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As a realistic system for observing the distinctive features of the interaction of squeezed light with atoms, we
consider a single, coherently driven, two-level atom in a resonant optical cavity coupled to a broadband
squeezed vacuum field. In the bad cavity limit we derive equations of motion for the atomic operators that are
identical to those for the free-space situation, except for having modified parameters. We focus our attention on
the resonance fluorescence from this system and show that, in the above limit, many of the unusual spectral
features previously reported for the free atom situation persist. We also confirm the link between these anoma-
lous spectra and the collapse of an atom into a pure state. The cavity parameter values needed to verify some
of these interesting effects appear to be within the range of present day technology.
PACS number~s!: 42.50.Dv, 32.80.2t

I. INTRODUCTION

The phenomenon of resonance fluorescence constitutes a
central problem in quantum optics. It is an aspect of matter-
radiation interaction that has been extensively considered
over the years. As early as the 1930s Weisskopf used a quan-
tum perturbation approach to describe weak-field resonance
fluorescence from free atoms@1#. More recently Mollow
showed that the resonance fluorescence spectra from a
strongly driven atom had a three-peaked structure@2#, which
was subsequently observed@3#. He predicted the central peak
of the incoherent spectrum to have a width equal to the natu-
ral spontaneous decay rate of the atom while each of the
sidebands are one and a half times as broad. Photon anti-
bunching and squeezing have been predicted in resonance
fluorescence, but so far only antibunching has been observed
@4#.

The squeezing of light fields is another major area of in-
terest@5#. Radiation fields of this nature find their roots in the
foundations of quantum mechanics itself. That quantum fluc-
tuations can, in one field quadrature, exhibit less noise than
empty space without violating the uncertainty principle, not
only has implications at a fundamental level but also poten-
tial applications in areas such as telecommunications@6# and
high precision measurement, e.g., in the detection of gravity
waves@7#. The signal from such a field would, with standard
interferometry techniques, be swamped by the noise from the
normal vacuum. Squeezed light has also been used to en-
hance sensitivity in saturation spectroscopy@8#.

A decade after the first experimental demonstration of
squeezed light generation@9#, we have arrived at the stage
where many laboratories can successfully produce squeezed
sources. This has provided extra impetus to the search for
novel features in the interaction of squeezed light with
atomic systems.

The first prediction of fundamentally different behavior
was made by Gardiner@10# who showed that the two quadra-
tures of the polarization of a two-level atom damped via its

interaction with a broadband squeezed vacuum decay at
vastly different rates. The modifications to the resonance
fluorescence spectra of such a system were considered by
Carmichael, Lane, and Walls@11#. They found that for weak
driving fields the linewidth of the spectra could be drastically
reduced, ultimately vanishing in the limit of arbitrarily strong
squeezing. They also showed that for large classical applied
field strengths the spectrum became a triplet, as in the ab-
sence of squeezing@2#, but that the height and width of the
central peak of the triplet depended strongly on the relative
phase of the squeezed and driving fields.

As Gardiner and Carmichael, Lane, and Walls indicated,
these effects would be difficult to realize experimentally in
the free-space situations considered since they required the
squeezed modes to occupy the whole 4p solid angle. It was
therefore necessary to consider alternative systems that re-
laxed this condition while still enabling the desired effects to
be observable. The cavity situation is a natural one to con-
sider. When an atom is placed between mirrors or inside an
optical cavity it interacts with a modified electromagnetic
vacuum. Many features of this modified system have been
verified including cavity-enhanced and inhibited spontaneous
emission@12#. In the good coupling limit, vacuum Rabi split-
ting has been predicted@13# and observed@14#, with of the
order of one atom in the cavity at a time. This system exhib-
its many other interesting features, and an increasing number
have been subjected to experiment. One reason for the ad-
vance in experimental work is recent developments in atomic
beam and atomic trapping techniques.

Parkins and Gardiner@15# have considered a single atom
inside a microcavity that has squeezed light incident upon
the output mirror. They show that the inhibition of atomic
phase decays can still be observed under appropriate phase
matching conditions.

