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Generalized semiclassical-phase-index formulas via sequential stationary phase
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Sequential stationary phase, i.e., the replacement of a multidimensional stationary phase evaluation by an
ordered set of lower-dimensional stationary phase integrations, is applied to uniformly asymptotic path integral
forms for the semiclassical propagator. The results are useful formulas for computing trajectory (geices
eralized Maslov indicesin any quantum representation for general types of time-dependent Hamiltonians.
Index connecting relations that relate the indices for the different representations are also obtained. We also
demonstrate a general canonical structure for the semiclassical phase indices that arises naturally through the
application of sequential stationary phase.

PACS numbegps): 03.65.Sq

I. INTRODUCTION though intimately connected to it, our work does not rely on
the formal language of differentiable manifolds, which, al-
Semiclassical mechanics provides useful expressions fahough of geometrical appeal, requires sophisticated math-
quantum matrix elements and related quantities in theématical tools. The key point is that all that we require is the
#—0 limit. Of particular interest are matrix elements of the implicit function theorem and basic tools in classical me-
propagator in various representatidis., coordinate space, chanics. Moreover, our treatment emphasizes simple and
momentum space or mixed coordinate-momentum space repomputationally useful trajectory aspects of the theory.
resentations These are typically of the form of an ampli- ~ The paper is organized as follows. In Sec. Il we discuss
tude, which depends upon the classical stability matrix angome formal aspects of sequential stationary phase that are
an exponent, which depends upon the classical agtiprin necessary for its validity. Section Il contains the path-
addition, the exponents contain important phase terms, gerategral development of the semiclassical propagator matrix
erally referred to as Maslov indices, which arise from the€lements and of the trajectory index formulas for various
trajectory crossing various caustics. This semiclassical strudepresentations. The general formulas for the indices is given
ture was demonstrated in early stationary-phase path-integrll Sec. Ill A, where their inherent canonical structure is dis-
treatments of the coordinate representation of the propagat®fayed. Moreover, we explore important index properties,
for kinetic-plus-potential-type Hamiltoniarg,3]. These im-  such as index contributions to a trajectory from the joining of
portant indices also arise within a much more general contexfajectory segments. Useful “connecting relationships” for
within semiclassical formulas. relating the various indices are given in Sec. Ill B. Section
Modern treatments of the theory of Maslov indices tend tolV contains a summary. Three appendixes provide support-
be complicated, relying upon sophisticated mathematical lanng material: Appendix A discusses conditions for the valid-
guage[4]. In a recent paper we provided a straightforwardity of sequential stationary phase, Appendix B contains use-
derivation of the Maslov indices in various representationdul equations on classical generators, and Appendix C
[5]. Specifically, by concatenating uniform short-time propa-contains useful expressions relating to matrix signatures and
gator formulas for the coordinate and/or momentum reprethe symplectic properties of classical mechanics.
sentations and applying stationary-phase methods on the re-
sulting path-integral form we obtained general Maslov index Il. SEQUENTIAL STATIONARY PHASE
formula for any type of caustic and for quite general Hamil- . . . _
tonians. Our treatmen6] suggested the possibility of both ~ €onsider a multidimensional integral of the form
developing an underlying consistent canonical structure of i
semiclassical matrix elements and obtaining the purely clas- oy — . - .
sical canonical properties of the general Maslov indices, with (i) f dxf dyg(x.y; a)ex;{ﬁ o(xy;a)
the phase indices embedded in the semiclassical formulas in
a consistent manner. This paper provides such a developmewhere the integration is over a bounded or unbounded do-
for the propagator, starting from an asymptotic path-integramain ind=m+n dimensions with ,y) e (R™,R"), for in-
formulation for more general types of time-dependenttegerm,n. The functionsy and¢ are real valued within the
Hamiltonians and making extensive use of a single tool: sedomain of integration and sufficiently continuously differen-
guential stationary phase. By sequential stationary phase, abiable functions inx,y so that an asymptotic expansion fol-
breviated SSP, we mean the reliable stationary-phase evallpws via stationary phase. For generality, we have included
ation of multidimensional integrals via a set of stationary-in Eq.(1) a dependence on a space of paramatesshich is
phase evaluations on integrals of lower dimension. not explicitly carried below but will be of use later.
The formulation developed in this paper is essentially as Semiclassical mechanics relies upon stationary-phase ap-
rigorous as that which relates asymptotic properties of wave@roximations to integrals such as those in EQ. The criti-
functions to Lagrangian manifolds in phase spfgk Al- cal points of this integral are assumed to be nondegenerate,
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isolated real interior stationary-phase points @f These
stationary-phase points are a finite numberof points
(x,y)=(xik) (k)) k=1, ... s, that solve the system

dye=0, dyp=0 (2)

uniquely with deﬁ(zx(k) y(k))go¢0. [Throughout this paper the

following compact notation is used,u and ,d,f denote
matrices with elements in thieh row andjth column given
by du'/dv! and #*f/au'dv’, respectively, for any function
f(u,v) and vectorsu=(u?,... uM), v=(vl, ... ") with
(uv)=(ut, ... uMol ... vN). Hessian matrices are given
by (9%¢)i;=d*@lowlow' for any vectorw. Vectors multi-
plying to the left(right) of a matrix are taken as rovcol-
umn) vectors. The notationa(x* v,): €t denotesd,dy,

evaluated ak=x, , y=y, .| The standard stationary-phase

method[6,7] gives thes— 0 leading asymptotic term

|(7)~17h) = (2mh) 2 dewrly el 90X, \Yi)

i CT 2
XX (X 1Yo ) T 78IG0 (1 |-

©)
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Siga’y,,) @ (4. Y (X)) = Sigr @ (x,¥(X)) + Sigize(x).  (8)
In particular, propertiesii) and (iii) hold for x=x, . Note,

here and below, the particular compact notation, e.g.,
dxdye(x,Y(x)), which implies that one takes bothandy
derivatives before substituting=y(x). Appendix A con-
tains a proof of propertiesi)—(iii) given Egs.(4)—(6). Of
importance is the implications of these properties to the util-
ity of sequential stationary-phase operations. In particular,
we have the important following corollary: if Eq$4)—(6)
hold, then the stationary-phase approximation in @Bg.ap-
plied successively oy and thenx subspaces to the integral
in Eq. (1) gives the same result as the complete stationary-
phase approximatiofEq. (3)]. This corollary follows by ap-
plying the stationary-phase on timedimensionaly integral
first:

137(h) = (2mh)"2 f dx|dew; o (x,¥(x))| ~Y2g(x,7(x))

i ST, _
X ex %¢(x)+|23|gay<p(x,y(x)) . 9

From assumptions in Eq$5) and (6), this integrand’s am-
plitude is continuous, witke continuously differentiable, and

Here and below there is an implied sum over all stationarywe can again apply the stationary-phase method to this inte-

phase points, which are simply denoted by (y,). Here
sigM = (d—2u) is the signature oM defined as the number
of positived— x minus the number of negative eigenval-
ues of the real-symmetric matrid. We refer tol S{(#) as
the complete stationary-phase approximatiom (o).

