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In this paper we present a summary of the experimental observations of the polarization behavior of a
Zeeman and Faraday laser and discuss difficulties with the usual interpretation in terms of two circularly
polarized modes. To illustrate a single-mode view we solve analytically the problem of a laser with a weak
dichroism and a weak Faraday rotation. The theory explains essentially all of the experimental observations.
Equally important, we show that circularly polarized modes by themselves do not satisfy the accepted laser
equations and consequently that a two-mode interpretation is not tenable. Our treatment is couched in the
language of nonlinear dynamics. The transition from a fixed-point solution to a periodic solution that occurs at
a critical field is identified as a saddle-point instability. In three separate appendixes, we consider: a polar-
ization propagation picture that gives us physical insight into the behavior of a dichroic Zeeman or Faraday
laser, possible extensions of our calculations to cavities with large anisotropies, and we discuss the merits of
‘‘bare cavity’’ laser models.

PACS number~s!: 42.60.Mi, 42.25.Ja, 03.65.Sq, 42.55.Lt

INTRODUCTION

The Zeeman laser has been the object of numerous stud-
ies, both experimental and theoretical. There have also been
several studies of the closely related Faraday laser. In the
Zeeman laser, applying a longitudinal magnetic field to the
gain medium creates a frequency-dependent Faraday rotation
~circular birefringence! and a frequency-dependent differen-
tial gain between circular components of the field~circular
dichroism!. For the Faraday laser, applying a magnetic field
to some intracavity element creates a Faraday rotation that is
usually frequency independent. In both cases there is always
some residual linear dichroism and linear birefringence due
to other elements inside the cavity. Thus the two types of
lasers have much in common and not surprisingly show simi-
lar behavior. Examination of the literature shows that the
observations have been interpreted either in terms of single-
mode or two-mode operation, with a heavy preference for the
latter. Surprisingly, for both approaches, the theoretical for-
mulation of the problem begins with what are the same equa-
tions computationally, but with a nomenclature that makes
them appear to be different. It is the intent of this paper to~i!
identify the point of divergence of the two interpretations,
~ii ! show that a single mode approach is tenable but that a
two mode approach is not,~iii ! present a mathematical and
physical picture of the preferred interpretation for the par-
ticular case of a dichroic Faraday laser, and finally,~iv! show
that a single-mode view is compatible with the general un-
derstanding of the vector nature of dual polarization lasers in
the absence of a magnetic field.

This paper is not intended as a critical review of the very

many papers on the polarization states of lasers. References
@1–56# are selected experimental and theoretical papers that
we feel are most relevant to the central question of the de-
scription of the polarization modes of Zeeman or Faraday
gas lasers. We have restricted the treatment to lasers that can
support only a single longitudinal and a single transverse
mode but perhaps one or more polarization modes. As we
limit ourselves to realistic models of real lasers, we rule out
ring lasers because the number of polarization modes must
presumably double if forward and backward waves are sepa-
rable. We have also chosen to limit the presentation to
‘‘static’’ laser systems, i.e., to lasers where the various con-
trol parameters are not made time dependent. Furthermore,
the anisotropies of the cavity optics and of the saturated gain
medium are assumed to be weak. Our purpose is to provide
an overview and a single-mode interpretation of the Zeeman
and Faraday laser. To date a single-mode interpretation has
not been accepted by the general laser community. A large
part of this paper is concerned with convincing the reader
that such an expression best describes the physics of a
Zeeman or Faraday laser.

To begin, we specify what we mean by a single- versus
two-mode model or interpretation. We are not concerned
with spatial modes, longitudinal or transverse, but rather we
are concerned only with the polarization aspect of laser
modes. The modes we have in mind are modes of the entire
laser system, not simply modes of the bare cavity. The well-
known approach to establish the mathematical model of a
laser is, first, to imagine a specific form of the field, second
to solve the density matrix to determine the dipole moment
per unit volume of the gain medium, and finally to insert the
expression for the polarization into Maxwell’s equation and
demand that the predicted field is consistent with the field
originally chosen. In this light, asingle polarization mode
means that the initial choice of field is characterized by just
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two complex components of the electric field, with slowly
varying amplitudes and phases. The intensity of a mode is
proportional to the sum of the squares of the amplitudes, the
frequency is determined from the average or mean phase of
the two components, while the polarization information is
contained in the relative amplitude and difference in phase of
the two components. The stable solutions to the self-
consistent set of equations are the possible single modes of
the model system. There may be more than one single-mode
solution to the model equations. It is a separate question to
ask whether or not the presence of one mode will suppress
the operation of another, i.e., to ask if one can expect the
laser in the laboratory to operate on a single mode. If mode
suppression doesnot occur then one should reformulate the
theory in terms of two~or more! modes for the initial field
with two ~or more! Fourier frequency components. In the
multimode case, whether the modes are or are not indepen-
dent is also a separate question. However, to be a true mul-
timode case, to each mode there must also be a correspond-
ing solution to the appropriate single-mode formulation of
the problem. As a linearly polarized field can always be de-
scribed as a linear combination of two circular components
one is led~as we have done! to distinguish a mode from the
components of that mode in a given basis. It is in the sense
expressed in this paragraph that we use the expressions,
single or two mode, in this paper.

As most of the experimental work on Zeeman or Faraday
lasers deals with the He-Ne system, we first describe a ge-
neric gas laser and summarize the key experimental results
@57#. Then we present the most common two-mode interpre-
tation of the observations. This is followed by a summary of
the general theory of single-mode quasi-isotropic lasers. We
have chosen to solve the specific problem of the dichroic
Faraday laser, rather than the more common Zeeman laser,
because the solutions are analytic and thus more amenable to
physical interpretation. We show, at least qualitatively, that
the theory explains the existing experimental observations
and is compatible with the interpretation of quasi-isotropic
lasers in the absence of a Faraday rotation. We also show that
a two-mode interpretation of the dichroic Faraday laser is not
tenable. This completes the main objective of the paper. In
Appendix A we use a beam propagation picture that gives us
deeper physical insight into the operation of the Zeeman or
Faraday laser. In Appendix B we consider possible exten-
sions of the mean-field model to lasers with large optical
anisotropies. In Appendix C we discuss non-mean-field mod-
els based on ‘‘bare cavity’’ modes. The appendixes serve to
round out the overview.