The aspect of squeezed-light–atom interactions that inter-
ests us here is that of resonance fluorescence. Specifically we
are concerned with the ‘‘anomalous’’ resonance fluorescence
spectra@16–18#. These have been discussed for the free-
space situation, but experiments to demonstrate these effects
are likely to take place within the cavity environment. Our
particular aim is to show that many of these free-space prop-
erties do in fact carry over to a measurable extent to the
cavity configuration.
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A number of papers have examined the conditions for the
existence of pure states in systems of interacting atoms and
fields. We are particularly concerned with the situation where
an applied squeezed field is present. Palma and Knight@19#
showed that a pair of two-level atoms in the presence of a
squeezed field but in the absence of a classical driving field
may collapse into a pure state. The corresponding three-level
system was considered by Buzek, Knight, and Kudryavtsev
@27#. Agarwal and Puri@20# considered a number of two-
level atoms driven by a classical field in the presence of a
squeezed vacuum and showed that, under appropriate cir-
cumstances, the atomic system may evolve into a pure state.
The single-atom version of this system was further consid-
ered by Tucci@21#, who emphasized the statistical mechani-
cal aspects. We showed that, for largeN, the appearance of
the anomalous resonance fluorescence spectra coincides with
the state of the system being a pure one@18#.

It has also been pointed out that a number of atoms inter-
acting with a driving field in the cavity environment~but
with no applied squeezed vacuum! can also evolve into a
pure state@22,23#. Such systems also exhibit nonclassical
features in their output. In this situation, however, it is a pure
state of the combined atom-field system, rather than the atom
alone, which is involved.

The structure of the rest of this paper is as follows: the
physical system under consideration is described in Sec. II,
where we also derive the equations of motion in the bad
cavity limit. We show that these are formally identical to
those in free-space, the only difference being a redefinition
of parameters. In Sec. III we investigate the anomalous reso-
nance fluorescence spectra for this system, and we determine
how well the steady state of the atom in these cases can be
approximated by a pure state. We compare this situation with
that for the free-space environment. Section IV contains our
conclusions.

II. THE TWO-LEVEL ATOM IN THE BAD CAVITY LIMIT

We consider a single two-level atom, coupled to a reso-
nant cavity mode, and coherently driven through the open
sides of this single-ended cavity.~See Fig. 1.! A broadband
squeezed vacuum also interacts with this system. The Bohr
frequency of the atom, the cavity resonance frequency, and
the center frequency of the squeezed vacuum are all taken to
be identical.

In a frame rotating at the resonance frequency the master
equation is

ṙ5 i @H,r#1gLar1kLcr, ~1!

whereH is given by the sum of the driving and Jaynes-
Cummings Hamiltonians,

Hd5
1
2V~s21s1! and HJC5 ig~s1a2s2a

†!, ~2!

with

Lar52s2rs12s1s2r2rs1s2 ~3!

and

Lcr5~N11!~2ara†2a†ar2ra†a!

1N~2a†ra2aa†r2raa†! ~4!

2M @exp~2 ifv!~2ara2a2r2ra2!1H.c.#. ~5!

Lar andLcr describe atomic damping to modes other than
the privileged cavity mode, and damping of the cavity field
by the squeezed reservoir, respectively. The cavity mode has
the annihilation and creation operatorsa and a† while the
atom is represented by the usual Pauli spin-1

2 operators
s1 , s2 , V is the Rabi frequency of the driving laser field,
g is a measure of the atom-cavity coupling, andg andk are
the atomic and cavity decay constants, respectively.

The broadband squeezed reservoir is characterized by the
real parametersN andM through the relations@5#

^a†~v1!a~v2!&5Nd~v12v2!, ~6!

^a~v1!a~v2!&5Mexp~ ifv!d~v11v2!, ~7!

wherea(v) creates a photon of the squeezed vacuum with
frequencyv. Another important parameter is the squeezing
phase, defined as

F52fL2fv52fv , ~8!

wherefL is the laser phase, which is taken to be zero in Eq.
~2! above. The squeezed vacuum contains real photons with
N the mean number of photons present~over all frequen-
cies!, andM the magnitude of the two-photon correlations. It
is the latter that provides the essential nonclassical features
of the squeezing process. For a given squeezing photon num-
ber N, M is bounded above by its value for a minimum
uncertainty state. It is convenient here to introduce the pa-
rameterh where 0<h<1, which enables us to write

M5h@N~N11!#1/2. ~9!

