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Solving some two-body dynamical problems i |- | representation
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We use the common eigenvectd® of two particles’ center-of-mass positio,= w1 X+ u,X, and
mass-weighted relative momentuPn= u,P,— u,P,, as well as the eigenvectog) of the other pair com-
mutative operatorX = X;— X, andP=P,+ P, to solve the dynamics of two coupled oscillators. The coupling
involves both interbond potential and kinetic coupling. This approach seems to be simple, convenient, and
natural.

PACS numbegs): 03.65.Ca, 03.65.Fd

l. INTRODUCTION AN=2(ul+pul). (7)

In Ref.[1] the explicit form of the common eigenvectors {’s real part and imaginary part are the eigenvaluesadnd
| 7) of the relative positio’XX=X;— X, and the total momen- P, , respectively, e.g.,
tum P=P,+ P, of the two particles, which were first con-
sidered by Einstein, Podolsky, and Rog&hin their argu- X|0y=\N24310),  PilO)=N1245]0). (8
ment that the quantum mechanical state vector is no

complete, are constructed in the two-mode Fock space, éOth |£) and |») are eligible to compose a representation

because they are orthonormal and complete; e.g.,

— _1 2 T_ x4t taf
|7/>—exp[ 2|77| tna;— 7 a2+a1a2}|010>1 1) <§|§r>:ﬂ_5(2)(§_§r), <77|77/>:775(2)(77_77r), (9)

in which = n,+i, is a complex number. It is remarkable

2 2
that »'s real part and imaginary part are the eigenvalues of f d_77| {(n|= f d—n:exp{—[n—(al—ag)]
X;—X, and P4+ P,, respectively; e.g., ™ ™
* T -
X=Xl my=\2mlm), Xi=(1V2)(a+a), i=12. ' -(@—ali=1 10
A [ o= ay
(P1+Py)|m)=\27,lm), Pi=(1/2)(a-a)), (3 4

When two particles have different masses, we have to conV-Vhere the integration within an ordered proddWOFP) of

sider the fact that center-of-mass coordinZtieand mass- Opi\ratl?(r:s[:il(;r?]tésus?gtlgry;?. arises: Can we find more aopli-
weighted relative momenturi, are permuted, where 2 4 y : . PP
cations of the new({| and (7| representation? Recall that

(4) when tackling a system composed of two particles in quan-
tum mechanics, it is frequently useful to convert from indi-
vidual particle coordinates to center-of-mass coordinates;
thus we expect théZ|-( 5| representations to play some role

are reduced masses, wigh,+ u,=1, then in Ref[3] the in solving some dynamical problems. In this work we show
explicit form of the common eigenstate X, and P, is de- that the({|-(#| representation provides a simple and intui-

Xe=m1 X1+ uoXy,  Pr=puP1—uqPs,

mp=my/(my+my),  up,=my/(my+my) 5

rived, which is tive frame for establishing some differential equations for the
wave function of two-particle systems. These equations are
|y =exp{— |2+ (LIYN) [£+ (pa— o) C* 1a) solvable even though the interaction between two particles
includes both interbond potential and kinetic coupling; such
+ (N[ +(pa— ) E1ag+ [ (ma— wo)/N] cases often occur in the theory of molecule dynamics.
X (aj?~a}?) = (4p1ual)) ajaj}|0,0), ®

Il. THE OVERLAP OF (#5|®)

where By using the center-of-mass coordinate and momentum
(X¢,P) and relative coordinate and momentuX,P,), we
can transform the general form of the two-particle Hamil-
* Mailing address. tonian
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1 1 E(7|E)=[(1/M +2k 2HV(\/2 E
H= _Pi"' —P§+kP1P2+V(X1—X2), (12) n{7|En)=[(1/ M1k2) 72 (\/—771)]<77| n)
+(1/2p —k){ 7| P7|Ep)

2m; 2m,
here the potential depends only on the distance between two K o— > P|E 14
particles, andP{P, represents the kinetic couplinguch (12 Ml)\/—772<77| [En)- (19
terms are often used to describe interbond potential and kBecause of Eq92), (3), and(11), we can put Eq(14) into

netic coupling in molecule dynami¢g]), into X
En(7|En) =[(1/M +2Kp1p2) 75+ V(N2 1) (7] Ep)
H=(1/2M +Kkuquy) P2+ (1/2 —k) P2

d?¢

2

(2 1) PP+ VI(X), (13 +(1’2“‘k)<”PrJ7§><f|En>

where M=m;+m, is the total mass andu= mim,/ _ d_2§

(m;+m,) is the reduced mass. k(u ’“1)\/57]2< g Prf ™ g><§|E“>’
From this form we see that it is hard to separate the mo- (15)

tion of center of mass, since the couplifP, is also in-

cluded in(13). Therefore we turn tq 7| representation. so it seems necessary to calculate the oveflajd). This
SandwichingH betweery 5| andH’s eigenstatdE,) we  can be achieved by using coherent states’ overcompleteness