In semiclassical mechanics it is common to apply the
to divide
up the integral in Eq(1) into a stationary-phase approxima-
tion for they integral first, followed by a stationary-phase

stationary-phase approximation sequentially, i.e.,

evaluation of the remaining space integral. Conditions un-
der which this procedure, which we term
stationary-phase,” yields the full stationary-phase reldtdf.
(3)] are summarized belowA full discussion of this ap-
proach is provided in Appendix AMoreover, we note some
simple differential properties, which will be exploited
throughout the entire phase index theory that follows.

First, let the continuously differentiable functignmap-
ping xe R™ into Y(x) e R" be given by

dy@(x,¥(x))=0 for any x. (4)
Assume thesub-Hessian condition
dew;o(X,Y)ly_5#0 for any x (5)

and that the functiorp(x)=¢(x,¥(x)) has a critical point

xX*,
(6)

then three properties ho[@]: (i) (X, .V, )=(X*,y(x*)) is a
critical point of ¢ [i.e., satisfying Eqs(2)], (ii) the following
product formula for the Hessian determinants holds:

(?X’QE(X* )=

dew?, @ (x,J(x))=dedZp(x,5(x))devg(x),  (7)

(iii) as does the signature property

“sequential

gral. According to propertyi) this picks up all of the com-
plete stationary-phase points @f giving the final sequential
result

90X ,Yy)

=(2mh)"?
|dewfe(x, .y, )dets; B[

135(h)

i LT
Xex %‘P(X* Ya) Z[Slg&y(P(X* Ya)

+sigiy ¢]|. (10)

Propertieqii) and(iii ) then finally prove the above corollary,
namely, that 75=15P.

This result makes the usual assumptions of stationary-
phase integration. The more subtle requirement to note is the
sub-Hessian condition in E¢5). For general integrands this
condition may be violated, resulting in a sequential
stationary-phase result that differs from the full multidimen-
sional stationary-phase result. Generally, however, and most
importantly for the semiclassical theory below, the possible
violation of the sub-Hessian conditions can only occur at
special or particular subset values of measure zera,in
where the inverse of the sub-Hessiayﬁp(x* Yy ) simply
does not exist. A key point centers about making sure one
obtains all the real stationary-phase points of the complete
phasep when using a sequential procedure. The above result
ensures us that this is the case if the sub-Hessian condition in
Eq. (5) is satisfied for the global domain of tlxentegration.

A subtle and most useful point now follows: If the sub-
Hessian condition is satisfiddcally about all &, ,y,) [i.e.,
det9§<p(x,y)¢0 atx=x, , y=Y, , but not necessarily glo-
bally in all x], then propertiesi), (i), and(iii) are alsolo-
cally valid. Therefore, one is solving for all the complete
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stationary-phase points via E{) followed by use of Eq. ements in any representation, for global time. We need only
(6); this is equivalent to using priori knowledge of all the use one such short-time formula, which for the initial mo-
(X, ,Y«) by solving Egs.(2) directly. Putting this into Eq. mentum to final coordinate matrix element of the propagator
(10) and using propertie@i) and(iii) givesI$5=15". Hence,  U(t;,1,t)), is[5]
as long as the signature termsliﬂz, which are computed -
only at critical points, are well define(ciie., the Hessian ma- <qj+l|U(tj+11tj)|pj>
trices involved there are nonsingulathen!25=1°" ~(2aih) N2 deWs q(F, Py ity 1.tp)] 22
Note further that repeated application of the argument
above evidently shows that the above SSP process applies to i
an arbitrary sequence of multiple integrals. In fact, it is pre- XeXF’[g[(ﬁ(qu,aj et + 0 pj]]
cisely the repeated application of propertig$ and(iii) that

we employ below within SSP operations to obtain a consis- i
tent semiclassical structure for unitary matrix element trans- ~(27Tiﬁ)_N/29XP{%[¢(QJ+1,aj e t) g pj]]-
formations and also to obtain general index formulas that
connect the generalized semiclassical phase indices. (1)

11l. SEMICLASSICAL PROPAGATOR MATRIX Here this is written in a form that will give rise to general
ELEMENTS AND THE TRAJECTORY INDEX FORMULAS path-integral forms convenient for what follows. Equation

(11) involves a single classical root trajectdi§], which be-

We now show that by starting with an asymptotic path-gins at timet; with momentunp; and ends at timg; .. ; with
integral form in any chosen representation, then repeated sgoordinateq;.,; after having evolved over an infinitesimal-
guential stationary-phase operations give rise to a closed cgme interval ¢j+1—t;)—0. The initial coordinate
nonical structure_for the_ semiclassical pr_opagatorformulag Irq~j:aj(Qj+1upj ;t;11.t;) is considered to be a function of
any representation, with the.MasIov |nd|ces_ clearly d|s—qj+l,pj, tj+1, andt; and is given implicitly by the root
pIade. The key_ is that canonical transfor_matlons |n\_/olve &rajectory equatiomy(q; ,p; ;tj+1,t;) =0;+1 or by one of the
special class of integral transforms for which the stationarygyenerator relations given in Appendix B,
phase conditions are just classical generating function rela-
tions. In particular, it is also shown here that the sequential
stationary-phase process is a very general and simple method
for generating all the purely classical properties of trajectory-
phase indices and formulas that relate the Maslov index folhe classical actionp is the generator of classical motion
the semiclassical formula in any one representation to that iexpressed as a function of initial and final coordinates as
any other. We explicitly prove and present the most usefutlefined by Eq(B1) in Appendix B. The tilde linking the left-
properties of the indices, including ‘“connecting relation- and right-hand sides of Eql1) indicates that the short-time
ships” that relate the various indices for the coordinate, moform is asymptotic ia— 0, uniformly int;, ; —t;—0. This
mentum, and mixed representations. A canonical structure afan be shown for very general Hamiltonians by putting Eq.
the trajectory indices is also exposed. An alternate path¢ll) into the quantum evolution equation and using the usual
integral framework is invoked and all index formulas aretime-dependent WKB treatmefi]. Although this asymp-
obtained solely on the basis of the SSP property, combinetbtic property is all that is needed as a building block in what
with classical generator identities. follows, we note that for most Hamiltonians E@.1) also

represents, for givefi, a uniformly asymptotic result in the
A. Semiclassical propagators and index formulas limit _ti+l__tj_ﬂ_0 and gppAroacheS the exact plane_-wav_e re-
via SSP on path integration sult in this limit whereinU(t;, 1,t;) becomes the identity
_ _ operator.

