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A technique based on a dispersive atom–cavity-field interaction is proposed for preparing two or more atoms
in macroscopically separated entangled states. After suitably prepared atoms interact with the cavity field a
subsequent measurement on this field projects the atoms onto the entangled states. Two-particle entangled
states are discussed as well as a three-particle state of the type proposed by Greenberger, Horne, and Zeilinger.

PACS number~s!: 03.65.Bz, 42.50.Dv

In the last ten years or so, there has been much progress in
the experimental realization of two-particle entangled states.
Essentially all of these experiments involve photons where
entanglement arises from different photon polarizations@1#
or from different paths taken by the photons@2#. In many of
these experiments, Bell’s inequalities have been violated,
thus supporting quantum mechanics over local hidden-
variable theories@3#. However, there are some drawbacks to
the experiments performed with entangled photon states, par-
ticularly of those involving polarization states. As pointed
out by Clauser and Horne@4#, the lack of control of the
directions of the photons emitted in the cascade transitions
requires some supplementary assumption in order for Bell’s
inequalities to be violated. Furthermore, the photodetectors
do not have high efficiency@4#.

Several proposals to circumvent these drawbacks have
been put forward in which the particles to be entangled are
‘‘two-level’’ Rydberg atoms directed through a micromaser
cavity containing a resonant single-mode quantized electro-
magnetic field@5#. In the case of two or more particles the
atoms can be directed through the cavity to achieve control-
lable spatial separation~see Fig. 1!. Furthermore, measure-
ment of the atomic state is nearly 100% efficient. The atomic
inversion is measured by state selective ionization while the
polarization can be measured by interaction with classical
microwave fields followed by selective ionizations. Phoenix
and Barnett@6#, Kudryavtsev and Knight@7#, and Cirac and
Zoller @8# have proposed a method of generating entangled
atomic states of the form

uC&5
1

A2
~ ue&1ug&26ug&1ue&2), ~1!

where ue& and ug& represent the excited and ground states
and the subscripts 1 and 2 label the first and second atoms.
Generation of such states requires each atom to be carefully
velocity selected before entering the cavity. Furthermore, the
cavity must be initially in the vacuum, atom 1 laser excited
to stateue&, and atom 2 in the ground state. After passage of
the atoms, the cavity is left again in the vacuum. Such states
as Eq.~1! are well known to violate Bell’s inequalities. How-
ever, the states produced forany velocities generally consti-
tute a mixture also capable of violating Bell’s inequalities.
Cirac and Zoller@8# have also shown that three-particle en-
tangled states of the form

uC&GHZ5
1

A2
~ ue&1ue&2ue&32ug&1ug&2ug&3) ~2!

proposed by Greenberger, Horne, and Zeilinger~GHZ! @9#
can also be produced. However, it is necessary to first engi-
neer@10# a cavity field consisting of a superposition of the
Fock statesu0& andu3&. All of these procedures for generat-
ing entangled atomic states assume that cavity damping and
spontaneous decays are negligible during the time atomic
measurements take place.

In this paper I propose an alternative method of generat-
ing entangled atomic states. Atoms are imagined to be di-
rected through a cavity as in Fig. 1 except now the cavity is
assumed to be prepared in a coherent state of large amplitude
and it is assumed that the atom interacts with this cavity field
in a highly nonresonant dispersivemanner. The cavity field
may be prepared by driving the cavity with a classical cur-
rent @11#. The atom is prepared in a superposition of ground
and excited states and then interacts with the field in a dis-
persive manner. The dispersive interaction gives rise to phase
shifts of the initial coherent state. Atoms passing through the

FIG. 1. Configuration of a cavity and atomic trajectories for the
preparation of entangled atomic states. Both atoms enter the cavity
in a superposition of ground and excited states and interact disper-
sively with the cavity field assumed initially to be in a coherent
state.
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cavity create atom-field entangled states and selective mea-
surementson the cavity fieldcreate the entangled atomic
states. It is again assumed that measurements are made in a
time short enough so that cavity dissipation effects can be
ignored.

We assume that the atoms have the level structure as in
Fig. 2 whereva is the atomic transition frequency andvc is
the frequency of the cavity mode. We further assume that the
detuninguDu5uva2vcu is so large that only virtual transi-
tions occur between levelsue& and ug&. Let a anda† be the
annihilation and creation operators for the cavity field. Then
the effective interaction Hamiltonian for thei th atom inter-
acting with the cavity field is

HI
i5\ha†as3

i , ~3!

wheres3
i 5ue& i i ^eu2ug& i i ^gu, h5l2/2D and wherel is the

atomic dipole moment. The Hamiltonian is valid under the
assumption thatl2n!D21g wheren is a characteristic pho-
ton number andg is the spontaneous emission rate@12#.

We further assume that before thei th atom enters the
cavity, that by laser excitation and microwave manipulation,
it is prepared in a superposition of the form

uCatomi&5
1

A2
~ ug& i1 ie2 iu iue& i). ~4!

Furthermore, the cavity field is assumed initially to be in a
coherent state:

ua&5e2uau2/2(
n50

`
an

An!
un&. ~5!

