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The behavior of a nonresonant Brillouin laser is studied both theoretically and experimentally. Equations for
the laser are revisited in order to derive the steady states. The stability of the stationary solutions is studied
numerically in the case of a short length cavity. This study reveals unstable regimes and a modal bistability
around the antiresonant frequency. Experimental results confirm these predictions.
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I. INTRODUCTION

Since it was first observed in 1976@1#, Stimulated Bril-
louin scattering~SBS! in optical fiber resonators has been the
object of numerous studies. These were mostly performed
with fiber lengths of the order of a hundred meters. Just
above the lasing threshold, instabilities such as periodic,
quasi-periodic, solitonic, and chaotic regimes have been ob-
served@2–5#. Steady states have been reached for pumping
levels a few times greater than the lasing threshold@6#. In a
previous paper@7#, we demonstrated that these behaviors can
only be encountered in long cavities, for which many modes
lie under the homogeneously broadened Brillouin gain curve.
For cavities shorter than a critical lengthLc , the emission
involves only one longitudinal cavity mode, and its intensity
remains stable. This result has been established theoretically
when the maximum of the gain curve coincides with one
cavity mode, hereafter called resonance. The role of a fre-
quency detuning between the gain peak and the cavity mode
~called Stokes detuning!, has been investigated experimen-
tally. The experiments, performed for a short cavity length,
have shown that the laser is stable not only at the resonance,
but also for a large range of Stokes detunings.

Up to now, theoretical studies focused on the resonant
case, and the exact effect of Stokes detuning on the laser
dynamics remains largely unknown. The present paper is de-
voted to an experimental and theoretical analysis of this ef-
fect. Our Brillouin ring laser has been modified in order to
avoid the pump feedback. The behaviors then produced are
roughly similar to those previously published, but their con-
frontation with theory is greatly simplified. From the theo-
retical point of view, the classical three-wave coherent model
@8# is reformulated to describe a detuned Brillouin ring laser.
We derive the steady states of the system and study numeri-
cally the stability of these solutions using parameters corre-
sponding to the experimental conditions. Unstable regimes
and modal bistability are observed around the antiresonance,
for which the maximum of gain is halfway between the two
cavity modes. These phenomena are also observed experi-
mentally.

In Sec. II, we describe the off-resonant three-wave coher-
ent model used in this study. The steady-state solutions are
derived in Sec. III, and their stability is analyzed in Sec. IV.
Finally, Sec. V is devoted to experimental results.

II. OFF-RESONANCE THREE-WAVE MODEL

Let us now consider basic assumptions for a resonant SBS
interaction. A pump field (vp ,kp) is scattered by an acous-
tical wave (va

res,ka
res), thus generating a counterpropagating

Stokes field (vs
res,ks

res). For these three fields, the wave num-
bers satisfy the usual dispersion relationskp5nvp/c, ks

res

5nvs
res/c, andka

res5va
res/v ~wheren is the refractive index,

c the light velocity, andv the sound wave velocity!. The
interaction fulfills the conservation laws of the energyva

res

5vp2vs
resand momentumka

res5kp1ks
res. For a given value

of the pump frequencyvp , all frequencies and momenta can
be deduced from these relations.

This previous analysis implicitly implies that the fields
and their interactions are described in frames rotating respec-
tively at the frequenciesvp , va

res, andvs
res, leading to the

standard three-wave coherent model@8#. In particular the
Stokes field writes:

S~z,t !5S8~z,t !expF2 ivs
resS t1 n

c
zD G1c.c. ~1!

Such rotating frames are well adapted to a description of the
spontaneous Stokes emission which occurs at the frequency
(vs

res) corresponding to the maximum of the gain curve.
When the fiber is inserted in a cavity, the description re-

mains valid, and an eventual mistuning between the Stokes
resonant frequency (vs

res) and the passive cavity mode~VS!
carrying the laser oscillation~called the active mode! is taken
into account through the boundary condition which then
writes.

S8~L,t !5r sexpS 2 iDv0

nL

c DS8~0,t !. ~2!

The reinjection rate of the fieldr s is real. L is the cavity
length andDv05VS2vs

res is the cavity detuning. Note that,
a priori, the active mode can be any mode lying under the
gain curve and not necessarily the closest to the maximum of
gain ~Fig. 1!.

