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Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate
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We present an analytic construction of the three-bit quantum conditional swap~Fredkin! gate that uses only
five quantum gates, each acting on only two qubits. Our implementation is based on previous work on the
three-bit quantum conditional-NOT~Toffoli ! gate. Numerical evidence suggests that this is a minimal imple-
mentation.

PACS number~s!: 03.65.Bz, 89.80.1h

There has been a great deal of interest lately in quantum
computation, especially after Shor’s discovery of a
polynomial-time quantum factoring algorithm@1#. It is now
well known that two-bit quantum gates are sufficient to syn-
thesize any unitary operation in any size Hilbert space@2#.
We have shown numerically that six two-bit quantum gates
are sufficient to generate any three-bit quantum gate@3#, but
of particular interest are the universal quantum gates and
those larger gates that can be simply constructed using them.
Several of them are presented in@4#.

One gate that has received particular attention is the three-
bit conditional swap gate, or Fredkin gate. The Fredkin gate
is of interest because it is a universal gate for classical re-
versible computation@5#. The quantum version has been
used by Ekert and Macchiavello@6# to design a circuit for
error correcting quantum computations with the symmetric-
subspace method of@7#.

The quantum Fredkin gate is ‘‘quantum’’ in the sense that
in a particular basis~typically one in which each basis vector
is a product vector of the two-dimensional Hilbert spaces of
individual quantum-bit carriers! it behaves just as a classical
Fredkin gate; it also must act on superpositions of the basis
vectors unitarily, preserving the superposition rather than
collapsing the input state into one of the basis states and then
acting upon it.

In @8#, Chau and Wilczek give a specific six-gate con-
struction of the three-bit conditional swap gate, or Fredkin
gate. They pose the question of whether it can be done in
fewer gates. Here we present an analytic five-gate construc-
tion, which our numerical tests suggest is minimal.

Figure 1 shows seven gates that make a Fredkin gate. The
middle five gates make a three-bit conditional-NOT gate, or
Toffoli gate. This is a slight modification of a Toffoli gate

construction presented in@4#. It is straightforward to verify
that a Toffoli gate can be converted to a Fredkin gate with
the addition of the two conditional NOT gates around it. The
first two gates in the figure are each acting on the same two
bits, and therefore can be replaced by a single two-bit gate.
The last two gates commute; therefore, the last gate can be
moved in front of the preceding gate. There are then two
adjacent gates acting on the same two bits. By merging these
two gates we arrive at a five-gate design.

We used our numerical minimization routines, described
in @3#, to search for a shorter implementation and have found
none. However, since the numerical search often gets stuck
in local minima, even in cases where it eventually finds a
solution, the fact that we were unable to find a smaller imple-
mentation of the Fredkin gate is not a proof that one does not
exist.

FIG. 1. Seven-gate implementation of a Fredkin gate, which can
be converted to a five-gate implementation as discussed in the text.
A circle enclosing a cross indicates the state of that bit is condition-
ally negated if the state of the associated bit marked with a solid dot
is 1. A V or V† indicates the state of the bit is multiplied by the
232 matrix V5(1 0

0 1)1/25 (11 i )/2 (2 i 1
1 2 i), or its Hermitian con-

jugate, when the bit indicated by the solid dot is 1.
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