]p0q(t i*2e)#21%, thereby recovering from the above
equations the previously derived result@2,5,13#
n@q,q0 ;t,t0#5( j (N2s j )/2, in which the initial index is
zero. This is also expressible as the count of multiplicities of
zeros of the stability matrix]p0q(t) encountered along the
course of the trajectory@3#. It is to be noted, as will become
clear, that Eq.~31! is not as simple and practically useful as
is the straightforward application of Eq.~29! to small finite
segments.

We can now extract a further index property that is useful
and less well known. This is a property for adding up or
‘‘patching together’’ indices belonging to any two joining
finite trajectory segments~i.e., segments that together form
an overall trajectory! to give the index for an overall trajec-
tory. Consider an interval@ t0 ,t j11# in which a trajectory
begins with any coordinateq(t0)5q0 ~and given momentum
p0) and ends with coordinateq(t j11)5qj11 . As shown
above, the indexn@qj11 ,q0 ;t j11 ,t0# for any such trajectory
is generally given by Eq.~29! with q5qj11 ,t5t j11 . Say we
now divide up the trajectory for the total-time interval into
two adjoiningfinite segments, each corresponding to a finite-
time subinterval@ t0 ,t j11#5@ t0 ,t j #1@ t j ,t j11#, with all time
end points being nonfocal.@Note that t j112t j is now not
necessarily infinitesimal, as it was in Eq.~26!.# Now each
trajectory segment, being a separate trajectory, has an index
assigned to it. For the first segment, the index is
n@qj ,q0 ;t j ,t0# with phase-space end pointq(t j )5qj ,
p(t j )5pj , which is then considered as the initial point
for the other joining trajectory segment with index
n@qj11 ,qj ;t j11 ,t j #. We can now obtain a formula for add-
ing up the indices for the separate segments to give the index
for the total trajectory. This is easily done while proving a
relation among the indices by considering the integral join-
ing up the interval propagations,

^qj11uÛ~ t j11 ,t0!uq0&sc

;E dqj^qj11uÛ~ t j11 ,t j !uqj&sc^qj uÛ~ t j ,t0!uq0&sc

;~2p i\!2NE dqj udet]p0q~ t j !

3det]pjq~qj ,pj ;t j11 ,t j !u21/2

3expH i

\
@f~qj11 ,qj ;t j11 ,t j !1f~qj ,q0 ;t j ,t0!#

2 i
p

2
~n@qj11 ,qj ;t j11 ,t j #1n@qj ,q0 ;t j ,t0# !J , ~33!

within the stationary-phase approximation. This operation
must recover Eq.~30!, for t5t j11 , since it corresponds to

another overall SSP operation on the path integral from time
t0 to t j11 , only in a differently ordered fashion. The
stationary-phase approximation to the above integral follows
immediately since the analysis is similar to theqj part of the
integral already done for Eq.~18!. The Hessian is given by
the expressions in Eq.~23! or ~22!. By using it, the
stationary-phase formula applied to Eq.~33! reduces to the
required semiclassical form given by Eq.~30! with the index
identity resulting:

n@qj11 ,q0 ;t j11 ,t0#5n@qj11 ,qj ;t j11 ,t j #1n@qj ,q0 ;t j ,t0#

1
1

2
~N2s j !. ~34!

This is then a general prescription for computing the in-
dex, for the initial to final coordinate representation, using
the separate indices, of the same kind, for anytwo finite
joining trajectory segments. Equation~34! can be used when
one has run a trajectory until an intermediate timet j , com-
puted its corresponding index using the general formula of
Eq. ~29!, and then wishes to extend the computation of the
index for the overall trajectory evolved for a further finite-
time interval until timet j11 by treating the final intermediate
end point as the initial phase-space point for the joining tra-
jectory segment.