Owing to this condition, the stationary solutions of the
three-wave model necessarily involve a time dependence of
the phase of the complex field envelopes@7,9#. The resulting
phase oscillation brings the Stokes frequency to a valuevL
which depends on the medium gain profile and on the char-
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acteristics of the cavity. For the sake of simplicity it is more
convenient to describe the evolution of the fields in the
frames rotating at their exact frequencies. We then consider a
given active mode characterized by a Stokes detuningDv0

5VS2vs
res, the frequencyvL of the laser emission is pulled

from the medium resonance by an unknown quantityDv1

5vL2vs
res ~Fig. 1!. The pump and laser fields are then re-

spectively written as follows:

P~z,t !5P~z,t !expF2 ivpS t2 n

c
zD G1c.c., ~3a!

S~z,t !5S~z,t !expF2 ivLS t1 n

c
zD G1c.c., ~3b!

where the Stokes field envelopeS(z,t) fulfills the boundary
condition.

S~L,t !5r sS~0,t !exp~2 ids!, ~3c!

with

ds5
nL

c
~VS2vL!.

Through the electrostrictive effect, the interference be-
tween these two fields drives an acoustical wave
M (z,t)5r(z,t)exp2 i (vat2kaz)1c.c. characterized by a
frequency va5vp2vL and a wave number
ka5(vp1vL)(n/c). Due to the Stokes detuning, this forced
acoustical wave no longer respects the dispersion relation
(vaÞkav). Its growing is then frustrated, leading to a de-
crease of the gain. This effect is described by a destructive
phase oscillation term, at the frequencyDv1, appearing in
the reduced Navier-Stokes equation of the acoustic wave@8#.
The interaction of the three waves is then described by the
following set of equations:

]P

]t
1
c

n

]P

]z
5 i

vpg
e

2r0n
2 rS,

]S

]t
2
c

n

]S

]z
5 i

vpg
e

2r0n
2 r*P,

]r

]t
1~ga1 iDv1!r5 i

2«0kp
2ge

va
PS* , ~4!

where g e is the electrostrictive coupling constant,r0 the
mean density of the fiber core, andga the damping rate of the

acoustical wave field. We have neglected the convective term
of the acoustical wave~]r/]z50! @10# and the absorption of
the fiber compared to the cavity losses. The length and time
can be rescaled with~gan/c)z→z and gat→t, defining
L85(gan/c)L, the normalized length of the cavity, and
D j5Dv j /ga ~j50 and 1!, the normalized frequency detun-
ings. We then introduce the following transformations:
Ep5(K/ga)P, Es5(K/ga)S, andEa52 i (K/gas)r, where
K5vpg

e(«0/2nvcr0)
1/2 ands252r0n

3e0/vc. Equations~4!
then become

]Ep

]t
1

]Ep

]z
52EsEa ,

]Es

]t
2

]Es

]z
5EpEa* ,

]Ea

]t
1~11 iD1!Ea5EpEs* . ~5!

This set of equations must be completed by the boundary
conditions imposed by the cavity for the Stokes field, which
write

Es~L8,t !5r sEs~0,t !exp~2 ids!, ~6!

and eventually for the pump wave. Compared to the usual
model, written at resonance, the only difference lies in the
term iD1 which appears in the acoustic wave equation, and
fully accounts for the unresonant nature of the interaction in
a detuned cavity. Equations~5! were previously obtained by
Chow and Pers@11# in order to model a Brillouin amplifica-
tor in which a detuning is imposed by the frequency of the
seeding wave. However, let us emphasize that the choice of
the appropriate rotating frames we recommend allows for a
much simpler derivation of these equations.

III. STEADY STATES

As the Stokes and pump fieldsEs andEp evolve in frames
rotating at the lasing frequencyvL and the pump frequency
vp , respectively, the amplitudes and phases of the steady-
state solutions must be time independent. We then transform
the complex amplitudes to modulus-phase form by substitut-
ing the following expressions in Eqs.~5!:

FIG. 1. Typical disposition of the pump laser,
the maximum spontaneous gain, and the Stokes
laser frequencies with respect to the passive cav-
ity modes.
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Ep5Apexp~ iFp!,

Es5Asexp~ iFs!, ~7!

Ea5Aaexp~ iFa!.

