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We use the common eigenvectorsuz& of two particles’ center-of-mass positionXc5m1X11m2X2 and
mass-weighted relative momentumPr5m2P12m1P2 , as well as the eigenvectorsuh& of the other pair com-
mutative operatorsX5X12X2 andP5P11P2 to solve the dynamics of two coupled oscillators. The coupling
involves both interbond potential and kinetic coupling. This approach seems to be simple, convenient, and
natural.

PACS number~s!: 03.65.Ca, 03.65.Fd

I. INTRODUCTION

In Ref. @1# the explicit form of the common eigenvectors
uh& of the relative positionX5X12X2 and the total momen-
tum P5P11P2 of the two particles, which were first con-
sidered by Einstein, Podolsky, and Rosen@2# in their argu-
ment that the quantum mechanical state vector is not
complete, are constructed in the two-mode Fock space,

uh&5exp$2 1
2 uhu21ha1

†2h* a2
†1a1

†a2
†%u0,0&, ~1!

in which h5h11 ih2 is a complex number. It is remarkable
that h ’s real part and imaginary part are the eigenvalues of
X12X2 andP11P2 , respectively; e.g.,

~X12X2!uh&5A2h1uh&, Xi5~1A2! ~ai1ai
†!, i51,2.

~2!

~P11P2!uh&5A2h2uh&, Pi5~1/A2i ! ~ai2ai
†!, ~3!

When two particles have different masses, we have to con-
sider the fact that center-of-mass coordinateXc and mass-
weighted relative momentumPr are permuted, where

Xc5m1X11m2X2 , Pr5m2P12m1P2 , ~4!

m15m1/~m11m2! , m25m2/~m11m2! ~5!

are reduced masses, withm11m251, then in Ref.@3# the
explicit form of the common eigenstate ofXc andPr is de-
rived, which is

uz&5exp$2 1
2 uzu21 ~1/Al! [ z1~m12m2!z* #a1

†

1 ~1/Al! @z*1~m22m1!z#a2
†1@~m22m2!/l#

3~a1
†22a2

†2!2 ~4m1m2/l! a1
†a2

†%u0,0&, ~6!

where

l52~m1
21m2

2!. ~7!

z ’s real part and imaginary part are the eigenvalues ofXc and
Pr , respectively, e.g.,

Xcuz&5Al/2z1uz&, Pr uz&5Al/2z2uz&. ~8!

Both uz& and uh& are eligible to compose a representation
because they are orthonormal and complete; e.g.,

^zuz8&5pd~2!~z2z8!, ^huh8&5pd~2!~h2h8!, ~9!

E d2h

p
uh&^hu5E d2h

p
:exp$2@h2~a12a2

†!#

3@~h*2~a1
†2a2!#%:51, ~10!

E d2z

p
uz&^zu51, ~11!

where the integration within an ordered product~IWOP! of
operators@4–6# is employed.

A question thus naturally arises: Can we find more appli-
cations of the neŵ zu and ^hu representation? Recall that
when tackling a system composed of two particles in quan-
tum mechanics, it is frequently useful to convert from indi-
vidual particle coordinates to center-of-mass coordinates;
thus we expect thêzu-^hu representations to play some role
in solving some dynamical problems. In this work we show
that the^zu-^hu representation provides a simple and intui-
tive frame for establishing some differential equations for the
wave function of two-particle systems. These equations are
solvable even though the interaction between two particles
includes both interbond potential and kinetic coupling; such
cases often occur in the theory of molecule dynamics.

II. THE OVERLAP OF Šhzz‹

By using the center-of-mass coordinate and momentum
(Xc ,P) and relative coordinate and momentum (X,Pr), we
can transform the general form of the two-particle Hamil-
tonian* Mailing address.
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H5
1

2m1
P1
21

1

2m2
P2
21kP1P21V~X12X2!, ~12!

here the potential depends only on the distance between two
particles, andP1P2 represents the kinetic coupling~such
terms are often used to describe interbond potential and ki-
netic coupling in molecule dynamics@7#!, into

H5~1/2M 1km1m2!P
21~1/2m 2k!Pr

2

1k~m22m1!PPr1V~X!, ~13!

where M5m11m2 is the total mass andm5 m1m2/
(m11m2) is the reduced mass.