Consider anyN degree of freedom system with quantum " gjnce this paper also deals with the general canonical
Hamiltonian H=H(q,p,t) with canonical operators),p.  structure of the semiclassical propagator matrix elements, we
The operatoH and its corresponding classical Hamiltonian also introduce the following form, equivalent to E@.1).
in canonical variables},p is allowed to take on general Specifically, the classical generator defined by the Legendre
forms, |nclu_d|ng klnetlc-p!usz-poteny?l .Hamlltonlans, field- transform [i.e., Eq. (B4)] =0+ 1,P; 8+ 1,1))
dependent interactions withgH=m"" (inverse mass ten- = #(dj+1.0;:tj11.t;) +T; - p; expresses the phase directly as
son, and more general forms in WhidﬁH is not necessarily  function of the given initial momentum and final coordinate.
constant. The canonical quantum operatprand p act on  The analogous generator relations are given by Bfs.and
coordinate and momentum eigenstat§iy)=q|q) and using the properties in EqéB6), which follow, shows that
plp)=p|p), with g,p values assumed on the infinite the short-time propagatdEqg. (11)] has the alternate form
domain and normalization chosen here ag|p)
=(2mih)~ N2e9Ph (N.B. i=e'"? is the chosen branch (@2 1|0t 21t P~ (2mih) V2| det, a, V2
throughoutr We assume a simply connected phase space ' o 1Tt/ Gi+17Pj
throughout this work. i -

Our starting point lies in the use of general infinitesimal- Xexr{%qﬁ(qjﬂ,pj ety |
time asymptotic formulas, which are concatenated to pro-
duce path-integral expressions for the propagator matrix el- (13

Pj= =05, #(0j+1,0j 541 t). (12
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The canonical nature of the short-time matrix element ift;,t;,,]. In particular, to construct a path integral for the
therefore manifest solely in terms of the appropriate generanitial to the final coordinate we start with a given initial
tor, namely,é. This aspect of the semiclassical formulas iscoordinate, switch to all intermediate initial momenta, and
well known [10]. Although short-time expressions for other propagate within a single subinterval time to all intermediate
representations also follow, they will not be explicitly final coordinates using Eq11). Repeating this propagation
needed throughout the treatment given in this paper. for all infinitesimal subintervals in the time partition
A path-integral propagator based solely on the above, ... i t,;,...t, with ti.;>t;, until the final pre-
short-time propagator follows for any representation by conscribed time and coordinate gives
catenating Eq(11) [or Eqg.(13)] for a set of time subintervals

n-1 .
A I ~ ~
<QIU(t,to)Iqo>=(2wh)*”Nf -~-qun1dpn1~-~dq1dp1dpojl_[0 exp{ ATt +p[G-alty, (14

with g,=q, initial time ty, and final timet,=t; the limit  which can be labeled by a superscripk)( i.e., all
(tj+1—t;))—0 (n—w=) is implied throughout. Similar inte- p(t,)=po=p{ given implicitly by
gral forms follow for all other representations. For semiclas-q(t) =q(do,Po;t; ,to) =0 or explicitly using the first rela-
sical purposes it is important to emphasize that this pathtion in Eqgs.(B2) for all functions ¢=¢. The amplitude
integral formula is uniformly asymptotic. As mentioned for term in Eq.(16) has been rewritten in terms of a stability
the above short-time form, E(L4) also turns out to be exact matrix, but can be written explicitly as function af .go in

for most Hamiltonian operator forms. This path-integralterms of dq dq,¢ by simply using the first identity in Egs.
form involves purely classical quantities, a useful feature thaEB3) !

we exploit below. It may be contrasted with the more usual,
and less general, coordinate space path-integral expressio
[11] to which it is equivalent wheaSH is a positive-definite

constant. _ , representation being considered. For instance, in(E).the
We now apply SSP to the path integral in H44). I jngex along with the classical action generaibrare those

particular, we do the integrals in the sequence of orderegyr 4 given initial to final coordinate representation of the
pairs p; followed by q; for all subintervals, with propagator within given end-point times.

j=1,...n—1; we need only do one SSP integral and the Equation (16) is true for tj—ty (=ty+e, €>0 and
overall sequence of SSP integrals follows by induction. Th'ssmalb since this is precisely the form taken by the short-time

approagh, as we sha!l see below, leads to general properti ?opagator for initial to final coordinate by doing stationary
for the |r}d|ces and gives the cor_nplete stationary phase AlBhase on th@, to qq transformation integrdldoing only the
proximation to the overall path integral. The procedure ISfirst integral in Eq.(14)] while using Eq(11). Indeed this is

S|m|Iar to our recent der_lvat|o[5]; howeve_zr, here we befg'” readily shown to give the initial trajectory index in Ed.6)
with an alternate path-integral expression and speC|f|caII¥0rt_t0H0+ as

emphasize that thBSPis the only tool needed to obtain the
result. Hence we only need evaluate the integral

One remark on notation is in order. We denote a particu-
f&% index for a propagator matrix element bl], where the
argument within the square brackets denotes the particular

v[a(tg).dosto stol= z[Sig{[9g,a(tg )]~ dp,ate)} —N]
f dpi(Gj+1lUtj+1.t)]p)) = §[sigdp,a(ty) — NI, (17)

<qj+1|0(tj+1-to)|%>sc~f dg;

(qj|0(tj to)|do)*® (15  which is zero for cases in WhiChSH is positive definite.
Note that the initial index can also be reexpressed using the

by stationary phase, where for every given1 the induc- identities in Eq.(C9). _
tion assumption is Putting Eq.(16) into Eq. (15 gives

x(pjla;)

(051 0ty ,to) o) *e= (27 %) ~N2 dewy A(Go.Postj )l 2 (a4 1] Ot 1,t0) o)

i (2mih) N2 _ e
xexp 7 #(d;,do;t; 1 to) wa dq,-f dp;|dew, a(do,Po;tj to)|
- [ ~
—igv[q,—,qo;tj,to]). (16) Xexp[ g{ﬁﬁ(qu,q]'?tj+1,tj)+¢(q]',%§tj,to)

Here SC stands for semiclassical approximation. In(E6)

—_~ T
- o> _ , 40 [T =0T —i— [0 dnt:
a finite sum is implied over all separate root trajectories, Pi-[G =01} —1 5 v10;. 905, 1t0]}’ (18
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which is an integral of the form in Eq(l) where
we can identify x=q; and y=p;, ¢(q;,pj:a)
=(0j+1,0 b+ 1.8) + (), 903, te) + ;- [Aj—q;], with
the space of parametets=(Q;.1,0o.tj+1,tj,tg). We now
apply the SSP formulgEqg. (10)] to Eq.(18). The stationary-
phase condition for the; integral is[Eq. (4)]

Ip, 0= [0, (0j+ 1,0 tj+1.,1) +Pj]- .G+ G —

=0;—q;=0, (19

where Eq.(12) has been used. This stationary-phase condi-

tion therefore gives stationary phase poipfsas function of
q; given by Eq.(12) with g;=gq; . Using Egs(12) and(19),
the sub-Hessian gt = —&qj¢(qj+l,qj iti1,t;) is then

t9§j€0:t9pjaj= _[a§j¢(qj+liqj e )]t

=—[dq,a(q;,p; ;tj+lvtj)]7l&qu(qj Piitiraty).