The quantityh measures the degree of two-photon correla-
tions in the squeezed vacuum. Its interpretation is simple:
h50 implies no squeezing and our cavity field is then
equivalently damped by a chaotic field.h51 on the other
hand corresponds to the reservoir being in an ideal squeezed
state or minimum uncertainty squeezed state. We refer to this
as perfect correlation, since in this instance the photon twins,
so typical of a squeezed vacuum, are maximally correlated
for the particular value ofN.

FIG. 1. A schematic representation of the physical system under
consideration.
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The atomic operators mentioned above satisfy the com-
mutation relations@s1 ,s2#52sz , @sz ,s6#56sz . Using
these relations and~1! we can derive the time evolution of
the expectation values of these operators:

^ṡ2&52g^s2&12g^sza&2 iV^sz&,

^ṡ1&52g^s1&12g^sza
†&1 iV^sz&, ~10!

^ṡz&52g~2^sz&11!2g~^a†s2&1^as1&!

1 i 1
2 V~^s1&2^s2&!.

These equations contain higher-order operator expectation
values. This leads to a series of coupled equations that must
be solved to leave evolution equations in the atomic opera-
tors only. We now adopt the approach used by Rice and
Pedrotti@24#. They showed that in the bad cavity limit~see
below! this hierarchy of equations can be truncated to yield
the following:

^ṡ2&52g@11C~2N11!#^s2&22CMgexp~ iF!^s1&

2 iV^sz&,

^ṡ1&52g@11C~2N11!#^s1&22CMgexp~2 iF!^s2&

1 iV^sz&, ~11!

^ṡz&522g@11C~2N11!#^sz&1 i 1
2 V~^s1&2^s2&!

22g~11C!.

The parameterC5g2/kg is the single-atom cooperativity
parameter familiar from optical bistability.1 The validity of
the truncation depends on the relative sizes of the various
systematic parameters. Thus we can define the bad cavity
limit as @23#

k@V,g,g with g@g and C5g2/kg finite. ~12!

In contrast to Rice and Pedrotti we chose to drive the atom
directly but the physics contained in both approaches is the
same @25#. Also, to ensure the validity of the broadband
squeezing assumption, the bandwidth of squeezing would
need to be large compared tok.

There is clearly a link between Eqs.~11! and the standard
free-space Bloch equations for the equivalent system, but for
a more direct comparison with the free-space analysis we
express these equations in terms of the atomic density matrix
elements. Using the relation̂A&5Tr(rA) and the cyclic
properties of the trace~Tr! we have

ṙ00522CNgr0012g@~11C!1CN#r112 i 1
2V~r102r01!,

ṙ11522g@~11C!1CN#r1112CNgr001 i 1
2 V~r102r01!,

~13!
ṙ0152@~11C!12CN#gr0122CMgexp~ iF!r10

2 i 12 V~r112r00!,

ṙ1052@~11C!12CN#gr1022CMgexp~2 iF!r01

1 i 1
2 V~r112r00!.

Identifying 2CNg with the incoherent transition rate from
ground to excited state (g01) and 2g@(11C)1CN# as the
rate for the incoherent processes in the opposite direction
(g10), we note that physical considerations require them to
differ only by spontaneous emission.

Thus we can write

g0154CNg52g~11C!
C

11C
2N

and

g1052g@~11C!1CN#52g~11C!S 11
C

11C
ND ,

so that defining

gc5~11C!g,

Nc5
C

11C
N, ~14!