A very useful and simple property, however, obtains from
Eq. ~34! by considering the important situation in which
t j112t j is finite but sufficiently small, so that the local sta-
bility matrix ]qjq(qj ,pj ;t,t j ) ~which always begins asIN for
t5t j ) is nonsingular for allt within @ t j ,t j11#. In such a
case Eq.~34! simplifies to Eq.~26!. Thus Eq.~26! hence not
only applies in thet j112t j→0 limit, but also applies to
small finite segments. Let us first show this for the case
where]pjq(qj ,pj ;t,t j ) is also nonsingular within the same
interval. Since the latter stability matrix is nonsingular, then
its signature does not change at any time within
@ t j ,t j11#, giving n@qj11 ,qj ;t j11 ,t j #5n@q(t j

1),qj ;t j
1 ,t j #

5 1
2@sig]pjq(qj ,pj ;t j

1 ,t j )2N#5 1
2(m j2N). Putting this into

Eq. ~34! shows that Eq.~26!, and hence Eq.~29!, is also true
for sufficiently small, yet finite, time intervals@ t j ,t j11#. To
prove this property without having to assume another stabil-
ity matrix condition follows by using one of the index ‘‘con-
necting relations’’ discussed in Sec. III B, namely, Eq.~54!
with t0 ,t replaced byt j ,t j11 , giving n@qj11 ,qj ;t j11 ,t j #
5n@qj11 ,pj ;t j11 ,t j #1 1

2(m j2N). The n@qj11 ,pj ;t j11 ,t j #
index, discussed below, is that for the initial momentum to
final coordinate representation and as seen from Eq.~11! has
a value of zero for initial timet5t j . Since this index
changes only when]qjq becomes singular within the interval
then, by the above assumption,n@qj11 ,pj ;t j11 ,t j #50,
again proving the property.

Equation~26! then leads to a useful prescription for com-
puting the index. Such prescriptions have been discussed re-
cently @5#, where it was shown that similar computations
apply to the indices for the other representations. That is,
numerical integration of Hamilton’s equations plus the sta-
bility matrix equations@Eq. ~C4!# is done using sufficiently
small time steps, i.e.,Dt5t j112t j . From the first small step
t0 to t15t01D, we computem05sig@]q0q(t1)#

21]p0q(t1)
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or m05sig]p0q(t1)]q0q(t1)
T[sigB(t1)A(t1)

T, which are
equivalent and convenient ways of obtaining the initial index
needed in Eq.~29! as 1

2(m02N). Then, beginning witht1 ,
for every trajectory time step we compute12(m j2s j ) and add
this integer to the overall index, wherem j ands j are given
in Eqs. ~27! and ~28!. The total index at timet is then ob-
tained by summing up the index changes for all interval steps
as given by Eq.~29!.

The analogs of Eqs.~26!–~30! and~34! for the other rep-
resentations follow naturally by similar SSP treatments on
the path-integral forms arising from the short-time formula
of Eq. ~11! or ~13!; hence we do not repeat all of the above
analysis. Rather, we only explicitly derive the index proper-
ties analogous to Eqs.~26!–~30! and~34! for the other basic
type of final coordinate representation: the initial momentum
to final coordinate representation. The analysis used to arrive
at the analogous equations for the matrix elements and the
indices for the final momentum representations does not
have to be repeated since all required formulas follow by the

simple replacementsq→2p and p→q. This canonical
transformation reverses the roles of coordinates and mo-
menta. At the same time, what follows is a display of the
inherent canonical structure of the index formulas.

The analog of Eq.~30! for the initial momentum to final
coordinate representation takes the familiar nonuniform
semiclassical propagator form

^quÛ~ t,t0!up0&sc

5~2p i\!2N/2udet]q0q~ t !u21/2expF i\ f̃~q,p0 ;t,t0!