(20

In the latter expression the second identity in E@3) was
used. Using Eq(19), the phase functiofe.g., o(x) of Eq.
(6)] becomesp= (41,0 ;tj+1.t)) + 6(0;,dost; . to). The

stationary-phase condition for the remainigg integral is
[e.g., Eq.(6)]
aqj5|qj=q}k>:[5qj¢(qj'+1,qi ety
+aqj¢(qj aQO;tj uto)]qj:qfk)

E(?qqu(q] ,qo,tJ ,t0)|qj:q}k)—pj(k):0. (21)

G. CAMPOLIETI AND PAUL BRUMER
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(Note: For compactness, the explicit dependence on initial
conditionsqg,pg.to is dropped for the coordinate and mo-
mentum of any trajectory beginning &.) We can now
rewrite this expression by using the composite function
property for any classical trajectory: q(t;;)

=q(q;,pj:tj+1,.t)=aa(t;),p(t));tj1,t;). Differentiating
this with respect t@, (for fixed g, and time variablesgives

pOQ(tJ+1) an(qjupJ: j+10b ) po (t)

+f9ij(qJ' Pjitiea,ty) - dp P(L)).
Multiplying this equation b){ap a(g;,pj ity 4.t Y]~ ! on the

left and by[ap qt)]™ 1 on the right then also gives the
identity

IpoP(t)) - [dp,At]
+[dp,a(q;,p; ;tj+1,tj)]715qu(qJ' Py itir1ty)

:[&qu(qj Pyt tp1 Tt Uv)poq(tj+l)'[ap0q(tj)]7l-

Hence Eq(22) also reads

( ]+1) [ap q(t )] 1
(23

‘P [pJ (q] pJv]+1t)]

We have denoted the stationary-phase points with superscript

labels, e.g., ¢ ,p{). The labeling k) here is understood

Finally, we can substitute the matrix determinants and

to correspond to a new set of root trajectories given by comsignatures Oﬁ?zj(p andaéjfo obtained from Eqg20) and(23)

bining Egs.(12), (19), and and(21). Indeed, upon using
the second generator relation in Eq(B2) and
q(qok,p“" to)=q{, then p(qo,po’, to)=p{ and
q(al®,pt; J+1,t) (o8 tj+1,t)=0j+1.  Hence,
at every stationary- phase point the
is (P(q(k) 'ka)) ¢(q]+lvq] J+lvt )+ ¢(qj 1q0 0)1
which, using Eq. (Bl), is also equal to

oK )(qj+1,qo i+1.t0), the classu:al action for every root

trajectory satisfying(qo, po ; J+1, to) = Qj+1-
It remains to determlneq ¢. This is given by differenti-

ating the expression in th21) with respect tag; and using

the third identity in Egs.(B3). Equivalently, we use the

analog of Eg. (A2) while using Eg. (20), &qj&pjgo

=ly, and the third identity in Egs. (B3),

9,0 = 9, ®(0l . o't 1) = A P(t))[p,a(t;) ] then

2~ _ 42 2 —

0q,0= 0 @~ p,9q,¢- [ 75,011 [dp,Iq 1"
=dp,p(t)) - [dpa(t))]~*

+[9p, (0P}t 1,8) 17 9, A0 Py it 1)
(22)

phasephase is

into the SSP formula of Eq24) below. Before doing so we
make note of a subtle point concerning the sub-Hessian con-
dition. That is, according to Eq(20), the relevant sub-
Hessian condition that allows the use of sequential stationary
d@lqu(qj Pyt .ty) #0, in which
we have used the fact that thiecal stability matrix
qjq(qj Pj;tj+1,t)) is positive definite and approachég
within the limitt; , ; —t;— 0. This sub-Hessian condition can
always be satisfied. Indeed, the trajectories and classical sta-
bility matrix elements are analytic functions of their argu-
ments and hence along any trajectory, the value of the func-
tion deijq(qj ,Pj; 7,t;) can be zero only at a finite number

of measure zero points. Thus there always exist time parti-
tions t; for which all the above stability matrices are nons-
ingular at those times as long as the end-point titgeisare
nonfocal. That is, only a finite number of focal or caustic
points exist within any trajectory segment unless the deter-
minant function is identically zerda trivial nonphysical
case. It is hence to be understood that all phase-space end-
points used in all index equations are unequal to focal points
where the stability matrices occurring in the equations would
otherwise be singular and the indices simply undefined.
Now using Egqs(20) and(23) in the SSP formula
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(04 2|U(tj11,t0)[00)™ change in the trajectory’s index due to its further evolution,
. , . over an infinitesimal time;.;—t;, from any phase-space
=(2mh)*N’2|dewpoq(tj)deijgodewqjgol’1’2 end point @;.p;) at time t;#t, to an end point

(dj+1.Pj+1) at timet;, . By induction, we see that these

i_ . T . subinterval contributions are added up, via E2f), together
Xexp[ % ¢(0j+1,G03t+1,t0) 2 {#19;,6031; tol with the nonzero initial index given in Eq17). Hence the
SSP process proves that the index for a total time interval
- %[sigagjwsigaéja]}] (24) [totlis given by
1
gives v[a,do;t,te]=[d(tg), 003ty ,to] + 52 (pj—oj). (29
(qj+1|lfl(tj+1,to)|qo>sc We note here, as is shown immediately below, that(26),

and hence Eq(29), holds for sufficiently small, yet finite,
time segment§t; ,t; . ;]. This property turns out to be a use-
i ful one for computational purposes, as discussed briefly be-
XeXI{‘(ﬁ(qu,QO;IjH,to) low. Based on Eq925—(28) and induction, the above SSP
h proof therefore gives théonuniform at caustigssemiclas-
- sical propagator for the initial to final coordinate representa-
—i EV[qu,%;tju,to] _ (25)  tion in familiar form[2,3,5,13

=(2mit) N dew, q(t;, 1) Y2

U(t,t se= (2if) V2| dew, q(t)| 2
This is of the same form as the induction Ed.6), for (alV(t.to)lgo)™= (2mi%) | poq( )

j—]j+1, again with implied sum over ab0=p8<) and ac- i T

tions ¢=¢®, ie., all root trajectories now satisfying Xexl{gﬂq,%;t,to)—lgV[q,qO:t,to] :
q(tg) =do andq(t;+ 1) =0;+1. The index in Eq(25) is given

by (30

1 with, as always, an implied sum over similar terms for every
v[dj+ 1,905t +1,to]=v[0j,dost; ,to]+§(ﬂj—gj), (26)  trajectory satisfying two-point coordinate boundary value
conditions:q(t)=q(dg,po;t,tg) =g. Here, however, in con-
trast to earlier developments, we are dealing with more gen-
eralH forms and our approach allows us to readily develop
additional index properties.

These additional index properties follow in a simple man-
ner. For instance, Eq28) readily gives the known result that
within any time interval a change in the trajectory index can
only occur if a focal point lies within the interval, since

where the integer quantities; and o; are given by the
equivalent expressions

Mj:Sig{[ﬁqu(Qj 1Pj ;tj+1:tj)]7laqu(qj P itje1t))}
ZSig{[O”qu(qj 'Pj ;tj+lvtj)_1(9qjq(qj Pt}

