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Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of
different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite
virtual two-photon states, which become real under perturbation due to motion of the dielectric. The sonolu-
minescent bubble is modeled as an optically empty cavity in a homogeneous dielectric. The problem of the
photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism, which is dealt
with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter
dependence of the zeroth-order Hamiltonian in addition to the first-order perturbation calls for a novel pertur-
bative method combining standard perturbation theory with an adiabatic approximation. In this way the tran-
sition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon
spectrum and the total energy radiated during one flash are given both in full and in the short-wavelength
approximation when the bubble is larger than the wavelengths of the emitted light. A model profile is assumed
for the time dependence of the bubble during the collapse, and in this model the radiated energy and the
spectrum are calculated numerically and in the short-wavelength limit also analytically. It is shown analytically
that the spectral density has the same frequency dependence as blackbody radiation; this is purely an effect of
correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved
problems and suggests explanations for several more. Possible experiments that discriminate this from other
theories of sonoluminescence are proposed.

PACS number~s!: 42.50.Lc, 03.701k, 11.10.2z, 78.60.Mq

I. INTRODUCTION

A. State of the art

Sonoluminescence is the phenomenon of light emission
by sound-driven gas bubbles in fluids, ordinarily air bubbles
in water. Sound makes bubbles collapse or expand, and a
rapid flash of light is observed after each collapse. This phe-
nomenon has been known for 60 years@1#, but came under
systematic investigation only recently when experimentalists
succeeded in trapping bubbles and maintaining sonolumines-
cence as a stable process over hours or even days@2,3#.

During stable sonoluminescence@2,3# a bubble is trapped
at the pressure antinode of a standing sound wave, which
typically has a frequency of about 25 kHz. With an astonish-
ing clocklike precision the bubble sends off one sharp flash
of light per acoustic cycle. Less than 10 ps is commonly
given as a conservative estimate of the pulse length. The
observed jitter has been found to be extremely small and to
show curious phase properties whose origin could so far not
be identified@4#. The spectral density of the light emitted
drops with wavelength and resembles the tail of a blackbody
spectrum of several tens of thousand kelvin@5#.

Whereas the dynamics of the bubble motion has been suc-
cessfully explained and a theoretical model by Lo¨fstedt, Bar-
ber, and Putterman@6# based on rather involved hydrody-
namic calculations reproduces the experimentally measured
time dependence of the bubble radius@7# remarkably well,
the process of the light emission has so far defied any theo-

retical elucidation. That is why the present paper focuses on
the radiation process, making use of the knowledge about the
hydrodynamics of the bubble motion as input.

There have been several attempts of explaining the light
seen in sonoluminescence. The apparent similarity of the
spectrum to a thermal spectrum has led to the hypothesis that
the light might come from a process of blackbody radiation
or bremsstrahlung@5,8#. Along this line it has been argued
that the gas in the collapsing bubble is compressed so
strongly that a plasma is formed, which then radiates. How-
ever, one can quickly convince oneself that neither black-
body radiation nor bremsstrahlung can possibly account for
the radiation observed in sonoluminescence. Either of them
would lead to a continuous spectrum whose major part
would lie below the absorption edge of water at 180 nm and
would therefore be absorbed by it. Estimating from the cor-
responding visible part of the spectrum the amount of energy
that would be absorbed, one obtains such a large number that
one would expect to see rather obvious macroscopic conse-
quences of the absorption@9#, such as, for instance, dissocia-
tion of the water molecules, formation of radicals, etc.,
which have not been observed. Moreover, blackbody radia-
tion is an equilibrium phenomenon and involves several
atomic transitions; it could very unlikely explain pulse
lengths of less than 10 ps. Neither is any explanation involv-
ing bremsstrahlung satisfactory, because it would entail the
presence of free electrons and rather slow recombination ra-
diation.

Rather more convincing is Suslick’s theory@10#, which
explains the sonoluminescence spectra on the basis of
pressure-broadened rotational and vibrational lines in di-
atomic emission spectra. For silicone-oil sonoluminescence
one finds excellent agreement of synthetic and observed
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spectra by considering emission from excited-state C2 @10#.
For water, however, any attempts to model the spectrum on
the basis of this theory have so far been unsuccessful, al-
though the well-known 310-nm system of OH is thought to
be largely responsible for the broad peak around this wave-
length in the observed spectrum@9,11#. The most recent
speculation on the nature of sonoluminescence radiation is a
theory of collision-induced emission@12#, which, however,
in its present version contains still too many indeterminate
points and adjustable parameters to permit a judgment on its
tenability.

B. Quantum vacuum radiation as a candidate

This paper pursues a line of thought loosely inspired by
Schwinger@13#, who suggested that sonoluminescence could
be some kind of dynamic Casimir effect, which the present
writer agrees with insofar as the light emission observed in
sonoluminescence has, just like the Casimir effect, its origin
in the interaction of the vacuum fluctuations of the quantized
electromagnetic field with a dielectric medium. Sonolumi-
nescence is, however, much more closely related to the Un-
ruh effect.

Let first the Casimir effect@14,15# be recalled: two paral-
lel conducting or dielectric plates in vacuum experience an
attractive force, which arises from the boundary conditions
the plates impose on the vacuum electromagnetic field. In a
more intuitive picture one can understand the Casimir effect
in terms of van der Waals forces; the electromagnetic zero-
point fluctuations induce local fluctuating dipoles in each of
the plates and because of the spatial correlations of the fluc-
tuations the interaction of these dipoles leads to a net attrac-
tive force.

The Unruh effect@16,17# is a dynamic generalization of
the Casimir effect and predicts radiation by noninertially
moving mirrors@18#. This phenomenon is not exclusive to
perfect mirrors, i.e., perfect conductors; quantum radiation
by moving dielectrics has also been investigated@19#, and
moreover some of the pathological points of the perfect-
reflector theories can be circumvented in the more physical
case of dielectrics. Again, the intuitive picture of the process
is that the zero-point electromagnetic field excites fluctuating
dipoles in the~perfect or imperfect! mirror and these dipoles
are the source of radiation when the mirror moves nonuni-
formly.

A more rigorous way of understanding why a moving
mirror that interacts with the vacuum fluctuations of the
quantized photon field emits radiation is to start by consid-
ering a nominally stationary mirror, with the intention of
eventually applying the fluctuation-dissipation theorem. The
radiation pressure on the mirror is given by the vacuum ex-
pectation value of the force operatorF , which is obtained
from the stress-energy-momentum tensor of the electromag-
netic field subjected to appropriate boundary conditions on
the surface of the mirror. The net force on a single stationary
mirror in vacuum is of course zero by virtue of translation
invariance

F5^0uF u0&50.

However, the mean-square deviation of this force does not
vanish, since the force operatorF does not commute with

the Hamiltonian. In other words, the mirror is exposed to
radiation-pressure fluctuations, whose mean-square deviation
is given by

DF25^0uF 2u0&2^0uF u0&2.

Knowing that the force operatorF is ~just like the Hamil-
tonian! a functional that is quadratic in the field operators,
i.e., quadratic in the photon annihilation and creation opera-
tors, one can use the decomposition of the identity into pro-
jection operators onto a complete set of photon eigenstates,
of which then only two-photon states survive, and rewrite
@20#

DF25
1

2E dkE dk8z^0uF uk,k8& z2. ~1.1!

This means that virtual two-photon states are perpetually ex-
cited by the mirror in the vacuum, in accordance with the
fluctuating radiation pressure. Yet the fluctuating forces on
the left- and right-hand sides of the mirror are balanced
against each other, so that no mean radiation pressure acts on
the mirror. By virtue of Lorentz invariance, the same is true
for a mirror that moves with constant velocity.

However, when the mirror moves noninertially, the
radiation-pressure fluctuations on opposite sites of the mirror
are out of balance and the mirror experiences a nonvanishing
frictional force. The virtual two-photon states turn into real
states and the loss of momentum by the radiation of the
photon pairs provides the physical mechanism for the fric-
tion experienced by the mirror. The fluctuation-dissipation
theorem puts this into formulas and interrelates the power
spectrum of the fluctuations on the stationary mirror and the
dissipative part of the response function that connects the
force on the moving mirror to its velocity@21#.

It is a well-established fact that radiation by moving mir-
rors shows thermal properties, although one is dealing with
zero-temperaturequantum field theory. The original state-
ment of the Unruh effect@16,17# is that a mirror moving with
constant proper accelerationa in vacuum appears to be radi-
ating particles as if it were a blackbody at a temperature
TUnruh5\a/(2pkBc). The reason for this behavior is that the
photons are radiated in correlated pairs; in the language of
quantum optics, they form a two-mode squeezed state and
the observation of the single-photon spectrum involves a
tracing over the other photon of the pair, which is well
known to entail thermal properties of the state@22#. Formally
this connection is established by representing the two-mode
state in a dual Hilbert space and making contact with the
theory of thermofield dynamics@23#.

