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In this paper we present a summary of the experimental observations of the polarization behavior of a
Zeeman and Faraday laser and discuss difficulties with the usual interpretation in terms of two circularly
polarized modes. To illustrate a single-mode view we solve analytically the problem of a laser with a weak
dichroism and a weak Faraday rotation. The theory explains essentially all of the experimental observations.
Equally important, we show that circularly polarized modes by themselves do not satisfy the accepted laser
equations and consequently that a two-mode interpretation is not tenable. Our treatment is couched in the
language of nonlinear dynamics. The transition from a fixed-point solution to a periodic solution that occurs at
a critical field is identified as a saddle-point instability. In three separate appendixes, we consider: a polar-
ization propagation picture that gives us physical insight into the behavior of a dichroic Zeeman or Faraday
laser, possible extensions of our calculations to cavities with large anisotropies, and we discuss the merits of
“bare cavity” laser models.

PACS numbds): 42.60.Mi, 42.25.Ja, 03.65.Sq, 42.55.Lt

INTRODUCTION many papers on the polarization states of lasers. References
[1-56)] are selected experimental and theoretical papers that
The Zeeman laser has been the object of numerous studre feel are most relevant to the central question of the de-
ies, both experimental and theoretical. There have also beestription of the polarization modes of Zeeman or Faraday
several studies of the closely related Faraday laser. In thgas lasers. We have restricted the treatment to lasers that can
Zeeman laser, applying a longitudinal magnetic field to thesupport only a single longitudinal and a single transverse
gain medium creates a frequency-dependent Faraday rotationode but perhaps one or more polarization modes. As we
(circular birefringenceand a frequency-dependent differen- limit ourselves to realistic models of real lasers, we rule out
tial gain between circular components of the fiétircular  ring lasers because the number of polarization modes must
dichroism). For the Faraday laser, applying a magnetic fieldpresumably double if forward and backward waves are sepa-
to some intracavity element creates a Faraday rotation that igble. We have also chosen to limit the presentation to
usually frequency independent. In both cases there is alwaystatic” laser systems, i.e., to lasers where the various con-
some residual linear dichroism and linear birefringence dugrol parameters are not made time dependent. Furthermore,
to other elements inside the cavity. Thus the two types othe anisotropies of the cavity optics and of the saturated gain
lasers have much in common and not surprisingly show simimedium are assumed to be weak. Our purpose is to provide
lar behavior. Examination of the literature shows that thean overview and a single-mode interpretation of the Zeeman
observations have been interpreted either in terms of singleand Faraday laser. To date a single-mode interpretation has
mode or two-mode operation, with a heavy preference for th@ot been accepted by the general laser community. A large
latter. Surprisingly, for both approaches, the theoretical forpart of this paper is concerned with convincing the reader
mulation of the problem begins with what are the same equathat such an expression best describes the physics of a
tions computationally, but with a nomenclature that makeZzeeman or Faraday laser.
them appear to be different. It is the intent of this papsiilto To begin, we specify what we mean by a single- versus
identify the point of divergence of the two interpretations, two-mode model or interpretation. We are not concerned
(i) show that a single mode approach is tenable but that aith spatial modes, longitudinal or transverse, but rather we
two mode approach is natiji) present a mathematical and are concerned only with the polarization aspect of laser
physical picture of the preferred interpretation for the par-modes. The modes we have in mind are modes of the entire
ticular case of a dichroic Faraday laser, and findlly) show  laser system, not simply modes of the bare cavity. The well-
that a single-mode view is compatible with the general unknown approach to establish the mathematical model of a
derstanding of the vector nature of dual polarization lasers itaser is, first, to imagine a specific form of the field, second
the absence of a magnetic field. to solve the density matrix to determine the dipole moment
This paper is not intended as a critical review of the veryper unit volume of the gain medium, and finally to insert the
expression for the polarization into Maxwell's equation and
demand that the predicted field is consistent with the field
*FAX: (416) 978-5848. originally chosen. In this light, aingle polarization mode
Electronic address: dmay@physics.utoronto.ca means that the initial choice of field is characterized by just
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two complex components of the electric field, with slowly

varying amplitudes and phases. The intensity of a mode is
proportional to the sum of the squares of the amplitudes, the
frequency is determined from the average or mean phase of
the two components, while the polarization information is

contained in the relative amplitude and difference in phase of W, 7 W, W, F M,
the two components. The stable solutions to the self-

consistent set of equations are the possible single modes of
the model system. There may be more than one single—moda%
solution to the model equations. It is a separate question to

ask whether or not the presence of one mode will suppressi7 50 58. For tilted windows, the cavity is always slightly
the operation of another, i.e., to ask if one can expect thgjichroic because of the difference in transmission through
laser in the laboratory to operate on a single mode. If modgyindows fors andp polarization. Tilted windows or strained
suppression doesot occur then one should reformulate the gptics are also birefringent. However, for most of this paper
theory in terms of twdor morg modes for the initial field e ignore the birefringence. In order to have a controllable
with two (or more Fourier frequency components. In the gichroism, as opposed to a residual and unknown dichroism,
multir_node case, whether the_modes are or are not indepegne often adds to the cavity a tiltable pldteindow), W, .
dent is also a separate question. However, {0 be a true Mufhe dichroism may then be calculated using the well-known
timode case, to each mode there must also be a correspongresnel coefficients of transmissighs,59. The cavity is

ing solution to the appropriate single-mode formulation ofgygficiently short that it supports only one longitudinal mode
the' problem. As a Iinearly po_Iarized fleld.can always be devyithin the gain curve. A diaphragrmot shown limits the
scribed as a linear combination of two circular componentgsciliation to a single transverse mode. For small anisotro-
one is led(as we have doneo distinguish a mode from the ies the order of the anisotropic elements in the cavity is
components of that mode in a given basis. It is in the Sensgnimportant60].

expressed in this paragraph that we use the expressions, |, such a He-Ne laser, with no Faraday rotation,

single or two mode, in this paper. (H=0), and dominated by linear dichroism, one observes
As most of the experimental work on Zeeman or Faradayht the laser operates linearly polarized and aligned with the
lasers deals with the He-Ne system, we first describe a geiyis of minimum los§61]. If ¢, is the relative phase of the

neric gas laser and summarize the key experimental resulfg;q circular components of the field, then the azimuth of the
[57]. Then we present the most common two-mode '”terprepolarization ellipse ispo/2. We define the origing,=0) as

tation of the observations. This is followed by a summary ofyjigned with the polarization in the zero-field case, i.e., the
the general theory of single-mode quasi-isotropic lasers. We,; |oss axis. This direction is taken as theaxis. ForH
have chosen to solve the specific problem of the dichroigieq byt weak, the laser continues to operate with a fixed