By setting all the time derivatives to zero, we easily obtain
the following equations for the steady state:

dAp
dz

52
ApAs

2

11D1
2 , ~8a!

dAs
dz

52
Ap
2As

11D1
2 , ~8b!

dFp

dz
5

D1

11D1
2 As

2, ~8c!

dFs

dz
52

D1

11D1
2 Ap

2. ~8d!

As could be expected, the Stokes detuning entails a gain
reduction by a factor 1/~11D1

2!, linked to the Lorentzian na-
ture of the gain profile. The propagation of the acoustical
wave being neglected, the fieldEa is a slave variable of the
pump and Stokes fields, and is fully defined by

Aa5
ApAsexp~2 iF!

11 iD1
, ~8e!

whereF5Fa1Fs2Fp fulfills the relation tanF52D1.
A lossless energy exchange occurs@A p

2(z)2A s
2(z) is con-

stant#, together with an action of each field on the other’s
phase. The integration of equations~8a!–~8d! leads to a lon-
gitudinal distribution of fields and phases similar to that pre-
viously given by Chow and Bers@11# and Botineauet al.
@10# which writes

Ap
2~z!5

Ap
2~0!~12F !

12F exp@22h~12F !Ap
2~0!z#

, ~9a!

As
2~z!5

Ap
2~0!~12F !F

exp@2h~12F !Ap
2~0!z#2F

, ~9b!

Fp~z!2Fp~0!52
D1

2
lnS Ap

2~z!

Ap
2~0!

D , ~9c!

Fs~z!2Fs~0!5
D1

2
lnS As

2~z!

As
2~0!

D , ~9d!

whereF5A s
2(0)/A p

2(0) andh51/~11D1
2!. All the fields are

then fully described as functions of the pump and Stokes
wave intensities atz50 and of the normalized frequency
detuningD1.

The boundary conditions to apply on the modulus and
phase of the Stokes field are then

As~L8!5r sAs~0!, ~10a!

Fs~L8!2Fs~0!52ds . ~10b!

Coupled with Eqs.~9b! and ~9d!, expressed at the bound-
aries, these two relations fix the value of the unknown pa-
rametersF andD1 which are given by

~12F !5r s
2$exp@2h~12F !Ap

2~0!L8#2F%, ~11a!

D15
D0

11
k

ga

5
D0

11
DnPC

DnB

, ~11b!

wherek5cuLnrsu/nL is the Stokes field damping rate out of
the cavity, andDnPC5k/p andDnB5ga/p are the full width
at half maximum of a passive cavity mode and of the spon-
taneous Brillouin gain curve, respectively.

Equation~11b! is the classical mode pulling formula ob-
tained for lasers with a population inversion@12#, and al-
ready shown on a Brillouin laser at the lasing threshold@13#.
In fact, this equation is valid whatever the pump power, and
gives the exact lasing frequency, which depends only on the
Stokes detuning and on the ratio of the cavity and medium
damping rates. The implicit equation~11a! can be solved
numerically. For a given detuningD0, the parameterF and
thus all the stationary fields depend only on the pump inten-
sity in the planez50 [A p

2(0)]. These results are valid what-
ever the choice of the boundary condition imposed on the
pump field. The general expression of this condition writes

Ep~0!5m1r pexp~2 idp!Ep~L8!. ~12!

m is the normalized pump field injected in the cavity which is
assumed to be real, and then defines a phase reference for the
intracavity pump field,r p is the reinjection rate of the pump
field, and dp5(nL/c)(VP2vp) is the accumulated phase
difference of the pump field per round trip.VP is the fre-
quency of the passive cavity mode which is the closest to the
pump frequency. In order to avoid any confusion with the
Stokes detuning previously defined, the quantity (VP2vp)
will be called the pump detuning hereafter. For a given value
of A p

2~0!, which fully defines the stationary solution@see Eq.
~9!#, the input pump intensitym2 is directly given by Eq.
~12!. A p

2~0! can be adjusted by an iterative method in order
to obtain a particular value ofm2.

The intracavity pump field at the lasing threshold is ob-
tained by settingF to zero in Eq.~11a!. The required pump
intensity, effectively launched into the fiber, then deduced
from Eq. ~12!, is

m thres
2 5

k

ga
~11D1

2!@11r p
222r pcos~dp!#. ~13!