ZEEMAN OR FARADAY GAS LASER

Figure 1 shows a typical experimental setup. It consists of
a linear cavity containing a gain tube terminated with win-
dows,W1 andW2 . The strength of the Faraday rotation,g,
may be controlled by varying the magnetic field,H, applied
either to an intracavity elementF or directly to the gain
mediumZ. In the first case we have a Faraday laser and in
the second a Zeeman laser. Technically it is very difficult to
mount the windows normal to the optical axis; nor is it de-
sirable to do so because of complications that arise from
etalonning effects between the various cavity components

@47,50,58#. For tilted windows, the cavity is always slightly
dichroic because of the difference in transmission through
windows fors andp polarization. Tilted windows or strained
optics are also birefringent. However, for most of this paper
we ignore the birefringence. In order to have a controllable
dichroism, as opposed to a residual and unknown dichroism,
one often adds to the cavity a tiltable plate~window!, Wc .
The dichroism may then be calculated using the well-known
Fresnel coefficients of transmission@58,59#. The cavity is
sufficiently short that it supports only one longitudinal mode
within the gain curve. A diaphragm~not shown! limits the
oscillation to a single transverse mode. For small anisotro-
pies the order of the anisotropic elements in the cavity is
unimportant@60#.

In such a He-Ne laser, with no Faraday rotation,
(H50), and dominated by linear dichroism, one observes
that the laser operates linearly polarized and aligned with the
axis of minimum loss@61#. If f0 is the relative phase of the
two circular components of the field, then the azimuth of the
polarization ellipse isf0/2. We define the origin (f050) as
aligned with the polarization in the zero-field case, i.e., the
low loss axis. This direction is taken as thex axis. ForH
fixed but weak, the laser continues to operate with a fixed
linear polarization. However, the azimuth, while still con-
stant in time, is rotated away fromf0/250, in the sense
given by the Faraday rotation. The azimuth increases until a
critical field,Hc , is reached, at which point the azimuth has
a value ofp/4. For larger values of the Faraday rotation
(H.Hc or equivalently,g.gc) the azimuth becomes peri-
odic in time, i.e., it physically rotates. While always periodic,
it is not harmonic. It becomes more harmonic as the mag-
netic field is increased further beyondHc . Some examples
of the above can be found in Refs.@8,15,20,36,38,55#. To
date there has been only fragmentary and incomplete theo-
retical explanations of some of these characteristics.

The common experimental interpretation of these obser-
vations is that the laser operates in two circularly polarized
modes aboveHc and that the two-modes are locked together,
below that field strength. We are now in a difficult position,
if not with our understanding of the physics, at least with
semantics@62#. A two-mode description does not join seam-
lessly onto the accepted zero-field understanding of such la-
sers. For zero magnetic field, there is excellent quantitative
agreement between experiment and a single mode, vector
theory of quasi-isotropic lasers@63,64#. For H50, the
present understanding is that there are at most two possible
stable linearly polarized states~modes! of the laser. If both
are stable, mode competition limits the operation of the laser
to one of them.

A second difficulty with the common two-mode interpre-
tation arises above the critical field where the laser field is

FIG. 1. Schematic drawing of a Zeeman or Faraday laser with
an intracavity linear dichroism.
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not stationary. One is tempted to describe a time-dependent
field as the superposition of two circularly polarized station-
ary modes of different frequency, as was done for the Zee-
man and Faraday laser~see, for example, Refs.@1# and@36#!.
This view is not correct because it implies a constant beat
frequency between the modes that is not seen experimentally.
A way around both of these difficulties is to use the notion of
a fixed point or static~vector! mode below the critical field
and to use the notion of a limit cycle or a dynamic~vector!
mode above the bifurcation point. Thus, at least conceptu-
ally, a single-mode theory should be sufficient to describe the
Zeeman or the Faraday laser both above and below the criti-
cal field and would join seamlessly onto the accepted zero-
field mono-mode theory.

A two-mode description of the Zeeman laser was sug-
gested in the first experimental paper@1#. It is not surprising,
therefore, to find a two-mode description of the polarization
properties in the early theories@13,14,20–22,25–29#. To il-
lustrate the origin of the two-mode picture and to set the
scene for a single-mode interpretation, we begin with an
overview of the general theory of quasi-isotropic lasers
@24,65–68#.

THEORY OF QUASI-ISOTROPIC LASERS

We take as given that a plane-wave, slowly varying am-
plitude, approximation provides a basis for the description of
the properties of the gas lasers under consideration. For the
He-Ne system one is also justified in adiabatically eliminat-
ing the dynamics of the gain medium. This means that one
takes the steady-state solutions of the density matrix when
calculating the electric-dipole moment per unit volume of the
gain medium. The solution is always truncated at third order
for gas lasers when polarization information must be re-
tained. Thus, one is left simply with the equations for the
electric field. In the mean-field approximation, ideal mirrors
are assumed and all of the properties of the cavity and the
gain medium are uniformly distributed along the axis of the
cavity. This allows one to satisfy Maxwell’s equations with a
spatially uniform or mean field and finally leads to equations
for the complex amplitude of the optical field that are func-
tions of time alone. In a linear cavity, the mean fields are
standing waves.

The time rate of change of the field has two contributions,
one due to the gain medium and the other due to the cavity.
For the gain medium, one must include in the calculation the
spatial degeneracy, i.e., the angular momentum quantum
numbersmj of the Zeeman sublevels of the upper and lower
atomic levels; it is in themj dependence of the matrix ele-
ments of the transition dipole that the saturated polarization
properties are hidden@24,25,69#. The contribution from the
cavity is established by using Jones matrices for the optical
elements to write down the round-trip change in the field and
then dividing by the round-trip time. The cavity contribution
has the form

~]E/]t !c5~M rt2U !E5~M ca2LU !E ~1!

where in a circular basis,E is a 132 column matrix,
@ E2

E1#, or Jones vector,L is the isotropic loss,M rt is the

round-trip cavity matrix andU is the unit matrix. Time is

measured in units of round-trip time, 2L/c. The cavity ma-
trix, M ca, is a 232 matrix, @ c d

a b#, containing the cavity
anisotropies. When one adds the two rates, one due to the
cavity, the other due to the gain medium, the resulting dy-
namical equations are

Ė15@a12L2b1I12u1I2#E11@aE11bE2#,
~2a!

Ė25@a22L2b2I22u2I1#E21@cE11dE2#.
~2b!