We now examine the case for two successive atoms passing
through the cavity at angles that produce a macroscopic
separation. After passage of the first atom, the atom-field
state is

uCfield-atom 1&5
1

A2
@ ug&1uaeif1&1 ie2 iu1ue&1uae2 if1&],

~6!

wheref15ht1, t1 being the time of interaction. We have
used the relation

e6 iba†aua&5uae6 ib&. ~7!

After passage of the second atom, the atom-field state is

uCfield-atoms 112&5
1

2
@ ug&1ug&2uaei ~f11f2!&

2ei ~u11u2!ue&1ue&2uaei ~f11f2!&

1 ie2 iu1ue&1ug&2uaei ~f11f2!&

1 ie2 iu2ug&1ue&2uaei ~f11f2!&], ~8!

wheref25ht2 . The phase shiftsf1 and f2 can be con-
trolled by velocity selection on the atoms. Let us suppose
that this can be done such thatf15f25p/2 so that we have

uCfield-atoms 112&5
1

2
@~ ug&1ug&22ei ~u11u2!ue&1ue&2)u2a&

1 ie2 iu1~ ue&1ug&2

1ei ~u12u2!ug&1ue&2)ua&]. ~9!

Now for large uau the statesua& and u2a& are orthogonal,
i.e., ^2aua&50. Thus if the cavity field is measured and
found to be in stateua&, the atoms are in the entangled state

uC&a5
1

A2
~ ue&1ug&21ei ~u12u2!ug&1ue&2) ~10!

or if in u2a&,

uC&2a5
1

A2
~ ug&1ug&22e2 i ~u11u2!ue&1ue&2). ~11!

It is well known that these states violate Bell’s inequalities.
This may be shown by following Cirac and Zoller@8# in
using a form due to Clauseret al. @3#, which states that in
order to be consistent with local hidden-variable theories ob-
servations must satisfy the inequality

uP~a,b!2P~a,b8!u1uP~a8,b8!1P~a8,b!u<2, ~12!

where

P~a,b!5^sW 1•aW sW 2•bW &. ~13!

The angles between the unit vectorsaW , bW , aW 8, andbW 8 are
controlled by microwave fields applied to the atoms prior to
selective ionization, equivalent to rotating a Stern-Gerlach
magnet as in the Bohm formulation@13# of the Einstein-
Podolsky-Rosen paradox@14#. For example, for the state
uC&2a of Eq. ~11! we obtain

P~a,b!5azbz2~axbx2ayby!cos~u11u2!

2~aybx1axby!sin~u11u2!. ~14!

A violation of Bell’s inequality may be obtained as follows:
Setting u11u25p, ay5ay85by5by850, ax5sind,
az5cosd, bx5sinb, bz5cosb, ax85sinb8, az85cosb8,
bx85sinb8, bz5cosb8 with d50, b85p/2 we obtain from
Eqs.~12!–~14!,

ucosb2cosb8u1usinb1sinb8u<2. ~15!

FIG. 2. Energy-level configuration of a two-level atom indicat-
ing a large detuning with the cavity field. The atomic transitions are
virtual.
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The left-hand side is maximized for cosb852cosb, sinb
5sinb8, which forb5p/4 andb853p/4 yield 2A2,2 and
thus a violation of Bell’s inequality.

The question remains as to how to collapse the state of
Eq. ~9! onto ua& or u2a&. One way would be to adapt a
method proposed by Bruneet al. @15# for the detection of
Schrödinger cat states in cavities. After the passage of the
two atoms, the cavity can again be driven by classical cur-
rents to produce a reference fieldua r& such that the total
cavity field state is nowu2a1a r& or ua1a r&. Obviously, if
a r5a the stateuC&2a of Eq. ~11! is correlated with the
cavity being in the vacuum stateu0&. A stream of ground-
state two-level atomsresonantwith the cavity can be in-
jected and selectively ionized upon emergence. The lack of
atoms in the excited state would indicate that the cavity field
was indeed in the vacuum state, there being a very high
probability of absorbing a photon if the cavity is in state
u2a&. Alternatively, one could use the dispersive interaction
in the following way. Suppose that the cavity field contains a
definite number stateun&. Further, suppose we prepare the
atom in a superposition state

uCatom&5
1

A2
~ ue&1ug&) ~16!

by using a classical microwave field so that the initial state is
uCatom&un&. Now when the atom exits the cavity the state is
then

1

A2
e2 ihnt~ ue&1e2ihntug&)un&. ~17!

A second classical microwave field can be used to cause the
transitions

ue&→
1

A2
~ ue&1ug&), ug&

1

A2
~ ug&2ue&) ~18!

such that the above state becomes

1

2
eihnt@ ue&~12e2ihnt!1ug&~11e2ihnt!] un&. ~19!

The probabilities of finding the atom in the ground or excited
state are

Pg~ t !5sin2~hnt!, Pe~ t !5cos2~hnt!. ~20!