Mc5
C

11C
M ,

we have

g0152Ncgc andg1052~Nc11!gc , ~15!

wheregc is the cavity enhanced spontaneous emission rate.
The factorC/(11C) that appears in the above expres-

sions has the following interpretation.g is the rate of spon-
taneous decay into the noncavity modes, andgc5g(11C)
is the total spontaneous emission rate, so thatCg is the cav-
ity enhanced contribution. The factorC/(11C) is therefore
the ratio of the spontaneous emission into the cavity mode to
the total spontaneous decay rate. This quantity is sometimes
referred to as thebeta valueof the cavity system. The atom
therefore experiences an effective squeezed field whose pa-
rameters are modified by the beta factor.

Thus making the appropriate changes throughout Eqs.
(13) we have

ṙ0052g01r1g10r112 i 1
2 V~r102r01!,

ṙ1152g10r111g01r001 i 1
2 V~r102r01!,

~16!
ṙ0152 1

2 gsr012Mcgcexp~ iF!r102 i 1
2 V~r112r00!,

ṙ1052 1
2 gsr102Mcgcexp~2 iF!r011 i 1

2 V~r112r00!,

1Because of a factor of 2 difference in the definitions ofg, there
is a numerical difference between our parameterC and that of Rice
and Pedrotti. The present choice reduces the number of factors of 2
that appear in our expressions.
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wheregs5g011g10.
Equations (16) are formally identical to the density ma-

trix equations in free-space. Thus it would seem reasonable
to assume that we could reproduce any of the previous re-
sults for the free atom. However, we already know from
simple physical arguments that since the atom sees un-
squeezed modes through the open sides of the cavity there is
a limit to the amount of linewidth narrowing achievable in
this model. This can be easily seen in the mathematics. If we
transform Eqs. (11) by settings15sx1 isy and
s25sx2 isy then from the equation forsx ,

^ṡx&522g@11C~112N22McosF!#^sx&

22CMgsinF^sy&, ~17!

it is easily seen that only the cavity enhanced part of the
decay rate is phase dependent, rather than the whole decay
rate as would be the case for 4p solid angle squeezing.

Gardiner@10# showed that the basic difference in the de-
cay of an atom bathed in squeezed modes rather than in a
standard reservoir was that the two atomic polarization
quadratures decayed at different rates, and that in the case of
minimum uncertainty squeezing, one decay rate tended to
zero forN→`. Many results in the free-space situation were
derived in this limit. One might then ask how it is that equa-
tions have been derived which, on the one hand, are formally
identical to those for the free atom and yet on the other hand
apply in a regime where arbitrarily large linewidth narrowing
is not possible.

The answer is contained in the relation betweenNc and
Mc , the parameters defined in Eqs. (14). Notice that in Eqs.
(16), we must now interpretNc and Mc as theeffective
squeezing parameters experienced by the atom in the bad
cavity limit. It is as though we were considering a driven free
atom damped by a broadband squeezed vacuum but that the
squeezing in the reservoir was now described byNc and
Mc . In the free-space case, the parametersN andM appear-
ing in the master equation (1) are related as follows:

M<@N~N11!#1/2. ~18!

Now in the bad cavity limit we have instead

Mc5
C

11C
M<

C

11C
@N~N11!#1/2 ~19!

~20!

5FNcSNc1
C

11CD G1/2,@N~N11!#1/2,

~21!

so that ultimately in this limit we cannot implement what
would be perfectly correlated (minimum uncertainty)
squeezing, i.e., the effective degree of correlation of the
squeezing, in our model, is necessarily reduced from its
value in the input squeezed field. Defininghc as

hc5
Mc

@Nc~Nc11!#1/2
~22!

we have

0<hc,1 ~23!

and using the relation (9) we can simply evaluate the un-
avoidable fractional modification as

hc

h
5F11

1

C~N11!G
21/2

.12
1

2C~N11!
for CN@1.

~24!

By takingN or C large, we obtainhc.h. Even in these
limits, however, the decay rate of the in-phase component of
the polarization cannot be made arbitrarily narrow, as it can
in free-space@10#: there is always the residual width ofg,
the spontaneous decay rate into the unsqueezed modes. For
large C, we also note that the unsqueezed linewidth
gc5g(11C) becomes very large. This quantity determines
the scale of the spectral features.