As to an experimental verification of the Unruh effect, the
record is empty—understandably so, because the Unruh tem-
perature is tiny for commonly achievable accelerations. The
only viable suggestion for an experiment has come from
Yablonovitch@24#, who thought that the sudden ionization of
a gas or a semiconductor crystal might produce an acceler-
ating discontinuity in the refractive index fast enough to ra-
diate a measurable amount of photons.

From all of the above, quantum vacuum radiation seems
to be a good candidate for explaining the radiation process in
sonoluminescence. The surface of the bubble is the moving
interface of discontinuous polarizability, i.e., the moving
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mirror. In the visible range water has a refractive index of 1.3
and the gas inside the bubble has a refractive index of prac-
tically 1 even when strongly compressed. Although the dis-
continuity of 0.3 in the refractive index is not huge, it is large
enough to radiate an appreciable number of photons if the
motion is sufficiently fast. In fact, the discontinuity in the
refractive index will enter the final results for the radiated
spectrum merely as a prefactor and hence only its order of
magnitude is important.

Of much greater significance is the highly nonlinear dy-
namics of the bubble motion. At the point when the bubble
collapses and starts reexpanding, the velocity of the interface
changes its sign. As known from experiments@7# as well as
from model calculations of the bubble dynamics@6,8#, this
turnaround is extremely fast, which means that tremendous
accelerations and higher moments of the motion are in-
volved. The present theory predicts a burst of photons as a
consequence.

As it will be shown in more detail in the course of this
paper, the theory of quantum vacuum radiation resolves sev-
eral to date unexplained issues. The fact that the photons are
radiated in correlated pairs leads to thermal properties of the
one-photon spectrum, unrelated to the temperature in the
bubble, which is presumably far too small to cause any major
effect.

In accordance with a weakly frequency-dependent refrac-
tive index, the radiation spectrum shows features at the reso-
nance frequencies of the dipolar molecules in the medium.
As water molecules are highly polarizable, this is to be ex-
pected a discernible effect; it explains the relation of the peak
around 310 nm in the spectrum to the well-known OH line.

Barely any photons are created below the absorption edge
of water, as the polarizability is far too small in this region.
Therefore, few photons are absorbed and no macroscopically
noticeable changes of the water are to be expected.

The pulse length predicted by the theory of quantum
vacuum radiation is of the order of the time it takes for the
zero-point fluctuations to correlate around the bubble. With
bubble sizes of around 1mm or less, the time light takes to
cross the bubble is in the femtosecond range. Otherwise the
time scale is of course influenced by the dynamics of the
motion of the bubble interface at and just after the collapse.

C. Outline and overview

The theory of quantum vacuum radiation by a gas bubble
in water will be expounded in the following sections. Water
will be understood as a nonabsorbing dielectric describable
by a constant refractive index. This is a good approximation
in the spectral region of interest where water is only weakly
dispersive. By virtue of adiabaticity the refractive indexn
can be replaced byn(v) in the end result for the radiated
spectrum. The gas inside the bubble is optically so thin, even
at the collapse of the bubble, that its refractive index will be
assumed to be 1 throughout the calculation.

The bubble will be considered as externally driven, i.e.,
the radius of the bubble as a prescribed function of time; the
hydrodynamics of the bubble motion is not the concern of
this paper. However, the backreaction of the radiation pro-
cess on the motion of the bubble will be specified.

Hence the problem is reduced to a model of a spherical
cavity of radiusR(t) in a homogeneous nondispersive di-

electric described by a constant refractive indexn. The radi-
ated spectral density will be obtained as a functional of
R(t).

Section II deals with the quantization of the photon field
in the presence of a stationary spherical bubble in a homo-
geneous dielectric. In Sec. III the Schro¨dinger equation for
the photon state vector is written down and the vacuum-to-
two-photon transition amplitude is calculated by a method of
time-dependent perturbation theory that accommodates both
an adiabatic time dependence of the Hamiltonian and a per-
turbative addition to the zeroth-order Hamiltonian@25#. Sec-
tion IV states and examines the results for the radiated en-
ergy and the spectral density. The appearance of a thermal-
like spectrum is demonstrated and numerical results are
presented. Finally, Sec. V gives a summary and a critical
reflection on the theory of quantum vacuum radiation by
sonoluminescent bubbles. Strengths and weaknesses of the
theory are scrutinized and open questions are voiced. Read-
ers not interested in the technicalities of the theory are en-
couraged to look over Sec. IV for an aggregate of the essen-
tial results and to read Sec. V for a guided summary and
interpretation of all results.

Several appendixes contribute technical details necessary
for the clarity of the presentation. Appendix A calculates the
Hamiltonian for a uniformly moving dielectric in preparation
for Sec. III. Appendix B gives the mode expansion for the
Helmholtz equation in spherical coordinates, which is essen-
tial throughout the paper. The force on a stationary dielectric
is determined in Appendix C.

CGS units are used everywhere in the paper;\ andc are
set equal to 1 unless explicitly indicated. All special func-
tions are defined as in Refs.@26,27#.

II. QUANTIZATION OF THE PHOTON FIELD

The Hamiltonian for the electromagnetic field in the pres-
ence of a medium with dielectric function«(r ) reads

H05
1

2E d3r SD2

«
1B2D . ~2.1!

A bubble of radiusR is described by

«~r ;R!511~n221!u~r2R!, ~2.2!

whereu is the Heaviside step function. This is to say that the
dielectric constant equals 1 in the interior of the bubble and
n2 in the surrounding medium. The Maxwell equations im-
ply continuity conditions for the fields across the boundary;
these are

D' ,
Di

«
continuous,

B continuous, ~2.3!

or in spherical coordinates
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Dr
inside5Dr

outside, Du
inside5

Du
outside

n2
, Df

inside5
Df
outside

n2
,

~2.4!
Br
inside5Br

outside, Bu
inside5Bu

outside, Bf
inside5Bf

outside.

The Hamiltonian ~2.1! depends parametrically on the
bubble radiusR via the dielectric function«(r ;R). Although
a problem with a varying bubble size is aspired to be solved,
for the purpose of quantizing the photon field the radius of
the bubble will be kept constant. In order to quantize the
system for a time-dependent radiusR(t) one would need to
know the eigenfunctions of the time-dependent Hamiltonian
~A6!; but knowing them would amount to the exact solution
of the whole problem, which is of course unachievable. As
the calculation to follow in Sec. III will employ perturbation
theory to first order in the velocity of the bubble surface
b5Ṙ(t) over the speed of light in vacuum, a quantization
for constantR is fully sufficient.

The field is quantized by ascribing operator nature to the
field variables and imposing canonical commutation rela-
tions for the vector fieldA and its conjugate momentum
P52D. These are most easily implemented by expanding
the field operators in terms of photon annihilation and cre-
ation operatorsak

s andak
s† , respectively, for a mode of mo-

mentumk and polarizations and demanding that the latter
fulfill the standard commutation relations

@ak
s ,ak8

s8†#5d~k2k8!dss8,

@ak
s ,ak8

s8 #50. ~2.5!

At the same time the normal-mode expansions should be
chosen such as to diagonalize the Hamiltonian~2.1! to the
Hamiltonian of a photon field

H05(
s
E d3k vFaks†aks1 1

2G , v5uku. ~2.6!

All this is achieved by the following expansion of the elec-
tric displacementD and the magnetic fieldB:

DTE5«E d3k
iv

Av
@ak

TEA~1!
TE2H.c.#,

BTE5A«E d3k
v

Av
@ak

TEA~2!
TE1H.c.#,

~2.7!

DTM5«E d3k
iv

Av
@ak

TMA~2!
TM2H.c.#,

BTM5A«E d3k
v

Av
@ak

TMA~1!
TM1H.c.#.

The mode functionsA(1,2) are two linearly independent so-
lutions of the Helmholtz equation. They satisfy the Coulomb
gauge condition“•A(1,2)50. The fields have been decom-
posed into their two transverse polarizations, chosen in
spherical coordinates as the transverse electric~TE!, for

which the radial component of the displacementD vanishes,
and the transverse magnetic~TM!, for which the radial com-
ponent of the magnetic fieldB vanishes. The mode functions
A(1,2) and their properties are spelled out in Appendix B.