= igap A0 Py it 1.8) =SIGA(t 4 1,1) " B(tj 1 1.1) otherwise dp A(t;+1)[dp,a(t))] = 1In, giving o= p;;
. . from Eqg. (260 we would obtain »[qgj;1,00:t)+1,t0]
=SigB(tj11,t)  "A(tj11,t) (27 =u[q;,90:t; ,to]- As usual, these focal points are defined by

singularities in the matrix inverse or zero determinants of

and dp,A(7) existing at focal times denoted by=t}>t,. The
=siallg ot )] 9 gt 9. a(t)1~L index for any given trajectory can therefore be written in
;= SIL 79,000 Py 381,410t + )L 2p ()T terms of a sum over index changes due to all such possibly
zsig{c)poq(tj)[(gpoq(tj+1)]—1aqu(qj Pt} encountered focal points:
— i -1 -1 1
=sig{B(tj;+1,t) "B(tj+1)B(t) "} V[qy%;t,to]:E[SigﬁpOQ(tJ)—N]
=sig{B(t;)B(tj 1) 'B(tj.1.t))}. (28 L
The second expression fay; arises from the property +§§i: [sigpxa(a,pf it + et —€)—of]
sigS=sigS ™! for any nonsingular symmetric matr& The
last equality on the second line of E(7) follows in the (3D)
limit tj,;—t;—0 sinceﬁqjq(qj,pj;tj+1,tj)—>IN, whereas where

the second equality follows from the general properties in

Egs.(C6) and(C9). Note also that we have reexpressed the o =sig{¢9p0q(ti* — e)[apoq(ti* +e)]7?t
index property using the compact matrix notation of Appen-
dix C and that the local stability matrices are also expressed X 3pi*Q(qi* Pt ety — e}, (32

in compact notation.
Equation(26) therefore gives a generalfinitesimal addi- andq*=q(tf —¢€), pf =p(t* —¢€), and the limite—0" is
tive propertyof the index. It expresses, in algebraic form, theimplied, where+ denotes approaching 0 from above.
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Before displaying other properties that result from SSPanother overall SSP operation on the path integral from time
operations, we note that for Hamiltonians w'wﬁH:m*l ty to tj.4, only in a differently ordered fashion. The
(or positive-definite constant matjixhese index formulas stationary-phase approximation to the above integral follows
can be further recast by taking into account the short-timémmediately since the analysis is similar to tiepart of the
stability matrix property stated just above Ed24). integral already done for Eq18). The Hessian is given by
This allows us to put, for the local stability the expressions in Eq(23) or (22). By using it, the
matrices, sigqu(qj Pjitir)=p;=N and then statiqnary—phgse fqrmula applied to H§3) re_duces to the
o :Sig{apoq(tj+1)[(?p0q(tj)]7l} o ot =Si9{é’pOQ('fi* _reqw_red seml_cla§5|cal form given by EG0) with the index

% 1 . identity resulting:
Jre)[apoq(ti —€)] "}, thereby recovering from the above
equations the previously derived resulf2,5,13 ‘ ot . e , P
v[d,003t,to]==;(N—)/2, in which the initial index is MLGenGoityenfol = pHG 0, Gyt 121G oty ol
zero. This is also expressible as the count of multiplicities of 1
zeros of the stability matrix, q(7) encountered along the +§(N_‘Tj)- (34
course of the trajector}3]. It is to be noted, as will become
clear, that Eq(31) is not as simple and practically useful as  This is then a general prescription for computing the in-
is the straightforward application of E(R9) to small finite  dex, for the initial to final coordinate representation, using
segments. the separate indices, of the same kind, for awyp finite

We can now extract a further index property that is usefulioining trajectory segments. Equatié84) can be used when
and less well known. This is a property for adding up orone has run a trajectory until an intermediate titnecom-
“patching together” indices belonging to any two joining puted its corresponding index using the general formula of
finite trajectory segment§.e., segments that together form Eq. (29), and then wishes to extend the computation of the
an overall trajectoryto give the index for an overall trajec- index for the overall trajectory evolved for a further finite-
tory. Consider an intervélto,tj, ;] in which a trajectory time interval until timet; . ; by treating the final intermediate
begins with any coordinatg(t,) = d, (and given momentum end point as the initial phase-space point for the joining tra-
Po) and ends with coordinate(t;,,)=d;+1. As shown jectory segment.
above, the index[q;1,do;tj+1,to] for any such trajectory A very useful and simple property, however, obtains from
is generally given by Eq29) with q=q;,,,t=t;,;. Saywe Eq. (34) by considering the important situation in which
now divide up the trajectory for the total-time interval into t; ., —t; is finite but sufficiently small, so that the local sta-
two adjoiningfinite segments, each corresponding to a finite-bility matrix 9q.9(9;,p;; 7.t;) (which always begins ds, for
time subintervalto,tj1]=[to,t;]+[t;,j41], with all ime T=t;) is nonsjingular for allz within [t;,t;;,]. In such a
end points being nonfocalNote thatt;.;—t; is nownot ;e Eq(34) simplifies to Eq.(26). Thus Eq.(26) hence not
nepessarlly |nf|n|te5|mal, as it was in E(_26).] Now each_ only applies in thet;,,—t,—0 limit, but also applies to
trajectory segment, being a separate trajectory, has an indeynq)| finite segments. Let us first show this for the case
assigned to it. For the first segment, the index 'S\Nhereaqu(qj ,pj;7.t;) is also nonsingular within the same

VEﬂj)’EO ;‘ti ’w%ic\évltiz t?]k;sec-osﬁggire%nis ptof:;m(i:]ji)ti:lqj it interval. Since the latter stability matrix is nonsingular, then
PLL)= ;. P its signature does not change at any time within

for the other joining trajectory segment with index . ) B 7 o
v[Gj+1,0;;tj+1,t;]. We can now obtain a formula for add- [til’tifl]' gving f[qiﬂ’qi 'tifl’ti]_ vfadty).a; 5t ]
ing up the indices for the separate segments to give the index 2L 5197%,d(; P it ,tj) =~ N]=2(x;—N). Putting this into
for the total trajectory. This is easily done while proving a Ed.(34) shows that Eq(26), and hence Eq29), is also true
relation among the indices by considering the integral joinfor sufficiently small, yet finite, time intervald; ,t;,,]. To

ing up the interval propagations, prove this property without having to assume another stabil-
. ity matrix condition follows by using one of the index “con-
(9j+1/U(tj11,t0)|q0)*° necting relations” discussed in Sec. Il B, namely, E54)
with ty,t replaced byEJ- A1, 9iving v[Qj11,055t41,8]
~ {a. O(t. ) Ay 10 (t. sc :V[Q'+l,p';t'+1,t']+§(/.L'_N). The V[q'+1,p';t'+1,t']
f a0+ 2]Vt 2,510V (Y to) o) index, discussed below, is that for the initial momentum to
final coordinate representation and as seen fromEL).has
N(Zﬂ-iﬁ)_Nf dqj|det9p0q(tj) a value of zero for initial timer=t;. Since this index
changes only Wheaqjq becomes singular within the interval
X e, a(q; . p; et then, by the above assumption[d;1.p;;tj;1,t;]=0,

again proving the property.
i Equation(26) then leads to a useful prescription for com-
Xexp{ 7 [6(0+1,0;5t+1.,1) + 6(0;.0o3t; o) ] puting the index. Such prescriptions have been discussed re-
cently [5], where it was shown that similar computations
T ] ] apply to the indices for the other representations. That is,
—15 (V101,055 1. 51210, Aot o) 33 humerical integration of Hamilton’s equations plus the sta-
bility matrix equationdEq. (C4)] is done using sufficiently
within the stationary-phase approximation. This operatiorsmall time steps, i.eAt=t;,;—t;. From the first small step
must recover Eq(30), for t=t;,,, since it corresponds to t, to t;=ty+A, we compute,uozsiq(?qoq(tl)]*l&poq(tl)
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or ,u0=sigapoq(tl)aqoq(tl)TEsigB(tl)A(tl)T, which are simple replacementg——p and p—q. This canonical
equivalent and convenient ways of obtaining the initial indextransformation reverses the roles of coordinates and mo-

needed in Eq(29) as 3(uo—N). Then, beginning witH;, menta. At the same time, what follows is a display of the
for every trajectory time step we compui;— o;) and add inherent canonical structure of the index formulas.