All quantities~exceptL) are complex. In Eq.~2a!, a1 is the
gain,b1I1 the direct saturation andu1I2 the cross satura-
tion for theE1 component of the field, all in units of per
round trip. HereI1 equalsE 1

2 , andI2 equalsE 2
2 . In each

equation, the second term in square brackets contains contri-
butions from the cavity anisotropies. The equations are writ-
ten in a form directly applicable to a Zeeman laser, where the
Faraday rotation arises from the difference between the
imaginary parts ofa1 and a2 . In the Faraday laser,a1

equalsa2 and the Faraday rotation is contained in the imagi-
nary parts ofa andd. While the frequency-dependent coef-
ficients,a, b, andu are ~complicated! functions of the ho-
mogeneous and inhomogeneous widths of the gain medium
@67#, for the purpose of this paper the reader may simply
take them as given quantities. If the field components
are written in terms of an amplitude and phase,E1

5E1(t)exp@if1(t)#, E25E2(t)exp@if2(t)#, and the two
equations are separated into real and imaginary parts, the
resulting equations have the form

Ė15 f 1~E1 ,E2 ,f1 ,f2!, Ė25 f 2~E1 ,E2 ,f1 ,f2!,

ḟ15 f 3~E1 ,E2 ,f1 ,f2!, ḟ25 f 4~E1 ,E2 ,f1 ,f2!.
~3!

In order to appreciate the difficulties associated with the
usual two-mode interpretation of Eqs.~3!, it is instructive to
examine how the present vector formulation ties in with
Lamb’s scalar theory. In thescalar theory there is one dy-
namic equation for the field amplitude,E , and one dynamic
equation for the phase,f. Only E , Ė , and ḟ, but notf,
appear in the equations. As the net gain and the saturation
parameters are both frequency dependent, one had to choose
a frequency in order to set up the starting equations. Conse-
quently, one interprets the equation forḟ as the correction to
the frequency and iterates the solution until the condition
ḟ50 is satisfied. This is how the resonance condition
@16,33# that the round-trip phase shift be an integral number
times 2p appears in the mean-field treatment. Clearly there
is but a single frequency in the single-mode scalar theory.

It is in applying the same approach to thevectorcase that
a trap is laid. For example, Fork and Sargent@14# and many
others, assign eachcomponentof the field its own frequency,
v1 or v2 . The right- and left-handed components are now
called the right- and left-handedmodesand we have slipped
from a single-mode to a two-mode language. Below, we will
try to convince the reader that the basic equations of all of
the so-called two-mode Lamb type theories, as applied to
Zeeman lasers, are in reality single-mode theories. Thus this
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paper is not about Eqs.~2!, equations which are generally
agreed upon as representing a reasonable plane-wave model
for low gain, quasi-isotropic lasers. The paper is about the
interpretation of the equations and their solutions; it is about
the physics of the problem. While the specific form chosen to
express the field is definitely a question of personal choice,
the trap laid is in the semantics associated with the nomen-
clature. On one hand, the semantics may lead one to make a
questionable approximation when trying to solve the equa-
tions analytically.~See, for example, Refs.@34# and@35# and
particularly @21# and @29#, where it was necessary to make
‘‘convenient’’ approximations to arrive at a ‘‘locking’’ equa-
tion.! On the other hand, if the full equations are solved
numerically, different semantics will lead one to different
physical interpretations of the same numerical results. The
advantage of our treating a dichroic Faraday laser to advance
our single-mode interpretation is that we can find analytical
solutions to Eqs.~2! without approximations, thus removing
at least one source of ambiguity. Furthermore, the theoretical
results explain, at least qualitatively, all the existing experi-
mental data.

Above we expressed the view that a mode is the operating
point of the laser system as determined by solutions of the
~model! laser equations. However, to clarify the situation, let
us consider some general properties of laser fields inside
cavities. For afixed time, one can start at an arbitrary point
inside the cavity and spatially integrate Maxwell’s equations
over a single round trip~with appropriate boundary condi-
tions! to find the field at the starting point. However the field
must be single valued. Thus both the intensity and the polar-
ization must be reproduced after the round trip integration
and the total phase accumulated on a single round trip must
be an integral number times 2p. In this fixed-time or ‘‘snap-
shot’’ view, a mode is a possible ‘‘resonance’’@16,33#. This
suggests that the way to develop a single-mode theory is to
write the four coupled mean-field equations, implied by Eqs.
~2a! and ~2b!, in terms of intensity, polarization, and mean
phase,but only one frequency, v. The intensity and polar-
ization are determined byE1 , E2 and the relative phase
f05(f12f2) while the overall phase is defined by the
mean phasef5(f11f2)/2. In terms of these variables we
find that the equations have the structure

Ė15 f 1~E1 ,E2 ,f0!, Ė25 f 2~E1 ,E2 ,f0!,

ḟ05 f 3~E1 ,E2 ,f0!, ḟ5 f 4~E1 ,E2 ,f0!, ~4!

where thef ’s are new functions. What is more important, the
functions are independent of the mean phasef. The first
three equations determine the possible polarization states and
field strengths that satisfy the resonance condition in our
mean-field formulation of the problem. The last equation is
to be used to satisfy the round-trip phase condition. The fact
that Eqs.~2a! and ~2b! as found in various forms in the
literature have the structure outlined is the main basis of our
claim that they are, in principle, single-mode equations.
Writing the equations in terms of the intensity, polarization
parameters, and a mean phase is to be preferred not only
from a point of view of semantics but also from the point of
view of the physics involved.

Often, the stationary solution~s! to Eqs.~2a! and~2b! can
be found in the same manner as those of Lamb’s scalar
theory. The recipe, for solving the vector case follows. First,
choose a frequency and solve the first three equations with
the time derivatives set to zero to find the intensity and po-
larization state~s!, and then solve the last equation to find a
correction to the frequency. Iterate the process untilḟ equals
zero@70#. Setting the derivative equal to zero is a recipe for
finding fixed-point solutions. For limit cycle solutions, the
equation forḟ is the equation giving the frequency variation.
Of course, this raises a subtle point; is the general approach
self-consistent considering one has calculated the gain and
saturation coefficients using a fixed frequency? We address
this concern below, for the specific case of the dichroic Far-
aday laser.

THE DICHROIC FARADAY LASER

The general formulation of a mathematical model for
single-mode quasi-isotropic lasers has been given in Refs.
@24,64–68#. Here we present the formulation for the specific
case of a dichroic Faraday laser. A dichroic cavity has been
used experimentally for both the Faraday and the Zeeman
laser@38,39#. The bare cavity has also been studied for this
case@30#. We use a terminology similar to that of our earlier
works @60,63,64,67,68#. We will give solutions for the
mode~s! of such a laser for magnetic fields above and below
the critical fieldHc @57#.