As mentioned above, the quantization procedure is per-
formed at an arbitrary but constant bubble radiusR. This
implies that although the Hilbert space of the quantized sys-
tem stays always the same, the set of base vectors spanning it
changes withR. A unitary transformation from the base at
radiusR to the one at radiusR8 exists in principle, but is
hard if not impossible to find explicitly. So the bubble radius
R serves as a parameter in traversing a continuous sequence
of bases and in a strict notation the photon annihilation and
creation operators and the photon eigenstates should be
supplemented by a labelR. The vacuum or ground state of
the field is defined by

ak
s~R!u0;R&50, ^0;Ru0;R&51;

single-photon states are written as

uks ;R&5ak
s†~R!u0;R&, ^ks ;Ruks8;R&5d~k2k8!dss8;

two-photon states are denoted by

uks ,ks88 ;R&5ak
s†~R!ak8

s8†~R!u0;R&,

^ks ,ks88 ;Ru l p ,l p88 ;R&5d~k2 l !dspd~k82 l 8!ds8p8

1d~k2 l 8!dsp8d~k82 l !ds8p ;

and so on for all higher photon number states.

III. TWO-PHOTON EMISSION IN FIRST-ORDER
PERTURBATION THEORY

The evolution of the state vectoruc& of the photon field is
governed by the Schro¨dinger equation

i
d

dt
uc&5@H0~R!1DH~R,b!#uc&, ~3.1!

where, according to the Hamiltonian~A6! derived in Appen-
dix A,

H05
1

2E d3r SD2

«
1B2D , ~3.2a!

dH5bE d3r
«21

«
~D`B!r , ~3.2b!

andb[Ṙ is the velocity of the bubble surface.
For the present purposes antisymmetrization of the opera-

tor product inDH can be dispensed with. What will be ex-
tracted from the mode expansion of (D`B) r are products of
two-photon creation operatorsak

†ak8
† , which induce two-

photon transitions from the vacuum. Since, however, cre-
ation operators commute mutually, operator ordering is ines-
sential.

The assumption made here, i.e., in using the Hamiltonian
for a rigidly and uniformly moving dielectric derived in Ap-
pendix A, is that the dielectric moves as a whole with a
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velocity b, which is time dependent butr independent. This
implies an inward-moving compression of the dielectric
around the bubble. However, to describe the sonolumines-
cence process by the Hamiltonian~3.2! means to ignore
variations of the refractive index due to such compression,
which is a crude but innocuous approximation as long as the
energies of the phonons excited in the water stay below those
of the emitted photons. Furthermore, mass diffusion or non-
diffusive mass flow into and out of the bubble@28# relieves
this compression to some extent, the degree of which, how-
ever, is difficult to assess as long as the flow mechanism is
essentially unknown.

Initially the photon field is in its vacuum state while the
bubble is at rest and has some radiusR. As discussed at the
end of Sec. II, the photon eigenstates depend parametrically
on the radiusR of the bubble. Hence the initial condition for
the state vectoruc& reads

uc~ t0!&5u0;R~ t0!&. ~3.3!

The integration of the Schro¨dinger equation~3.1! poses a
nontrivial problem since standard methods of perturbation
theory cannot be applied. The HamiltonianDH ~3.2b! cannot
be treated as an ordinary perturbation becauseDH, as well
asH0 , depends on the parameterR. The established way of
dealing with slowly parameter-dependent Hamiltonians is the
adiabatic approximation@29#. However, the standard adia-
batic approximation requires the knowledge of the complete
set of eigenfunctions of the Hamiltonian for all allowed val-
ues of the parameter. In the present case only the eigenfunc-
tions of part of the Hamiltonian, namely, those ofH0 , are
known. Hence what is required is a judicious combination of
standard perturbation theory and the standard adiabatic ap-
proximation; needed is a theory that is capable of dealing
both with a perturbative interaction Hamiltonian and with a
Hamiltonian depending on a slowly varying parameter.

Following the adiabatic theory by Pauli@29#, one starts
with the eigenvalue equation for the unperturbed Hamil-
tonianH0 , solved for all possible values of the parameter
R

H0~R!un~R!&5En~R!un~R!&, ~3.4!

whereEn(R) is the nth eigenvalue andun(R)& the corre-
sponding eigenvector. Heren is just a label; the eigenvalue
spectrum need not be discrete. In general, the levels can be
multiply degenerate, so thatun(R)& in fact stands for a whole
subspace of orthonormal eigenvectors to the same eigenvalue
En(R). Where degeneracy matters it will be explicitly indi-
cated by statesun8(R)& also belonging toEn(R).

Differentiating~3.4! with respect toR and calculating the
overlap with a statêm(R)u one obtains

KmU ]H0

]R UnL 1EmKmU ]

]RUmL 5
]En

]R
^mun&

1EnKmU ]

]RUnL .
Thus, provided that no level crossing occurs, i.e., if form
Þn, Em(R)2En(R) is different from zero for all possible
R, as it will be the case in the present application, one has

KmU ]

]RUnL 5
1

En2Em
KmU ]H0

]R UnL for mÞn.

~3.5!

Seeking a solution of the Schro¨dinger equation~3.1!, one
expands the wave vectoruc(t)& into the eigenvectors of the
instantaneousH0„R(t)…

uc~ t !&5(
n

E un„R~ t !…&^n„R~ t !…uc~ t !&. ~3.6!

Then the Schro¨dinger equation~3.1! becomes

(
n

E F i S ]

]R
un& D ]R

]t
^nuc&1 i un&S ]

]t
^nuc& D G

5(
n

E @Enun&^nuc&1DHun&^nuc&],

which, by taking the scalar product with an eigenstate^mu, is
turned into

(
n

E ib^nuc&KmU ]

]RUnL 1 i
]

]t
^muc&

5Em^muc&1(
n

E ^muDHun&^nuc&.

From here, application of the relation~3.5! yields

i
]

]t
^muc&2Em^muc&1 ib (

m8~Em85Em!

E ^m8uc&KmU ]

]RUm8L

52 ib (
n~nÞm!

E 8
^nuc&
En2Em

KmU ]H0

]R UnL
1(

n

E ^muDHun&^nuc&,

where the sum overm8 takes states degenerate withm into
account. Since eventually the transition probability
u^muc&u2 and not the transition amplitudêmuc& will be of
physical interest, one can gauge away the second term on the
left-hand side of the above equation by defining

^muc&5cmexpF2 i E
t0

t

dt Em~t!G ; ~3.7!

one finds
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]cm
]t

1b (
m8~Em85Em!

E cm8KmU ]

]RUm8L
5b (

n~nÞm!

E 8
cn

Em2En
KmU ]H0

]R UnL expF i E
t0

t

dt~Em2En!G
2 i(

n

E cn^muDHun&expF i E
t0

t

dt~Em2En!G , ~3.8!

which is the key formula for the present approximation
method. If it were not for the term containingDH, this ex-
pression would lead to merely the standard adiabatic ap-
proximation~cf., for instance, Ref.@30#!. It should be noted
that both terms on the right-hand side of~3.8! are of the same
order, namely,b1; the matrix element of]H0 /]R is multi-
plied byb andDH is itself of orderb.

The initial condition~3.3! for the wave functionuc& trans-
lates into the following initial conditions for the coefficients
cm(t) defined by~3.7!:

c0~ t0!51, cmÞ0~ t0!50. ~3.9!

As soon as the bubble starts moving, i.e., the interface ve-
locity b(t.t0) becomes different from zero, the rate of
change of thecm is nonzero, as described by Eq.~3.8!. For
timest.t0 one hasc0(t)'1 andcmÞ0(t)5O(b) or higher.
Hence, working only to first order inb, one has to retain
only the vacuum state in the summation overn on the right-
hand side of Eq.~3.8!.

Handling the time dependence of the energy eigenvalues
En requires special care. For a cavity, such as the bubble in
the present problem, one has two limiting cases. The first is
that the cavity walls are very poor reflectors; then it is con-
venient to label the cavity modes by wave number or energy
as these are adiabatically conserved. However, if the cavity
has a very highQ value, i.e., is close to perfectly reflecting,
the number of nodes of the eigenfunction will be the adia-
batically conserved quantity and not the wave number@31#.
The probability of reflection from an interface of a medium
of refractive index n with the vacuum is given by
(n21)2/(n11)2. For an air-water interface in the visible
spectrum wheren51.3 this leads to a reflection probability
of less than 2%. Hence the bubble is a poor-quality cavity
and the energy eigenvalues are adiabatically conserved. This
justifies the use of wave numbers for the labeling of eigen-
states.