2 i
p

2
n@q,p0 ;t,t0#G , ~35!

with implied sum over similar terms for all root trajectories:
q(t)5q and givenp(t0)5p0 . The properties for the index
n@q,p0 ;t,t0# now follow by considering an integral that
joins two finite propagations

^qj11uÛ~ t j11 ,t0!up0&sc;E dqjF E dpj^qj11uÛ~ t j11 ,t j !upj&sc^pj uqj&G^qj uÛ~ t j ,t0!up0&sc;
~2p i\!2N/2

~2p\!N
E dqj

3E dpj udet]q0q~ t j !det]qjq~qj ,pj ;t j11 ,t j !u21/2expF i\ @f̃~qj11 ,pj ;t j11 ,t j !1f̃~qj ,p0 ;t j ,t0!2qj•pj #

2 i
p

2
~n@qj11 ,pj ;t j11 ,t j #1n@qj ,p0 ;t j ,t0# !G , ~36!

within the stationary-phase approximation. This is done us-
ing the SSP process where the steps are almost identical to
Eqs.~19!–~23! by now using the identities in Appendix B for
the generatorf̃ instead of those forf. Moreover, by using a
version of the composite property given above Eq.~23! in
which p0 is now replaced byq0 , this finally leads to the
property@cf. Eq. ~34!#

n@qj11 ,p0 ;t j11 ,t0#5n@qj11 ,pj ;t j11 ,t j #1n@qj ,p0 ;t j ,t0#

1 1
2 ~m j2s̃ j ! ~37!

for adding up this type of index for any two finite joining
trajectory segments. For the case of a sufficiently small time
interval @ t j ,t j11# this reduces to the infinitesimal additive
property@cf. Eq. ~26!#

n@qj11 ,p0 ;t j11 ,t0#5n@qj ,p0 ;t j ,t0#1 1
2 ~m j2s̃ j !. ~38!

The integerm j is given by Eq.~27! and s̃ j by @cf. Eq. ~28!#

s˜j5sig$@]pjq~qj ,pj ;t j11 ,t j !#
21]q0q~ t j11!@]q0q~ t j !#

21%

5sig$]q0q~ t j !@]q0q~ t j11!#
21]pjq~qj ,pj ;t j11 ,t j !%

5sig$B~ t j11 ,t j !
21A~ t j11!A~ t j !

21%

5sig$A~ t j !A~ t j11!
21B~ t j11 ,t j !%. ~39!

The index for a global interval@ t0 ,t# is then given by

n@q,p0 ;t,t0#5
1

2(j ~m j2s̃ j !, ~40!

with the initial index being zero.
For the final momentum representations the roles of the

canonical coordinates and momenta are reversed. Within the
above equations for the final coordinate representations, this
switches all stability matricesA,B⇒D,2C, respectively,
and the classical action generatorsf,f̃⇒F,F̃ defined in
Appendix B. Hence the analogous semiclassical matrix ele-
ments take their required~nonuniform! semiclassical forms

^puÛ~ t,t0!uq0&sc5~22p i\!2N/2udet]p0p~ t !u21/2

3expF i\ F̃~p,q0 ;t,t0!2 i
p

2
n@p,q0 ;t,t0#G ,

~41!

^puÛ~ t,t0!up0&sc5~2p i\!2N/2udet]q0p~ t !u21/2

3expF i\ F~p,p0 ;t,t0!2 i
p

2
n@p,p0 ;t,t0#G .

~42!
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The properties for adding the index for any two joining finite
trajectory segments, analogous to Eqs.~34! and ~37!, are
then

n@pj11 ,p0 ;t j11 ,t0#5n@pj11 ,pj ;t j11 ,t j #1n@pj ,p0 ;t j ,t0#

1
1

2
~N2s̄ j ! ~43!

and

n@pj11 ,q0 ;t j11 ,t0#5n@pj11 ,qj ;t j11 ,t j #1n@pj ,q0 ;t j ,t0#

1
1

2
~m̄ j2s̃ j !, ~44!

where

s̄̃ j52sig$@]qjp~qj ,pj ;t j11 ,t j !#
21]p0p~ t j11!@]p0p~ t j !#

21%

52sig$]p0p~ t j !@]p0p~ t j11!#
21]qjp~qj ,pj ;t j11 ,t j !%

52sig$C~ t j11 ,t j !
21D~ t j11!D~ t j !