In a circular basis, and starting with the field incident on
mirror 1 in Fig. 1, the round-trip Jones matrix for the cavity
is

M rt5tF1 e

e 1GFe
ig 0

0 e2 igG r 2Feig 0

0 e2 igG tF1 e

e 1G r 1
5TFei2g1e2e2 i2g 2e cos2g

2e cos2g e2 i2g1e2ei2gG . ~5!

The mean transmission,t, and the transmission anisotropy,
e, are given by,t5(tx1ty)/2 ande5(tx2ty)/(tx1ty), re-
spectively. Heretx and ty are the transmissions of the
Cartesian-field amplitudes through the tilted window. The
single pass Faraday rotation isg. The factorT5t2r 1r 2 is the
isotropic round trip ‘‘transmission’’ wherer 1 and r 2 are the
reflectance of the mirrors. From Eq.~1! we findM ca equals

TF i ~12e2!sin2g 2e cos2g

2e cos2g 2 i ~12e2!sin2gG ,
andL equal to 12Tcos2g(11e2). In the following we will
assume that the anisotropies are small, i.e., the laser is quasi-
isotropic, so that e2!1, cos2g.1, sin2g.2g, and
L.12T. When written out in terms of their real and imagi-
nary parts, Eqs.~2a! and ~2b! become

dE1

dt
5@~a r2L!2b r I12u r I2#E11@2Te cosf0#E2 ,

~6a!
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dE2

dt
5@~a r2L!2b r I22u r I1#E21@2Te cosf0#E1 ,

~6b!

df0

dt
54Tg2~b i2u i !~ I12I2!22Te sinf0@~E1 /E2!

1~E2 /E1!#, ~6c!

2df/dt52a i2~b i1u i !~ I11I2!12Te sinf0@~E1 /E2!

2~E2 /E1!#. ~6d!

To simplify the notation, in the following we absorbL into
the isotropic gain, so thata r is to be taken as the isotropic
net gain. In contrast to the equations given earlier,
the gain (a5a r1 ia i) and saturation parameters
(b5b r1 ib i ,u5u r1 iu i) are the same for the right- and
left-handed circular components of the field.

The reader may easily manipulate Eqs.~6a! and ~6b! to
show that the equation forSz5(E1

2 2E2
2 ), the Stokes pa-

rameter which describes the ellipticity, is given by

dSz
dt

52@a r2b rS0#Sz , ~7!

where the total intensity,S0 , equals (E1
2 1E2

2 )5(I11I2).
In the neighborhood of linear polarization (E15E2) either
Eq. ~6a! or ~6b! yields as a stationary solution

S052@a r12Te cosf0#/@b r1u r #. ~8!

Inserting Eq.~8! into Eq.~7! shows thatSz will decay to zero
if b r is greater thanu r@a r /(a r14Tecosf0)#.u r. Thus we
have verified the important and well-known result that a lin-
early polarized field is always a stable solution to the equa-
tions for this type of laser@57,74#. Having gained this physi-
cal insight we can now reduce the number of equations from
four to three, one for the intensity, one for the orientation of
the linearly polarized light, and one for the frequency or
evolution of the mean phase. With a little manipulation the
final dynamical equations can be written as

dS0
dt

5S0@2a r14e cosf02~b r1u r !S0#, ~9a!

df0

dt
54g24e sinf0 , ~9b!

2df

dt
52a i2~b i1u i !S0 , ~9c!

where for compactness, we have defined a newe andg equal
to the old value ofe andg, multiplied byT. Equation~9b! is
the Ricati equation, while Eq.~9a! is sometimes referred to
as the Adler equation. We now see the advantage of choosing
a dichroic Faraday laser as the example for illustrating our
single-mode approach, namely, the equation forf0 , Eq.
~9b!, giving the orientation of the linearly polarized field,
may be solved analytically@75,76#.

For g,e, the solution can be written

tan~f0/2!5@e~12e4ut!1u~11e4ut!#/g~12e4ut!
~10!

whereu51(e22g2)1/2 and we have arbitrarily defined the
time origin such thatf0/25p/2 at t50. The steady-state
solution (t→`) is

tan~f0/2!5@e2~e22g2!1/2#/g5~e2u!/g[g/~e1u!.
~11!

It is not difficult to complete the solution by solving Eqs.
~9a! and~9c! at least numerically if not analytically. Thus we
have found the fixed point by letting the dynamic equation,
Eq. ~9b!, evolve from an arbitrary value off0 . The unstable
solution, tan(f0/2)5(e1u)/g, can be found by letting time
go to2` in Eq. ~10!.

As stated earlier, there is another~standard! approach to
solve for the possible stationary states~ss! of Eq. ~9b!; it is to
set df0 /dt50. This yields sin(f0)ss5g/e @77#. Figure 2
shows that there are two solutions to the equation, which for
g positive, lie betweenf050 andp. Having found two
stationary solutions the next step is to determine their stabil-
ity. From Eq.~9b!, the dynamical equation for a small per-
turbation,df0 , about the stationary point is

d~df0!/dt524@ecosf0#ss~df0!

564e@12~g/e!2#1/2~df0!

564u~df0!, ~12!

which has the obvious solutionsdf0(t)5df0(0)e
64ut. The

stable solution, the one with the minus sign, corresponds to
(f0)ssbetween 0 andp/2. In this second method of solution
we obtain information about fluctuations in the azimuth,
f0/2; they decay to or grow away from the steady-state val-
ues without oscillations. Equations~9! govern the dynamics
of solutions that are restricted to the equator of the Poincare´
sphere, i.e., to linearly polarized light. We have chosen this
method of presentation in order to get at the underlying
physics. Nevertheless, a complete linear stability analysis,
starting from Eqs.~6!, leads to the same conclusions pro-
vided we are dealing with quasi-isotropic lasers.

In the last paragraph we showed that there is a second
fixed-point solution, which is unstable. Asg approachese,
the stable and unstable solutions both approachf05p/2

FIG. 2. A diagram illustrating, forg/e,1, the two possible
solutions to the equation, sinf05g/e. Limit cycle solutions exist
for g/e.1.
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~orientation equal top/4). The stable and unstable branches
‘‘collide’’ when g5e. This aspect of the stationary states is
contained in Fig. 2. By now, it is clear that we are on the
familiar ground of coupled nonlinear equations. There the
usual picture of an instability is a ‘‘collision’’ between stable
and unstable stationary states. A mathematical collision
means there is a degeneracy in the solutions; a collision be-
tween a stable and unstable state results in a channel opening
up whereby the system can escape from the stable state. In
the linear stability analysis of the two fixed-point solutions
we found the stability exponents6(e22g2)1/2. As the ex-
ponent goes from positive to negative through zero at the
critical field Hc , we conclude that the discontinuity is a
saddle-node bifurcation. Turning Fig. 2 on its side~which
then becomes a plot off0 versus the control parameter
g/e) shows that the unstable and stable branches collide at a
turning point.