Faraday laser, rather than the more common Zeeman lasghear polarization. However, the azimuth, while still con-
because the solutions are analytic and thus more amenabledp, i in time. is rotated away fromb,/2=0, in the sense

physical interpretation. We show, at least qualitatively, thatyien py the Faraday rotation. The azimuth increases until a
the theory explains the existing experimental observationgyitica field, H,, is reached, at which point the azimuth has
and is compatible with the interpretation of quasi-isotropic, \41ue of w/4. For larger values of the Faraday rotation
lasers in the absence of a Faraday rotation. We also show that, >H, or equivalently,y> v.) the azimuth becomes peri-

. . f . . c 1 C
a two-mode_ interpretation of the Q|chr9|c Faraday laser is no dic in time, i.e., it physically rotates. While always periodic,
tenable._ This completes the main ob;ecnye of the Paper. I i hot harmonic. It becomes more harmonic as the mag-
Append|wae use a begm propagauon picture that gives Uetic field is increased further beyomt,. Some examples
deeper physical insight into the operation of the Zeeman o f the above can be found in Ref&,15,20,36,38,55 To
F_araday laser. In Appendlx B we con5|der_ possible eXteNgate there has been only fragmentary and incomplete theo-
sions of Fhe mean-fleld_ mode| to lasers with Iarg_e OIOt'calretical explanations of some of these characteristics.
anisotropies. In Append!x C we discuss non—megn—ﬁeld mod- The common experimental interpretation of these obser-
els based on “bare cavity” modes. The appendixes serve Wations is that the laser operates in two circularly polarized

round out the overview. modes abovél. and that the two-modes are locked together,
below that field strength. We are now in a difficult position,
ZEEMAN OR FARADAY GAS LASER if not with our understanding of the physics, at least with
semantic§62]. A two-mode description does not join seam-
Figure 1 shows a typical experimental setup. It consists ofessly onto the accepted zero-field understanding of such la-
a linear cavity containing a gain tube terminated with win-sers. For zero magnetic field, there is excellent quantitative
dows,W; andW,. The strength of the Faraday rotation, = agreement between experiment and a single mode, vector
may be controlled by varying the magnetic fiekdl, applied theory of quasi-isotropic laser§63,64. For H=0, the
either to an intracavity elemerit or directly to the gain present understanding is that there are at most two possible
mediumZ. In the first case we have a Faraday laser and irstable linearly polarized statémode$ of the laser. If both
the second a Zeeman laser. Technically it is very difficult toare stable, mode competition limits the operation of the laser
mount the windows normal to the optical axis; nor is it de-to one of them.
sirable to do so because of complications that arise from A second difficulty with the common two-mode interpre-
etalonning effects between the various cavity componenttation arises above the critical field where the laser field is

FIG. 1. Schematic drawing of a Zeeman or Faraday laser with
intracavity linear dichroism.
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not stationary. One is tempted to describe a time-dependenteasured in units of round-trip timeL2c. The cavity ma-
field as the superposition of two circularly polarized station-trix, M, is a 2<2 matrix, [ 3], containing the cavity

ary modes of different frequency, as was done for the Zeeanisotropies. When one adds the two rates, one due to the
man and Faraday lasésee, for example, Reffl] and[36]).  cavity, the other due to the gain medium, the resulting dy-
This view is not correct because it implies a constant beagamical equations are

frequency between the modes that is not seen experimentally.

A way around both of these difficulties is to use the notion of E.=[a,—%—B.1.—0,1_]E,+[aE.+bE_],

a fixed point or statig¢vectop) mode below the critical field (2a)
and to use the notion of a limit cycle or a dynaniecton _

mode above the bifurcation point. Thus, at least conceptu- E_=[a_—%—B8_1_—6_1,]E_+[cE_.+dE_].
ally, a single-mode theory should be sufficient to describe the (2b)

Zeeman or the Faraday laser both above and below the criti-
cal field and would join seamlessly onto the accepted zeroAll quantities(except) are complex. In Eq2a), a, is the
field mono-mode theory. gain, 8.1, the direct saturation and.| _ the cross satura-

A two-mode description of the Zeeman laser was suglion for the E, component of the field, all in units of per
gested in the first experimental papét. It is not surprising, ~ round trip. Herd . equals? 2 , andl _ equals# 2 . In each
therefore, to find a two-mode description of the polarizationequation, the second term in square brackets contains contri-
properties in the early theori¢43,14,20-22,25-29To il- butions from the cavity anisotropies. The equations are writ-
lustrate the origin of the two-mode picture and to set theten in a form directly applicable to a Zeeman laser, where the
scene for a single-mode interpretation, we begin with arFaraday rotation arises from the difference between the
overview of the general theory of quasi-isotropic lasersimaginary parts ofe, and «_ . In the Faraday lasew

[24,65-68§. equalse_ and the Faraday rotation is contained in the imagi-
nary parts ofa andd. While the frequency-dependent coef-
THEORY OF QUASI-ISOTROPIC LASERS ficients,«, B, and 6 are (complicated functions of the ho-

mogeneous and inhomogeneous widths of the gain medium

We take as given that a plane-wave, slowly varying am{67], for the purpose of this paper the reader may simply
plitude, approximation provides a basis for the description otake them as given quantities. If the field components
the properties of the gas lasers under consideration. For thge written in terms of an amplitude and phade,
He-Ne system one is also justified in adiabatically eliminat-= = (t)exdi¢, ()], E_=Z_(t)exdi¢_(t)], and the two
ing the dynamics of the gain medium. This means that onequations are separated into real and imaginary parts, the
takes the steady-state solutions of the density matrix whefesulting equations have the form
calculating the electric-dipole moment per unit volume of the
gain medium. The solution is always truncated at third order ;';’Jr:fl(;g+ by ), 7 = (&0, by b)),
for gas lasers when polarization information must be re-
tained. Thus, one is left simply with the equations for the ¢+:f3(;§+ b b)), ¢_:f4(g+ L b b
electric field. In the mean-field approximation, ideal mirrors (3)
are assumed and all of the properties of the cavity and the
gain medium are uniformly distributed along the axis of the In order to appreciate the difficulties associated with the
cavity. This allows one to satisfy Maxwell's equations with a ysual two-mode interpretation of E¢®), it is instructive to
spatially uniform or mean field and finally leads to equationsexamine how the present vector formulation ties in with
for the complex amplitude of the optical field that are func-Lamb’s scalar theory. In thecalar theory there is one dy-
tions .of time alone. In a linear cavity, the mean fields arenamic equation for the field amplitud&, and one dynamic
standing waves. _ . _equation for the phasep. Only #, #, and ¢, but not ¢,