21%

52sig$D~ t j !D~ t j11!
21C~ t j11 ,t j !%, ~45!

s̄ j52sig$@]qjp~qj ,pj ;t j11 ,t j !#
21]q0p~ t j11!@]q0p~ t j !#

21%

52sig$]q0p~ t j !@]q0p~ t j11!#
21]qjp~qj ,pj ;t j11 ,t j !%

52sig$C~ t j11 ,t j !
21C~ t j11!C~ t j !

21%

52sig$C~ t j !C~ t j11!
21C~ t j11 ,t j !%, ~46!

m̄ j52sig$@]pjp~qj ,pj ;t j11 ,t j !#
21]qjp~qj ,pj ;t j11 ,t j !%

52sig$]qjp~qj ,pj ;t j11 ,t j !
21]pjp~qj ,pj ;t j11 ,t j !%

[2sigD~ t j11 ,t j !
21C~ t j11 ,t j !

52sigC~ t j11 ,t j !
21D~ t j11 ,t j !. ~47!

Within the small t j112t j limit we also have
m̄ j→2sigC(t j11 ,t j ). Equations~43! and~44! also give rise
to the infinitesimal index addition properties@cf. Eqs. ~26!
and ~38!#

n@pj11 ,p0 ;t j11 ,t0#5n@pj ,p0 ;t j ,t0#1 1
2 ~m̄ j2s̄ j ! ~48!

and

n@pj11 ,q0 ;t j11 ,t0#5n@pj ,q0 ;t j ,t0#1 1
2 ~m̄ j2s̃ j !, ~49!

with the initial index formula@cf. Eq. ~17!#

n@p~ t0
1!,p0 ;t0

1 ,t0#52 1
2 @sig$@]p0p~ t0

1!#21]q0p~ t0
1!%1N#

52 1
2 @sigD~ t0

1!21C~ t0
1!1N#

52 1
2 @sig]q0p~ t0

1!1N#. ~50!

The initial index in Eq. ~41! is zero, i.e.,
n@p(t0

1),q0 ;t0
1 ,t0#50. Finally, the indices for a global in-

terval @ t0 ,t# are given by@cf. Eqs.~29! and ~40!#

n@p,p0 ;t,t0#5n@p~ t0
1!,p0 ;t0

1 ,t0#1
1

2(j ~m̄ j2s̄ j !, ~51!

n@p,q0 ;t,t0#5
1

2(j ~m̄ j2s̃ j !. ~52!

Note, finally, that the relevant indices for any other possible
representations, such as partially mixed coordinate and mo-
mentum representations of the propagator, may also be de-
rived as obvious extensions of this treatment.

B. Index connecting relations

In this section we show how the SSP process gives rise to
‘‘connecting’’ relations that relate the indices in any one rep-
resentation to that in any other representation. For simplicity
we denote the four basic types of indices by
n15n@q,q0 ;t,t0#, n25n@q,p0 ;t,t0#, n35n@p,q0 ;t,t0#, and
n45n@p,p0 ;t,t0#. Consider first the relationship between
n1 and n2 . In accord with the preceding subsection, it is
clear that we can proceed by considering the relation

^quU~ t,t0!up0&sc;E dq0^quÛ~ t,t0!uq0&sc^q0up0&

;~2p i\!2NE dq0udet]p0q~ t !u21/2

3expF i\ @f~q,q0 ;t,t0!1q0•p0#2 i
p

2
n1G
~53!

within the stationary-phase approximation.
The stationary-phase condition is p0

52]q0f(q,q0 ;t,t0), which shows that, according to the
first set of generator relations in Eq.~B2!, all the stationary-
phase pointsq05q0

(k) correspond to the classical root trajec-
tories starting withp0 and ending withq5q(q0 ,p0 ;t,t0).
These trajectories are, as required, the same as those within
Eq. ~35!. Using the second of Eqs.~B3!, the Hessian of
the above integral phase is ]q0

2 f(q,q0 ;t,t0)

5@]p0q(t)#
21
•]q0q(t). Taking the determinant and signa-

ture of this Hessian and substituting these into the stationary-
phase formula for the integral in Eq.~53! then recovers the
semiclassical result of Eq.~35!. In addition it establishes an
index connecting relation betweenn2 andn1 ,

n25n11
1
2 „N2sig$@]p0q~ t !#21

•]q0q~ t !%…

5n11
1
2 @N2sigB21A#5n11

1
2 @N2sigABT#. ~54!

