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Dynamics of a Brillouin fiber ring laser: Off-resonant case
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The behavior of a nonresonant Brillouin laser is studied both theoretically and experimentally. Equations for
the laser are revisited in order to derive the steady states. The stability of the stationary solutions is studied
numerically in the case of a short length cavity. This study reveals unstable regimes and a modal bistability
around the antiresonant frequency. Experimental results confirm these predictions.

PACS numbgs): 42.65.Es, 42.65.Sf, 42.81i

I. INTRODUCTION Il. OFF-RESONANCE THREE-WAVE MODEL

Let us now consider basic assumptions for a resonant SBS

interaction. A pump field k) is scattered by an acous-

'%cal wave (3>, kY, thus generating a counterpropagating

Since it was first observed in 197&], Stimulated Bril-
louin scattering SBS in optical fiber resonators has been the

object of numerous studies. These were mostly performe tokes field ('%°,k'®. For these three fields, the wave num-

with fiber Ieng.ths of the Order of "’.‘.*.‘“”dred meters..Ju.s ers satisfy the usual dispersion relatidgs=nwy/c, kg®
above the lasing threshold, instabilities such as periodic; re s re . L
=nwgic, andk; = wy v (Wheren is the refractive index,

quasi-periodic, solitonic, and chaotic regimes have been obCT the light velocity, andy the sound wave velocily The
served[2-9]. Steady states have been reached for PUMPING s eraction fulfills the conservation laws of the energif®

levels a few times greater than the lasing thresh6éldin a .
previous papef7], we demonstrated that these behaviors can “p wg > and momentunky = ky+ k;e.s' For a given value
only be encountered in long cavities, for which many mode f the pump frequency,, all f_requenmes and momenta can
lie under the homogeneously broadened Brillouin gain curve: € dgduced from these .fe'f”‘“O’?S: o ,
For cavities shorter than a critical length, the emission This .p.reV|ous.anaIyS|s |mpII|C|tIy.|mpI|es that the fields
involves only one longitudinal cavity mode. and its intensity a}nd their interactions are described in frames rqtatlng respec-
remains stable. This result has been estat;lished theoreticaﬁlve'y at the frequencies,, v, ", andwg™, leading to the
: . L . Yandard three-wave coherent mod8]. In particular the
when the maximum of the gain curve coincides with ONegioes field writes:
cavity mode, hereafter called resonance. The role of a fre-
guency detuning between the gain peak and the cavity mode n
(called Stokes detuninghas been investigated experimen- S(Z,t)=5’(2,t)exﬁ{—iw;eﬁ(t+ ol
tally. The experiments, performed for a short cavity length,
have shown that the laser is stable not only at the resonanc8uch rotating frames are well adapted to a description of the
but also for a large range of Stokes detunings. spontaneous Stokes emission which occurs at the frequency
Up to now, theoretical studies focused on the resonantw'®9 corresponding to the maximum of the gain curve.
case, and the exact effect of Stokes detuning on the laser When the fiber is inserted in a cavity, the description re-
dynamics remains largely unknown. The present paper is dewains valid, and an eventual mistuning between the Stokes
voted to an experimental and theoretical analysis of this efresonant frequencyu() and the passive cavity mod€s)
fect. Our Brillouin ring laser has been modified in order to carrying the laser oscillatioftalled the active modes taken
avoid the pump feedback. The behaviors then produced aigto account through the boundary condition which then
roughly similar to those previously published, but their con-writes.
frontation with theory is greatly simplified. From the theo- L
retical point of view, the classical three-wave coherent model , _ . n ,
[8] is reformulated to describe a detuned Brillouin ring laser. S (L,t)—rsex;{ ~i1Awg T)S (08). @
We derive the steady states of the system and study numeri-
cally the stability of these solutions using parameters correThe reinjection rate of the field, is real. L is the cavity
sponding to the experimental conditions. Unstable regimeength andA wy=Qs— w¢ is the cavity detuning. Note that,
and modal bistability are observed around the antiresonanca, priori, the active mode can be any mode lying under the
for which the maximum of gain is halfway between the two gain curve and not necessarily the closest to the maximum of
cavity modes. These phenomena are also observed expegain (Fig. 1).
mentally. Owing to this condition, the stationary solutions of the
In Sec. I, we describe the off-resonant three-wave coherthree-wave model necessarily involve a time dependence of
ent model used in this study. The steady-state solutions atbe phase of the complex field envelop@®]. The resulting
derived in Sec. lll, and their stability is analyzed in Sec. IV. phase oscillation brings the Stokes frequency to a value
Finally, Sec. V is devoted to experimental results. which depends on the medium gain profile and on the char-