SinceH0 , and hence]H0 /]R, andDH are quadratic in
the fields, the only transitions they can induce from the initial
vacuum state lead to two-photon states, whence to first order
in b @32# the system of differential equations~3.8! for the
coefficientscm reduces to

]c0
]t

1bS 0;RU ]

]RU0;RL 52 i ^0;RuDHu0;R&,

~3.10a!

]ckk8
]t

5b
1

v1v8 K k,k8;RU ]H0

]R U0;RL ei ~v1v8!~ t2t0!

2 i ^k,k8;RuDHu0;R&ei ~v1v8!~ t2t0!. ~3.10b!

The first equation is of no special interest, but the second
equation will readily provide the solution of the problem
posed—the perturbative description of the photon creation
by the moving bubble surface. Note that Eq.~3.10b! makes it
very clear that both the parameter dependence ofH0(R) and
the motional perturbationDH are of vital importance, as
both terms on the right-hand side of Eq.~3.10b! are of order
b. The necessity of both of these terms for a correct descrip-
tion is seen even more clearly if one considers moving per-
fect reflectors. In this case the respective contributions stem-
ming from ]H0 /]R and from DH diverge if taken
separately; in the sum of the two terms in Eq.~3.10b! these
divergences cancel and finite, physically sensible results are
recovered, which are in agreement with those obtained by
different methods@19,25,33–35#.

According to ~3.7! the transition amplitude from the
vacuum into a two-photon state is given by

^k,k8;Ruc&5ckk8~ t !e
2 i ~v1v8!~ t2t0!, ~3.11!

and the initial vacuum evolves into the state

uc&5u0;R&

1 1
2 E

2`

`

dkE
2`

`

dk8ckk8~ t !e
2 i ~v1v8!~ t2t0!uk,k8;R&.

~3.12!

The factor 1
2 takes care of the identical photon states

uk,k8;R&5uk8,k;R&, not to be double counted.
It remains to evaluate the two matrix elements in Eq.

~3.10b!. With H0 as in ~3.2a!, one finds for the first

K k,k8;RU ]H0

]R U0;RL 5
1

2 S 12
1

n2DR2

3 R dV^k,k8;RuDr
21n2Ei

2u0;R&,

~3.13!

in the obvious notationEi5(Eu ,Ef). Deriving this, one
should bear in mind thatH0 depends onR both through
«(R) and through the discontinuity ofDi5(Du ,Df).

With DH as in ~3.2b!, the second matrix element in
~3.10b! reads

^k,k8;RuDHu0;R&5bS 12
1

n2D
3E

r>R
d3r ^k,k8;Ru~D`B!r u0;R&.

~3.14!

As photon states are eigenstates ofH0 , one can write
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i ~v1v8!^k,k8;Ru~D`B!r u0;R&

5^k,k8;Ru i @H0 ,~D`B!r #u0;R&

5 K k,k8;RU ]

]t
~D`B!rU0;RL ~3.15!

to first order inb. In further manipulating this expression,
one can make use of the classical energy-momentum conser-
vation law in a bulk dielectric

]

]t
~D`B! i1¹ jT

i j50, ~3.16!

where the stress tensor in the medium is given by

Ti j52
DiD j

«
2BiBj1

1

2
d i j SD2

«
1B2D . ~3.17!

Since the photon field is a non-self-interacting field in
Minkowski space, there is no doubt that this conservation
law is valid also quantally. Using this and the above relation
~3.15! one can rewrite~3.14!

^k,k8;RuDHu0;R&5 i
b

v1v8 S 12
1

n2D
3E

r>R
d3r ^k,k8;Ru¹ jT

r j u0;R&.

Applying Gauss’s theorem leads to

^k,k8;RuDHu0;R&52 i
bR2

v1v8
S 12

1

n2D
3 R dV^k,k8;RuTrr u0;R&

52 i
bR2

v1v8
S 12

1

n2D
3 R dVK k,k8;RU 12 S n2Ei

22
Dr
2

n2

1Bi
22Br

2D U0;RL . ~3.18!

Inserting ~3.13! and ~3.18! into the expression~3.10b!,
one finds for the time derivative of the transition amplitude
between the vacuum and a two-photon stateuk,k8&

]ckk8
]t

5S 12
1

n2D bR2

2

ei ~v1v8!~ t2t0!

v1v8

3 R dV K k,k8;RUS 11
1

n2DDr
22Bi

21Br
2U0;RL .

A comparison with the force operatorF r given by Eq.~C5!
uncovers the relation of the photon creation to the pressure
on the bubble;]ckk8 /]t can be reexpressed as

]ckk8
]t

52
b

v1v8
ei ~v1v8!~ t2t0!^k,k8;RuF r u0;R&.

~3.19!

This is a truly remarkable result as it exposes the fluctuations
of the radiation pressure as the origin of the photon-pair cre-
ation. As described by Eq.~1.1! for the mean-square devia-
tion of the force, the fluctuations on a stationary mirror are
tied in with the excitation of virtual two-photon states. The
~nonuniform! motion of a mirror or a dielectric interface
makes these virtual states become real, which has been ex-
plained in the two paragraphs following Eq.~1.1! and is
shown manifestly by Eq.~3.19!. The fluctuation-dissipation
theorem underlies this connection; it, however, predicts only
the dissipative force acting on the moving interface and not
the photon-creation amplitude. Hence the fluctuation-
dissipation theorem cannot supersede the above derivation,
but is, nevertheless, a useful check on it. Reference@21#
shows explicitly that the force on a moving dielectric as cal-
culated from the fluctuation-dissipation theorem is the same
as the one obtained from the transition amplitude~3.19! ~cf.
also Ref.@19#, especially Sec. 7!.

The integration of Eq.~3.19! is complicated by the fact
that the force matrix element depends parametrically onR
and therefore on time. Formally, the transition amplitude
reads

ckk8~ t !52
1

v1v8
E
t0

t

dtb~t!ei ~v1v8!~t2t0!

3^k,k8;R~t!uF r u0;R~t!&. ~3.20!

The matrix elements of the force operator, which is given by
~C5!, are calculated by expanding theD and B fields into
normal modes as detailed in Sec. II and Appendix B. An
unsophisticated calculation yields

^kTE ,kTE8 ;R~t!uF r u0;R~t!&

5
n

2p S 12
1

n2DAvv8(
l ,m

S l
TE21~k!S l

TE21~k8!
~21! l

kk8

3$ l ~ l11! j l~kR! j l~k8R!1@kR jl~kR!#8

3@k8Rjl~k8R!#8%Yl
m~ k̂!Yl

m* ~ k̂8!, ~3.21a!

^kTM ,kTM8 ;R~t!uF r u0;R~t!&

5
n

2p S 12
1

n2DAvv8(
l ,m

S l
TM21~k!S l

TM21~k8!
~21! l

kk8

3$kk8R22 l ~ l11!% j l~kR! j l~k8R!Yl
m~ k̂!Yl

m* ~ k̂8!,

~3.21b!

^kTE ,kTM8 ;R~t!uF r u0;R~t!&50, ~3.21c!

where the normalization constantsS l
TE,TM21(k) are as given

in Eqs.~B8! and ~B9!.
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The probability of creating a photon pair in the mode
uk,k8& from the initial vacuum state is given by the modulus
square of the amplitudeckk8, Eq. ~3.20!, featuring the above
matrix elements of the force operator. The state of the photon
field is specified by Eq.~3.12!. Henceckk8 carries all infor-
mation one needs to determine the expectation values of all
interesting observables, especially the total radiated energy
and the spectral density, which are the subject of the follow-
ing section.

IV. RADIATED ENERGY AND SPECTRAL DENSITY

As uckk8(t)u
2 is the probability of having a photon pair in

the modeuk,k8& at time t, the total energy of the photons

radiated by the bubble interface during one acoustic cycle
reads

W 5
1

2E2`

`

d3kE
2`

`

d3k8~v1v8!uckk8~T!u2, ~4.1!

whereT is the period of the sound field. Insertingckk8(t)
from ~3.20! and ~3.21! one obtains forW

W 5
~n221!2

8p2n2 E
0

`

dvE
0

`

dv8
vv8

v1v8
E
0

T

dt

3E
0

T

dt8b~t!b~t8!ei ~v1v8!~t2t8!I„k,k8,R~t!,R~t8!…,

~4.2!

with the auxiliary functionI defined as

I„k,k8,R~t!,R~t8!…5(
l51

`

~2l11!†S l
TE21

„kR~t!…S l
TE21

„k8R~t!…S l
TE*21

„kR~t8!…S l
TE*21

„k8R~t8!…

3$ l ~ l11! j l„kR~t!…j l„k8R~t!…1@kR~t! j l„kR~t!…#8@k8R~t! j l„k8R~t!…#8%

3$ l ~ l11! j l„kR~t8!…j l„k8R~t8!…1@kR~t8! j l„kR~t8!…#8@k8R~t8! j l„k8R~t8!…#8%

1S l
TM21

„kR~t!…S l
TM21

„k8R~t!…S l
TM*21

„kR~t8!…S l
TM*21

„k8R~t8!…@kk8R2~t!2 l ~ l11!#

3@kk8R2~t8!2 l ~ l11!# j l„kR~t!…j l„k8R~t!…j l„kR~t8!…j l„k8R~t8!…‡ ~4.3!

and the normalization factorsS l
TE,TM21(k) as given by Eqs.