Here for the stability matrices we have used the notation of
Appendix C. The last expression follows from Eq.~C9!.
Equation ~54! is clearly just a consequence of applying a
different ordering of the SSP process than was used to obtain
Eq. ~35!. It is understood that in these connecting relations
all matrices appearing in the equations are assumed to be
nonsingular at timet, in accord with the SSP discussion
above.

It is important to emphasize the content of an index con-
necting relation such as Eq.~54!. For any classical trajectory
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it gives the value of a particular index in terms of another
index that can be assigned to the same trajectory for time
t. For instance,n1 can be computed using Eq.~29! andn2 is
given analogously by Eq.~40!. Those expressions give par-
ticular ways of computing the global value of the separate
indices and their respective changes. In fact, from these for-
mulas changes in either of the indices are readily seen to be
due to the crossing of the respective caustics. Equation~54!,
however, provides a direct connection betweenn1 andn2 so
that once one is computed the other follows by simply add-
ing anend-point signature termat final timet. Moreover, the
connecting formulas then also provide us with straightfor-
ward alternatives in which to obtain a particular type of in-
dex change in terms of another along the same trajectory
segment. For instance, Eq.~54! can be used to give

Dn2@ t→t8#5Dn1@ t→t8#1 1
2 @sigA~ t !B~ t !T

2sigA~ t8!B~ t8!T#

for a time segment@ t,t8#. The SSP procedure can be contin-
ued to relate any other of the representations, exhausting any
number of index connecting relations desired. Here we sim-
ply provide some of useful connection identities among the
four basic types of indices. A stationary-phase transforma-
tion from q to p on Eq. ~53!, for example, gives rise to a
relation betweenn1 andn4 ,

n45n12
1
2 @sigB21A1sigAC21#. ~55!

Similar SSP applications give rise to other connecting rela-
tions such as

n35n11
1
2 @N2sigDB21#, ~56!

n45n32
1
2 @N1sigD21C#. ~57!

We can of course also combine any pair of the above rela-
tions to give further results. Moreover, it is clear that one can
also generate several forms of such relations for the same
pair of indices based on different SSP routes. For instance,
the combination of Eqs.~56! and ~57! leads to a relation
betweenn1 andn4 that is alternate to Eq.~55!. Extensions of
the connecting relations also follow similarly for indices of
any other mixed coordinate and momentum representations
and these can also be used to further describe index changes
along a trajectory. These connecting relations are some of the
essential aspects that arise in Maslov’s theory@4,14#. We
have therefore shown that the applications of SSP operations,
with assorted orderings, produce various index formulas that
are really properties of any classical trajectory or symplectic
evolution.

IV. CONCLUSION

We have shown, based on straightforward sequential
stationary-phase procedures, that differing sequences of
stationary-phase operations among the nonuniform propaga-
tor matrix elements in the various coordinate and momentum
representations lead to various useful index formulas and

general index properties. All index formulas presented here
are easily implemented using classical trajectories.

This work provides an alternative, and much simplified,
approach to Maslov index theory@4# in which we have de-
rived a canonical structure of semiclassical phase indices for
the propagator based solely on the simple application of se-
quential stationary phase and the use of a generally asymp-
totic path-integral approach. The present theory therefore
gives the nonuniform semiclassical structure for matrix ele-
ments of unitary transformations induced by the family of
propagatorlike operators. Of future interest is related work
on the phase indices associated with the canonical structure
of the nonuniform semiclassical matrix elements for more
general classes of unitary transformations.

APPENDIX A: CONDITIONS FOR SEQUENTIAL
STATIONARY PHASE

Properties~i!–~iii ! @see Eq.~7!# are essential for the re-
placement of the full stationary-phase result by sequential
stationary phase. Here we prove these results, given Eqs.
~4!–~6!.