Let us summarize the position to date. Having started
from the master equation for the density operator we have,
via an adiabatic elimination of the cavity field in the bad
cavity limit, derived equations of motion for the density ma-
trix elements that are identical to those for the free, driven
atom, bathed in 4p solid angle broadband squeezing, but
where these modes necessarily have less than perfect squeez-
ing correlations.

With regard to resonance fluorescence, we may expect
qualitatively similar spectra to those previously reported
@16–18,26# but for the case of an imperfectly correlated
squeezed vacuum. It is already clear that effects that are
extremely sensitive to the degree of correlation of the
squeezing will be difficult to reproduce, at least for experi-
mentally feasible values ofN andC. It should be noted that
the sensitivity to the degree of correlation generally de-
creases withN @17#.

III. THE RESONANCE FLUORESCENCE SPECTRA

We consider here only the incoherently scattered part of
the resonance fluorescence spectrum. It is worth noting here
that the fluorescence from our system is carried away via the
normal vacuum modes, which exist out the sides of the cav-
ity. This plays the role of the unsqueezed window implicit in
the calculations of@10,11#.

The spectrum is related to the Fourier transform of the
atomic correlation function@26#

L~v!5RF E
0

`

^s1~0!s2~t!&ei ~v2vL!tdtG , ~25!

whereR denotes the real part and thes6 are the Pauli spin-
1
2 operators mentioned above. Working in Laplace space the
evolution equations of these operators together with the
quantum regression theorem may be used to calculate the
spectrum. Specifically we have

L~v!5R@F~z52 iv!#, ~26!

wherev is the frequency measured from the atomic reso-
nance frequency and@26#
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F~z!5
z@~z12G!~z1G!1 1

2 V2#r1s~z1gc!@z1G1gcMce
iF#

z$~z12G!@~z1G!22gc
2Mc

2#1V2~z1G1gcMccosF!%
, ~27!

with G5gc(Nc1
1
2), and

r5
gcNc~G22gc

2Mc
2!1 1

2 V2~G1gcMccosF!

2G~G22gc
2Mc

2!1V2~G1gcMccosF!
, ~28!

s5
gcV

2~ 1
2 G1gcMce

iF!

2G~G22gc
2Mc

2!1V2~G1gcMccosF!
, ~29!

are related to the steady-state excited population and the
atomic coherence, respectively.

In the free-space situation we are interested in the regime
V.gc where the Mollow sidebands are not resolved and the
spectra normally consist of two components. The normal
spectra@11# consist of a sharp~subnatural! line at line center
superimposed upon a very broad, shallow background.

In recent publications@16–18# it was shown that under
very restrictive conditions, dispersive profiles, quite unlike
any previously reported for this system, could be found. It
was also shown that anomalous spectra existed over a con-
tinuous but narrow range of parameter values. These spectra
took on a variety of profiles including holes, pimples, and a
vanishing of the central feature altogether. The presence of
the squeezed vacuum was essential for these effects. The
origin of these spectra together with a prescription of how to
locate the parameter region of interest was given.

The prescription followed from a realization that when
these anomalous features arose the normal contributions to
the spectrum were greatly reduced in magnitude. Conse-
quently we expect to find these spectra at those parameter
values that minimize the incoherent part of the line-center
amplitudeL i(0).

Returning now to the cavity situation, we note that the
features of the spectrum are determined by the poles and
residues of~27!. The poles are given approximately by

z05
gc
218V2cos2F/2

G
,

z652S G2
1

2
z0D6 iVsinF/2 ~30!

in the regime of greatest interest,F&p/2, G@gc , and
V.gc . Sincez0!Re(z6), the sharp features of the spec-
trum will result fromz0 . The contribution from the poles at
z5z6 will be a flat, largely featureless background. Conse-
quently, we concentrate on the contributions from the pole at
z5z0 .

The incoherent part of the spectrum has the form

L i~v!5 (
k521

11
xkak2yk~v2bk!