~B8! and ~B9!.
A spectrometer measures the single-photon spectrum,

which by symmetry is isotropic for a spherical bubble. The
quantity of interest is therefore the angle-integrated spectral
density radiated during one acoustic cycle,

P ~v!5v3 R dVkE
2`

`

d3k8uckk8~T!u2, ~4.4!

which becomes

P ~v!5
~n221!2

4p2n2
v2E

0

`

dv8
v8

~v1v8!2
E
0

T

dtE
0

T

dt8

3b~t!b~t8!ei ~v1v8!~t2t8!I„k,k8,R~t!,R~t8!….

~4.5!

The main difficulty in calculating the radiated energy
W and the spectrumP (v) is the evaluation of the auxiliary
function I. To find an analytical approximation forI is a
rather laborious task.

First, note that bothW andP (v), Eqs.~4.2! and ~4.5!,
contain a prefactor (n221)2 multiplying I, so that they van-
ish in the limitn→1, as they should; in this limit there is no
dielectric interface to produce radiation. This justifies an ex-
pansion aroundn51 in I, which to first order does nothing
but reduce the normalization factorsS l

TE,TM21 in ~4.3! to 1,
by virtue of Eq.~B10!; otherwiseI is independent ofn.

In the present application the arguments of the Bessel
functions inI are generally greater than 1, partly appreciably
much greater, so that expansions for Bessel functions of
small arguments are of no use here. As the summation over
the indexl runs up to infinity, the sum will be dominated by
terms for which the argument and the index of each of the
Bessel functions are comparable in magnitude. Hence De-
bye’s uniform asymptotic expansion has to be employed~cf.
@27#, formulas 9.3.3 and 9.3.7!. So, for instance, one obtain-
s,in the regimex>( l1 1

2),

j l~x!→
1

n

1

Asecbtanb
cosS n tanb2nb2

p

4 D
and

@x j l~x!#8→2S tanbsecb D 1/2sinS n tanb2nb2
p

4 D ,
where the abbreviationsn[( l1 1

2) andx[nsecb have been
introduced.

With the help of the above asymptotic approximations and
by turning the summation overl into an integration one can
derive thatI behaves approximately likekk8R(t)R(t8) in
the short-wavelength regime, i.e., when the photon wave-
lengths are shorter than the minimum bubble radius. Numeri-
cal investigation of the behavior ofI confirms this and yields

I;1.16kk8R~t!R~t8!. ~4.6!
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Employing this approximation, one can integrate the expres-
sion ~4.2! for W and obtains after, a short calculation,

W 51.16
~n221!2

n2
1

480pE0
T

dt
]5R2~t!

]t5
R~t!b~t!.

~4.7!

One of the interesting consequences of this result is that the
dissipative force acting on the moving dielectric interface
can be seen to behave likeR2b (4)(t) ~plus terms with lower
derivatives ofb). This dependence tallies with results of
calculations for frictional forces on moving perfect mirrors
~see especially@36#!; the dissipative part of the radiation
pressure on a moving dielectric or mirror is proportional to
the fourth derivative of the velocity.

The expression~4.7! indicates also that any discontinuity
in b (3)(t) or lower derivatives ofb unavoidably leads to a
divergence inW @and also in the spectral densityP (v)#. In
particular, one is not permitted to assume a step-function
profile for R(t) during the collapse of the bubble, since this
would give the physically meaningless result of infinite pho-
ton production, which is not salvageable by a cutoff or any
other artificial regularization@13#.

What produces the massive burst of photons from a col-
lapsing sonoluminescent bubble is the turnaround of the ve-
locity at the minimum radius of the bubble. There the veloc-
ity rapidly changes sign, from collapse to reexpansion of the
bubble. This means that the acceleration is peaked at this
moment and so are higher derivatives of the velocity.

In order to estimate the total energy radiated during one
acoustic cycle, one can use the approximation~4.6! to re-
write the expression~4.2! as

W 51.16
~n221!2

960p2n2E0
`

dVV4U E
0

T

dt
]R2~t!

]t
eivtU2,

~4.8!

whereV is the sum of the photon frequencies in a pair. As
W is a functional of the time-dependent radiusR(t), one has
to modelR(t) appropriately in order to be able to obtain a
number forW . At the collapse of the bubble the function
R(t) has a sharp dip; hence it is reasonable to adopt the
model profile

R2~ t !5R0
22~R0

22Rmin
2 !

1

~ t/g!211
~4.9!

for the time dependence of the bubble radius. Figure 1 illus-
tratesR2(t) for various values of the parameterg, which
describes the time scale of the collapse and reexpansion pro-
cess. The shorterg the faster is the turnaround of the veloc-
ity at minimum radius and the more violent is the collapse.
In the figureg is half of the width of the dip halfway be-
tweenR0

2 andRmin
2 . In this simple model the total radiated

energy~4.8! reads, in SI units,

W 51.16
3~n221!2

512n2
\

c4g5~R0
22Rmin

2 !2. ~4.10!

Experimental data on sonoluminescent bubbles@7# suggest
that R0;10 mm andRmin;0.5 mm are sensible values to
assume. Withn;1.3 one obtains

W 52.5310216 J for g;1 fs, ~4.11!

which corresponds roughly to the experimentally observed
amount of energy per burst. Calculating the radiated spectral
density in the same model gives

P ~v!51.16
~n221!2

64n2
\

c4g
~R0

22Rmin
2 !2v3e22gv.

~4.12!

This is one of the most important end results of this calcula-
tion, as it exhibits the samev dependence as blackbody ra-
diation. Equating the exponent in~4.12! to \v/kT, one de-
rives that a turnaround timeg of 1 fs corresponds to a
temperature of around 4000 K. This is, however, just a very
crude estimate, as many simplifications and approximations
have been made in proceeding from~4.2! to ~4.12!; in gen-
eral, the functional dependence ofP on v will not be as
simple, although its overall behavior is as characterized by
Eq. ~4.12!.

It must be noted that the model~4.9! is of course grossly
oversimplified and has several quite unrealistic properties.
For short enoughg the velocity b(t)5Ṙ(t) can be very
large and even exceed 1, i.e., be superluminal. This is, how-
ever, without any consequences since notb itself but its
fourth derivativeb (4) is what matters for the emission of
photons by the moving interface. For complete peace of
mind one can opt for more complicated model functions
where the maximum velocity is controlled. If one chooses,
for instance,

R~ t !5Rmin1b0ttanh
t

g8
,

the calculation of expressions forW and P (v) is much
more laborious than for the model~4.9!, but gives results
equivalent to~4.10! and ~4.12!. In particular, one obtains

FIG. 1. Model profile of Eq.~4.9! for the squared radius at the
collapse of the bubble, printed for four different values of the pa-
rameterg. The solid line corresponds to the function with the larg-
estg.
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W 51.16
~n221!2

n2
\

c2g83
b0
2Rmin

2 1

45p S 11
p2

21D ,
P ~v!51.16

~n221!2

2pn2
\

c2
g8Rmin

2 v3e2pg8v.

The parameterg8 just like g controls how quickly the turn-
around from collapse to reexpansion of the bubble takes
place, but otherwiseg8 is distinct fromg in physical inter-
pretation and value.

The major problem in the above derivation is that the
approximation~4.6! is good only at photon wavelengths that
are smaller than the bubble radiusR, i.e., when all products
kR andk8R are greater than 1. OncekR reaches down to the
order of 1 or even below, one has to expect resonances of the
photon wavelengths with the bubble radius. An exploration
of any such resonance effects requires taking into account
the full kR dependence of the auxiliary integralI in Eq.
~4.3!, which is fairly difficult even numerically.