+c.c. D
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acteristics of the cavity. For the sake of simplicity it is more acoustical wave field. We have neglected the convective term
convenient to describe the evolution of the fields in theof the acoustical wavéip/dz=0) [10] and the absorption of
frames rotating at their exact frequencies. We then consider the fiber compared to the cavity losses. The length and time
given active mode characterized by a Stokes detudimg  can be rescaled witliyyn/c)z—z and y,t—t, defining
=0s— ws®, the frequencyw, of the laser emission is pulled L'=(y,n/c)L, the normalized length of the cavity, and
from the medium resonance by an unknown quantity;  A;=Aw;/y, (j=0 and 3, the normalized frequency detun-
=, — o (Fig. 1). The pump and laser fields are then re-lngs We then introduce the following transformations:

spectively written as follows: Ep=(K/ya)P, Es=(K/y2)S, andE,= =i(K/y,0)p, where
K=w,y (80/2nUCp0)1/28.nd0'2—2p0n eo/vc. Equationg4)

) n then become
P(z,t)=P(z,t)exp —iw, t_EZ +c.c., (33
JE, OJE
. n —P P EsE,,
S(z,t)=S(z,t)exg —iw, | t+ cZ||*rec, (3b) ot oz
where the Stokes field envelofsz,t) fulfills the boundary JEs JEg N
condition. Tt oz EeFa
S(L,t)=rS(0t)exp(—id), (3¢
with = 6)

0= Qs o). This set of equations must be completed by the boundary

conditions imposed by the cavity for the Stokes field, which
Through the electrostrictive effect, the interference be-write
tween these two fields drives an acoustical wave
M(z,t)=p(z,t)exp—i(w,st—Kk,z)+c.c. characterized by a
frequency w,=w,—w_ and a wave number
ko= (wp+w)(n/c). Due to the Stokes detuning, this forced
acoustical wave no longer respects the dispersion relatioand eventually for the pump wave. Compared to the usual
(wa# ko). Its growing is then frustrated, leading to a de- model, written at resonance, the only difference lies in the
crease of the gain. This effect is described by a destructiveermiA; which appears in the acoustic wave equation, and
phase oscillation term, at the frequenaw,, appearing in  fully accounts for the unresonant nature of the interaction in
the reduced Navier-Stokes equation of the acoustic Walve a detuned cavity. Equatior{§) were previously obtained by
The interaction of the three waves is then described by th€how and Per§l1] in order to model a Brillouin amplifica-
following set of equations: tor in which a detuning is imposed by the frequency of the
seeding wave. However, let us emphasize that the choice of
£+ ¢ ﬁ  0pY° s, the appropriate rotating frames we recommend allows for a
gt n oz 2p 2pon2 P much simpler derivation of these equations.

EJ(L",t)=rEl(Ot)exp —ids), (6)

9S cdS_. wpy® “p Ill. STEADY STATES
ot noz 2p n2 P '

As the Stokes and pump fiel@g andE evolve in frames
ap _ ) 280k,2)7/e rotating at the lasing frequenay, and the pump frequency
5t T (ratidey)p=i Ton s, (4) w,, respectively, the amplitudes and phases of the steady-
state solutions must be time independent. We then transform
where y® is the electrostrictive coupling constant, the the complex amplitudes to modulus-phase form by substitut-

mean density of the fiber core, angthe damping rate of the ing the following expressions in Eqéb):
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Ep,=Apexpi®,),
Es=Aexpidy), (7)

Ea=Aexpid,).
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Coupled with Egs(9b) and (9d), expressed at the bound-
aries, these two relations fix the value of the unknown pa-
rameterd~ andA; which are given by

By setting all the time derivatives to zero, we easily obtain

the following equations for the steady state:

& fﬁfﬁ’ (69
‘L—f= - fj"—i}, (80)
%= 1?—25 A3, (80
ddils =— 1?—25 A, (8d)

(1-F)=r¥{exg2n(1-F)A30O)L']1-F}, (11a
Ao Ag
A= P AYPC (119

wherex=c|Lnrg/nL is the Stokes field damping rate out of
the cavity, and\1”C= /7 and AvP= v,/ are the full width

at half maximum of a passive cavity mode and of the spon-
taneous Brillouin gain curve, respectively.