From an implicit function theorem we can differentiate
w̃ with respect tox giving

]xw̃~x!5]xw„x,ỹ~x!…1]yw„x,ỹ~x!…•]xỹ~x!. ~A1!

Equation~4! gives]yw„x,ỹ(x)…50. Using this and Eq.~6! in
Eq. ~A1! also gives]xw„x* ,ỹ(x* )…50, hence proving prop-
erty ~i!. Another differentiation of Eq.~A1! gives

]x
2w̃5]x

2w„x,ỹ~x!…1]y]xw„x,ỹ~x!…•]xỹ~x!

and using the identity obtained by implicitly differentiating
Eq. ~4!

]y
2w„x,ỹ~x!…•]xỹ~x!1]x]yw„x,ỹ~x!…50

gives the Hessian identity

]x
2w̃5]x

2w„x,ỹ~x!…

2]y]xw„x,ỹ~x!…•@]y
2w„x,ỹ~x!…#21

•@]y]xw„x,ỹ~x!…#T.

~A2!

This involves the matrix inverse of the sub-Hessian]y
2w,

which exists because of Eq.~5!; the superscriptT denotes the
transpose. Of course, Eq.~A2! is true for x5x* . To show
~ii ! we must show

det]~x,y!
2 w„x,ỹ~x!…[detS ]x

2w ]y]xw

@]y]xw#T ]y
2w D U

y5 ỹ~x!

5det]y
2w„x,ỹ~x!…det]x

2w̃. ~A3!

This equality follows via the useful matrix identity@8#
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S Im 0m3n

2D21CT In D TS B C

CT DD S Im 0m3n

2D21CT In D
5S B2CD21CT 0m3n

0n3m D D , ~A4!

whereB, C, andD are anym3m, m3n, andn3n matri-
ces, respectively, andD is symmetric nonsingular;Im is the
identitym3m matrix and0m3n is them3n matrix of zeros.
Taking determinants of Eq.~A4! and using the fact that the
(m1n)3(m1n) matrix ~and its transpose! involving sub-
matricesIm ,In has a unit determinant gives

detS B C

CT DD 5detD det~B2CD21CT!. ~A5!

Now letting B5]x
2w, C5]y]xw, andD5]y

2w in Eq. ~A5!
gives Eq.~A3! and hence proves property~ii !. Property~iii !
follows directly from Eq. ~A4!, and by the property
sigPTMP5sigM for any invertible matrixP inducing such a
congruence transformation. The latter identity is seen by ap-
plying the Morse lemma@6# to nondegenerate quadratic
forms f , f 8 defined by f (z)[( i j (P

TMP) i j zizj
5( i jM i j zi8zj8[ f 8(z8), wherezi85(kPikzk . Morse’s lemma
then immediately gives sig]z

2f (0)5sig]z8
2 f 8(0), and hence

sigPTMP5sigM . Making the obvious identification ofP as
the third (m1n)3(m1n) matrix appearing on the left-hand
side of Eq. ~A4!, then proves Eq.~8! and completes the
proof.

APPENDIX B: CLASSICAL GENERATOR RELATIONS

In this appendix we present some basic useful identities
for the four types of classical generators used in the theory of
Sec. III. The first set of properties concerns the classical
action expressed as a function of initial and final coordinates
and time variables as given by

f~q,q0 ;t,t0!5E
t0

t

dt8@p~ t8!•q̇~ t8!2H„q~ t8!,p~ t8!,t8…#,

~B1!

where the initial momentump0 within the trajectory func-
tions q(t)5q(q0 ,p0 ;t,t0) and p(t)5p(q0 ,p0 ;t,t0) is con-
sidered as a function of the variablesq,q0 ,t,t0 implicitly via
the trajectory root equationq(t)5q.

Every such action integral satisfies the useful generator
relations@12#

p052]q0f~q,q0 ;t,t0!, p~ t !5]qf~q,q0 ;t,t0!.
~B2!