The results of a computer simulation of a model similar to
the one specified by~4.9! with R0545 mm, Rmin53 mm,
andg510 fs are shown in Figs. 2 and 3. Comparing these
with the values ofP predicted by Eq.~4.12!, one sees that
the numerical results show an enhancement of about a factor
1000 inP relative to the analytical approximation. This is
due to resonant behavior in~4.9!, sinceRmin is not any more
appreciably much larger than the wavelength of the observed
light. Numerical studies in the regimekRmin&1 are hindered
by substantial expanse in computation time; work by the
present author is in progress@37#. One can expect to see an
even greater enhancement inP over the predictions of Eq.
~4.12! for what are believed to be realistic values ofRmin ,
i.e., values around 0.5mm. Thus one can presumably sub-
stantially relax the requirement on how small the turnaround
time g between collapse and reexpansion of the bubble has
to be in order for the present theory to yield the experimen-
tally observed number of photons. The crude model that led
to the estimate~4.11! would demandg to be as short as 1 fs,
if it were to account for the experimental data for the sonolu-
minescence of an air bubble in water. The numerical calcu-
lation resulting in Figs. 2 and 3 suggests thatg;10 fs is

fully sufficient; calculations forRmin smaller than 3mm will
most likely require merelyg;100 fs–10 ps, which is closer
to what one expects this time scale to be on physical
grounds.

The features seen in the spectrum in Fig. 2 seem to be due
to resonances between photon wavelengths and bubble size,
but again extensive numerical studies are needed to explore
them@37#. A comparison of Figs. 2 and 3 makes it very clear
that plotting data over the photon wavelength rather than
frequency tends to conceal such features; it might therefore
be beneficial to plot experimental data over the photon fre-
quency as well.

Given the time dependence of the bubble radiusR(t), one
can, in principle, technical difficulties aside, predict the
sonoluminescence spectrum radiated by the bubble from
Eqs.~4.5! and ~4.3!. The next section summarizes the ques-
tions answered by the theory of quantum vacuum radiation
and spells out some of the as yet unanswered ones.

V. SUMMARY AND CRITICAL REFLECTION

A. Successfully resolved issues

1. Results for the spectral density and restrictions on the
turnaround timeg

The results of the preceding section seem in concord with
the experimentally observed facts in sonoluminescence.
Knowing the time dependence of the bubble radiusR(t), one
can evaluate the radiated spectral density from Eqs.~4.5! and
~4.3!. The analytical estimate~4.11! for the total energy ra-
diated during one acoustic cycle and the results of numerical
calculations presented in Figs. 2 and 3 show good qualitative
and quantitative agreement with the experimental data@5#.
The functionR(t) has been modeled by a dip, as written
down in Eq.~4.9! and made visual in Fig. 1. The width of
this dip is characterized by the important parameterg, whose
physical significance is that it is a measure of the time scale
of the turnaround of the velocity between the collapse and
the reexpansion of the bubble. To model the experimentally
observed data on the basis of the numerical calculations
worked through so far, this turnaround has to happen in

FIG. 2. Spectral density calculated numerically from Eq.~4.5!
as a function of photon frequency, for a model profile with
R0545 mm, Rmin53 mm, andg510 fs.

FIG. 3. Same data as in Fig. 2, but as a function of photon
wavelength. Note that one can barely make out the features that are
clearly visible in Fig. 2.
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about 10 fs. Further numerical analysis of Eqs.~4.5! and
~4.3! in the regime where the radiated photon wavelengths
get in resonance with the bubble size can be anticipated to
relax this requirement to a turnaround time of roughly 100
fs–10 ps, which seems quite realistic. Unfortunately, it is
notoriously difficult to determineg experimentally, as it is
arduous to measure the bubble radius close to the collapse;
the laser light that is used to determine the bubble radius by
means of fitting the scattering data to the Mie theory is then
most likely reflected by the shock-wave front propagating
through the water rather than by the actual bubble surface
@7#. In addition, one might also have to take into account that
the bubble shape deviates, perhaps even substantially, from
spherical. Although this does not affect the present theory of
the radiation mechanism to any discernible extent, since the
spectrum of the vacuum fluctuations is known to be affected
by the shape only to higher order@39#, it will noticeably alter
the light-scattering properties so that the Mie scattering
theory is no longer applicable. Nevertheless, the currently
available experimental data seem to suggest thatg lies some-
where in the interval 100 fs–10 ps@7#.

2. Thermal properties of the spectral density

The similarity of the observed photon spectrum to a
blackbody spectrum has its origin in the fact that the photon
radiation emerges in coherent pairs. To obtain the single-
photon spectrum, which is the one measured in spectral
analyses, one has to trace over one photon in the pair, as
done by integrating overk8 in Eq. ~4.4!. This process of
tracing is known to engender thermal properties of the
single-photon spectrum, even though the original two-photon
state was a pure state and one has dealt with zero-
temperature quantum field theory throughout@22#. In other
words, it is the particular correlations within the radiated
photon pairs that engender the thermal-like properties of the
spectrum, and thermal processes are completely independent
of this and in the case of sonoluminescence presumably of
no significance whatsoever.

3. Features in the spectrum

Features in the otherwise smooth experimental spectra
can be explained by a combination of three things.

~i! Resonance effects in the radiation mechanism occur
when the size of the bubbleR(t) and the photon wavelengths
l are of the same order of magnitude. The features seen in
the numerically calculated spectral density in Fig. 2 are due
to higher-order resonances of this kind, where theR is an
integer multiple ofl; for direct resonances one expects much
stronger effects. General predictions for such features can
hardly be made as their detailed qualities are determined by
the time dependence ofR, which leads to the next point.

~ii ! Choosing gases other than air for the bubble contents
leads to a modified dynamics of the bubble surface, as gas
solubilities in water vary; but even a slightly differentR(t)
around the collapse will change the structure of the reso-
nance effects betweenl andR, which is why one expects a
strong dependence of the sonoluminescence spectra on the
gas that saturates the water, as indeed observed in experi-
ments@11,38#.

~iii ! The experimentally seen features in the spectrum
might just as well be caused by dispersion, i.e., the depen-

dence of the refractive indexn on the photon frequencyv.
As long asn depends only weakly onv, one can replace
n by n(v) in Eqs.~4.5! and~4.12! by virtue of adiabaticity.
This explains that the experimental data show features at
frequencies close to the vibration-rotation excitations of the
water molecule@9#. In particular, one can expect this to be
the dominant effect in the spectra of multibubble sonolumi-
nescence, as the resonances discussed under~i! above will
average out if bubbles grow and collapse in a random man-
ner.

4. Predicted pulse length

Apart from predicting the radiated spectrum, the theory of
quantum vacuum radiation solves several conceptual prob-
lems that previous theories have not been able to deal with
satisfactorily. Most importantly, the present theory has no
difficulty in explaining the extreme shortness of the emitted
light pulses; their duration is determined by the parameter
g describing the turnaround time at the collapse and the time
it takes for the fluctuations to correlate around the bubble. As
the latter is on the scale of merely one or a few femtosec-
onds,g is the decisive quantity. Thus one expects the pulse
length to lie between 100 fs and 10 ps, which tallies with the
experimental observations.

5. Absence of radiation in the uv

Another major question that is successfully answered by
the present theory concerns the absence of radiation below
the absorption edge of water at around 180 nm. Water has
essentially no polarizability below this wavelength, so that
the real part of its refractive index is very close to 1. Hence
the mechanism of exciting vacuum fluctuations into real pho-
ton pairs is inoperative below 180 nm; no radiation is emit-
ted and no radiation has to be reabsorbed. This explains the
absence of any macroscopically discernible effect on the wa-
ter by the large amounts of absorbed light predicted by theo-
ries of blackbody radiation or bremsstrahlung~cf. Sec. I A!.

B. Suggested experiments

Thinking about experiments that distinguish the present
from other theories of sonoluminescence, one quickly comes
up with two relatively simple ones. One is to look for pho-
tons emitted in the x-ray transparency window of water@40#;
both the blackbody and the bremsstrahlung theories predict a
perceptible amount of photons with wavelengths of around 1
Å, whereas the present theory denies any photon emission at
such short wavelengths since the polarizability of water is
essentially zero for x rays, i.e.,n21'0.

The second presumably easily set up experiment is to
force the bubble into an elongated rather than spherical shape
by using piezoelectric transducers on two or all three axes
and to examine the angular distribution of the emitted light.
For such a case the present theory, unlike others, predicts an
anisotropic intensity; the number of photons radiated into a
given direction is roughly proportional to the cross section of
the bubble perpendicular to that direction. Thus, if the bubble
is spheroidal rather than spherical during the radiation pro-
cess, one expects anisotropy.
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C. Agenda and open questions

The most important point still to be attended to is to ex-
tend the numerical calculations of the spectral density~4.5!
down to realistic minimum bubble sizes of 1mm or less@37#.
This will allow one to make more precise statements as to
the turnaround timeg required to produce the experimentally
observed number of photons~cf. Sec. A 1! and to explore the
effects of resonances if the bubble size is comparable to the
photon wavelengths~cf. Sec. V A 3!.