Above we used two approaches to find the fixed-point
solution forg,e. There are no fixed-point solutions when
the Faraday rotation, as measured byg, is larger than the
dichroism, as measured bye. Figure 2 also captures this
aspect of the problem. Settingn5(g22e2)1/2, with g.e,
we find for the time-dependent~limit cycle! solution @75#

tan@f0/2#5@ntan~2nt !2e#/g ~13!

where in this case we have set tan(f0/2)52e/g at t50.
The azimuth is periodic, generally not harmonic, and has a
period p(g22e2)21/2. If e is small relative tog, then
tan@f0/2#.tan@2gt# and the orientation (f0/2) of the lin-
early polarized light, now rotates with a constant frequency
equal to 2g rad. per roundtrip time. In this largeg limit, one
could have derived the result directly from Eq.~9b!.

Substituting the solution forf0 , Eq. ~13!, into Eq. ~9a!
allows one to determine the periodic variation in the intensity
S0 . It is clear from Eq.~9a! that the modulation of the in-
tensity will be small for quasi-isotropic lasers, i.e., when the
dichroisme is small compared to the net gain. Even without
integration, Eq.~9a! tells us that the maximum and minimum
of the intensity~which occur fordS0 /dt50) coincide with
the linearly polarized light parallel to the axis of minimum
and maximum loss, respectively. We conclude that the laser
suffers weak amplitude modulation, and consequently, dur-
ing the limit cycle, that the tip of the Stokes vector does not
lie on a perfect circle, the equator of the Poincare´ sphere.

In addition to amplitude modulation, the laser also suffers
weak frequency modulation. In the case of the fixed-point
solution Eq.~9c! self-consistently determines the stationary
frequency of the solution. In the case of a limit cycle solu-
tion, since the intensity is periodic, the frequency of the
mode is also periodic for a fixed laser length. At line center,
a i ,b i , andu i are all equal to zero and the frequency is sta-
tionary. Away from line center the modulation is small, of the
order ofe times the perturbation of the frequency associated
with saturation of the gain medium. Since the laser is only
very weakly modulated in frequency, it is reasonable to
evaluate the gain and saturation parameters (a, b, andu) at
a fixed frequency, as is done in the calculations.

To complete the solution of the modes of the dichroic
Faraday laser, we have also carried out a stability analysis of
the periodic solution. We find that perturbations of the inten-

sity and ellipticity of the light decay monotonically to zero
provided the laser is quasi-isotropic. The Floquet exponent
for the relative phase,f0 , is zero indicating neutral stability
in this variable. Of course this is expected on physical
grounds, as a displacement in position on the equator of the
Poincare´ ‘‘sphere’’ is simply a displacement of the time ori-
gin for the limit cycle we have found. Thus, the limit cycle
solutions are physically stable against small perturbations.

At this point we have all the basic ingredients to explain
the experimental observations,~i! the light is linearly polar-
ized,~ii ! the orientation is along the axis of minimum dichro-
ism for zero Faraday rotation,~iii ! the orientation changes,
and reaches a maximum value off0/25p/4 at a critical field
defined bygc5e, and ~iv! the orientation is periodic for
H.H0 (g.gc5e), and becomes harmonic for larger fields.
At all times the theory has been interpreted in terms of a
single mode. We now present some calculations, using our
single-mode model, which may be compared with experi-
mental results found in the literature.

Figures 3~a!–3~c! show theoretical plots of the orientation
of the linearly polarized mode as a function of time for three
values of the Faraday rotation,g51.05gc , g51.25gc , and
g54gc . The dichroism, or equivalentlygc , was set at
1023. All the other parameters were chosen consistent with
those of a He-Ne laser operating at 3.39mm, near line center

FIG. 3. Calculated azimuth of the linearly polarized field for~a!
g51.05gc , ~b! g51.25gc , and~c! g54gc , plotted as a function
of time. A round-trip time of 3.331029 s was assumed.
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@63#. The figure shows the evolution of the orientation from
simply periodic to almost purely harmonic with increasing
g/gc5g/e. We are not aware of any direct measurements of
f0/2 as a function of time. What has been observed is the
intensity measured through a linear polarizer. As the inten-
sity, S0 , is nearly constant the intensity transmitted by a
polarizer aligned with thex axis (f0/250) varies directly as
cos2(f0/2). Figures 4~a!–4~c! show the results, calculated
under the same set of conditions as for Fig. 3. While we
cannot make a quantitative comparison with the existing
data, the computed curves are strikingly similar to those
shown in Refs.@3 ~Fig. 6!, 20 ~Fig. 10a!, 50 ~Fig. 3!#. We
have also computed the variation in intensity for a polarizer
oriented at 0, 45, 90, and 135° with respect to the orientation
of the polarization at zero magnetic field, all for
g51.05gc . These are shown in Figs. 5~a!–5~d!. The com-
puted curves are very similar to the experimental results re-
ported in Ref.@20 ~Fig. 10b!# although one must interchange
the ‘‘0°’’ and ‘‘90°’’ traces to bring the results, as reported,
into agreement with our calculations. We have redone the
experiment of Culshaw and Kannelaud. Our results are in
agreement with the theory presented here and point to a
printing error in Fig. 10b of@20#.

Figures 6~a!–6~c! show the computed homodyne spectra,
or Fourier analysis of the intensity variation, cos2(f0/2), for
the same three cases as for Fig. 3. Again we cannot make a
quantitative comparison with existing experimental results.
Nevertheless Fig. 6 bares a strong resemblance to experi-
mental results given in Refs.@1 ~Fig. 1!, 20 ~Fig. 11!, 36
~Fig. 6!#. Note, in the last reference, many frequency com-
ponents were observed without a polarizer in front of the
detector. The experiment involved a laser with Brewster
angle windows and consequently there existed considerable
amplitude modulation~AM ! as the linearly polarized light
rotated. As mentioned above one must solve Eqs.~9a! and
~9c! as the laser is both AM and FM modulated in this case.

FIG. 4. Calculated intensity observed through a polarizer ori-
ented along the preferred polarization direction in zero magnetic
field. Same conditions as in Fig. 3.