~v2bk!
21ak

2 , ~31!

where zk5ak1 ibk are the poles, and the residues of the
incoherent part of~27! are of the formRk5xk1 iyk @16#. We
find

x05
~a22!2

16a2
2

3
4 ~a224!a11

4a2G2/gc
2 ,

y05
V2sinF

2aG2 , a511
4V2cos2F/2

gc
2 . ~32!

These expressions suggest thatL i(0) will be a minimum
whena52, which gives

V5
gc

2cosF/2
, ~33!

which, with the replacement ofg by gc , gives the condition
we have obtained previously for the free-space situation
@16–18#.

We adopt the same prescription here in searching for the
anomalous spectra in our cavity configuration: we determine
numerically the parameter values that minimizeL i(0).
However, we have the added complication of taking into
account the parameterhc. Recall thathc now describes the
effective degree of correlation of the squeezing as experi-
enced by the atom and this consequently provides a further
limiting factor to both the existence of the anomalous spec-
tral profiles and to the robustness of any features that do
exist.

From expression~24!, hc is determined from the degree
of correlation present in the squeezed bath initially coupled
into our system as well as by the strengthN of the squeezing.
It also depends on the value ofC. For what follows we will
assume that the squeezed vacuum injected into the cavity
was perfectly correlated. Suppose that an anomalous feature
existed in the free-space case for a particular value of the
correlation coefficient—sayh5h1 . Then, if we can achieve
a sufficiently large value forhc to satisfyhc>h1 , we may
continue in the knowledge that it will also exist in our cavity
configuration.

Let us first consider the case ofF5p/2. It has been
shown that, in the free-space situation, prominent dispersive
features arise in the resonance fluorescence spectra for large
N andV251/2, providingh51 @16#. In Fig. 2 we show the
spectra for the case whereN510 andV251/2, and initially
h51. The figure shows that ifh is reduced by as little as
0.0005% from the value unity, then the dispersive profile
vanishes. This implies that we needhc.0.999 995. Using
(24) we see that to attain this value ofhc given h51,
N510, we requireC>53103. Unfortunately this an order
of magnitude greater than is currently experimentally achiev-
able. In Fig. 2 we show the spectra for the above values of
h andN and for four values ofC. As expected the dispersive
profiles are only apparent for extremely large values ofC.
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We should emphasize that the sensitivity of the anoma-
lous features to the value ofh decreases asN decreases, so
that in choosing the large valueN510 we have a particularly
fragile situation, and one particularly difficult to test experi-
mentally. If we reduce the value ofN to N51, for example,
it may be shown that the dispersive profiles are still evident
for h50.999, which corresponds toC.125. In Fig. 3 we
plot the resonance fluorescence spectra for some smaller val-
ues ofN andC. In frames~a! and ~b!, whereN50.5 and
C5125 and 100, respectively, the dispersive nature of the
spectra remains apparent. Even for the more modest values

N50.2,C550 andN50.1,C510 shown in frames~c! and
~d!, the spectra retain distinctive profiles. We have found,
however, that the dispersive profiles are less robust to the
value ofh than the hole burning profiles we consider next.

We now turn to the case ofF50. For this value of phase,
the anomalous features in free-space take the form of hole
burning at line center, as well as pimple structures and the
vanishing of the central contribution. In Fig. 4 we plot the
cavity resonance fluorescence spectral intensity at line-center
as a function of the Rabi frequencyV for various values of
N andC. The minima are clearly present in each plot and we
expect anomalous features to arise for all these parameter
values. It is worth noting the different form of the minima in
each case. Figure 5 shows the spectrum corresponding to
each of the line center plots in Fig. 4. As expected, hole
burning exists in all four plots. Remarkably, it not only per-

FIG. 2. The resonance fluorescence spectra in the bad cavity
case, forN510 andC553104, 104, 53103, and 103 for frames
~a!, ~b!, ~c!, and~d!, respectively. In all our figures, we takeg51, so
that the Rabi frequencyV and the fluorescence frequencyv are
measured relative to this quantity. The value ofV in each case has
been taken to optimize the effect for the given value ofC.
@V50.69 in frames~a!, ~b!, and ~c!; V50.72 in frame~d!.# The
corresponding values ofh for the equivalent free-space situation
areh50.999 999 95, 0.999 998, 0.999 995, 0.999 98.