From this form we see that it is hard to separate the mo-
tion of center of mass, since the couplingPPr is also in-
cluded in~13!. Therefore we turn tôhu representation.

SandwichingH between̂ hu andH ’s eigenstateuEn& we
obtain

En^huEn&5@~1/M 12km1m2!h2
21V~A2h1!#^huEn&

1~1/2m 2k!^huPr
2uEn&

1k~m22m1!A2h2^huPr uEn&. ~14!

Because of Eqs.~2!, ~3!, and~11!, we can put Eq.~14! into

En^huEn&5@~1/M 12km1m2!h2
21V~A2h1!#^huEn&

1~1/2m 2k!K hUPr
2E d2z

p Uz L ^zuEn&

1k~m22m1!A2h2K hUPrE d2z

p Uz L ^zuEn& ,

~15!

so it seems necessary to calculate the overlap^huz&. This
can be achieved by using coherent states’ overcompleteness
@8# and the IWOP technique,

^huz&5K 0,0Uexp$2 1
2 uhu21h* a12ha21a1a2%E d2Z1

p

d2Z2
p UZ1Z2L K Z1Z2UexpH 2 1

2 uzu21
1

Al
@z1~m12m2!z* #a1

†

1
1

Al
@z*1~m22m1!z#a2

†1
m22m1

l
~a1

†22a2
†2!2

4m1m2

l
a1
†a2

†J U0,0L
5E d2Z1

p

d2Z2
p

expH 2uZ1u22uZ2u22
1
2 uhu22 1

2 uzu21h*Z12hZ21
1

Al
@z1~m12m2!z* #Z1*1Z1Z2

1
1

Al
@z*1~m22m1!z#Z2*1

m22m1

l
~Z1*

22Z2*
2!2

4m1m2

l
Z1*Z2* J . ~16!

In terms of the mathematical formulas

E d2Z

p
exp$suZu21 f Z21gZ* 21aZ1bZ* %5 1/As224g f exp$ ~2sab1 fb21ga2!/~s224 f g! %, ~17!

where the convergence condition is Re(s1 f1g),0, Re@(s224 f g)/(s1 f1g)#,0, or Re(s2 f2g),0,
Re@(s224 f g)/s2 f2g)],0, we perform the integration in~16!. After a straightforward but tedious calculation we finally
obtain

^huz&5E d2Z2
p

exp$2 1
2 ~ uhu21uzu2!%exp$2uZ2u22hZ21 ~1/Al! @z*1~m22m1!z#Z2*1 @~m22m1!/l# ~Z21h* !2

2 @~m22m1!/l# Z2*
21 1/Al @z1~m12m2!z*2 ~4m1m2/Al! Z2* #~Z21h* !%

5Al/4 exp$ i @~m22m1!~z1z22h1h2!1Al~z2h12z1h2!#%, ~18!

which leads to, for them15m2 case,

^huz&5 1
2 exp$ i ~z2h12z1h2!%. ~19!
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III. THE REPRESENTATIONS OF „Pr ,Xc… IN Šhz BASES
AND „P,X… IN Šzz BASES

Using Eqs.~11! and ~8! we can deduce

^huPr5K hUPrE d2z

p UzL ^zu5K hU E d2z

p
Al

2
z2UzL ^zu

5E d2z

p
~2A 1

2 i !F ]

]h1
2 i ~m12m2!h2G ^huz&^zu

5H 2A 1
2 i

]

]h1
2

1

A2
~m12m2!h2J ^hu, ~20!

^huXc5K hUXcE d2z

p UzL ^zu5K hU E d2z

p
Al

2
z1UzL ^zu

5E d2z

p

i

A2 F ]

]h2
2 i ~m12m2!h1G ^huz&^zu

5H 1

A2
i

]

]h2
1

1

A2
~m12m2!h1J ^hu. ~21!

Similar to the discussion above, we can get

^zuP5K zUPE d2h

p
UhL ^hu5K zU E d2h

p
A2h2UhL ^hu

52 iA2

lF ]

]z1
2 i ~m12m2!z2G K zU E d2h

p
UhL ^hu

5H 2A2

l
i

]

]z1
2A2

l
~m12m2!z2J ^zu, ~22!