Differentiating these relations gives rise to other useful iden-
tities for expressing various Hessian matrices of the genera-
tor in terms of stability matrices for any given trajectory:

2]q]q0f•]p0q~ t !5IN , ]q0
2 f5@]p0q~ t !#21

•]q0q~ t !,

]q
2f5]p0p~ t !•@]p0q~ t !#21,

]q
2f•]q0q~ t !1@]q]q0f#T5]q0p~ t !. ~B3!

Other classical generators considered explicitly as func-
tions of other combinations of initial and final canonical vari-
ables are just Legendre transforms of one another. A genera-
tor of motion expressed as a function of the initial
momentum and final coordinate is given by

f̃~q,p0 ;t,t0!5f~q,q0 ;t,t0!1q0•p0 , ~B4!

whereq0 is here considered as a function ofq andp0 , and
the times, by inverting the trajectory root equation or by
inverting the first relation in Eqs.~B2!. Differentiating Eq.
~B4! while using Eqs.~B2! gives yet another set of generator
relations

q05]p0f̃~q,p0 ;t,t0!, p~ t !5]qf̃~q,p0 ;t,t0!. ~B5!

The analogs of Eqs.~B3! are obtained by differentiating Eqs.
~B5!;

]q]p0f̃•]q0q~ t !5IN , ]p0
2 f̃52@]q0q~ t !#21

•]p0q~ t !,

]q
2f̃5]q0p~ t !•@]q0q~ t !#21,

]q
2f̃•]p0q~ t !1@]q]p0f̃#T5]p0p~ t !. ~B6!

Two other useful basic forms of the generators are those
explicitly involving the final momenta. One such type of
generator of motion is a function of the initial coordinate and
final momenta and can be defined viaf,

F̃~p,q0 ;t,t0!5f~q,q0 ;t,t0!2q•p, ~B7!

with q considered as a function ofq0 andp, and the times,
by inverting the trajectory root equationp(t)5p or by in-
verting the second relation in Eqs.~B2!. Differentiating Eq.
~B7! while again using Eqs.~B2! gives the set of generator
relations

p052]q0F̃~p,q0 ;t,t0!, q~ t !52]pF̃~p,q0 ;t,t0!.
~B8!

Using these relations in the same manner as above gives the
analogs of Eqs.~B3! or ~B6!,

2]p]q0F̃•]p0p~ t !5IN , ]q0
2 F̃5@]p0p~ t !#21

•]q0p~ t !,

]p
2F̃52]p0q~ t !•@]p0p~ t !#21,

]p
2F̃•]q0p~ t !1@]p]q0f̃#T52]q0q~ t !. ~B9!

The last type of generator considered is a function of the
initial and final momenta and again can be defined via the
other generators. In terms off̃, for instance, it is given by

F~p,p0 ;t,t0!5f̃~q,p0 ;t,t0!2q•p, ~B10!

2968 53G. CAMPOLIETI AND PAUL BRUMER



with q here considered as function ofp0 and p, and the
times, and obtained by inverting the second relation in Eqs.
~B5!. Differentiating Eq.~B10! while using Eqs.~B5! gives
the set of generator relations

q05]p0F~p,p0 ;t,t0!, q~ t !52]pF~p,p0 ;t,t0!. ~B11!

Analogous relations to the above then follow using Eqs.
~B11!,

]p]p0F•]q0p~ t !5IN , ]p0
2 F52@]q0p~ t !#21

•]p0p~ t !,

]p
2F52]q0q~ t !•@]q0p~ t !#21,

]p
2F•]p0p~ t !1@]p]p0F#T52]p0q~ t !. ~B12!

It is instructive to note that, for instance, the identities of
Eqs. ~B9! and ~B12! are consistently obtained by making a
global canonical change of variablesq→2p, p→q, which
basically reverses the roles of the coordinates and momenta
for all t, with f→F andf̃→F̃ within Eqs.~B3! and~B6!.
Note that the above are just the properties of theFi-type
generating functions@12#.