The time rate of change of the field has two contributionsgppear in the equations. As the net gain and the saturation
one due to the gain medium and the other due to the cavity,arameters are both frequency dependent, one had to choose
For the gain medium, one must include in the calculation they frequency in order to set up the starting equations. Conse-
spatial degeneracy, i.e., the angular momentum quantuR)ently one interprets the equation fbras the correction to

”Umk?eflsmj |°f' the Z_eerrr:an s;blevzls of thp} Uﬁper and Iolvvert.he frequency and iterates the solution until the condition
atomic levels; it Is in them; dependence of the matrix ele- ,_ g g gafisfied. This is how the resonance condition

ments of the transition dipole that the saturated polarizatio : - :
) . _ 16,33 that the round-trip phase shift be an integral number
properties are hidde[24,25,69. The contribution from the imes 2 appears in the mean-field treatment. Clearly there

cavity is established by using Jones matrices for the optic but a single frequency in the single-mode scalar theory.
elements to write down the round-trip change in the field an It is in applying the same approach to thectorcase that '
then dividing by the round-trip time. The cavity contribution atrap is laid. For example, Fork and Sarggi] and many

has the form others, assign eactomponentf the field its own frequency,

w4 Or w_ . The right- and left-handed components are now

called the right- and left-handedodesand we have slipped

where in a circular basisE is a 1x2 column matrix from a single-mode to a two-mode language. Below, we wil
E, o , _ ) ' try to convince the reader that the basic equations of all of

[g'], or Jones vector,” is the isotropic lossMy is the e so-called two-mode Lamb type theories, as applied to

round-trip cavity matrix andJ is the unit matrix. Time is Zeeman lasers, are in reality single-mode theories. Thus this

(9E/3t) o= (M y—U)E=(M 4~ ZU)E (1)
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paper is not about Eq$2), equations which are generally = Often, the stationary soluti¢s) to Eqgs.(2a) and(2b) can
agreed upon as representing a reasonable plane-wave motel found in the same manner as those of Lamb’s scalar
for low gain, quasi-isotropic lasers. The paper is about theheory. The recipe, for solving the vector case follows. First,
interpretation of the equations and their solutions; it is abouthoose a frequency and solve the first three equations with
the physics of the problem. While the specific form chosen tdhe time derivatives set to zero to find the intensity and po-
express the field is definitely a question of personal choicelarization statés), and then solve the last equation to find a
the trap laid is in the semantics associated with the nomereorrection to the frequency. Iterate the process uhtiquals
clature. On one hand, the semantics may lead one to makezaro[70]. Setting the derivative equal to zero is a recipe for
questionable approximation when trying to solve the equafinding fixed-point solutions. For limit cycle solutions, the
tions analytically(See, for example, Reff34] and[35] and  equation fore is the equation giving the frequency variation.
particularly [21] and[29], where it was necessary to make Of course, this raises a subtle point; is the general approach
‘convenient” approximations to arrive at a “locking” equa- self-consistent considering one has calculated the gain and
tion) On the other hand, if the full equations are solvedsaturation coefficients using a fixed frequency? We address

numerically, different semantics will lead one to different this concern below, for the specific case of the dichroic Far-
physical interpretations of the same numerical results. Thgday laser.

advantage of our treating a dichroic Faraday laser to advance
our single-mode interpretation is that we can find analytical
solutions to Egs(2) without approximations, thus removing THE DICHROIC FARADAY LASER

at least one source of ambiguity. Furthermore, the theoretical The general formulation of a mathematical model for

results explain, at least qualitatively, all the existing eXpe“'single-mode quasi-isotropic lasers has been given in Refs.

mental data. . . . [24,64—68. Here we present the formulation for the specific
Above we expressed the view that a mode is the operatin

; . ; ase of a dichroic Faraday laser. A dichroic cavity has been
point of the laser system as determmed_ by 50"!“0”? of hGseq experimentally for both the Faraday and the Zeeman
(mode) laser equations. However, to clarify the situation, 'etlaser[38,3q. The bare cavity has also been studied for this

us p_onsider some general properties of Iaser_fields ir_]Sid@ase[BO]. We use a terminology similar to that of our earlier
cavities. For dixed time one can start at an arbitrary point |, . [60,63,64,67,68 We will give solutions for the

' ' smode{s) of such a laser for magnetic fields above and below

over a single round trigwith appropriate boundary condi- the critical fieldH,, [57].

tions) to find the field at the starting point. However the field In a circular basis, and starting with the field incident on

must be single valued. Thus both the intensity and the p°|arfnirror 1 in Fig. 1, the round-trip Jones matrix for the cavity
ization must be reproduced after the round trip integratior]S '

and the total phase accumulated on a single round trip must
be an integral number timesm2 In this fixed-time or “snap-
shot” view, a mode is a possible “resonancgl6,33. This
suggests that the way to develop a single-mode theory is to
write the four coupled mean-field equations, implied by Eqs.
(28) and (2b), in terms of intensity, polarization, and mean
phase,but only one frequen¢yw. The intensity and polar-
ization are determined by, , #_ and the relative phase
do=(¢.— ¢_) while the overall phase is defined by the
mean phase= (¢, + ¢_)/2. In terms of these variables we
find that the equations have the structure

e” 0
_ilt
0 e

e” 0
0 elv

€

r
1 2

1
Mft:t €

e'27+ %712 2€ cos2y

. (5

2e cos2y e 27422y

The mean transmission, and the transmission anisotropy,
€, are given byt=(t,+t,)/2 ande=(t,—t,)/(t,+t,), re-
spectively. Heret, and t, are the transmissions of the
) . Cartesian-field amplitudes through the tilted window. The
Ci=t(21, 2 bo), =122, E_ o), single pass Faraday rotationys The factorT=t?r ;r, is the
isotropic round trip “transmission” where; andr, are the
qlbo=f3(éf+ L bo), ¢:f4(5+ o), @) reflectance of the mirrors. From E€) we find M, equals