FIG. 3. The cavity resonance fluorescence spectra forF5p/2
and ~a! N51, C5125,V50.61, ~b! N50.5,C5100,V50.53, ~c!
N50.2,C550,V50.44, and~d! N50.1,C510,V50.33.

FIG. 4. The cavity resonance fluorescence intensity at line cen-
terL(0) as a function of the Rabi frequencyV . The phase is fixed
atF50 throughout and~a! N51,C5200,~b! N50.5,C5100,~c!
N50.1,C550, and~d! N50.01,C510.

FIG. 5. The spectral plots for each of the cases in Fig. 4.V has
been taken to be the minimum of the corresponding line-center plot.

53 2851ANOMALOUS RESONANCE FLUORESCENCE FROM AN ATOM IN . . .



sists for very small values ofN but it becomes even more
pronounced asN is decreased~although obviously not for
N50!, and perhaps more importantly, it persists for readily
accessible values ofC.

In Fig. 6 we present a three-dimensional~3D! mesh plot
of the spectrum againstV for N50.01,F50, C5100,
which shows the transition from normal to anomalous spec-
tra, and then back to normal spectra again, asV is swept.
The hole burning region is clearly visible and should be ro-
bust enough as a function ofV to be observable in some of
the cavity geometries presently in operation.

Figure 7 shows the 3D dependence of the spectrum at line
center as a functionV andF for N51 andC5100. This
reinforces what had already been indicated@16#, thatL(0)
possesses a minimum with respect toV only for smaller
values of the phase, and consequently anomalous spectra do
not occur forF.p.

Our considerations of the anomalous spectra have shown
that, while some of the features predicted from our free atom
analysis transpire to be too fragile to persist in this model~at
least for practical parameter values! many of the interesting
features have survived and are perhaps robust enough to be
observed. Observation of such spectra would provide an un-

ambiguous manifestation of the distinctive properties of the
squeezed vacuum.

IV. PURE STATES

We now consider another interesting effect that we found
to coincide with the anomalous spectra. This is the collapse
of the atom into a pure state. The first predictions of decay
into a pure state in squeezed-light–atom interactions were
made by Palma and Knight@19#. They considered a pair of
two-level atoms damped by their interaction with a squeezed
vacuum in the absence of a driving field. The equivalent
three-level system was studied by Buzek, Knight, and
Kudryavtsev@27#. Agarwal and Puri@20# considered a driven
ensemble of two-level atoms in a squeezed vacuum and in-
dicated the existence of special parameters values that lead to
the decay into a pure state for the casesF50 andp.

Further considerations were presented for the single-atom
case@21# by Tucci, who discussed this phenomenon from the
point of view of the entropy of the system. He showed that
for F50 the pure state achieved was an eigenstate of the
sy Pauli operator. In@16# an in-depth analysis of the condi-
tions for anomalous spectra was presented and shown to co-
incide with the condition for the atom to collapse into a pure
state as well as the condition for amplification of a probe
beam tuned to center frequency. The connection between
these phenomena was clearly established and forN@1 the
expressions showed remarkable agreement. In fact even for
N'1 numerical evaluation of the complete expressions
firmly justified the approximation made.

It was also pointed out that in the caseF50 with N@1
and h51 an exactly pure state was achievable. For other
phase values the atomic steady-state could only approximate
a pure state.

There are several approaches useful in investigating the
steady-state atomic purity. A convenient way, with the ex-
pressions we have already derived, is to consider the rela-
tionship between the steady state density matrix elements.

For any system,

Tr~r2!<1, ~34!

and for a two-level atom this yields the simple condition

r00r11>ur01u2, ~35!

with equality being the condition for purity. SettingF50 and
working in units ofgc the condition for purity reduces to
finding the zeros of the following expression:

1
4 V41 1

2 V2@~2Nc11!~Nc1
1
2 2Mc!2 1

8 #1Nc~Nc11!

3~Nc1
1
2 2Mc!

2. ~36!