Equation(11b) is the classical mode pulling formula ob-
tained for lasers with a population inversi¢h2], and al-
ready shown on a Brillouin laser at the lasing threshaf8l.

In fact, this equation is valid whatever the pump power, and
gives the exact lasing frequency, which depends only on the
Stokes detuning and on the ratio of the cavity and medium

As could be expected, the Stokes detuning entails a gaifl@mping rates. The implicit equatioiila can be solved
reduction by a factor 11+A2), linked to the Lorentzian na- humerically. For a given detuning,, the parameteF and
ture of the gain profile. The propagation of the acousticafhus all the stationary fields depend only on the pump inten-
wave being neglected, the fieEl, is a slave variable of the Sity in the planez=0 [A},(0)]. These results are valid what-

pump and Stokes fields, and is fully defined by

AAexp —iD)
T 1tia, e

where®=o,+ &~ fulfills the relation tanb=—A,.
Alossless energy exchange occl#s$(z) —AZ(2) is con-

stani, together with an action of each field on the Other'sintracavity

phase. The integration of equatiof@)—(8d) leads to a lon-

ever the choice of the boundary condition imposed on the

pump field. The general expression of this condition writes
Ep(0)=p+rpexp(—id,)Ey(L"). (12

w is the normalized pump field injected in the cavity which is

assumed to be real, and then defines a phase reference for the

pump fieldy , is the reinjection rate of the pump
field, and 6,=(nL/c)(Qp—w,) is the accumulated phase

gitudinal distribution of fields and phases similar to that pre-gitference of the pump field per round trifds is the fre-

viously given by Chow and BerEl1l] and Botineauet al.
[10] which writes

A%(0)(1-F)

2 —
A2 =1F ex —27(1-F)A%(0)z]’ 3
A%(0)(1-F)F
2 _ P

A= xT2n(1-F)AZ0)Z—F (b

Ay [(AY2)
(I)p(Z)_(Dp(O):_ Tlln(A:Zj(o))y (90)

& 42— 0) = 2t 252
s(z)_ s(o)_7n Ag(o) , (gd)

whereF =A3(0)/A5(0) andy=1/(1+A%). Al the fields are

guency of the passive cavity mode which is the closest to the
pump frequency. In order to avoid any confusion with the
Stokes detuning previously defined, the quanty,t- w,)

will be called the pump detuning hereafter. For a given value
of AFZ,(O), which fully defines the stationary solutigsee Eq.
(9)], the input pump intensity.? is directly given by Eq.
(12). A,Z)(O) can be adjusted by an iterative method in order
to obtain a particular value qi?.

The intracavity pump field at the lasing threshold is ob-
tained by settind- to zero in Eq.(113. The required pump
intensity, effectively launched into the fiber, then deduced
from Eq.(12), is

K
ufhresy—(1+A%>[1+r§—2rpcowp>]. (13
a

wave intensities az=0 and of the normalized frequency

detuningA; .

general casex/vy, is the threshold in the absence of Stokes
detuning and pump feedbadR]. The two factors(1+A%)

The boundary conditions to apply on the modulus and@nd[1-+1 §—2r ,cod5,)] stand, respectively, for the increase

phase of the Stokes field are then
AlL")=rA0), (109

Dy(L")—DPg(0)=— 6. (10b

of the threshold with the detuning, directly linked to the gain
reduction, and its decrease with the pump feedback effi-
ciency. The distributed losses of the fiber, neglected here,
might however, be included in the boundary conditions as a
slight modification of the reinjection rateg andr ;.
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FIG. 2. Domains of stability of the two adja-
cent modes 0 and 1 with respect to the pump
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IV. STABILITY OF THE STEADY STATE Figure 2 depicts stability domains obtained with param-