in Egs. (27) and (28). The total index at time is then ob- coor_dinate_ representation takes the familiar nonuniform
tained by summing up the index changes for all interval step§emiclassical propagator form
as given by Eq(29). (91U(t,to) |po)*e

The analogs of Eqg26)—(30) and(34) for the other rep- Al (Lto)1Po
resentations follow naturally by similar SSP treatments on i~
the path-integral forms arising from the short-time formula =(27Tiﬁ)N/2|dquOQ(t)|llzeXF{g #(q,po;t,to)
of Eq. (11) or (13); hence we do not repeat all of the above
analysis. Rather, we only explicitly derive the index proper- T
ties analogous to Eq§26)—(30) and(34) for the other basic —i57[8,Po;t.to]
type of final coordinate representation: the initial momentum
to final coordinate representation. The analysis used to arriveith implied sum over similar terms for all root trajectories:
at the analogous equations for the matrix elements and thg(t) =q and givenp(ty) =p,. The properties for the index
indices for the final momentum representations does not[q,py;t,tg] now follow by considering an integral that
have to be repeated since all required formulas follow by thgoins two finite propagations

: (39

" sc " SG, ) sc (Zﬂ-iﬁ)_N/z
(9j+1/U(tj41,t0)[po) Nquj fdpj<QJ+1|U(tj+1,tj)|pj> (pjla;) [(a;lU (L] ,to)|Po) ”—f dg;

(2mhi)N
i~ ~
><J dp;ldewqoq(tj)dewqjq(q,-,pj;t,-+1,tj)|1’2eXp[g[¢(q,-+1,p,-;tj+1,t;)+¢(q;,po:tj o) =0 Pj]

LT
-1 E(V[qj+1!pj et 1+ v[a),post; ,to])}, (36)

within the stationary-phase approximation. This is done usThe index for a global intervdlty,t] is then given by

ing the SSP process where the steps are almost identical to

Egs.(19)—(23) by now using the identities in Appendix B for 1 _

the generato instead of those foe. Moreover, by using a v[Q,po;t,to]= 52 (nj—ay), (40)
version of the composite property given above E2B) in .
which pg is now replaced byqgg, this finally leads to the

property[cf. Eq. (34)] with the initial index being zero.

For the final momentum representations the roles of the
. _ . . canonical coordinates and momenta are reversed. Within the
V[Qj+1,Postj+1:t0]= L0+ 1.0y 5t 1, 1+ [0, Po st L to] above equations for the final coordinate representations, this
+ 3= ) (37) switches all stability matrice#\,B=D,—C, respectively,
and the classical action generataps¢=>®,P defined in
for adding up this type of index for any two finite joining Appendix B. Hence the analogous semiclassical matrix ele-
trajectory segments. For the case of a sufficiently small timénents take their requirechonuniform semiclassical forms
interval [t;,t; 4] this reduces to the infinitesimal additive R
property[cf. Eq. (26)] (pIU(t,to)|ao)**= (—2mifi) -\ dew, p(t)| 2

o 1.Potis1.to]= 1[G ,Poti o]+ 2(mi— ). (38 I~ _ o _
v[Gj+1,Po3tj+1:t0] =210, Posty tol + 2 (1= 0y). (38 XGX%%CD(D,QO,L'[O)—IEV[D,QO,t,to]}

The integery; is given by Eq.(27) anda; by [cf. Eq.(28)] (41)
UNjZSig{[ﬁij(qJ' P ;tj+1-tj)]_lﬁqOQ(tj+1)[¢9qOQ(tj)]_l}
= sig{ 9, A(t) [ dq0(tj+ 1)1~ dp A0 P} it 1, 1))} i _
=Sig{B(t;+1.t;) At + DAL Y Xex‘{zq’(p’po;t'%)‘iEv[p'po;t'to]}-

=sig{A(t)A(tj+1)  B(tj1.t)} (39) (42)

(plU(t,to)|poy>*= (27ih) N2 dewy p(t)] Y2



2966

The properties for adding the index for any two joining finite

trajectory segments, analogous to E¢34) and (37), are
then

v[Pj+1,Postj+1,to]=v[Pj+1,Pj 1,41+ v[Pj,Post;j . to]

1
+5(N=)) (43

and
v[Pj+1.90:tj+1,to] = v[Pj+1,9; b+ 1,41+ v[P; . dost; 1 to]

1__ =
+§(,(Lj_0'j), (44)

where

= —Sigl[ 0q P(0j . Pj 3t + 1,1 p Pt + D FpoP(t)] 71
= = SigdpP(t) [ IpoP(t;+1)] g P(T} P} ity 1, 1)}
= —sig{C(t}.1,t) 'D(tj+1)D(t) "1}

= —sig{D(t))D(tj+1) " 'C(tj+1.t)}, (45)

== sigl[ 9, P(0 Py i+ 1.1) ] g Pt D[ g P(t)] ™
= —sig{aqop(tj)[8q0p(tj+1)]_1¢9qu(qj' Pytivanty)}
= —sig{C(tj.1.t) 1C(t;.1)C(t) Y

= —sig{C(t;)C(t;+1) " *C(t;11,tp}, (46)

= —sigl[dp p(d; Py it 1.8)) 17 1 P Py it 1.8}
= —sig{dq,p(q; ,P; ;tj+1rtj)7lapjp(qj Pyt t}
= —sigD(tj+1.t) "'Cltj41.t))
= —sigC(tj41,t) " ID(tj11,t)). (47)

Within  the small t;;,—t; limit we also have
wj— —sigC(t;;1,tj). Equationg(43) and(44) also give rise
to the infinitesimal index addition propertig¢sf. Egs. (26)
and (38)]

v[Pj+1.Postj+1.t0]=V[Pj.Poit; o]+ 3(j—0j)  (49)
and
V[Pj+1.00:tj+1.to]= [P} .Goity Lol + 3 (=T}, (49)

with the initial index formulacf. Eq. (17)]
v[p(tg),Posto to]= = Z[SIg{[ I P(to )] *dq,P(to )} +N]
= —3[sigD(tg )~ *C(tg ) +N]

= —3[sigdq p(te) +NI. (50)

The initial index in Eq. (41) is zero, e,
v[p(ty),do;ts ,to]=0. Finally, the indices for a global in-
terval[ty,t] are given by{cf. Egs.(29) and (40)]

G. CAMPOLIETI AND PAUL BRUMER

+ + 1 — —
v[p,po;tto] = v[p(tg ), Po;to vto]+§§j: (mj—oy), (51

g — =
VP doitito] =52 (= 7)). (52)

Note, finally, that the relevant indices for any other possible
representations, such as partially mixed coordinate and mo-
mentum representations of the propagator, may also be de-
rived as obvious extensions of this treatment.