This expression, as a function ofV, becomes identically
zero only in the limit Nc@1 and hc51 in which case
Nc1

1
22Mc vanishes, yieldingV

251/4. This was the condi-
tion mentioned in the free-atom analysis of@16,18#. How-
ever, as has been shown above,hc51 is not possible for

FIG. 6. A three-dimensional plot of the resonance fluorescence
spectrum against Rabi frequencyV for the caseN50.01,C510,
F50.

FIG. 7. A three-dimensional plot of the resonance fluorescence
intensity at line center againstF and V for the caseN51 and
C5100.
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finite C and consequently an exactly pure state is not achiev-
able in this bad cavity limit. Having said this, we show that
when these anomalous spectra do arise in our cavity model
the dynamical equilibrium state of the atom is very well
approximated by a pure state. That a quantum system can,
via interaction with a reservoir, achieve what is very nearly a
pure state is certainly surprising at least from the general
perception of the role of standard reservoirs. This again is
further demonstration of the nonstandard properties of a
squeezed reservoir.

In Fig. 8 we plot 12Tr(r2) as a function of the Rabi
frequencyV for the same parameter values as in Fig. 3. The
coincidence of the minimum in each case with its equivalent
case in Fig. 3 is apparent, the form of the curves around the
minimum are also similar. It can be seen that asN is de-
creased, there is a slight discrepancy between the value of
V which minimizes the line-center amplitude and that which
maximizes the atomic state purity. In the free-space analysis
of @16,18#, for F50 andN@1, these two phenomena are
optimized for the same value ofV. Only for F50 may the
atom be prepared in an exact pure state. We do not consider
this case further here because we are concerned in remaining
in that region of parameter space that is experimentally ac-
cessible.

In Fig. 9 we change the value of the phaseF to p/2 . The
minimum in each plot is again clear, as is its approximate
coincidence with the anomalous region depicted in Fig. 3,
but what is also clear and consistent with our previous analy-
sis is that the steady state achieved is less pure than for
smaller phase values. Finally in Fig. 10 we show a 3D mesh
plot of the atomic purity againstV andF. This figure bears
a striking resemblance to Fig. 7 from the point of view of
indicating the existence of the particular parameter range
over which the anomalous features can be expected and
equivalently where the atom has evolved into what is very
nearly a pure state. The two plots differ quantitatively in the
central region and on towards the larger values ofV . How-

ever, this is to be expected, in that as we move away from the
anomalous region, the steady state of the atom is a more
highly mixed state.

V. CONCLUSION

We have considered the resonance fluorescence spectra of
a driven, cavity contained, two-level atom damped both by
decay into the unsqueezed modes out the sides of the cavity
and through the dissipation of the cavity field through the
leaky output mirror, with a squeezed vacuum coupled to the
system.

In the bad cavity limit we have shown the evolution equa-
tions for the atomic observables to be formally identical to
those for the equivalent system in free-space, with the re-
placement of the actual squeezing parameters by effective
squeezing parameters. We have also shown that some of the
anomalous features in resonance fluorescence predicted for
the free atom situation do in fact carry over to the cavity

FIG. 8. The plot of the steady-state atomic purityS512Trr2

againstV for the same parameter values as Fig. 4.S50 corre-
sponds to a pure state.

FIG. 9. The plot ofS512Trr2 againstV for the same param-
eter values as Fig. 3.

FIG. 10. Three-dimensional plot of atomic purity againstF and
V for the same parameter values as Fig. 7.
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configuration and may be robust enough to permit observa-
tion.

When Rice and Pedrotti@24# considered this model they
pointed out that it was quite a practical model for the obser-
vation of some predictions that had originally stipulated a
4p solid angle of squeezing. We feel that it would be a good
candidate for the observation of the anomalous spectra,
thereby providing further verification of the unique proper-
ties of the squeezed vacuum. Equivalently this could be
viewed as a way of preparing an atomic system in what
would be, for the correct choice of parameter values, very
nearly a pure state. Thus it may be a practicable device for

the investigation of various conjectures associated with
Schrödinger catlike states.
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