FIG. 5. Calculated intensity forg51.05gc , for a polarizer ori-
ented~a! as in Fig. 4,~b! at 45° with respect to orientation~a!, ~c!
at 90° with respect orientation~a!, ~d! at 135° with respect to ori-
entation~a!. See text for discussion.
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In general, the homodyne spectrum shows that there are not
just two frequencies present. In the literature the multiplicity
of frequencies has been dismissed as indicating that ‘‘other
weak~unidentified! modes’’ were running and not relevant to
the general behavior of the Zeeman laser. Here they are rel-
evant and are a direct consequence of the periodic but not
harmonic motion. They provide strong support for our treat-
ment of the Faraday-Zeeman laser.

The fundamental frequency of rotationv f , or inverse of
the period has been measured experimentally. Let us define
the reduced frequency asv r5v f /2e a quantity which is
given byv r5@(g/e)221#1/2 for g.e. It is zero forg,e.
Figure 6 is a plot ofv r versusg/e for g ~or the magnetic
field! both positive and negative. The overlap between the
stable~solid line! and unstable~dashed line! fixed point so-
lutions is fictitious. The solutions have different values of
f0, as Fig. 2 has stressed. The solid curves are the ones
expected in any measurement. Experimental evidence con-
firming the predicted dependence of the frequency of rota-
tion on the strength of the Faraday effect can be found in
Refs.@3 ~Fig. 7!, 6 ~Fig. 1!, 11 ~Fig. 2!, 36 ~Fig. 5!, 51 ~Fig.
1!, 55 ~Fig. 2!#.

We now turn to a general discussion. Equation~9b! has
played a pivotal role in developing our single-mode descrip-

tion of the Faraday laser. But Eq.~9b! has appeared at sev-
eral places in the literature where it was used to explain the
‘‘locking’’ and ‘‘unlocking’’ in the usual two-mode approach.
Once again, this raises the central question, if this paper is
only concerned with a question of semantics, i.e., is a two-
mode description also tenable. Essentially we have shown
that a single-mode interpretation of the model equations is
possible. The strongest argument against a two-mode de-
scription applies above the critical field. Since either ap-
proach starts with the same basic equations, the question is
‘‘Can the two circular components be interpreted as two
modes?’’ The answer is no. A single circularly polarized field
does not satisfy the equations. The reader may easily verify
this claim by examining Eqs.~2a! and ~2b! with say, E1

Þ0,E250, andcÞ0. One quickly concludes that both com-
ponents must be present to satisfy the basic equations. They
produce a periodic solution above the critical field and a
fixed-point solution below the critical field. If both compo-
nents of the field must be present, then it is a single mode, a
singlevectormode.

In place of the traditional locking of two oscillators, the
view developed here is one of ‘‘clamping.’’ When the satu-
rated gain medium shows a preference for linear polarization
and there is no Faraday rotation it is the linear dichroism that
fixes or clamps the orientation of the polarization. If only a
Faraday rotation were present, the laser would still operate
linearly polarized but it would rotate 2g per round trip. Con-
sequently, in a laser with a linear dichroism, as the magnetic
field is increased from zero, the Faraday rotation will even-
tually break the clamping of the light field to the dichroism
and enforce a clamping to the gyro-optic properties of the
cavity. This view is supported by the polarization propaga-
tion picture given in Appendix A.

It is probably a coincidence that the clamping of the po-
larization in the Zeeman or Faraday laser and the traditional
description of the locking of two coupled oscillators are de-
scribed by the same mathematical equation, here Eq.~9b!.
The consequence of this is that the behavior of the funda-
mental frequency, as depicted by the solid curves in Fig. 7, is

FIG. 6. Amplitude of the Fourier components of light transmit-
ted by a polarizer, as calculated from Fig. 4.

FIG. 7. Normalized fundamental frequency of rotation,v r , as a
function of the reduced Faraday rotation,g/e. The stable periodic
and fixed-point curves are shown as solid lines. The dashed line
shows the fixed-point unstable solution for the dichroic Faraday
laser. The two fixed-point solutions are shown as slightly separated.
While really overlapping in this figure, they are separated by their
values off0 .
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the same in both cases. That one mathematical description
can describe many different physical problems is the strength
of theoretical physics. However, to reverse the thought pro-
cess and conclude that the equivalence of the mathematics
means the physical situation is the same, is false.

The single-mode interpretation that we have presented
contains none of the problems we have identified with the
usual two-mode view. The understanding of the complicated
behavior of the Zeeman or Faraday laser is ‘‘demystified’’
when presented in terms of the general properties of nonlin-
ear systems. Physics has changed in the 30 years since the
first experiments on Zeeman lasers. Fixed points, limit
cycles, bifurcations, etc., simply were not even part of the
vocabulary at that time. That is not the case now. We would
argue that not only have we simplified both the mathematical
treatment and the interpretation of the experimental results,
we have also deepened our understanding of the Zeeman or
Faraday laser by relating their behavior to general properties
of nonlinear multidimensional systems.

There remains the question of how closely the Zeeman
laser approximates the dichroic Faraday model discussed.
Near line center the Faraday rotation, due to a field applied
parallel to the gain tube, is nearly frequency independent as
we have taken in our model. If the experimental apparatus
includes a tilted plate inside the cavity, then the dominant
linear dichroism will also be frequency independent. Conse-
quently the dichroic Faraday laser and dichroic Zeeman laser
should show similar behavior.

This completes the presentation of our single-mode view
of the Faraday laser. In Appendix A we present a polarization
propagation picture that sheds more light on the physics of
the problem. In Appendixes B and C we discuss what are
essentially two non-mean-field approaches to the Zeeman or
Faraday laser. They are not central to the question of a
single-mode description and are included more with an eye
to completing an overview of the mono-mode dichroic Zee-
man or Faraday laser. We note in passing that the true two-
mode case has recently been addressed by Svirina@78#.