Obviously, for the vacuum,n50, the atom will never be
found in the ground state. Also this result will occur for all
atomic speeds since the probabilities in the case ofn50 are
independent of time.

Likewise, if a r52a, a cavity vacuum state is correlated
with the atomic stateuC&a of Eq. ~10!.

On the other hand, we now suppose that the atoms are
velocity selected so thatf15f25p. In this case all of the
field states in Eq.~8! return to the initial coherent state
ua&:

uCfield-atoms 112&5
1

2
@ ug&1ug&22e2 i ~u11u2!ue&1ue&2

1 ie2 iu1ue&1ug&21 ie2 iu2ug&1ue&2] ua&.

~21!

At first sight it would seem that the atomic states, which are
now disentangled from the field, are themselves entangled
states of the two atoms and therefore capable of violating
Bell’s inequality. Unfortunately this turns out not to be the
case. For example, consider the two-atom state for
u15u250:

uCatoms&5
1

A2
@ ug&1ug&22ue&1ue&21 i ~ ue&1ug&21ug&1ue&2)].

~22!

This is actually a special case of a state discussed by
Kudryavtsev and Knight@7# who stated that because it is
‘‘never a product state’’ that Bell’s inequality is violated as
follows from a paper by Gisin@16#. However, it can be
shown that Eq.~22! is not truly an entangled state@17#. If we
define new bases

ug&k85
1

A2
ue&k1

i

A2
ug&k,

~23!

ue&k85
i

A2
ue&k1

1

A2
ug&k , k51,2,

then Eq.~22! becomes

uCatoms&5ue&18ue&28 , ~24!

clearly a factorized state. Thus Bell’s inequality is not vio-
lated. This can be shown to be generally true for allu1 and
u2 .

It can further be shown that if no measurement is made on
the cavity field, then Eq.~8! does not lead to a violation of
Bell’s inequalities for any values off1 andf2 . Generally
the atoms are entangled with the field so are themselves in a
mixed state and such states exhibit nonlocality in a much
weaker form. If we allow for arbitrary phase shiftsf1 and
f2 then using Eq. ~8! we find that ~with
ay5by50, u15u250)

P~a,b!5axbx
1

2
$e2uau2@12cos2~f12f2!#

3cos@ uau2sin2~f12f2!#1e2uau2@12cos2~f11f2!#

3cos@ uau2sin2~f11f2!#%, ~25!

where we have used the result

^aub&5expF2
1

2
~ uau21ubu2!1a*b G . ~26!

The term in brackets in Eq.~24! is maximal for
f15f25p/2 such thatP(a,b)5axbx . In this case Eq.~12!
becomes
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uax~bx2bx8!u1uax8~bx81bx!u<2 ~27!

or

usind~sinb2sinb8!u1usind8~sinb1sinb8!u<2, ~28!

which is always satisfied. Thus in cases where no measure-

ment of the cavity field is made, Bell’s inequalities are not
violated.

Finally, we consider the case when three atoms are di-
rected through the cavity at different angles. We follow the
same procedure as before and assuming the atoms’ velocity
selected so that the phase shifts on the coherent states satisfy
f15f25f35p/3 we arive at

uCfield-3 atoms&5
1

2A2
@~ ug&1ug&2ug&32e2 i ~u11u21u3!ue&1ue&2ue&3)u2a&1 i ~e2 iu1ue&1ug&2ug&31~e2 iu2ug&1ue&2ug&3

1e2 iu3ug&1ug&2ue&3)u2aeip/3&2~e2 i ~u11u2!ue&1ue&2ug&31e2 i ~u11u3!ue&1ug&2ue&3

1e2 i ~u21u3!ug&1ue&2ue&3)uae2 ip/3&]. ~29!

Now for large uau the statesu2a& and uae6 ip/3& are or-
thogonal. Thus a detection of the cavity field in the state
u2a& using the procedure discussed above produces the
GHZ @9# atomic state

uC&GHZ5
1

A2
@ ug&1ug&2ug&32e2 i ~u11u21u3!ue&1ue&2ue&3].

~30!

Clearly,n-atom generalizations of this type of state showing
extreme entanglement as discussed by Mermin@18# are pos-
sible if the field stateu2a& is nearly orthogonal to the other
phase-shifted coherent states that appear. This appears to be
possible for fields of large amplitudeuau.

Now it must be admitted that generation of two atom
entangled states by the method proposed in this paper is

perhaps more involved than in the proposal of Cirac and
Zoller @8#. In their case, with careful atom velocity selection
and with the cavity initially in the vacuum, the two-atom
entangled state appears factored from the vacuum field after
passage of the atoms. However, to produce the three-atom
GHZ state, as we have said, the cavity must first be engi-
neered into superposition of the number statesu0& andu3&, a
procedure that could be rather problematic. In the present
work, however, all that is required is the determination that
the cavity is in the vacuum state—a procedure that should be
much easier than engineering a special initial cavity state.
Thus we believe that the present method could be advanta-
geous for generating GHZ-type states for three or more at-
oms.

The author gratefully acknowledges clarifying discussions
with P. K. Aravind.
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