eters characterizing the experiment described in Sec. V. This
For short enough cavity lengths, we have previouslymap shows that the steady states are stable over a wide range
shown that the Brillouin laser emission is stable at the resoef intensity and detuning, the laser emission then being
nance[7]. This emission is then expected to be carried by thenonomode. Nevertheless, instabilities are observed in a
mode which coincides with the gain peak. In the presence odmall domain located around the antiresonaf&eB do-
a Stokes detuning, the Brillouin gain bandwidth usually be-main). In this region, the gain peak is halfway between the
ing larger than the cavity free spectral ran@€SR, more  two modes which nearly experience the same gain. As the
than one mode is susceptible to carrying the laser oscillatiorinput pump power remains low, so does the laser emission.
and a mode-mode competition is not excluded, especiallffhus the pump depletion and its phase rotafsee Eq(90)]
around the antiresonance. First, let us emphasize that ttever one round trip induced by one oscillating mode are too
variation of the Stokes detuning can be monitored not onlysmall to prevent an emission on the other mode. The two
by a cavity length sweeping, but also by a pump frequencynodes can oscillate simultaneously, leading to a periodic in-
sweeping, the Stokes shiftop— wS then remaining con-  stability at the beating frequency. Note that in the vicinity of
stant. In both cases, the Stokes and pump detuning are sim@oint A, the frequency of this beating is exactly the quantity
taneously swept, and their contributions to the laser dynamFSR[1+(A»"“/A1®)]. This points out that the two modes
ics are hardly distinguishable. oscillate independently, and that their characteristics are
For the sake of simplicity, we first consider the simplerthose of the steady state previously obtained. In particular,
case for which the pump feedback is avoided. We have andhey both undergo the frequency pulling given by ErLb).
lyzed the stability of the steady states corresponding to twé™MA t0 B, the frequency increases by a few percent, de-
adjacent cavity modes, respectively labeled 0 arise® Fig. noting a rgductlon of the puIlllng effec.t na mult|m_qde oscil-
1), as a function of the pump intensity and the Stokes detunl—at'c.m regime. At the right side of poir, the stab|!|ty do-
ing of the mode 0. For each value of the intensity and detunt NS C.)f th'e two mOdeS over!ap "’!“’“”d the antiresonance.
ing, the set of Eq(5), completed by Eq(11b) and by the Thv?JI BrllloumI gaélm :s thenh quite h|gk|1, a;l_d t_he osc_lllatln%
limit conditions (6) and (12), is numerically integrated for mode strongly depletes the pump. In this interaction, the

. S . ) phase rotation of the pump field over one round trip is no
each cavity mode. The initial conditions are obtained by add, o negligible, and changes of sign from one mode to the

ing a small perturbation to the stationary solution. The evoyiher [see Eq.(90]. The coexistence of the two modes is

lution of this perturbation is observed over a large number ofj,qp, impossible, and, moreover, an active mode can prevent
cavity round trips. At the stability boundaries of a particular ine gther from being active, even if this last one is closer to
active modeFig. 2], two behaviors are observed. the gain peak. The resulting domain of bistability becomes
(i) An unstable regime, characterized by a periodic oscil{arger and larger as the pump intensity increases, even lead-
lation of the Stokes intensity at a frequency close to the FSRng to a multistability with the next sidemodes for much
(if) A change of the active mode, shown by a rotation ofhigher pump powetnot shown on this map
the Stokes field’s phase at about the FSR frequency, the ro- In order to illustrate these results, let us consider a quasi-
tating frame used being no more adapted to a side-modstatic sweeping of the Stokes detuning, whereas the input
emission. pump intensity is held constant. FiguréaBshows the evo-
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steady-state intensities wh||e sweeping the Stokes detuning ovefteady-state intensities while simultaneously sweeplng the pump
two passive cavity FSR S{a) ©?=0.17 (the brackets delimitate the and Stokes detuning over two passive cavity FSRisu?=0.17.
unstable regions (b) u?=0.33. Other parameters are those of (b) u?=0.33. Other parametersy=r,=0.36, K=83 ms’ 1y-1

Fig. 2. L=12 m, andA»®=60 MHz.