. _ 2 .
where thef’s are new functions. What is more important, the 1(1-€%)sin2y 2€ cos2y

functions are independent of the mean phdseThe first 2€ coS2y —i(1-€?)sin2y|’
three equations determine the possible polarization states and

field strengths that satisfy the resonance condition in oubng & equal to - Tcos2(1+€). In the following we will
mean-field formulation of the problem. The last equation is_ .,

) . . assume that the anisotropies are small, i.e., the laser is quasi-
to be used to satisfy the round-trip phase condition. The facitsotropic so that €2<1, cosd=1, sin2y=2y, and
that Egs.(28 and (2b) as found in various forms in the £=1—T. When written out in terms of their real and imagi-
literature have the structure outlined is the main basis of Ouﬁary parts, Eqsi2a) and (2b) become

claim that they are, in principle, single-mode equations. '

Writing the equations in terms of the intensity, polarization 4

parameters, and a mean phase is to be preferred not only%“+ . . . o _ o 4o

from a point of view of semantics but also from the point of  dt [(a"=2) =B = 0" 17, +[2Te cospo] 7,
view of the physics involved. (68
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de-
T: [(a"=)=B"I_— 6" ]&_+[2Te cospol &, , timit cycle soltions
(6b) | fi di int
] 0.8 S:I(:tiopn(:m Sln((PO)
d o El NG
%=4Ty—(,8'—0')(l+—l,)—2Te singo[ (£, 1) =06 .
t = I A
g 04 I
(L 120)], (60) 02f /@ e
2dgpldt=2a'— (B + 6) (1, +1_)+2Te sing[ (£, 1) 0.0'0 ‘
o Relative Phase @o T
—(Z-12,)]. (6d)
To simplify the notation, in the following we absord’ into FIG. 2. A diagram illustrating, fory/e<1, the two possible

the isotropic gain, so that" is to be taken as the isotropic Solutions to the equation, sig=y/e. Limit cycle solutions exist

net gain. In contrast to the equations given earlierfor v/e>1.

the gain @=a'+ia') and saturation parameters

(B=B'+iB,6=0"+i6) are the same for the right- and tan(¢o/2) =[ e(1—e™") +u(1+e™) ]/ y(1—e™")

left-handed circular components of the field. (10
The reader may easily manipulate E¢8a and (6b) to

show that the equation fdB,=(#2 —#2), the Stokes pa-

rameter which describes the ellipticity, is given by

whereu= +(€?— y?)*2 and we have arbitrarily defined the
time origin such that$y/2=w/2 att=0. The steady-state
solution {—) is

t—?ZZ[ar—ﬁr%]&, ) tan( ¢o/2) =[ e~ (€~ y*) 2]l y=(e—u)/ y= 7/(6+U)(-11)
where the total intensityy, equals ¢% +#2)=(1.+1_). It is not difficult to complete the solution by solving Egs.
In the neighborhood of linear polarizatio’ ( =~ _) either  (9g) and(9c) at least numerically if not analytically. Thus we
Eq. (6a) or (6b) yields as a stationary solution have found the fixed point by letting the dynamic equation,
_ ; P Eq. (9b), evolve from an arbitrary value @f,. The unstable
So=2[a’'+2Te cospol/[ B'+ 6']. @ solution, tang/2)=(e+u)/y, can be found by letting time

. . . 0 to —« in Eq. (10).
!frlserrt_lng qug) ltnhtomErq.(Z/) Sr:ivf_rthasz WIILdae::a_)r/r;co zero 9 As stated e?arfier? there is anoth@tandard approach to
if p' is greater thard'[ a'/(a €CoSpg)]=0 . Thus we o, 0 tor the possible stationary states of Eq. (9b); it is to

have verified the important and well-known result that a Im'setdda /dt=0. This yields sing).=yle [77]. Figure 2
e_arly polar_ized field is always a stat_)le sol_ution to the e(.Wa'showsothat thére are two solutior?ssio the equaition which for
tions f(_)r this type of laser57,74. Having gained this _phy5|- positive, lie betweenpy=0 and =. Having found two

cal insight we can now reduce t_he number of eqt_;aﬂon; frorTs{tationary solutions the next step is to determine their stabil-
four to three, one for the intensity, one for the orientation of;

the linearly polarized light, and one for the frequency or![ta/r'b';;%m Eg.(gg)t;otgte tﬁgns?ggilgﬁlafqugit:}cirzsfor a small per-
evolution of the mean phase. With a little manipulation the o0 yp

final dynamical equations can be written as d(S8¢g)/dt=—4[ ecospg]sd Sbo)
S
d — _ 271/
20"+ de cospo— (B+ 0)S],  (9a =4d1-(17TH o0
=*4u(S¢y), (12
%:4),_46 singy, (9b)  Which has the obvious solutiorho(t) = S¢po(0)e™ 4t The
dt stable solution, the one with the minus sign, corresponds to

(o) ssbetween 0 andr/2. In this second method of solution
2d¢p . we obtain information about fluctuations in the azimuth,
—=2a'—(B'+60)S,, (90 .

dt $ol2; they decay to or grow away from the steady-state val-
ues without oscillations. Equatiort8) govern the dynamics

where for compactness, we have defined a B&@ndy equal  of solutions that are restricted to the equator of the Poincare
to the old value ok andy, multiplied byT. Equation(9b) is  sphere, i.e., to linearly polarized light. We have chosen this
the Ricati equation, while Eq9a) is sometimes referred to method of presentation in order to get at the underlying
as the Adler equation. We now see the advantage of choosirghysics. Nevertheless, a complete linear stability analysis,
a dichroic Faraday laser as the example for illustrating oustarting from Eqs(6), leads to the same conclusions pro-
single-mode approach, namely, the equation fgr, Eq. vided we are dealing with quasi-isotropic lasers.
(9b), giving the orientation of the linearly polarized field, In the last paragraph we showed that there is a second
may be solved analyticalllj75,76. fixed-point solution, which is unstable. Ag approacheg,

For y<e, the solution can be written the stable and unstable solutions both approaghk /2
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(orientation equal tar/4). The stable and unstable branches
“collide” when y=e. This aspect of the stationary states is
contained in Fig. 2. By now, it is clear that we are on the
familiar ground of coupled nonlinear equations. There the
usual picture of an instability is a “collision” between stable
and unstable stationary states. A mathematical collision
means there is a degeneracy in the solutions; a collision be-
tween a stable and unstable state results in a channel opening
up whereby the system can escape from the stable state. In
the linear stability analysis of the two fixed-point solutions
we found the stability exponents (e>— y?)¥2. As the ex-
ponent goes from positive to negative through zero at the
critical field H., we conclude that the discontinuity is a
saddle-node bifurcation. Turning Fig. 2 on its sigehich

then becomes a plot o, versus the control parameter
vl €) shows that the unstable and stable branches collide at a
turning point.