B. Index connecting relations

In this section we show how the SSP process gives rise to
“connecting” relations that relate the indices in any one rep-
resentation to that in any other representation. For simplicity
we denote the four basic types of indices by
V1= V[quIoitato], Vo= V[qvpo;tato], V3= V[pvqo;titO:lv and
va=v[P,Po;t,tg]. Consider first the relationship between
v, and v,. In accord with the preceding subsection, it is
clear that we can proceed by considering the relation

<QIU(t,to)Ipo>Sc~f daio(a| U(t,t0) o) % ol Po)
~(2wiﬁ)"\'f ddo|dety, q(t)|

i
XEXF{%[WQ:QO;HO)*'QO' Pol—i gvl
(53

within the stationary-phase approximation.

The stationary-phase condition iS  Ppo
=—(9q0¢(q,q0;t,to), which shows that, according to the
first set of generator relations in E@2), all the stationary-
phase pointsj,= g correspond to the classical root trajec-
tories starting withp, and ending withq=q(dqg,po;t,to)-
These trajectories are, as required, the same as those within
Eq. (35). Using the second of Eq¥B3), the Hessian of
the above integral phase s aéOqS(q,qo;t,to)
=[ap0q(t)]‘1~aqoq(t). Taking the determinant and signa-
ture of this Hessian and substituting these into the stationary-
phase formula for the integral in E€G3) then recovers the
semiclassical result of E435). In addition it establishes an
index connecting relation between and v,

va=v1+3(N=sig{[dp a(t)] " dg,a(D)})
=p,;+2[N—sigB 'A]=v,+i[N—sigABT]. (54)

Here for the stability matrices we have used the notation of
Appendix C. The last expression follows from E@9).
Equation (54) is clearly just a consequence of applying a
different ordering of the SSP process than was used to obtain
Eqg. (35). It is understood that in these connecting relations
all matrices appearing in the equations are assumed to be
nonsingular at time, in accord with the SSP discussion
above.

It is important to emphasize the content of an index con-
necting relation such as E(p4). For any classical trajectory
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it gives the value of a particular index in terms of anothergeneral index properties. All index formulas presented here
index that can be assigned to the same trajectory for timare easily implemented using classical trajectories.

t. For instancey; can be computed using E@9) andv, is This work provides an alternative, and much simplified,
given analogously by Eq40). Those expressions give par- approach to Maslov index theofy] in which we have de-
ticular ways of computing the global value of the separateived a canonical structure of semiclassical phase indices for
indices and their respective changes. In fact, from these forthe propagator based solely on the simple application of se-
mulas changes in either of the indices are readily seen to bguential stationary phase and the use of a generally asymp-
due to the crossing of the respective caustics. Equatidn  totic path-integral approach. The present theory therefore
however, provides a direct connection betwegrandv, so  gives the nonuniform semiclassical structure for matrix ele-
that once one is computed the other follows by simply addments of unitary transformations induced by the family of
ing anend-point signature terrat final timet. Moreover, the propagatorlike operators. Of future interest is related work
connecting formulas then also provide us with straightfor-on the phase indices associated with the canonical structure
ward alternatives in which to obtain a particular type of in- of the nonuniform semiclassical matrix elements for more
dex change in terms of another along the same trajectorgeneral classes of unitary transformations.

segment. For instance, E(h4) can be used to give

A oA A ; APPENDIX A: CONDITIONS FOR SEQUENTIAL
volt—t']=Avy[t—=t"]+3[SIGA()B(1) STATIONARY PHASE

—SigA(t")B(t")"] Properties(i)—(iii) [see Eq.(7)] are essential for the re-

placement of the full stationary-phase result by sequential

for a time segmerttt,t’]. The SSP procedure can be contin- stationary phase. Here we prove these results, given Egs.

ued to relate any other of the representations, exhausting ari$)—(6).

number of index connecting relations desired. Here we sim- From an implicit function theorem we can differentiate

ply provide some of useful connection identities among theg with respect tax giving

four basic types of indices. A stationary-phase transforma-

tion from q to p on Eq.(53), for example, gives rise to a ~ N v SN, 9 T

relation between, and v, dxp(X) = dx(X,Y(X)) + dy@(X,Y(X))- dxy(X). (A1)

Equation(4) givesd,e(x,y(x))= 0. Using this and Eq(6) in

Eqg. (A1) also givesd,o(x*,¥(x*))=0, hence proving prop-

_ — L , erty (i). Another differentiation of Eq(Al) gives
Similar SSP applications give rise to other connecting rela-

tions such as

v,=v,— 3[sigB A+ sigAC 1]. (55)

926=20(X,Y(X)) + 3, (X,J(X)) - 0:(X)

v3=v,+3[N—sigDB™ 1], (56)
and using the identity obtained by implicitly differentiating
V4= vs— L[N+sigd 1C]. 57 EA(4)
We can of course also combine any pair of the above rela- Ty @ (X, (X)) 3,F(X) + 3y (x,5(x))=0

tions to give further results. Moreover, it is clear that one can

also generate several forms of such relations for the samgives the Hessian identity
pair of indices based on different SSP routes. For instance,

the combination of Eqs(56) and (57) leads to a relation .~ —~

betweenw; and, that is alternate to Eq55). Extensions of X%~ 3 (X,Y(X))

the connecting relations also follow similarly for indices of — ayde(x,J(X))- [ 2@ (%,F(x))] ™[ 3, dx @ (x,F(X))]".
any other mixed coordinate and momentum representations
and these can also be used to further describe index changes (A2)

along a trajectory. These connecting relations are some of the

essential aspects that arise in Maslov's theptyl4. We — This involves the matrix inverse of the sub-Hessigp,
have therefore shown that the applications of SSP operationghich exists because of E€5); the superscript denotes the

with assorted orderings, produce various index formulas thatanspose. Of course, EGA2) is true forx=x, . To show
are really properties of any classical trajectory or symplectigiij) we must show

evolution.
, e dydxe
IV. CONCLUSION T(x))=
dew(xyy)go(x,y(x))—de [&yo—,X(P]T a§¢
We have shown, based on straightforward sequential y=¥(x)
stationary-phase procedures, that differing sequences of . 5, e~ o
stationary-phase operations among the nonuniform propaga- = dewj e (x,y(x))devy . (A3)

tor matrix elements in the various coordinate and momentum
representations lead to various useful index formulas andhis equality follows via the useful matrix identif{]
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Im Omxn B C Im Omxn _aqﬂqod"apoqu):lN- (7(210(;52[(9p0q(t)]_1'ﬂqoq(t),
-D7Ic’ 1, c' b||{-Dc" 1,

Iap=dp P()- [ A(D] Y,

B—CD C" Opxn ) .
, (Ad) P2+ 9 A1) +[ Aqdq, 17 = dq P(L). (B3)
Onxm D
Other classical generators considered explicitly as func-
tions of other combinations of initial and final canonical vari-

whereB, C, andD are anymxm, mXxn, andnxn matri-  apjes are just Legendre transforms of one another. A genera-
ces, respectively, anb is symmetric nonsingulai, is the  {or of motion expressed as a function of the initial
identity mX'm matrix andQy, , is themXxn matrix of zeros.  ,,omentum and final coordinate is given by

Taking determinants of EA4) and using the fact that the

(m-+n)X(m+n) matrix (and its transpogenvolving sub- E’(q,Po;t'to): (,90:t,t0) + qo- Po. (B4)
matricesl ,,|,, has a unit determinant gives

whereqy is here considered as a function gpfand p,, and
the times, by inverting the trajectory root equation or by