^zuX5K zUXE d2h

p
UhL ^hu5K zU E d2h

p
A2h1UhL ^hu

5A2

l
i F ]

]z2
2 i ~m12m2!z1G K zU E d2h

p
UhL ^hu

5HA2

l
i

]

]z2
1A2

l
~m12m2!z1J ^zu. ~23!

These representations, as we will see shortly, will be of great
use in solving the dynamics of two-body system.

IV. DIFFERENTIAL EQUATIONS FOR ENERGY
EIGENFUNCTIONS IN Šhz REPRESENTATION

Based on thê hu representation ofPr , we are able to
transform the operator equation~15! as

$@~1/M 12km1m2!h2
21V~A2h1!#2En2

1
2 ~1/2m 2k!

3@]/]h1 2 i ~m12m2!h2#
22 ik~m22m1!h2

3@]/]h1 2 i ~m12m2!h2#%^huEn&50. ~24!

To solve this differential equation, we make the ansatz

^huEn&5exp$ i ~m12m2!h1h2%cn . ~25!

After substituting~25! into ~24!, we obtain the following
equation forcn :

H F S 1M 12km1m2Dh2
21V~A2h1!G2En2

1

2S 1

2m
2kD ]2

]h1
2

2 ik~m22m1!h2

]

]h1
J cn50. ~26!

Further, we introduce a wave functionwn through the rela-
tion

cn5exp$ i ~m12m2! @2mk/~122mk!# h1h2%wn ~27!

and find thatwn satisfies the following equation:

H 1

M S 12mMk2

122mk Dh2
21V~A2h1!2En2

1

2 S 1

2m
2kD ]2

]h1
2 J wn

50. ~28!

Thus we see that once we have worked in^hu representa-
tions, the complicated dynamical problem of two-coupled
particles can be simplified as a one-variable differential
equation, including another variable as a parameter.

V. ENERGY VALUES OF THE HAMILTONIAN
FOR SOME SPECIAL POTENTIALS

First, whenV(X)5 1
2mv2X2, the parabolic potential, Eq.

~28! becomes

H 2
1

2 S 1

2m
2kD ]2

]h1
21mv2h1

22En1
1

M S12mMk2

122mk Dh2
2Jwn50.

~29!

Comparing with the Hermite equation representing a har-
monic oscillator

H 2
1

2m

]2

]x2
1 1

2mv2x22EnJ cn50, En5~n1 1
2 !v, ~30!

we obtain the energy level for Eq.~29!,

En5~n1 1
2 !A122kmv1

1

M

12mMk2

122mk
h2
2 . ~31!

Because the total momentum commutes with the Hamil-
tonian,@P,H#50,A2h2 is the eigenvalue ofP, thus Eq.~31!
can be rewritten as@Eq. ~39!#

En5~n1 1
2 !A122kmv1

12mMk2

122mk

p2

2M
. ~32!

Second, whenV(X12X2)52V0d(X12X2), thed-function
potential, Eq.~28! turns to
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$2 1
2 ~1/2m 2k! ~]2/]h1

2! 2V0d~A2h1!2En

1 1/M @~12mMk2!/~122mk!#h2
2%wn50. ~33!

According to the standard procedures for deducing the
bound-state energy of thed-function potential, we can obtain
En for Eq. ~33!, which is

En52
mV0

2

2~122mk!
1

1

M

12mMk2

122mk
h2
2

52
mV0

2

2~122mk!
1
12mMk2

122mk

p2

2M
. ~34!

Third, when V(XW 12XW 2)5 2e2/(uXW 12XW 2u) , the three di-
mensional~3D! Coulomb potential, by introducing 3D̂hW u
representation, which is the common eigenfunction of the
total momentum vectorPW and the relative coordinate vector
XW , PW uhW &5A2hW 2uhW &, XW uhW &5A2hW 1uhW &, the corresponding
energy eigenvector equation in^hW u representation is

H S 1M 12km1m2D uhW 2u22
e2

uA2hW 1u
2En2

1
2 S 1

2m
2kD

3F ]

]hW1
2i~m12m2!hW2G22ik~m22m1!hW2

3F ]

]hW1
2i~m12m2!hW2GJ^hW uEn&50. ~35!