SUMMARY

In this paper we have given an overview of the properties
of a dichroic Faraday or Zeeman laser than can support only
a single spatial mode. We have shown that it is possible to
use a single-mode, theoretical model to interpret, at least
qualitatively, all of the experimental results. The theory pro-
vides a continuous description of such lasers for zero mag-
netic field and fields below and above the critical field. The
transition is identified as a saddle-point instability. There re-
mains the problem of looking for all of the unstable solutions
@79#, solutions that may be involved in new instabilities
when other anisotropies, such as birefringence, are included
in the calculations. There also remains the problem of look-
ing for differences rather than similarities between the Zee-
man and Faraday laser, or more generally, differences that
arise from allowing for frequency dependence of the
anisotropies of the gain medium or cavity elements. How-
ever, what is required first, before addressing such interesting
questions, is a quantitative experimental test of the theory at
the present level. Finally, we have shown that a two-mode
interpretation of a dichroic Faraday laser is not tenable.
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APPENDIX A: POLARIZATION
PROPAGATION PICTURE

In this appendix we use a polarization propagation ap-
proach, first given by D’Yakonov and Fridrikhov@27# and
subsequently exploited by Le Floch and Ste´phan @39#. It is
valid for lasers that show a preference for linear polarization
@57,80#. The basis of the picture is best illustrated graphi-
cally, as in Fig. 8. We take the order of the cavity elements,
as seen by the propagating field, as mirror one, the dichroic
plate, Faraday rotator, mirror two, etc. As will become ap-
parent, the position of the gain medium, is not important in
this picture. Amplification by the gain medium, as well as the
isotropic loss by the mirrors, has been omitted in the dia-
gram. In the figure,E1 is the linearly polarized field leaving
the first mirror,Ed is the field after the dichroic plate,Ef1 the
field after the first pass through the Faraday rotator,Ef2 the
field after the second pass through the rotator, andE18 the
field returning to the first mirror after passing again through
the dichroic plate. For simplicity we have assumed ideal mir-
rors and that the transmission of the dichroic plate is 1 and
0.5 in thex andy direction, respectively. The physical ideas
built into the picture are~i! thex axis is the ‘‘low loss’’ axis,
~ii ! the Faraday element rotates the field away from the low
loss axis in a sense determined by the sign of the Faraday
coefficient,~iii ! the dichroism reduces they component more
than thex component and thus rotates the field towards the
low loss axis,~iv! the second pass through the Faraday rota-
tor returns the final vectorE18 to a direction that it is parallel
to the original vectorE1 , but shorter. Having made the an-
satz that the field is linearly polarized, the only action of the
gain medium, wherever it is located, is to multiply the size of
one or more of the intermediate fields such as to makeE18
the same size asE1 . This remarkably simple description
greatly demystifies the behavior of the single-mode Zeeman
or Faraday laser. For example,

~a! We now see why the azimuth departs from zero as the
Faraday rotation is ‘‘turned on’’ and we understand the di-
rection of the reorientation of the azimuth.

~b! We appreciate the competition between the rotation by
the Faraday effect and the rotation created by the dichroic
plate.

~c! With a second sketch one can see that there are two
solutions to the problem posed by Fig. 6, one with the azi-
muth closer to the low loss axis and another closer to the
high loss axis. The first requiring less gain to restoreE18 to
the size ofE1 .

~d! We see that the high loss fieldE1 and low loss field
E1 are the same forf0/25p/4, thus setting an upper limit to
the reorientation of the linearly polarized light.

~e! Above the critical field we can see that there will be a
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net rotation of the linearly polarized light per round trip and
that the rotation will be nonuniform, the dichroism and Far-
aday rotation acting in concert in the second and fourth
quadrant but in opposition in the first and third. One can
derive this picture directly from Eq.~9b!. Tomlinson and
Fork @29# developed the same picture based directly upon an
equation similar to ours. They arrived at their equation by
assuming that the intensity was constant, an approximation
that was justified by numerical integration of the full equa-
tions for small anisotropies.

~f! Finally we can appreciate that the rotation will become
uniform at high magnetic-field strength, since the rotation
per pass will be dominated by the Faraday rotation.

Le Floch and co-workers have used this polarization
propagation picture and a pseudopotential approach
@39,50,81# to construct two semiempirical equations for the
polarization dynamics of a He-Ne laser~see page 231 in
@51#!. Their equations are not identical to our equations~9a!
and~9b!. However, for small anisotropies and low saturation
they are numerically very similar. The drawback to their con-
struct and to the polarization propagation picture given here
is that one does not yet know how to generalize either to
include birefringence or to treat lasers other than those that
prefer linearly polarized fields. Nevertheless, the polarization
propagation picture does give significant insight into the
physics of a Zeeman or Faraday laser in a dichroic cavity.

APPENDIX B: EXTENSIONS
TO THE QUASI-ISOTROPIC MODEL

In the main body of the text, we have used a single-mode,
mean-field, vector extension of Lamb’s single-mode scalar
theory. It is recognized that such a mean-field theory is only
valid for low gain, quasi-isotropic lasers. For large anisotro-
pies one can always resort to a numerical evaluation of the
beam propagation problem, as we have performed in a recent
publication@60#. However, such a calculation is numerically

intensive, gives little further physical insight, and so far has
been applied only to finding the fixed-point solutions of sev-
eral anisotropic He-Ne lasers. In this section we consider
cases where the present mean-field theory, with or without a
simple extension, may be applied to cavities containing
strongly anisotropic elements.

If the gain medium is next to an isotropic or weakly an-
isotropic mirror, then the fields entering and leaving the other
extremity of the gain medium have nearly the same polariza-
tion, provided of course that the polarization is compatible
with the polarization preference of the saturated gain. Con-
sequently, to be on resonance, the field entering and return-
ing from the rest of the cavity must also be of nearly the
same polarization, independent of the size of the anisotropies
in the rest of the cavity. We can then replace the rest of the
cavity by an effective quasi-isotropic mirror@58# and the
entire laser must behave as quasi-isotropic as far as the po-
larization is concerned. Of course the fields thus determined
are the fields in the vicinity of the gain medium. At the far
end of the laser the fields may be completely different. The
system behaves somewhat as a quasi-isotropic laser with
some additional optics external to the cavity to change the
polarization state of the light. This pseudo quasi-isotropic
laser is the model used by many of the Russian investigators
@45#. Understanding the physical basis of the pseudo quasi-
isotropic model makes it easy to understand why, in the spe-
cific cavity considered, Le Floch and Ste´phan find their
‘‘Lamb’s vector’’ @37,39# located at the output mirror next to
the gain medium in the cavity. The pseudo-quasi-isotropic
property concerns the polarization, a property related to the
relative phase of the two components of the field. The same
cavity may be highly anisotropic with respect to the mean
phase, i.e., the modes may have significantly different fre-
quencies. This leads us to consider another aspect of the
problem that can have a profound influence on the behavior
of any dual polarization laser.

We saw above that one of the critical parameters is the
ratio of b to u. While the ratio depends upon the angular-
momentum quantum numbers of the states and actually upon
the relative values of certain relaxation rates, it is possible to
alter the ratio in a Zeeman laser. The saturation parameters
b and u both contain resonant denominators involving an
atomic resonance. In a Zeeman laser, the atomic resonance
for as1 transition is displaced differently from the operating
frequency than is thes2 atomic resonance. If this difference
is comparable or larger than the relaxation rates of the gain
medium, then the values of theb ’s andu ’s will be altered,
possibly leading to a change in preference of the gain me-
dium from linear to circular polarization. At the same time a
difference betweena1 and a2 will appear and will grow
with both increasing applied longitudinal magnetic field and
increasing displacement from line center. Under these condi-
tions the Zeeman laser and Faraday laser can be expected to
show different behavior. For instance, it is possible to force
the He-Ne laser to operate on a pure circularly polarized
mode at very high fields@82#. This case could still be
handled by the general theory for quasi-isotropic lasers.