lution of stationary solutions for the pump and Stokes intendinfluence the system dynamics. However, this last parameter
sities atz=L' and z=0, respectively, during a sweeping of is fixed by the pump frequency, the Stokes shift, and the
mode 0 detuning over two FSR’s. Departing from the reso-exact cavity length, and may then have any value. We then
nant condition, the intensity of the laser, emitting on mode Ochoose a value of this parameter which is as representative as
decreases. Around antiresonance, the laser is unstsdde possible of all the encountered behaviors. The steady-state
map 3, and a multimode oscillation regime emerges. Be-solutions plotted in Fig. 4 are calculated in conditions such
yond this unstable region, the emission restabilizes on modghat the pump frequency is resonant with a cavity mode
1 and the process recurs with the next sidemode. For a higherhen the Stokes detuning is equal to 0.4. The strong inten-
pump power[Fig. 3(b)], mode 0 destabilizes well after the sity modulation, evident on these curves, is then obviously
antiresonance. In this case, the two adjacent modes cannlatked to the pump intracavity intensity changes with the
coexist, and the emission abruptly changes from mode O tpump detuning. At the origin of sweepinga), the intracav-
mode 1. At this point, mode 1 has a higher gain than mode Gty pump field is just high enough to initiate a laser oscilla-
and the field intensities undergo a discontinuous jump. Backion. Departing from this frequency, the intracavity pump
and forth sweeping around the antiresonance shows field increases, and so does the intensity of the laser emitting
butterfly-shaped hysteresis cycle, symmetric with respect ton mode 0, which reaches its maximum when the pump fre-
the antiresonance. The width of this cycle increases with thguency coincides with a cavity mode. As in the previous
emission strength. case, the mode hop, characterized by the discontinuous jump,
The effect of the Stokes detuning on the system’s dynameoes not occur at the exact antiresonance of the Stokes wave,
ics being characterized, we can investigate the case of a corbut a bit further. After the mode hop, mode 1 oscillates alone,
mon cavity with a pump feedback. In this configuration, theits intensity decreasing with the pump intracavity field down
sweeping of the pump detuning induces strong variations ofo the threshold, and reappears as the pump frequency ap-
the intracavity pump intensity, and then of the Stokes emisproaches the next cavity resonance; then the process recurs.
sion. As previously shown, the emission strength is a deterFor a higher pumping levégFig. 4(b)], the intracavity field is
minant factor of the mode hop positions, so that the relativeabove the threshold for any frequency. The mode hop is dis-
position of the pump and Stokes resonances will stronglylaced further again from the antiresonance point. Note that,
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louin lasers. The reinjection ratg mainly acts on the width
TITANIUM- A-B of the domain of instability, so tha-B vanishes when

SAPPHRE rs approaches 1. As the cavity length increases, the FSR

oo decreases, and the simultaneous emission of two adjacent

BEAM DETECTION modes is favored, leading to an expansion of the unstable

MICROSCOPE # domain toward the resonances. For a cavity length longer
OBJECTIVE ISOLATOR

thanL., the laser may, within a finite range of pump power,
be unstable for any Stokes detunifig. Note that the fluc-

STOKES tuations of the cavity length can induce erratic passages from

SPLITTER DETECTION stable to unstable domains, leading to a bursting phenomena
[2]. As the pump power increases and approaches the value
12 M . . .
SINGLE MODE corresponding to poir, the stable domains enlarge and the
FIBER burst time spacing is expected to increase, whereas their du-
ration decreasefb]. Above B, only mode hops can be ob-
FIG. 5. Schematic setup of the experimental arrangement. served.
in this configuration, due to the frequency difference be- V. EXPERIMENTS