Following the same procedure as in deriving~28!, we obtain

$2 1
2 ~1/2m 2k! ]2/]hW 1

22e2/uA2hW 1u 2En

1 1/M @~12mMk2!/~122mk!#uhW 2u2%wn50. ~36!

wherewn is defined as

wn5exp$ i ~m22m1!@1/~122mk!#hW 1•hW 2%^hW uEn&. ~37!

From ~36! the energy level can be directly derived,

En2 uhW 2u2~12mMk2!/M ~122mk!

5 2me4/2n2~122mk! , n51,2,3,. . . , ~38!

which differs from the well-known energy of Coulomb po-
tential by 1/(122mk) , stemming from thekP1P2 term.
However, from Eq.~28! we see thatwn can only be deter-
mined up to a function ofh2 , hence we turn tôzu to estab-
lish some other equations to specify it.

VI. DIFFERENTIAL EQUATIONS IN THE Šzz
REPRESENTATION

SinceP is conservative, we can introduce common eigen-
states ofP andH,

Hup,En&5Enup,En&, Pup,En&5pup,En&. ~39!

In ^zu representation, the wave functions ofHup,En& and
Pup,En& are given by, respectively,

En^zup,En&5F S 1

2M
1km1m2D p21k~m22m1!S l

2D 1/2z2p
1S 1

2m
2kD l

2
z2
2G^zup,En&1^zuV~X!up,En&,

~40!

p^zup,En&5^zuPup,En&. ~41!

Because of Eqs.~22! and~23!, we can put Eqs.~40! and~41!
into

HVF i S 2l D 1/2 ]

]z2
1 S 2l D 1/2~m12m2!z1G

1S 1

2M
1km1m2D p21k~m22m1!S l

2D 1/2z2p
1S 1

2m
2kD l

2
z2
22EnJ ^zup,En&50, ~42!

H 2 i S 2l D 1/2 ]

]z1
1 S 2l D 1/2~m22m1!z22pJ ^zup,En&50.

~43!

By making the ansatz

Cn5exp$ i ~m22m1!z1z2%^zup,En& ~44!

and letting

z052 A2mk~m22m1!p/~122mk!Al , ~45!

T5S 1

2M
1km1m2D p22S 1

2m
2kD l

2
z0
25

12mMk2

122mk

p2

2M
,

~46!

we obtain two simpler equations forCn ,

HVF i S 2l D 1/2 ]

]z2
G1S 1

2m
2kD l

2
~z22z0!

21T2EnJ Cn50,

~47!

H 2 i S 2l D 1/2 ]

]z1
2pJ Cn50. ~48!

Especially whenV(x)5 1
2mv2X2, Cn can be solved analyti-

cally. In fact, from Eq.~48! we know thatCn should take the
form

Cn5exp$ i ~l/2!1/2pz1%xn . ~49!

Herexn is independent ofz1 and can be derived by substi-
tuting Eq.~49! into Eq. ~47!,
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H 2
1

l
mv2

]2

]z2
2 1

l

2 S 1

2m
2kD ~z22z0!

21T2EnJ xn50.

~50!

The result is

xn5NnexpH 2
lA~122mk!

4mv
~z22z0!

2J
3HnH Fl2~122mk!

4m2v2 G1/4 ~z22z0!J , ~51!

whereHn is the Hermite polynomial andNn is the normal-
ization constant. Combining Eqs.~44!, ~49! and ~51!, we
have the wave function

^zup,En&5NnexpH i S l

2D
1/2

pz11 i ~m12m2!z1z2

2
lA~122mk!

4mv
~z22z0!

2J
3HnH Fl2~122mk!

4m2v2 G1/4~z22z0!J .
Also, from Eq.~50! we see that the energy level isEn5(n
1 1

2 )A122mkv1T, just the same as Eq.~32!, because of
Eq. ~46!. In conclusion, by establishing the^zu-^hu represen-
tation, we provided a convenient approach for solving some
dynamical problems of two-body systems.
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