The presence of birefringence in the cavity optics can
alter the behavior of both Zeeman and Faraday lasers. We see
below, in Appendix C, that the bifurcation occurs at the point
where the cavity is isotropic, i.e., the cavity modes are de-

FIG. 8. Polarization diagram showing the round trip variation of
the orientation and amplitude of linearly polarized light in a cavity
with linear dichroism and Faraday rotation.
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generate in loss and frequency. If there is a birefringent ele-
ment then the frequency degeneracy will be lifted. Conse-
quently the nature of the bifurcation may change.

As a specific example, one relevant to single-mode and a
true two-mode operation, consider a large birefringence par-
allel to the axis of the linear dichroism. Much below the
critical field we saw that the Faraday laser operated with its
linear polarization almost aligned with the low loss axis. The
other possible mode was unstable. With birefringence the
round trip phase is now different for the two polarizations
and in effect one gain curve is displaced in frequency space
with respect to the other. If the birefringence is large enough
then on one side of the line the high loss mode will come
above threshold before the low loss mode. The high loss
mode will then oscillate which is opposite to that predicted
above. In addition, the cross-saturation between the two pos-
sibly stable polarization modes will be weakened, both from
the change in the spatial overlap of the modes and because
the difference in frequency may exceed some of the relax-
ation rates of the gain medium. Presumably these are the
reasons that several authors@83,84# have observed two po-
larization modes to oscillate simultaneously even in the less
complicated case of zero magnetic field. The message here is
clear. When performing a stability analysis of the single-
mode operation, one must consider fluctuations in the polar-
ization and intensity, not only at the same frequency of the
stable mode but also at other frequencies. For quasi-isotropic
lasers, away from frequency-sensitive points like line edge,
this problem does not arise, since the modes have frequency
modulations within a band that is narrow compared with the
inverse of the relaxation times of the gain medium. In lasers
with polarized feedback, the output mirror appears to have a
frequency-dependent birefringence and dichroism. In compe-
tition with the gain medium this leads to catastrophes in the
absence of a magnetic field@63#. Such catastrophes are very
sensitive to frequency, and thus we can anticipate more com-
plicated behavior in the presence of a magnetic field, particu-
larly above the critical value.

APPENDIX C: BARE CAVITY LASER MODELS

In the literature one encounters laser theories based on
cavity decay modes. Bare cavity laser models assume that
the role of the gain medium is simply to stop a mode from
decaying. Consequently all of the polarization behavior of
the laser is contained in the polarization properties of the
bare cavity. Such a ‘‘cavity mode’’ laser model has been used
by several authors@16,30,39# for the Zeeman or Faraday la-
ser. While there are a few minor variations of the model, all
are intrinsically, non-mean-field models of a laser. The cavity
modes can be found by diagonalizing the round trip cavity
matrix (M rtE5l rtE), or they may be determined by looking
for basis vectors such that Eq.~1! can be written in the form

dE

dt
5~M ca2LU !E5lE. ~C1!

Equation ~C1! has the obvious solutionsE(t)5E(0)elt,
whereE is the field, written as a Jones matrix. We can an-

ticipate that the real part of the eigenvalues,l r , will be nega-
tive since all cavity modes decay with time. The bare cavity
laser model then equates2l r ~smallest absolute value! to
the gain@16,30,36,39,84#. If l has a complex part then it is
interpreted as a frequency shift. The eigenvectors are the
polarization modes of the cavity. Garrett@30# has given a
very clear treatment of a cavity with a Faraday rotator and a
linear dichroism, in his case a Brewster window. While such
a cavity is quite anisotropic, the same eigenvalue equation is
found for small anisotropies. Thus his discussion may be
applied equally to quasi-isotropic cavities. Garrett uses a
Cartesian coordinate system with the axes aligned parallel
(p) and perpendicular (s) to the plane of incidence of the
window. We can then identify his low loss axis,p, with our
x axis and hiss axis with our y axis. For zero Faraday
rotation, he finds,~i! that the modes arex or y polarized,~ii !
that thex mode has the lowest decay rate, i.e., that it has the
lowest loss, and~iii ! that bothx andy modes have the same
frequency. For 0,u,uc he finds~i! the modes remain lin-
early polarized but not orthogonal,~ii ! the azimuth of each
mode rotates towards an inclination ofp/4 with respect to
the plane of incidence, and~iii ! the two values ofl r ~decay
rates! approach each other, becoming equal at the critical
field. If one adds to these properties of the bare cavity the
statement that it is the mode with the smaller loss that oscil-
lates one has partially ‘‘explained’’ the properties of the Far-
aday laser below the critical field.@Our Eq.~9c! predicts that
the frequency of the two modes will be different below the
critical field.#

In spite of the success of the bare cavity model of the
dichroic Faraday laser, the argument is seriously flawed. It
works for the He-Ne laser for which the direct saturation
parameterb is greater than the cross saturation parameter,
u. The He-Ne laser, in saturation, prefers linearly polarized
fields @57# and consequently there is no competition between
the gain medium and the bare cavity. If we were to consider
a gain medium such as the He-Ne laser operating on a tran-
sition for which b,u, then, as we saw above, a linearly
polarized laser field is unstable and the laser will not operate
on either cavity mode@41#. There are also complications
above the critical field. Here the two cavity modes have the
same loss but different frequencies. They are equally ellipti-
cally polarized, one being right handed, the other left
handed. No property of the bare cavity, or of the low signal
gain, can be used to determine whether one cavity mode or
two cavity modes operate, nor can any relationship be deter-
mined between the two, in the two-mode case. To repeat an
argument used above, the most serious flaw is the fact that a
single bare cavity mode, which is elliptically polarized above
Hc , is unstable according to the laser equations. Since both
bare cavity modes must be present to satisfy the laser equa-
tions, we are required to consider the laser above the critical
magnetic field as two cavity modes locked. This is the com-
plete reverse of the original two-mode interpretation of the
Zeeman laser. In this way we see again that a single-mode
picture is the only basis independent, consistent way to de-
scribe the physics involved in the Zeeman or Faraday laser.
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