obtain [8] and the IWOP technique,

d?z, d*z,

™

lez> < 212,
0,0>

1
<7I|§>:<04 exp{—3|n|*+ 7*a;— 7732+3132}J eXJl — 3147+ K[?"(Ml_ﬂz)g*]ai

1 Mo~ My Apgpn
Rl e pa) st (@i’ aph - T ada

:deZl dzzzex =242 =1Zo|%= 39| = 31 ¢+ n* 21— nZ +i[§+( — ) {12 +2,2
p p 1 2 217 2 N L1 M4 \/X M1 M2 1 142
b (o ) 25+ Y 232 757y M2 g g (16
\/X M2 M1 2 \ 1 2 N 142 (-
In terms of the mathematical formulas
d’z
f 7exp{s|z|2+f22+gz*2+ aZ+ BZ*}= 1/\/s*—4gf exp{ (—saB+fB%+ga?)/(s*—4fg)}, (17

where the convergence condition is Re(f+g)<O0, Rd (s?—4fg)/(s+f+g)]<0, or Re6—f—g)<O0,
Re (s>—4fg)/s—f—g)] <0, we perform the integration ifiL6). After a straightforward but tedious calculation we finally
obtain

d?z
(nl0)= J = Zexp{— 3(| 7|2+ |22 Yexpl | Zal2— 7Zo+ (LN [2% + (o= ) £1Z5 + [(pa— 1) IN] (Zo+ 7%)?

— [(a— m)IN]1Z5 %+ LINN[ L+ (e — po) & — (Apapual \N) 235 1(Zo+ 7))}
= N4 exdi[(p2—pm1)({1lo— mm2) + \/X(é"z??l_ L1im2)1} (18

which leads to, for the.; = u, case,

(n| &)= 3exp{i(Lam1— L1m2)}- (19
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Ill. THE REPRESENTATIONS OF (P, ,X.) IN (5| BASES
AND (P,X) IN (£ BASES

Using Eqgs.(11) and(8) we can deduce

g2 d?¢ |\
<n|Pr=<nPrJ7§§><§|:<’7 7§\[§§2 g><§|
d? 14
=J75 ﬁi){a——lwl 12) a [{ 9l (L]
9 1
:‘—\/gia—m—ﬁ( —w2)m2( {7l (20
g2 d?c I\
<7,|xC=<nxcf7§€><§l=<n 75\[551 §><§|
C(d¥ i e
_J?E (7_772_|( — 2 M <77|§><§|
e | 21)
=\ %' \/E(Ml wa2) 1 {7l (

Similar to the discussion above, we can get
d? d?
<£IP=<§PJ77] n><nl=<§f7n\/§nz 7]><7I|
2| 9 d?
=i \[K{ﬁ——i(m—ﬂz)ézKZU—n 77><77|
_ \F \F
= N N(m1~m2)ls
x={ex [ £ ) ai=(4 [ £22
(¢IX={¢ —| 7 )[(n={ ¢ | —V2m
21 4
_\/>[ Fr —i(p1— Mz)glK f
2
(\[)\ 552 \/> —M2){1

(<l (22

77><77|

oo

(¢l (23
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After substituting(25) into (24), we obtain the following
equation fory,:

L 2k 21 V(2 E 11 K ”
v T 2Kuapz | Mot V(N2m) |~ By =5 T
—ik(pa—p1) Ly } Yn=0. (26)

Further, we introduce a wave functias, through the rela-
tion

n=expli (1= pp) [2uk/(1—=2uK) ] 7172} @ (27)

and find thaty, satisfies the following equation:
1
M

Thus we see that once we have worked(#] representa-
tions, the complicated dynamical problem of two-coupled
particles can be simplified as a one-variable differential
equation, including another variable as a parameter.

1— uMK?
1-2uk

11 7
, Y
75+ V(N291) ~E, 2(2M k)&m}%

=0. (29

V. ENERGY VALUES OF THE HAMILTONIAN
FOR SOME SPECIAL POTENTIALS

First, whenV(X) = 3uw?X?, the parabolic potential, Eq.
(28) becomes

44+

Comparing with the Hermite equation representing a har-
monic oscillator

1 (1—uMK?

2
k—2+,uw771 E+ 12k

any

n%}svn:O-
(29

1 &
: 2m7+ I mw?x? n]t//r,:O E,=(n+3)w, (30

These representations, as we will see shortly, will be of great

use in solving the dynamics of two-body system.

IV. DIFFERENTIAL EQUATIONS FOR ENERGY
EIGENFUNCTIONS IN (5| REPRESENTATION

Based on thg 7| representation oP,, we are able to

transform the operator equatigh5) as

{[(1/M +2kpypp) 73+ V(N2 7)1 -
X[aldny —i(pu1—

—3(1/2u —k)
Nz)”’lz]z_ik(ﬂz_ﬂl)ﬂz
X[aldmy —i(p1— p2) n21}{n|En) =0. (24)

To solve this differential equation, we make the ansatz

(n|En)=exp{i(wi— mo) 7172} tn - (25)

we obtain the energy level for EQ9),

1 1-uMk?
=(n+3)V1— 2k,uw+M 1'“2 K 7s. (31

Because the total momentum commutes with the Hamil-
tonian,[P,H]=0,\/§7;2 is the eigenvalue oP, thus Eq.(31)
can be rewritten agEq. (39)]