Another effect to be studied in detail is the photon radia-
tion produced by the rapid variation of the refractive index of
water due to the rapidly varying compression around the
outside of the bubble@37#. Preliminary estimations have
shown that this mechanism is of secondary importance for
the sonoluminescence problem; to understand the principle
of it might, however, be useful in view of other applications.

An academic but nevertheless interesting question to ask
is where the photons actually are produced. A model calcu-
lation for a one-dimensional moving dielectric filling a half-
space@19# has indicated that, although the emission of this
kind of quantum vacuum radiation depends on the existence
of a moving interface between two media of different refrac-
tive indices, the photons do not come directly from the in-
terface but from within a certain vicinity of it, as suggested
also by physical intuition. However, inconsistencies between
where the photons are produced and what the support of the
radiation pressure on the dielectric is, are buried in the as-
sumption of a perfectly rigid dielectric.

The hydrodynamics of the bubble has been considered as
given in the present work; its theory has been quite success-
fully established@6#. However, especially in view of relaxing
restrictions on the velocity and the acceleration of the bubble
surface in that theory and of scrutinizing the bubble dynam-
ics at the moment of collapse, the important role of the back-
reaction of the photon radiation onto the bubble should be
recognized. The momentum loss due to the radiation process
might have a significant effect on the bubble. While the
emission lasts, the equations of motion of the liquid-gas in-
terface will be supplemented by a frictional force, which is
roughly proportional to the fourth derivative of the velocity
of the interface, as discussed just below Eq.~4.7!.

One of the puzzles that remain is why stable single-
bubble sonoluminescence is seen only in water, although
multibubble sonoluminescence has been observed in a vari-
ety of fluids. The present author’s conjecture is that the rea-
son for this is buried in the unusual properties of gas solu-
bility of water, which conspire with hydrodynamic
mechanisms to lead to an exceptionally sharp and violent
collapse of a driven bubble. In other fluids such conditions
might be reached at random, but not in a regular fashion to
produce radiation from stably maintained bubbles.

D. Credo

To close, a conceptual remark might be appropriate. At
first sight, the idea that the burst of photons seen in sonolu-
minescence has its origin in the zero-point fluctuations of the
electromagnetic field might seem utterly strange, as one
tends to think of low-energy photons emitted from material
media as coming from atomic transitions. Pondering this,
one has to admit that all we really know is that photons come

from some kind of moving charge or, field-theoretically
speaking, from the coupling to a fermion field. As we struc-
ture our thinking, we are most inclined to consider atoms as
the basic entities of all materials and try to explain all physi-
cal phenomena on this basis. However, there is no reason for
so doing; we are completely at liberty to mentally regroup
these charges in a variety of different ways and should
choose whichever is most appropriate for the problem at
hand. In the case of sonoluminescence atoms are obviously
not the basic entities to be considered, since atomic transi-
tions are about 1000 times slower than a sonoluminescence
pulse. Here the basic structure of the medium with respect to
the radiation process is most suitably thought of as an assem-
bly of dipoles with a certain dielectric response. This point of
view enables one to consider the cooperative response of the
charges to the zero-point fluctuations of the electromagnetic
field, and quantum vacuum radiation emerges as a conse-
quence quite naturally.
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APPENDIX A: HAMILTONIAN FOR A DIELECTRIC IN
UNIFORM MOTION

The aim of this appendix is to derive a Hamiltonian that
describes the electromagnetic field in the presence of a mov-
ing dielectric. For a one-dimensional scalar model it has
been shown@19# that the Hamiltonian for a rigid dielectric in
uniform motion, which can be derived easily from consider-
ations of Lorentz invariance, is adequate for the perturbative
calculation of the photon spectra radiated by nonuniformly
moving dielectrics. In particular, it has been verified that
such an approach is correct both in the limit of a very dilute
dielectric @19,41# and in the opposite limit of a perfect con-
ductor where well-known results for moving mirrors are re-
covered@19,34,35#.

The present formalism is a generalization of Ref.@19# to
the electromagnetic field and to three dimensions. In its spirit
it follows the approaches of Arzelies@42# and Van Bladel
@43#.

The standard way of deriving a Hamiltonian is to proceed
from a Lagrangian density. The Lagrangian density for a
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homogeneous dielectric moving rigidly and uniformly is a
function of the dielectric constant« of the medium and of the
velocity b of the medium relative to the frame of the ob-
server

L5L~«,b!.

It is uniquely determined by the following three require-
ments.

~i! In the limit of b50 it should reduce to the familiar
Lagrangian density for a stationary dielectric

L~«,b50!5
1

2 SD2

«
2B2D . ~A1!

~ii ! For an optically transparent medium one should re-
cover the Lagrangian density of the vacuum, which, by Lor-
entz invariance, is independent of the velocityb,

L~«51,b!52
1

4
FmnF

mn5
1

2
~E22B2!. ~A2!

The symbolFmn denotes the field strength tensor of the elec-
tromagnetic field,Fmn5¹mAn2¹nAm . Its dual is defined
F̃mn5 1

2emnabF
ab.

~iii ! L must be a Lorentz scalar. The only true scalars that
are quadratic in the fields and that depend solely on the field
strengthFmn and on the four-velocityum of the medium are
FmnF

mn, umF
mnuaFan , andumF̃

mnuaF̃an .
From the above the Lagrangian density is found to be

L~«,b!52
1

4
FmnF

mn2
«21

2
umF

mnuaFan . ~A3!

Now the Hamiltonian can be derived by going through the
canonical formalism

P5
dL

dȦ
, ~A4a!

H5P•Ȧ2L. ~A4b!

This leads to the Hamiltonian density

H5
1

2

«~12b2!

«2b2 S P2

«
1B2D2

«21

«2b2 b•~P`B!

1
1

2

«21

«2b2 F ~b•P!2

«
1~b•B!2G . ~A5!

SubstitutingP52D and, with a perturbative treatment in
mind, expanding in powers of the velocityb, one obtains

H5E d3r F12 SD2

«
1B2D1

«21

«
b•~D`B!1O~b2!G .

~A6!

This is a very natural result; the Hamiltonian for a stationary
dielectric is augmented by an energy-fluxlike correction,
which vanishes for a transparent medium.

Another way of arriving at the same result is to appeal to
the Lorentz invariance of the Maxwell theory. The Hamil-
tonian density must in any frame be given by

H5
1

2
~D•E1B•H!, ~A7!

where the fields are as measured in this frame. For a non-
magnetic dielectricB5H, but theD and E field are con-
nected by some nontrivial constitutive relation that can be
found by Lorentz transforming the constitutive relation
D85«E8, valid in the rest frame of the medium, into the
laboratory frame. There the constitutive relations read

Ei5
1

«
Di , ~A8a!

E'5
«

«2b2 F1« ~12b2!D'2
«21

«
b`BG . ~A8b!

Utilizing these to replaceE andH in Eq. ~A7!, one recovers
the Hamiltonian density~A5! obtained earlier by different
means.

APPENDIX B: MODE EXPANSION FOR THE
HELMHOLTZ EQUATION IN SPHERICAL COORDINATES

The mode functionsA(1,2)
TE,TM in the expansions~2.7! are

solutions of the Helmholtz equation

v2«~r !A~r ,k!1¹2A~r ,k!50, v5uku. ~B1!

Rewriting this equation as

S 1

A«
¹2

1

A«
DA«A52v2A«A ~B2!

makes obvious that this is the eigenvalue equation of the
Hermitian operator (1/A«)¹2(1/A«), and hence the mode
functionsA«A form a complete set of orthogonal functions.

In order to diagonalize the Hamiltonian~2.1! into the
Hamiltonian~2.6! of the photon field by means of the mode
expansions~2.7!, the mode functions should satisfy the or-
thonormalization conditions

E d3r «~r !@A~1!
TE,TM~r ;k!A~1!

TE,TM* ~r ;k8!

1A~2!
TE,TM~r ;k!A~2!

TE,TM* ~r ;k8!#5d~3!~k2k8!

~B3!

for both the TE and the TM polarizations.
To find the solutions of the Helmholtz equation~B1! one

conveniently proceeds from the scalar solution

F5
4p

~2p!3/2(l ,m e2 id l i l@cosd l j l~nkr!

1sind l yl~nkr!#Yl
m* ~ k̂!Yl

m~ r̂ !, ~B4!
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which is normalized to behave like a plane wave
eink•r/(2p)3/2 for kr→`. The phased l will be chosen to
meet the required continuity conditions across the surface of
the bubble.