This relation gives the ring Brillouin laser threshold in the
general case.k/ga is the threshold in the absence of Stokes
detuning and pump feedback@9#. The two factors~11D1

2!
and@11r p

222r pcos~dp!# stand, respectively, for the increase
of the threshold with the detuning, directly linked to the gain
reduction, and its decrease with the pump feedback effi-
ciency. The distributed losses of the fiber, neglected here,
might however, be included in the boundary conditions as a
slight modification of the reinjection ratesr s and r p .
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IV. STABILITY OF THE STEADY STATE

For short enough cavity lengths, we have previously
shown that the Brillouin laser emission is stable at the reso-
nance@7#. This emission is then expected to be carried by the
mode which coincides with the gain peak. In the presence of
a Stokes detuning, the Brillouin gain bandwidth usually be-
ing larger than the cavity free spectral range~FSR!, more
than one mode is susceptible to carrying the laser oscillation,
and a mode-mode competition is not excluded, especially
around the antiresonance. First, let us emphasize that the
variation of the Stokes detuning can be monitored not only
by a cavity length sweeping, but also by a pump frequency
sweeping, the Stokes shift (vp2vs

res) then remaining con-
stant. In both cases, the Stokes and pump detuning are simul-
taneously swept, and their contributions to the laser dynam-
ics are hardly distinguishable.

For the sake of simplicity, we first consider the simpler
case for which the pump feedback is avoided. We have ana-
lyzed the stability of the steady states corresponding to two
adjacent cavity modes, respectively labeled 0 and 1~see Fig.
1!, as a function of the pump intensity and the Stokes detun-
ing of the mode 0. For each value of the intensity and detun-
ing, the set of Eq.~5!, completed by Eq.~11b! and by the
limit conditions ~6! and ~12!, is numerically integrated for
each cavity mode. The initial conditions are obtained by add-
ing a small perturbation to the stationary solution. The evo-
lution of this perturbation is observed over a large number of
cavity round trips. At the stability boundaries of a particular
active mode@Fig. 2#, two behaviors are observed.

~i! An unstable regime, characterized by a periodic oscil-
lation of the Stokes intensity at a frequency close to the FSR.

~ii ! A change of the active mode, shown by a rotation of
the Stokes field’s phase at about the FSR frequency, the ro-
tating frame used being no more adapted to a side-mode
emission.

Figure 2 depicts stability domains obtained with param-
eters characterizing the experiment described in Sec. V. This
map shows that the steady states are stable over a wide range
of intensity and detuning, the laser emission then being
monomode. Nevertheless, instabilities are observed in a
small domain located around the antiresonance~A-B do-
main!. In this region, the gain peak is halfway between the
two modes which nearly experience the same gain. As the
input pump power remains low, so does the laser emission.
Thus the pump depletion and its phase rotation@see Eq.~9c!#
over one round trip induced by one oscillating mode are too
small to prevent an emission on the other mode. The two
modes can oscillate simultaneously, leading to a periodic in-
stability at the beating frequency. Note that in the vicinity of
pointA, the frequency of this beating is exactly the quantity
FSR/@11(DnPC/DnB)#. This points out that the two modes
oscillate independently, and that their characteristics are
those of the steady state previously obtained. In particular,
they both undergo the frequency pulling given by Eq.~11b!.
FromA to B, the frequency increases by a few percent, de-
noting a reduction of the pulling effect in a multimode oscil-
lation regime. At the right side of pointB, the stability do-
mains of the two modes overlap around the antiresonance.
The Brillouin gain is then quite high, and the oscillating
mode strongly depletes the pump. In this interaction, the
phase rotation of the pump field over one round trip is no
more negligible, and changes of sign from one mode to the
other @see Eq.~9c!#. The coexistence of the two modes is
then impossible, and, moreover, an active mode can prevent
the other from being active, even if this last one is closer to
the gain peak. The resulting domain of bistability becomes
larger and larger as the pump intensity increases, even lead-
ing to a multistability with the next sidemodes for much
higher pump power~not shown on this map!.