1-uMK? p?
=(n+3)V1-2kpuo+ ——— 1-2,K M- (32

Second, wheV/(X;—X5)=—Vyd(X;—
potential, Eq.(28) turns to

X,), the é-function
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(=1 (1/2u —K) (1 a73) —Vod(\27,) —E, In (¢| representation, the wave functions kfp,E,) and
P|p,E,) are given by, respectively,
+ 1M [(1—uMk?)/(1-2uk) ] 75} ,=0. (33)

1 1/2
om k#«lﬂz) p2+ k(Mz_/M)(E) {op

According to the standard procedures for deducing theEn(§|p,En>=[
bound-state energy of th&function potential, we can obtain
E, for Eq. (33), which is

1 N,
ﬂ—k 582 (LIp.En) +{ZIV(X)p.En),

+
~ wV3 1 1-uMK?
=" @20 "M 1-2uk 72 40
V2 1- uMK? p? Ey=({|P|p,E,). 41
_ pVG 1w p 34 p(¢Ip,En)=(¢IPIp,En) (41)

S 2(1-2pk)  1-2upk 2M°
Because of Eqg22) and(23), we can put Eq940) and(41)

Third, when V(X,—X5)= —€%/(|X,—X,|), the three di- MO
mensional(3D) Coulomb potential, by introducing SID;;|

1/2 1/2
representation, which is the common eigenfunction of the vli 2 i+ 2 (1= o)
- . . N ol N 17 M2)61
total momentum vectoP and the relative coordinate vector 2
X, Plmy=2mslm), X|m)=\2m]|7), the corresponding 1 , 2
energy eigenvector equation {m| representation is o TRuasz [P k(R = )| 5] 6P
1 . e? 1 1 N o
— +2k 2 ——— —E,—3=——k + —_k)—éz—En’@mEn):O. (42)
M rapz || 7] |\/§7]1| n 2(2,u ) 2u 2
) 2 2 1/2 J 2 1/2
X| = —i(p1—p2) 2| —iK(ua—p1) 72 (_i (X) Yo (X) (Mz_Ml)gz—p]@maEn):O-
am {1
(43
P NI
X E—I(,U,l—,uz)nz (n|Ep)=0. (39 By making the ansatz
1
Following the same procedure as in derivif$), we obtain Wo=expli (uz2—p1) {1421(<Ip.En) (44)
{~3(1/2u—k) Plon s — A2 ] —E, and letting
+ 1M (1~ uMK)/(1-2uK)]| 72 0=0.  (36) {o=— 2uk(po—puy)pl(1-2uk)N, (45

where ¢, is defined as 1 , (1 N, 1-puMK2 p?
, L TZ(W”WZ)D ‘(m‘k)z%z—l—zﬂk M
en=expli(uo— ) [1/(1=2uK) ] 71- 72} 1|Ep). (37 (46)

From (36) the energy level can be directly derived, we obtain two simpler equations far
n:»

En— | 72/%(1— uMK?)/M(1—2uk) 212 g 1 N ,
= uet2n?(1-2uk), n=1,2,3,..., (38) (V '(X) ET +(ﬂ_k (62740 +T_E”]\P“:0’
(47)
which differs from the well-known energy of Coulomb po-
tential by 1/(1—2uk), stemming from thekP;P, term. [2\Y2 4
However, from Eq.(28) we see thatp, can only be deter- - (X) a5, P ¥,=0 (48)

mined up to a function of,, hence we turn tg{| to estab-

lish some other equations to specify it. . .
q pecify Especially wherV(x) = suw?X?, ¥, can be solved analyti-

cally. In fact, from Eq48) we know that¥, should take the

VI. DIFFERENTIAL EQUATIONS IN THE (¢] form
REPRESENTATION
. . . . . — P 12
SinceP is conservative, we can introduce common eigen- W =expi (M2)Y?pL 1} xn - (49)

states ofP andH,
Here x, is independent of; and can be derived by substi-

H|p,E,)=E,|p.En), Plp.En)=plp.Ey). (39  tuting Eq.(49) into Eq. (47),
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1,7 A1 , NTE
N a_g"%+§ E—k (L= Lo)*+T—En xn=0. (ZIp.En)=Npexp i Pl PLiti(pi—m2)l1ds
(50)
| M1 24k) ,
The result is - 4M—w(§2—§o)
Xn—Nnexp{ _4,u—w(§2_§0)2] XH””—Q_M w,u (gz_go)]-

AN2(1—2uk) ]
nH “au%0? (£2=40) (51
whereH,, is the Hermite polynomial andl, is the normal-
ization constant. Combining Eq$44), (49 and (51), we
have the wave function

Also, from Eqg.(50) we see that the energy level &,=(n

+ 1) V1-2ukw+T, just the same as E¢32), because of
Eq. (46). In conclusion, by establishing tHé|-{ 7| represen-
tation, we provided a convenient approach for solving some
dynamical problems of two-body systems.
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