Above we used two approaches to find the fixed-point
solution for y<e. There are no fixed-point solutions when
the Faraday rotation, as measured fyis larger than the
dichroism, as measured hy. Figure 2 also captures this
aspect of the problem. Setting=(y?— €%)?, with y>e,
we find for the time-dependelimit cycle) solution[75]

2rr (a)

a8

[=3

ot

10 20 30

[
B

(b)

o

[
W

10 15

[
a

©)

]

Orientation of Linear Polarization ¢ /2

tar] ¢o/2]=[vtan2vt) — €]/ y (13

where in this case we have set téig(2)=—e¢/y at t=0.
The azimuth is periodic, generally not harmonic, and has a
period m(y?—€?) Y2 If € is small relative toy, then
tar] ¢o/2]=tarf 2yt] and the orientation ¢y/2) of the lin-
early polarized light, now rotates with a constant frequency Time (HS)
equal to 2y rad. per roundtrip time. In this large limit, one
could have derived the result directly from E§b). FIG. 3. Calculated azimuth of the linearly polarized field ar
Substituting the spluuon fo¢0, .Eq. (1_3)_, into Eq._(9a)  y=1.05y,, (b) y=1.25y,, and(c) y=4y,, plotted as a function
allows one to determine the periodic variation in the intensitysf time. A round-trip time of 3.%10°° s was assumed.
Sy. It is clear from Eq.(99 that the modulation of the in-
tensity will be small for quasi-isotropic lasers, i.e., when thesity and ellipticity of the light decay monotonically to zero
dichroisme is small compared to the net gain. Even without provided the laser is quasi-isotropic. The Floguet exponent
integration, Eq(9a) tells us that the maximum and minimum for the relative phasep,, is zero indicating neutral stability
of the intensity(which occur fordS,/dt=0) coincide with  in this variable. Of course this is expected on physical
the linearly polarized light parallel to the axis of minimum grounds, as a displacement in position on the equator of the
and maximum loss, respectively. We conclude that the lasdPoincare“sphere” is simply a displacement of the time ori-
suffers weak amplitude modulation, and consequently, durgin for the limit cycle we have found. Thus, the limit cycle
ing the limit cycle, that the tip of the Stokes vector does notsolutions are physically stable against small perturbations.
lie on a perfect circle, the equator of the Poincsphere. At this point we have all the basic ingredients to explain
In addition to amplitude modulation, the laser also suffersthe experimental observations) the light is linearly polar-
weak frequency modulation. In the case of the fixed-pointized,(ii) the orientation is along the axis of minimum dichro-
solution Eq.(9¢) self-consistently determines the stationaryism for zero Faraday rotatiortiii ) the orientation changes,
frequency of the solution. In the case of a limit cycle solu-and reaches a maximum valueg@§/2= =/4 at a critical field
tion, since the intensity is periodic, the frequency of thedefined byy.=¢€, and (iv) the orientation is periodic for
mode is also periodic for a fixed laser length. At line centerH>H, (y>y.=¢€), and becomes harmonic for larger fields.
o'\ B', andd' are all equal to zero and the frequency is sta-At all times the theory has been interpreted in terms of a
tionary. Away from line center the modulation is small, of the single mode. We now present some calculations, using our
order of e times the perturbation of the frequency associatedsingle-mode model, which may be compared with experi-
with saturation of the gain medium. Since the laser is onlymental results found in the literature.
very weakly modulated in frequency, it is reasonable to Figures 3a)—3(c) show theoretical plots of the orientation
evaluate the gain and saturation parametetsd, andg) at  of the linearly polarized mode as a function of time for three
a fixed frequency, as is done in the calculations. values of the Faraday rotatio=1.05y., y=1.25y., and
To complete the solution of the modes of the dichroicy=4vy.. The dichroism, or equivalentlyy., was set at
Faraday laser, we have also carried out a stability analysis dfo™3. All the other parameters were chosen consistent with
the periodic solution. We find that perturbations of the inten-those of a He-Ne laser operating at 338, near line center

1 2 3

of
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FIG. 4. Calculated intensity observed through a polarizer ori- 0.6
ented along the preferred polarization direction in zero magnetic 0.4
field. Same conditions as in Fig. 3.
0.2}
[63]. The figure shows the evolution of the orientation from 0.0
simply periodic to almost purely harmonic with increasing 0 5 10 15 20
vl y.= vl e. We are not aware of any direct measurements of Ti
¢ol2 as a function of time. What has been observed is the 1me (MS)

intensity measured through a linear polarizer. As the inten-
sity, Sy, is nearly constant the intensity transmitted by a
polarizer aligned with th& axis (¢o/2=0) varies directly as
cog(¢y/2). Figures 4a)—4(c) show the results, calculated
under the same set of conditions as for Fig. 3. While we
cannot make a quantitative comparison with the existing

entation(a). See text for discussion.
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FIG. 5. Calculated intensity foy=1.05y,, for a polarizer ori-
ented(a) as in Fig. 4,(b) at 45° with respect to orientatio@), (c)
at 90° with respect orientatiof@), (d) at 135° with respect to ori-

data, the computed curves are strikingly similar to those Figures §a)—6(c) show the computed homodyne spectra,
shown in Refs[3 (Fig. 6), 20 (Fig. 103, 50 (Fig. 3]. We  or Fourier analysis of the intensity variation, é¢&./2), for
have also computed the variation in intensity for a polarizethe same three cases as for Fig. 3. Again we cannot make a
oriented at 0, 45, 90, and 135° with respect to the orientatioguantitative comparison with existing experimental results.
of the polarization at zero magnetic field, all for Nevertheless Fig. 6 bares a strong resemblance to experi-
vy=1.05y.. These are shown in Figs(#d—5(d). The com- mental results given in Ref$l (Fig. 1), 20 (Fig. 11), 36
puted curves are very similar to the experimental results retFig. 6)]. Note, in the last reference, many frequency com-
ported in Ref[20 (Fig. 10D] although one must interchange ponents were observed without a polarizer in front of the
the “0°” and “90°” traces to bring the results, as reported, detector. The experiment involved a laser with Brewster
into agreement with our calculations. We have redone thangle windows and consequently there existed considerable
experiment of Culshaw and Kannelaud. Our results are immplitude modulatiofAM) as the linearly polarized light
agreement with the theory presented here and point to eptated. As mentioned above one must solve Efg. and
printing error in Fig. 10b of20]. (9¢) as the laser is both AM and FM modulated in this case.
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shows the fixed-point unstable solution for the dichroic Faraday