APPENDIX C: STABILITY MATRICES AND SIGNATURES

In this appendix we give some matrix identities among
the various stability matrices and the resulting signature
properties that are used in Sec. III.B. The properties are a
simple consequence of the symplectic structure of canonical
transformations. Indeed, let us group the stability matrices
into the usual Monodromy matrix

M5S ]q0q~ t ! ]p0q~ t !

]q0p~ t ! ]p0p~ t !D [S A B

C DD . ~C1!

M represents a matrix Jacobian of a canonical transformation
and hence satisfies the symplectic condition

MTJM5J, MJM T5J, ~C2!

where

J5S 0N IN
2IN 0ND ~C3!

has the well-known@12# propertiesJT52J, J252I2N , and
JTJ5JJT5I2N . The evolution ofM satisfies the first-order
system of differential equations for the stability matrices

d

dt
M5J]~q,p!

2 HM . ~C4!

This equation and its matrix transpose also readily proves
Eqs. ~C2! since Eq. ~C4! gives d(MJM T)/dt
5d(MTJM )/dt502N and sinceM (t5t0)5I2N so that Eqs.
~C2! are obeyed at initial timet0 and hence satisfied for all
time.

Substituting Eq.~C1! into the first of Eqs.~C2! gives a
first set of symmetry relations

ATC5CTA5~ATC!T, BTD5DTB5~BTD!T ~C5!

and substitution into the second of Eqs.~C2! gives

ABT5BAT5~ABT!T, CDT5DCT5~CDT!T. ~C6!

Multiplying the first relation in Eq.~C5! by A21 to the right
and by (AT)21 to the left givesCA215(CA21)T. Similar
manipulations on the other relations readily show that
DB21, A21B andD21C are also symmetric matrices, given
that the inverses exist. Such symmetry properties are also
evident from Eqs.~B3!, ~B6!, ~B9!, and~B12!. The inverses
of such matrix multiples are obviously also symmetric since
(S21)T5(ST)21 for any invertible matrixS.

Equations~C5! and~C6! now lead to the following signa-
ture properties. In particular, multiplying the first of Eqs.
~C5! on the right by the identity in the formC21C gives
ATC5CT(AC21)C. Then taking signatures while using the
properties sigS5sigPTSP and sigS5sigS21, for any invert-
ible matrixP and symmetricS, shows that

sigATC5sigAC215sigCA21. ~C7!

Similar manipulations on the other relations readily give the
rest of the useful symmetry relations,

sigBTD5sigBD215sigDB21, ~C8!

sigABT5sigB21A5sigA21B, ~C9!

and

sigCDT5sigC21D5sigD21C. ~C10!
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Expansions~Dover, New York, 1956!.

@8# Similar identities were employed by L. Ho¨rmander, Acta
Math. 127, 79 ~1971!; D. Fujiwara, Nagoya Math. J.124,
61~1991!.

@9# Coordinates of any trajectory generated by the dynamics for a
time t2t0 and initiated at any pointq(t0)5q0 ,p(t0)5p0 at
time t0 are denoted explicitly as functions of these variables

53 2969GENERALIZED SEMICLASSICAL-PHASE-INDEX FORMULAS . . .



when written asq(t)5q(q0 ,p0 ;t,t0) and similarly for the mo-
mentap(t)5p(q0 ,p0 ;t,t0).

@10# W. H. Miller, Adv. Chem. Phys.25, 69 ~1974!.
@11# L. S. Schulman,Techniques and Applications of Path Integra-

tion ~Wiley, New York, 1981!.
@12# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,

Reading, MA, 1980!; V. I. Arnold, Mathematical Methods in

Classical Mechanics~North-Holland, New York, 1980!; E. T.
Whittaker,A Treatise on the Analytical Dynamics of Particles
and Rigid Bodies, 4th ed.~Cambridge University Press, Cam-
bridge, 1937!.

@13# See also S. Levit, K. Mo¨hring, U. Smilansky, and T. Dreyfus,
Ann. Phys.~N.Y.! 114, 223 ~1978!.

@14# See also the recent review of Maslov theory by R. G. Little-
john, J. Stat. Phys.68, 7 ~1992!.

2970 53G. CAMPOLIETI AND PAUL BRUMER