In order to illustrate these results, let us consider a quasi-
static sweeping of the Stokes detuning, whereas the input
pump intensity is held constant. Figure 3~a! shows the evo-

FIG. 2. Domains of stability of the two adja-
cent modes 0 and 1 with respect to the pump
intensitym2, and the Stokes frequency detuning
~expressed in FSR units!. Parameters are the fol-
lowing: r s50.36,r p50, K583 ms21 V21, L512
m, andDnB560 MHz.
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lution of stationary solutions for the pump and Stokes inten-
sities atz5L8 andz50, respectively, during a sweeping of
mode 0 detuning over two FSR’s. Departing from the reso-
nant condition, the intensity of the laser, emitting on mode 0,
decreases. Around antiresonance, the laser is unstable~see
map 2!, and a multimode oscillation regime emerges. Be-
yond this unstable region, the emission restabilizes on mode
1 and the process recurs with the next sidemode. For a higher
pump power@Fig. 3~b!#, mode 0 destabilizes well after the
antiresonance. In this case, the two adjacent modes cannot
coexist, and the emission abruptly changes from mode 0 to
mode 1. At this point, mode 1 has a higher gain than mode 0,
and the field intensities undergo a discontinuous jump. Back
and forth sweeping around the antiresonance shows a
butterfly-shaped hysteresis cycle, symmetric with respect to
the antiresonance. The width of this cycle increases with the
emission strength.

The effect of the Stokes detuning on the system’s dynam-
ics being characterized, we can investigate the case of a com-
mon cavity with a pump feedback. In this configuration, the
sweeping of the pump detuning induces strong variations of
the intracavity pump intensity, and then of the Stokes emis-
sion. As previously shown, the emission strength is a deter-
minant factor of the mode hop positions, so that the relative
position of the pump and Stokes resonances will strongly

influence the system dynamics. However, this last parameter
is fixed by the pump frequency, the Stokes shift, and the
exact cavity length, and may then have any value. We then
choose a value of this parameter which is as representative as
possible of all the encountered behaviors. The steady-state
solutions plotted in Fig. 4 are calculated in conditions such
that the pump frequency is resonant with a cavity mode
when the Stokes detuning is equal to 0.4. The strong inten-
sity modulation, evident on these curves, is then obviously
linked to the pump intracavity intensity changes with the
pump detuning. At the origin of sweeping 4~a!, the intracav-
ity pump field is just high enough to initiate a laser oscilla-
tion. Departing from this frequency, the intracavity pump
field increases, and so does the intensity of the laser emitting
on mode 0, which reaches its maximum when the pump fre-
quency coincides with a cavity mode. As in the previous
case, the mode hop, characterized by the discontinuous jump,
does not occur at the exact antiresonance of the Stokes wave,
but a bit further. After the mode hop, mode 1 oscillates alone,
its intensity decreasing with the pump intracavity field down
to the threshold, and reappears as the pump frequency ap-
proaches the next cavity resonance; then the process recurs.
For a higher pumping level@Fig. 4~b!#, the intracavity field is
above the threshold for any frequency. The mode hop is dis-
placed further again from the antiresonance point. Note that,

FIG. 3. Stokes~solid line! and transmitted pump~dashed line!
steady-state intensities while sweeping the Stokes detuning over
two passive cavity FSR’s.~a! m250.17 ~the brackets delimitate the
unstable regions!, ~b! m250.33. Other parameters are those of
Fig. 2.

FIG. 4. Stokes~solid line! and transmitted pump~dashed line!
steady-state intensities while simultaneously sweeping the pump
and Stokes detuning over two passive cavity FSR’s.~a! m250.17.
~b! m250.33. Other parameters:r s5r p50.36, K583 ms21 V21,
L512 m, andDnB560 MHz.
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in this configuration, due to the frequency difference be-
tween pump and Stokes resonances, a back and forth fre-
quency sweeping shows an asymmetric cycle of hysteresis.
However as a whole, the main effect of the pump feedback
on the laser stands in strong variations of the intracavity
fields with the detuning, which do not reveal new dynamical
features.

The map of Fig. 2, calculated in particular conditions, is
in fact generic of the general behavior of most of the Bril-

louin lasers. The reinjection rater s mainly acts on the width
A-B of the domain of instability, so thatA-B vanishes when
r s approaches 1. As the cavity length increases, the FSR
decreases, and the simultaneous emission of two adjacent
modes is favored, leading to an expansion of the unstable
domain toward the resonances. For a cavity length longer
thanLc , the laser may, within a finite range of pump power,
be unstable for any Stokes detuning@7#. Note that the fluc-
tuations of the cavity length can induce erratic passages from
stable to unstable domains, leading to a bursting phenomena
@2#. As the pump power increases and approaches the value
corresponding to pointB, the stable domains enlarge and the
burst time spacing is expected to increase, whereas their du-
ration decreases@5#. AboveB, only mode hops can be ob-
served.