Relative Amplitude

0.2 laser. The two fixed-point solutions are shown as slightly separated.
0.0 - - While really overlapping in this figure, they are separated by their
0 400 800 1200 1600 values of¢y.
LOF 1 o tion of the Faraday laser. But E¢Pb) has appeared at sev-
08 eral places in the literature where it was used to explain the
“locking” and “unlocking” in the usual two-mode approach.
0.6 Once again, this raises the central question, if this paper is
0.4 only concerned with a question of semantics, i.e., is a two-
mode description also tenable. Essentially we have shown
0.2 . : : . :
that a single-mode interpretation of the model equations is
0.0 ‘ , L possible. The strongest argument against a two-mode de-
0 400 800 1200 1600 scription applies above the critical field. Since either ap-

proach starts with the same basic equations, the question is
Frequency (kHZ) “Can the two circular components be interpreted as two
modes?” The answer is no. A single circularly polarized field
FIG. 6. Amplitude of the Fourier components of light transmit- does not satisfy the equations. The reader may easily verify
ted by a polarizer, as calculated from Fig. 4. this claim by examining Eqgs2a and (2b) with say, E,
#0,E_=0, andc#0. One quickly concludes that both com-
In general, the homodyne spectrum shows that there are npbnents must be present to satisfy the basic equations. They
just two frequencies present. In the literature the multiplicityproduce a periodic solution above the critical field and a
of frequencies has been dismissed as indicating that “othefixed-point solution below the critical field. If both compo-
weak (unidentified modes” were running and not relevant to nents of the field must be present, then it is a single mode, a
the general behavior of the Zeeman laser. Here they are re$ingle vector mode.
evant and are a direct consequence of the periodic but not In place of the traditional locking of two oscillators, the
harmonic motion. They provide strong support for our treat-view developed here is one of “clamping.” When the satu-
ment of the Faraday-Zeeman laser. rated gain medium shows a preference for linear polarization
The fundamental frequency of rotatiesy, or inverse of and there is no Faraday rotation it is the linear dichroism that
the period has been measured experimentally. Let us defirfexes or clamps the orientation of the polarization. If only a
the reduced frequency as,= wi/2e a quantity which is Faraday rotation were present, the laser would still operate
given by o, =[(y/€)?>—1]¥2 for y>e. It is zero fory<e. linearly polarized but it would rotate2per round trip. Con-
Figure 6 is a plot ofw, versusy/e for y (or the magnetic sequently, in a laser with a linear dichroism, as the magnetic
field) both positive and negative. The overlap between thdield is increased from zero, the Faraday rotation will even-
stable(solid line) and unstablédashed ling fixed point so-  tually break the clamping of the light field to the dichroism
lutions is fictitious. The solutions have different values ofand enforce a clamping to the gyro-optic properties of the
¢o, as Fig. 2 has stressed. The solid curves are the onesvity. This view is supported by the polarization propaga-
expected in any measurement. Experimental evidence cotion picture given in Appendix A.
firming the predicted dependence of the frequency of rota- It is probably a coincidence that the clamping of the po-
tion on the strength of the Faraday effect can be found idarization in the Zeeman or Faraday laser and the traditional
Refs.[3 (Fig. 7), 6 (Fig. 1), 11 (Fig. 2), 36 (Fig. 5), 51 (Fig. description of the locking of two coupled oscillators are de-
1), 55 (Fig. 2)]. scribed by the same mathematical equation, here(®u).
We now turn to a general discussion. Equati®bh) has  The consequence of this is that the behavior of the funda-
played a pivotal role in developing our single-mode descripmental frequency, as depicted by the solid curves in Fig. 7, is
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The single-mode interpretation that we have presente&C bp 9

contains none of the problems we have identified with thﬁggeaﬁingg;s ;Ijes odrt':(rjml;) ' EE;aE(rzghc%tj(r:;r?all?:%rggogration
usual two-mode view. The understanding of the complicate PP y P

behavior of the Zeeman or Faraday laser is “demystified”program'
when presented in terms of the general properties of nonlin-
ear systems. Physics has changed in the 30 years since the
first experiments on Zeeman lasers. Fixed points, limit
cycles, bifurcations, etc., simply were not even part of the
vocabulary at that time. That is not the case now. We would In this appendix we use a polarization propagation ap-
argue that not only have we simplified both the mathematicaproach, first given by D’Yakonov and Fridrikhd27] and
treatment and the interpretation of the experimental resultssubsequently exploited by Le Floch and 8ten[39]. It is
we have also deepened our understanding of the Zeeman galid for lasers that show a preference for linear polarization
Faraday laser by relating their behavior to general propertief57,80. The basis of the picture is best illustrated graphi-
of nonlinear multidimensional systems. cally, as in Fig. 8. We take the order of the cavity elements,
There remains the question of how closely the Zeemams seen by the propagating field, as mirror one, the dichroic
laser approximates the dichroic Faraday model discusse@late, Faraday rotator, mirror two, etc. As will become ap-
Near line center the Faraday rotation, due to a field appliegarent, the position of the gain medium, is not important in
parallel to the gain tube, is nearly frequency independent aghis picture. Amplification by the gain medium, as well as the
we have taken in our model. If the experimental apparatussotropic loss by the mirrors, has been omitted in the dia-
includes a tilted plate inside the cavity, then the dominangram. In the figureE; is the linearly polarized field leaving
linear dichroism will also be frequency independent. Consethe first mirror,E, is the field after the dichroic plat&;; the
quently the dichroic Faraday laser and dichroic Zeeman lasdfeld after the first pass through the Faraday rotefgs, the
should show similar behavior. _ ~ field after the second pass through the rotator, Endhe
This completes the presentation of our single-mode vieWie|q returning to the first mirror after passing again through
of the Faraday laser. In Appendix A we present a polarizatioqne gichroic plate. For simplicity we have assumed ideal mir-
propagation picture that sheds more light on the physics ofprs and that the transmission of the dichroic plate is 1 and
the problem. In Appendixes B and C we discuss what ar) 5 jn thex andy direction, respectively. The physical ideas
essentially two non-mean-field approaches to the Zeeman gyyjijt into the picture ardi) the x axis is the “low loss” axis,
Faraday laser. They are not central to the question of i) the Faraday element rotates the field away from the low
single-mode description and are included more with an eyg,ss axis in a sense determined by the sign of the Faraday
to completing an overview of the mono-mode dichroic Zee-cqefficient,(iii ) the dichroism reduces thecomponent more
man or Faraday laser. We note in passing that the true tWqnan thex component and thus rotates the field towards the
mode case has recently been addressed by SyirBia low loss axis (iv) the second pass through the Faraday rota-
tor returns the final vectd,, to a direction that it is parallel
to the original vectoiE,, but shorter. Having made the an-
satz that the field is linearly polarized, the only action of the
In this paper we have given an overview of the propertiegain medium, wherever it is located, is to multiply the size of
of a dichroic Faraday or Zeeman laser than can support onlgne or more of the intermediate fields such as to make
a single spatial mode. We have shown that it is possible tthe same size aE;. This remarkably simple description
use a single-mode, theoretical model to interpret, at leagreatly demystifies the behavior of the single-mode Zeeman
gualitatively, all of the experimental results. The theory pro-or Faraday laser. For example,
vides a continuous description of such lasers for zero mag- (a) We now see why the azimuth departs from zero as the
netic field and fields below and above the critical field. TheFaraday rotation is “turned on” and we understand the di-
transition is identified as a saddle-point instability. There re+ection of the reorientation of the azimuth.
mains the problem of looking for all of the unstable solutions  (b) We appreciate the competition between the rotation by
[79], solutions that may be involved in new instabilities the Faraday effect and the rotation created by the dichroic
when other anisotropies, such as birefringence, are includeplate.
in the calculations. There also remains the problem of look- (c) With a second sketch one can see that there are two
ing for differences rather than similarities between the Zeesolutions to the problem posed by Fig. 6, one with the azi-
man and Faraday laser, or more generally, differences thamuth closer to the low loss axis and another closer to the
arise from allowing for frequency dependence of thehigh loss axis. The first requiring less gain to restBie to
anisotropies of the gain medium or cavity elements. How-+he size ofE; .
ever, what is required first, before addressing such interesting (d) We see that the high loss fiel; and low loss field
guestions, is a quantitative experimental test of the theory &, are the same fob /2= /4, thus setting an upper limit to
the present level. Finally, we have shown that a two-modehe reorientation of the linearly polarized light.
interpretation of a dichroic Faraday laser is not tenable. (e) Above the critical field we can see that there will be a