The vector field operators invariant under rotation arer ,
¹, L52 i r`¹, and¹`L . Since r fails to commute with
¹2, only the last three operators may be used to generate
rotation-invariant vector solutions of the Helmholtz equation.
However,¹F is an irrotational field; only the solenoidal
fieldsLF and (¹`L )F can be employed for representations
of the transversely polarized electromagnetic field. Choosing
A(1);LF andA(2);1/(nk)¹`LF and observing the cor-
rect normalization~B3!, one obtains, for the mode functions
outside the bubble,

A~1!u5S np D 1/2(
l ,m

e2 id l i l

Al ~ l11!
@cosd l j l~nkr!

1sind l yl~nkr!#Yl
m* ~ k̂!

~2m!

sinu
Yl
m~ r̂ !,

A~1!w5S np D 1/2(
l ,m

e2 id l i l

Al ~ l11!
@cosd l j l~nkr!

1sind l yl~nkr!#Yl
m* ~ k̂!~2 i !

]Yl
m~ r̂ !

]u
,

A~1!r50,
~B5!

A~2!u5S np D 1/2(
l ,m

e2 id l i l

Al ~ l11!

1

nkr
@nkrcosd l j l~nkr!

1nkrsind l yl~nkr!#8Yl
m* ~ k̂!i

]Yl
m~ r̂ !

]u
,

A~2!w5S np D 1/2(
l ,m

e2 id l i l

Al ~ l11!

1

nkr
@nkrcosd l j l~nkr!

1nkrsind l yl~nkr!#8Yl
m* ~ k̂!

~2m!

sinu
Yl
m~ r̂ !,

A~2!r5S np D 1/2(
l ,m

e2 id l i l

Al ~ l11!

i l ~ l11!

nkr
@cosd l j l~nkr!

1sind l yl~nkr!#Yl
m* ~ k̂!Yl

m~ r̂ !,

and for those inside the bubble

A~1!u5S np D 1/2(
l ,m

S l
21 i l

Al ~ l11!
j l~kr !Yl

m* ~ k̂!
~2m!

sinu
Yl
m~ r̂ !,

~B6!

A~1!w5S np D 1/2(
l ,m

S l
21 i l

Al ~ l11!
j l~kr !Yl

m* ~ k̂!

3~2 i !
]Yl

m~ r̂ !

]u
,

A~1!r50,

A~2!u5S np D 1/2(
l ,m

S l
21 i l

Al ~ l11!

1

kr
@kr j l~kr !#8

3Yl
m* ~ k̂!i

]Yl
m~ r̂ !

]u
,

A~2!w5S np D 1/2(
l ,m

S l
21 i l

Al ~ l11!

1

kr
@kr j l~kr !#8

3Yl
m* ~ k̂!

~2m!

sinu
Yl
m~ r̂ !,

A~2!r5S np D 1/2(
l ,m

S l
21 i l

Al ~ l11!

i l ~ l11!

kr
j l~kr !

3Yl
m* ~ k̂!Yl

m~ r̂ !.

Here and in the following a prime after a bracket means a
derivative with respect to the argument of the spherical
Bessel function. The mode functions for the inside of the
bubble have zero phase shift because the fields have to be
regular at the originr50, which excludes any contributions
from the spherical Bessel functions of the second kindyl as
these diverge for zero argument.

The above mode functions are essentially the transverse
electric~TE! and the transverse magnetic~TM! polarizations
of the Hansen multipole fields@44#, well known from an-
tenna theory and solid-state absorption problems@45#. They
do not directly correspond to the standard basis of vector
spherical harmonics commonly used in Mie scattering prob-
lems @46#, but are convenient combinations of those.

The phase shiftsd l
TE,TM and the normalization constants

S l
TE,TM21 are determined by the continuity conditions~2.4!

across the bubble surface atr5R. One obtains

tand l
TE5

N l
TE

D l
TE , tand l

TM5
N l

TM

D l
TM ~B7!

and

S l
TE215

1

nkr

1

2D l
TE2 iN l

TE ,

S l
TM215

1

kR

1

2D l
TM2 iN l

TM , ~B8!

where

N l
TE5 j l~kR!@nkR jl~nkR!#82 j l~nkR!@kR jl~kR!#8,

D l
TE5yl~nkR!@kR jl~kR!#82 j l~kR!@nkRyl~nkR!#8,

~B9!

N l
TM5 j l~kR!@nkR jl~nkR!#82n2 j l~nkR!@kR jl~kR!#8,

D l
TM5n2yl~nkR!@kR jl~kR!#82 j l~kR!@nkRyl~nkR!#8.
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Note that

lim
n→1

S l
TE,TM2151, ~B10!

due to the fact that in this limit theD l
TE,TM are simplified by

the Wronskian of the spherical Bessel functions

j l~x!yl8~x!2 j l8~x!yl~x!5
1

x2

and theN l
TE,TM obviously reduce to zero.

APPENDIX C: FORCE ON A STATIONARY DIELECTRIC

There are several ways of deriving an expression for the
force applied by an electromagnetic field on a dielectric
body; the physically most intuitive one is to consider the
force as ensuing from induced currents and surface-charge
densities. In Lorentz gauge or in Coulomb gauge without
free charges the vector potential satisfies the wave equation

]

]t
~«Ȧ!2¹2A50. ~C1!

On rewriting this equation as

Ȧ2¹2A5 j ind ,

one obtains an induced current density

j ind52~«21!Ä. ~C2!

By continuity

]r ind
]t

1¹• j ind50,

one finds that the induced surface-charge density is

r ind52¹•S «21

«
DD . ~C3!

Therefore a stationary dielectric is acted upon by a force
density

f5r indE1 j ind`B. ~C4!

On integrating this density over a dielectric with a cavity one
has to bear in mind that the radial component of the electric
field is not continuous across the boundary. However, the
gradient of («21)/« in ~C3! brings about ad function on
the surface of the cavity, which is multiplied by the electric
field in Eq. ~C4! for the force density. The mathematically
and physically correct prescription is to substitute the electric
field by the average of is values on the two sides of the
boundary. Then one obtains for the radial component of the
force on a spherical bubble of radiusR

F r52S 12
1

n2D R
2

2 R dVF S 11
1

n2DDr
21Br

22Bu
22Bf

2 G ,
~C5!

where the integral runs over the complete solid angle; the
tangential components of the force are zero as obvious from
symmetry.

Strictly speaking, the expression~C5! is of course the
force on the dielectric and not the force on the bubble. Nev-
ertheless, since the two are complementary and the force
density hasd support on the boundary, i.e., the force is really
applied only to the interface,it seems reasonable to speak of
the force as acting on the bubble.

Another, less palpable and more formal, way of calculat-
ing the force density~C4! is to proceed from the stress-
energy-momentum tensor of the electromagnetic field. In this
approach care must be taken when interpreting formulas, be-
cause the momentum density of the photon field in a dielec-
tric medium is subject to ambiguity. However, this issue will
not be addressed here as the force density is unequivocally
defined and interpretable.

The stress exerted by the fields alone, i.e., the fields as in
vacuum and exclusive of the polarization fields inside the
dielectric, is given by the spacelike components of the stress-
energy-momentum tensor in vacuum

T~0!
i j ~«51!52EiEj2BiBj1

1

2
d i j ~E

21B2!. ~C6!

In vacuum there is no doubt about the momentum density
carried by the field; it reads

T~0!
i0 ~«51!5e i jkEjBk , ~C7!

which is just the Poynting vector. Overall momentum bal-
ance requires that the change in the mechanical momentum
density of the material~i.e., the force density on the dielec-
tric! together with the change in the momentum of the fields
alone~C7! equal the negative gradient of the stress~C6! due
to the fields,

]

]t
@Mmech

i 1T~0!
i0 ~«51!#52¹ jT~0!

i j ~«51!.

Thus the force density is given by

f i5
]Mmech

i

]t
52

]

]t
T~0!
i0 2¹ jT~0!

i j .

A few trivial transformations taking into account vector iden-
tities and the Maxwell equations yield

f i5S 12
1

« D SBk¹kBi2
1

2
¹ iB

2D1Ei¹ jEj .

Upon integration over the bubble the first part of this expres-
sion is easily seen to lead to theB-dependent terms in the
force ~C5!. In order to recognize the second part one should
note that¹ jEj[¹•E is zero inside as well as outside the
dielectric, but nonzero at the interface;¹ jEj gives ad func-
tion on the surface multiplied by the difference of the outer
and the inner electric fields. Thus one recovers the induced
surface-charge density~C3!, the force on which engenders
the sameDr-dependent term as in~C5! before.
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