V. EXPERIMENTS

The experimental setup is presented in Fig. 5. The cw
emission of a Ti-Sa laser, operating at 800 nm, is used as a
pump source. This laser is characterized by a 500-KHz line-
width, and its frequency can be linearly swept over a range
adjustable from 10 MHz to 30 GHz. The Brillouin ring laser
comprises a 12-m-long polarization maintaining optical fiber.

FIG. 5. Schematic setup of the experimental arrangement.

FIG. 6. Experimental records of the backscattered Stokes and
the transmitted intensity obtained while sweeping the pump laser
frequency in the presence of an intracavity isolator:~a! Pin570 mW
and ~b! Pin5140 mW.

FIG. 7. Experimental records of the backscattered Stokes and
transmitted pump intensities obtained while sweeping the pump la-
ser frequency in the presence of a pump cavity feedback:~a!
Pin570 mW and~b! Pin5140 mW.
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The fiber core diameter is 2.75mm, and the cutoff wave-
length for monomode propagation is 630 nm. The cavity is
closed through a beam splitter, and the power reinjection rate
(r s

2) is about 13%. A Faraday isolator is inserted in the cav-
ity to avoid the pump feedback. A second beam splitter is
inserted to extract the two counterpropagative beams out of
the cavity for detection. With this setup, a pump frequency
sweeping is easier to perform than a cavity length sweeping,
and is then used to drive the Stokes detuning. The recordings
of the pump and Stokes signals, obtained while sweeping the
input pump frequency over two FSR’s are presented in Figs.
6 and 7 ~with and without the intracavity isolator, respec-
tively!. The sweeping rate is sufficiently slow~,100 Hz! to
avoid dynamical effects on the location of the bifurcation
points. The accordance with the theoretical results of Figs. 3
and 4 is evident. In this experiment, the exact positions of the
passive cavity resonances were unknown, because of the
drift of the cavity length. The origin of the frequency scale
on each recording was suggested by the field variations, and
does not correspond to any measurement. The record of Fig.
6~a!, obtained for an input power just above the lasing
threshold, shows a domain of instability around the Stokes
antiresonance frequency. These instabilities are periodic os-
cillations at a frequency close to the FSR, and result from the
beating of a multimode oscillation. Note that the weak
modulation of the intensities is only due to the step-index
reflections at both ends of the fiber, which add a Perot-Fabry
cavity effect. At a higher input power@Fig. 6~b!#, the discon-
tinuous jump of the Stokes intensity clearly reveals the pres-
ence of a bistability between two modes close to the anti-
resonances. Of course the laser cannot switch abruptly from
one mode to the next, and a small transient regime can still
be observed at each mode hop. In the presence of a pump
feedback~Fig. 7!, the strong variations of the field intensities
with the detuning do not change the global dynamics of the

laser. In particular, discontinuous jumps are observed which
point out the existence of a bistability between two adjacent
modes, in good agreement with theoretical results.

VI. CONCLUSION

In this paper, we have underlined the importance of the
detuning on the dynamics of a Brillouin laser. As a whole,
the features of this kind of laser are not different from those
of classical lasers with population inversion@12#. With an
appropriate formulation of the Brillouin fiber ring laser
model, we have derived an expression of the steady state in
the presence of a pump and Stokes frequency mismatch. We
have observed and interpreted a bistability of the system,
which can emit on the two cavity modes lying closest to the
maximum of the spontaneous gain. The frequency domain
over which the laser emission on one mode is stable in-
creases with the emission strength. If care is taken to avoid
the second-order Stokes emission@14,15#, it would then be
possible to increase the cavity quality and the pumping level
so much that the mode hops do not happen on each FSR, but
on every two FSR’s or more. The intensity of such a laser
would then be much more stable with respect to the cavity
length fluctuations. Moreover, cavity length control, could be
used to obtain a tunable laser over at least one FSR, with a
very high coherence of the emission which characterizes the
Brillouin laser.
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