APPENDIX A: POLARIZATION
PROPAGATION PICTURE

SUMMARY
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y intensive, gives little further physical insight, and so far has
been applied only to finding the fixed-point solutions of sev-
eral anisotropic He-Ne lasers. In this section we consider
cases where the present mean-field theory, with or without a
simple extension, may be applied to cavities containing
strongly anisotropic elements.

If the gain medium is next to an isotropic or weakly an-
isotropic mirror, then the fields entering and leaving the other

E, extremity of the gain medium have nearly the same polariza-

i tion, provided of course that the polarization is compatible

with the polarization preference of the saturated gain. Con-

Eq E . sequently, to be on resonance, the field entering and return-

! ing from the rest of the cavity must also be of nearly the
same polarization, independent of the size of the anisotropies
¥ ‘E, in the rest of the cavity. We can then replace the rest of the
cavity by an effective quasi-isotropic mirr¢68] and the
entire laser must behave as quasi-isotropic as far as the po-
larization is concerned. Of course the fields thus determined
are the fields in the vicinity of the gain medium. At the far
end of the laser the fields may be completely different. The

FIG. 8. Polarization diagram showing the round trip variation of system behaves somewhat as a quasi-isotropic laser with
the orientation and amplitude of linearly polarized light in a cavity some additional optics external to the cavity to change the
with linear dichroism and Faraday rotation. polarization state of the light. This pseudo quasi-isotropic

laser is the model used by many of the Russian investigators

net rotation of the linearly polarized light per round trip and[45]. Understanding the physical basis of the pseudo quasi-
that the rotation will be nonuniform, the dichroism and Far-isotropic model makes it easy to understand why, in the spe-
aday rotation acting in concert in the second and fourtrcific cavity considered, Le Floch and ‘tean find their
quadrant but in opposition in the first and third. One can“Lamb’s vector” [37,39 located at the output mirror next to
derive this picture directly from Eq(9b). Tomlinson and the gain medium in the cavity. The pseudo-quasi-isotropic

Fork[29] developed the same picture based directly upon aproperty concerns the polarization, a property related to the

equation similar to ours. They arrived at their equation byrelative phase of the two components of the field. The same

assuming that the intensity was constant, an approximatiopavity may be highly anisotropic with respect to the mean
that was justified by numerical integration of the full equa-phase, i.e., the modes may have significantly different fre-
tions for small anisotropies. guencies. This leads us to consider another aspect of the

(f) Finally we can appreciate that the rotation will becomeproblem that can have a profound influence on the behavior
uniform at high magnetic-field strength, since the rotationof any dual polarization laser.

per pass will be dominated by the Faraday rotation. We saw above that one of the critical parameters is the

Le Floch and co-workers have used this polarizationratio of 8 to 6. While the ratio depends upon the angular-
propagation picture and a pseudopotential approacimomentum gquantum numbers of the states and actually upon

[39,50,8] to construct two semiempirical equations for the the relative values of certain relaxation rates, it is possible to

polarization dynamics of a He-Ne lasé&ee page 231 in alter the ratio in a Zeeman laser. The saturation parameters

[51]). Their equations are not identical to our equati¢®as B and 6 both contain resonant denominators involving an

and(9b). However, for small anisotropies and low saturationatomic resonance. In a Zeeman laser, the atomic resonance

they are numerically very similar. The drawback to their con-for a o, transition is displaced differently from the operating
struct and to the polarization propagation picture given herdérequency than is the_ atomic resonance. If this difference

is that one does not yet know how to generalize either tas comparable or larger than the relaxation rates of the gain

include birefringence or to treat lasers other than those thahedium, then the values of the&'s and ¢’s will be altered,

prefer linearly polarized fields. Nevertheless, the polarizatiorpossibly leading to a change in preference of the gain me-

propagation picture does give significant insight into thedium from linear to circular polarization. At the same time a

physics of a Zeeman or Faraday laser in a dichroic cavity. difference betweeny, and «_ will appear and will grow

with both increasing applied longitudinal magnetic field and

increasing displacement from line center. Under these condi-
tions the Zeeman laser and Faraday laser can be expected to
show different behavior. For instance, it is possible to force
In the main body of the text, we have used a single-modethe He-Ne laser to operate on a pure circularly polarized
mean-field, vector extension of Lamb’s single-mode scalamode at very high fieldd82]. This case could still be
theory. It is recognized that such a mean-field theory is onlyhandled by the general theory for quasi-isotropic lasers.