B C ; . ) > . S
_  Am-1AT inverting the first relation in Eq9B2). Differentiating Eq.
dew< CT Dp|=deD de(B-CD"C). (AS) (B4) while using Eqs(B2) gives yet another set of generator
relations
Now letting B=d;e, C=dydxe, andD=dje in Eq. (A5) Go= dp,#(0Post,to),  P(1)=dqh(,Post,to). (BS)

gives Eq.(A3) and hence proves property). Property(iii)

follows directly from Eg. (A4), and by the property The analogs of Eq$B3) are obtained by differentiating Egs.
sigP"MP =sigM for any invertible matrixP inducing such a  (B5);

congruence transformation. The latter identity is seen by ap- ~ . 1

plying the Morse lemmg6] to nondegenerate quadratic  9qdp,® 9, A()=In, dp ¢=—[dqA(1)] - dp a(1),
forms  f,f’ defined by f(z)EEij(PTMP)ijzizj

=3jM;jz{zf=1'(2'), wherez{ =%, P;z,. Morse’s lemma a§Z=&qop(t)-[aqoq(t)]‘l,
then immediately gives sﬁéf(O)zsig&i,f’(O), and hence _ _
sigP"MP =sigM. Making the obvious identification d® as aéglr &poq(t)+[aqapo¢]T=apop(t). (B6)

the third (m+n) X (m+n) matrix appearing on the left-hand

side of Eq.(A4), then proves Eq(8) and completes the Two other useful basic forms of the generators are those

proof. explicitly involving the final momenta. One such type of
generator of motion is a function of the initial coordinate and

final momenta and can be defined vba
APPENDIX B: CLASSICAL GENERATOR RELATIONS

In this appendix we present some basic useful identities ®(p,do;t,to) = #(,G0;t,t0) —q- P, (B7)

for the fourtypgs of classical generators used in the theory of ith q considered as a function ¢, andp, and the times,
Sec. lll. The first set of properties concerns the classic

action expressed as a function of initial and final coordinates” " verﬂng the t(rjajeclthry rpot equat|qm_(f¥)=p _or_by In-
and time variables as given by verting the second relation in Eqd2). Differentiating Eq.

(B7) while again using Eq9B2) gives the set of generator
relations

! - ! ! ’ ! ~ ~
d)(qqu!tltO):J;Odt’[p(t,)q(t )_H(Q(t )1p(t )vt )]! pOZ_(?qu)(plqOItltO)! Q(t):_ﬁpq)(p,qO,Lto)
(B1) (B8)

_— - . Using these relations in the same manner as above gives the
where the initial momentunp, within the trajectory func- analogs of Eqs(B3) or (B6)
tions q(t) =0a(do.Po:t,to) and p(t)=p(o,Po;tto) is con- N N
sidered as a function of the vailablesqo,t,to implicitly via — 90, @ dp P(D =1, aéoq):[apop(t)]—l. Jg P(t),
the trajectory root equatiog(t) =q.
Every such action integral satisfies the useful generator v 1
relations[12] Ip®= = p a(t) - [dp P(D)]

2 T
Po=—dq,#(q:0o;tto),  P(t)=3qeh(d,0o;t,to)- TP GaP0) L opd00 b1 7= = 00,90 (89
(B2 The last type of generator considered is a function of the
initial and final momenta and again can be defined via the
Differentiating these relations gives rise to other useful idenother generators. In terms df, for instance, it is given by
tities for expressing various Hessian matrices of the genera- _
tor in terms of stability matrices for any given trajectory: D(p,po;t,teg)=&(aq,po;t,te)—q-p, (B10)
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with q here considered as function pf and p, and the
times, and obtained by inverting the second relation in Egs. J=
(B5). Differentiating Eq.(B10) while using Egqs(B5) gives
the set of generator relations

o Iy
“1y 0y (3

has the well-know12] properties)'= —J, J°=—1,,, and
JTJ=33"=1,y. The evolution ofM satisfies the first-order
Go=p,®(P:Post ko), A(t)=—3,®(P,po;t,to).  (B1D  gygtem of differential equations for the stability matrices

Analogous relations to the above then follow using Egs. ﬂ _ 142
(B11). M =39 pHM (C4)

This equation and its matrix transpose also readily proves
Fpdp, P - dg P(1) =1y, 5,230‘1):—[3qop(t)]71'0pop(t), Egs. (C2) since Eq. (C4 gives d(MIMT)/dt
=d(MTIM)/dt=0,y and sinceM (t=t,) =1,y So that Egs.
’ . (C2) are obeyed at initial tim&, and hence satisfied for all
(B’pq)= _(7qOQ(t)[<9qop(t)] ' time.
Substituting Eq.(C1) into the first of Eqs.(C2) gives a
first set of symmetry relations
aﬁ@-apop(t)ﬂapapod)f: — dp,a(t). (B12) y y
ATC=C'A=(A"C)", B'/D=D'B=(B'D)" (CH)
It is instructive to note that,_for instancg, the identiti_es of 5nd substitution into the second of EGE2) gives
Egs. (B9) and(B12) are consistently obtained by making a
global canonical change of variablgs- —p, p—q, which ABT=BAT=(ABT)T, cD'=DCT=(cD")T. (C#)
basically reverses the roles of the coordinates and momenta
for all t, with ¢—® and ¢— ® within Egs.(B3) and(B6).  Multiplying the first relation in Eq(C5) by A™* to the right
Note that the above are just the properties of Fheype ~ and by A")™* to the left givesCA™1=(CA™")". Similar
generating functiong12]. marjlpulaflons on :[he other relations _readlly. show. that
DB, A"1B andD !C are also symmetric matrices, given
that the inverses exist. Such symmetry properties are also
APPENDIX C: STABILITY MATRICES AND SIGNATURES evident from Eqs(B3), (B6), (B9), and(B12). The inverses
) ] ] o - of such matrix multiples are obviously also symmetric since
In this appendix we give some matrix identities among(s-1)T= (SN~ for any invertible matrixS.
the various stability matrices and the resulting signature Equations(C5) and(C6) now lead to the following signa-
properties that are used in Sec. Ill.B. The properties are gure properties. In particular, multiplying the first of Egs.
simple consequence of the symplectic structure of canonicglCs) on the right by the identity in the forn€ 'C gives
transformations. Indeed, let us group the stability matriceg\T"C=CT(AC!)C. Then taking signatures while using the
into the usual Monodromy matrix properties si§=sigP'SP and sig=sigS !, for any invert-
ible matrix P and symmetricS, shows that

001 dpd)\ (A B

SigATC=sigAC 1=sigCA 1. (C7)
M=\ gq,p(t) dpp(t) |=| C D (Cy . o . o
Similar manipulations on the other relations readily give the
rest of the useful symmetry relations,
M represents a matrix Jacobian of a canonical transformation sigB"D=sigBD~=sigDB 1, (C8)
and hence satisfies the symplectic condition
SigABT=sigB~A=sigA !B, (C9
MTIM=J, MIM "=, (C2)
and
where sigCD"=sigC™ !D=sigD"'C. (C10
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