tween pump and Stokes resonances, a back and forth fre- ) . o
quency sweeping shows an asymmetric cycle of hysteresis. 1he experimental setup is presented in Fig. 5. The cw
However as a whole, the main effect of the pump feedbaciemission of a Ti-Sa laser, operating at 800 nm, is used as a
on the laser stands in strong variations of the intracavitPUmp source. This laser is characterized by a 500-KHz line-
fields with the detuning, which do not reveal new dynamicalWidth, and its frequency can be linearly swept over a range
features. adjustable from 10 MHz to 30 GHz. The Brillouin ring laser
The map of Fig. 2, calculated in particular conditions, iscomprises a 12-m-long polarization maintaining optical fiber.
in fact generic of the general behavior of most of the Bril-
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FIG. 6. Experimental records of the backscattered Stokes and FIG. 7. Experimental records of the backscattered Stokes and
the transmitted intensity obtained while sweeping the pump lasetransmitted pump intensities obtained while sweeping the pump la-
frequency in the presence of an intracavity isolatarP;,=70 mW  ser frequency in the presence of a pump cavity feedbéak:
and(b) P;,=140 mW. P;,=70 mW and(b) P;,=140 mW.
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The fiber core diameter is 2.78m, and the cutoff wave- laser. In particular, discontinuous jumps are observed which
length for monomode propagation is 630 nm. The cavity ispoint out the existence of a bistability between two adjacent
closed through a beam splitter, and the power reinjection ratmodes, in good agreement with theoretical results.

(r2) is about 13%. A Faraday isolator is inserted in the cav-

ity to avoid the pump feedback. A second beam splitter is VI. CONCLUSION

inserted to extract the two counterpropagative beams out of
the cavity for detection. With this setup, a pump frequencyde

sweeping is easier to perform than a cavity length sweeplnqhe features of this kind of laser are not different from those

and is then used to drive the Stokes detuning. The recordinqgc,f classical lasers with population inversigh2]. With an
of the pump and Stokes signals, obtained while sweeping tha . . oo DT Al
ppropriate formulation of the Brillouin fiber ring laser

input pump frequency over two FSR's are presented in Figs. . : .
6 and 7(with and without the intracavity isolator, respec- model, we have derived an expression of the steady state in

. . . . the presence of a pump and Stokes frequency mismatch. We
tively). The sweeping rate is sufficiently slow100 H2 to : . -
avoid dynamical effects on the location of the bifurcation have observed and interpreted a bistability of the system,

points. The accordance with the theoretical results of Figs. hich can emit on the two cavity modes lying closest to the

and 4 is evident. In this experiment, the exact positions of th&naximum of the spontaneous gain. The frequency domain

. . over which the laser emission on one mode is stable in-
passive cavity resonances were unknown, because of the

drift of the cavity length. The origin of the frequency scale cfeases with the emission strength. If care is taken to avoid

on each recording was suggested by the field variations, antgle s_econd-_order Stokes e“_""ssmzlﬂ’ it would the_n be
ossible to increase the cavity quality and the pumping level

does not correspond to any measurement. The record of Fig,
6(2), obtained for an input power just above the lasing 0 much that the mode hops do not happen on each FSR, but

threshold, shows a domain of instability around the Stokeé)v r;j\éetrgealvg:zﬁcsh Or;cgpgrsefa-tl)—llev:/ri]tﬁ?:gyeft Stgi?]eagg\s;ﬁr
antiresonance frequency. These instabilities are periodic 0s- P Y

cillations at a frequency close to the FSR, and result from th ength quctua_ttions. Moreover, cavity length control, could_be
beating of a mulimode oscillation No'te that the weakused to obtain a tunable laser over at least one FSR, with a

modulation of the intensities is only due to the step-inde very high coherence of the emission which characterizes the

reflections at both ends of the fiber, which add a Perot—Fab)r(3I73’rIIIOUIn laser.

cavity effect. At a higher input pow¢Fig. 6(b)], the discon-
tinuous jump of the Stokes intensity clearly reveals the pres-
ence of a bistability between two modes close to the anti- The Laboratoire de Spectroscopie Hertzienne is “Udie
resonances. Of course the laser cannot switch abruptly frolRecherche Assoaieau CNRS. The Centre d’Etudes et de
one mode to the next, and a small transient regime can stiRecherche Lasers et Applications is supported by the Minis-
be observed at each mode hop. In the presence of a pumgre chargede la Recherche, the Region Nord—Pas de Calais,
feedback(Fig. 7), the strong variations of the field intensities and the Fonds Europe de Deeloppement Economique des
with the detuning do not change the global dynamics of theRegions.

In this paper, we have underlined the importance of the
tuning on the dynamics of a Brillouin laser. As a whole,
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