valid for low gain, quasi-isotropic lasers. For large anisotro- The presence of birefringence in the cavity optics can

pies one can always resort to a numerical evaluation of thalter the behavior of both Zeeman and Faraday lasers. We see
beam propagation problem, as we have performed in a recehelow, in Appendix C, that the bifurcation occurs at the point
publication[60]. However, such a calculation is numerically where the cavity is isotropic, i.e., the cavity modes are de-

APPENDIX B: EXTENSIONS
TO THE QUASI-ISOTROPIC MODEL
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generate in loss and frequency. If there is a birefringent eleticipate that the real part of the eigenvalugs, will be nega-
ment then the frequency degeneracy will be lifted. Consetive since all cavity modes decay with time. The bare cavity
quently the nature of the bifurcation may change. laser model then equates\” (smallest absolute valligo
As a specific example, one relevant to single-mode and ghe gain[16,30,36,39,8% If X has a complex part then it is

true two-mode operation, consider a large birefringence pafnterpreted as a frequency shift. The eigenvectors are the
critical field we saw that the Faraday laser operated with ity,ery clear treatment of a cavity with a Faraday rotator and a
linear polarization almost aligned with the low loss axis. The|inaar gichroism, in his case a Brewster window. While such
other pqssmle mgde was.unstable. With bwefnnggncg th% cavity is quite anisotropic, the same eigenvalue equation is
rounq trip phase is now d|ff§ren.t for the'two polanzatlonsfound for small anisotropies. Thus his discussion may be
and in effect one gain curve is displaced in frequency SpaCglpplied equally to quasi-isotropic cavities. Garrett uses a

with respect to_the other. I.f the birefringence s Iarge_ enouglbartesian coordinate system with the axes aligned parallel
then on one side of the line the high loss mode will come

above threshold before the low loss mode. The high Ioséfr) and perpendiculara() tc,) th? plane of incidenge of the
mode will then oscillate which is opposite to that predictedVindow. We can then identify his low loss axis, with our
above. In addition, the cross-saturation between the two po& @Xis and hiso axis with oury axis. For zero Faraday
sibly stable polarization modes will be weakened, both fromfotation, he finds(i) that the modes are ory polarized,(ii)

the change in the Spatia| Over|ap of the modes and becau%at thex mode has the lowest decay rate, i.e., that it has the
the difference in frequency may exceed some of the relaxlowest loss, andiii) that bothx andy modes have the same
ation rates of the gain medium. Presumably these are thisequency. For 8<0< 6. he finds(i) the modes remain lin-
reasons that several authd®3,84 have observed two po- early polarized but not orthogondii) the azimuth of each
larization modes to oscillate simultaneously even in the lessode rotates towards an inclination @f4 with respect to
complicated case of zero magnetic field. The message heretise plane of incidence, an@i) the two values oh" (decay
clear. When performing a stability analysis of the single-rateg approach each other, becoming equal at the critical
mode operation, one must consider fluctuations in the polafield. If one adds to these properties of the bare cavity the
ization and intensity, not only at the same frequency of thestatement that it is the mode with the smaller loss that oscil-
stable mode but also at other frequencies. For quasi-isotropjgtes one has partially “explained” the properties of the Far-
lasers, away from frequency-sensitive points like line edgegqay aser below the critical fielfOur Eq.(9¢) predicts that

this problem does not arise, since the modes have frequengys trequency of the two modes will be different below the

modulations within a band that is narrow compared with thecritical field]

inverse of the relaxation times of the gain medium. In lasers In spite of the success of the bare cavity model of the

with polarized feedback, th? output mirror appears to have Gichroic Faraday laser, the argument is seriously flawed. It
f_r?q“eﬁcy'depe“_de”‘ b|_refr|ng_ence and dichraism. In COMP&Y rks for the He-Ne laser for which the direct saturation
tition with the gain m?“‘".”" this leads to catastrophes in theparameterﬁ is greater than the cross saturation parameter
zgﬁgirt]i(\:/i (t)c]; 2em322?'(:;;%6@]&Ssvldghc;ﬁtﬁtt:gipg?: r?wr:rt\a/irg 0. The He-Ne laser, in saturation, prefers linearly polarized
. quency, pat : n?ields[57] and consequently there is no competition between
plicated behavior h the presence of a magnetic field, partlcu'Ehe gain medium and the bare cavity. If we were to consider
larly above the critical value. a gain medium such as the He-Ne laser operating on a tran-
sition for which 8< 6, then, as we saw above, a linearly

APPENDIX C: BARE CAVITY LASER MODELS polarized laser field is unstable and the laser will not operate

In the literature one encounters laser theories based d either cavity modd41]. There are also complications
Cavity decay modes. Bare Cavity laser models assume thépove the critical field. Here the two CaVity modes have the
the role of the gain medium is S|mp|y to stop a mode fromSame loss but different frequenCieS. They are equa”y eIIIptl-
decaying. Consequently all of the polarization behavior ofcally polarized, one being right handed, the other left
the laser is contained in the polarization properties of thd)anded. No property of the bare cavity, or of the low signal
bare cavity. Such a “cavity mode” laser model has been used@in, can be used to determine whether one cavity mode or
by several authorL6,30,39 for the Zeeman or Faraday la- WO cavity modes operate, nor can any relationship be deter-
ser. While there are a few minor variations of the model, allmined between the two, in the two-mode case. To repeat an
are intrinsically, non-mean-field models of a laser. The cavityargument used above, the most serious flaw is the fact that a
modes can be found by diagonalizing the round trip cavitySingle bare cavity mode, which is elliptically polarized above
matrix (M E=\,E), or they may be determined by looking Hc. is unstable according to the laser equations. Since both

for basis vectors such that E@.) can be written in the form bare cavity modes must be present to satisfy the laser equa-
tions, we are required to consider the laser above the critical

dE o magnetic field as two cavity modes locked. This is the com-
a:(Mca_fU)E:"E- (€Y plete reverse of the original two-mode interpretation of the

Zeeman laser. In this way we see again that a single-mode

Equation (C1) has the obvious solution&(t)=E(0)e!, picture is the only basis independent, consistent way to de-

whereE is the field, written as a Jones matrix. We can an-scribe the physics involved in the Zeeman or Faraday laser.
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