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Theory of quantum radiation observed as sonoluminescence
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Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of
different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite
virtual two-photon states, which become real under perturbation due to motion of the dielectric. The sonolu-
minescent bubble is modeled as an optically empty cavity in a homogeneous dielectric. The problem of the
photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism, which is dealt
with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter
dependence of the zeroth-order Hamiltonian in addition to the first-order perturbation calls for a novel pertur-
bative method combining standard perturbation theory with an adiabatic approximation. In this way the tran-
sition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon
spectrum and the total energy radiated during one flash are given both in full and in the short-wavelength
approximation when the bubble is larger than the wavelengths of the emitted light. A model profile is assumed
for the time dependence of the bubble during the collapse, and in this model the radiated energy and the
spectrum are calculated numerically and in the short-wavelength limit also analytically. It is shown analytically
that the spectral density has the same frequency dependence as blackbody radiation; this is purely an effect of
correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved
problems and suggests explanations for several more. Possible experiments that discriminate this from other
theories of sonoluminescence are proposed.

PACS numbsgs): 42.50.Lc, 03.76-k, 11.10-~2z, 78.60.Mq

[. INTRODUCTION retical elucidation. That is why the present paper focuses on
the radiation process, making use of the knowledge about the
hydrodynamics of the bubble motion as input.
Sonoluminescence is the phenomenon of light emission  There have been several attempts of explaining the light
by sound-driven gas bubbles in fluids, ordinarily air bubblesseen in sonoluminescence. The apparent similarity of the
in water. Sound makes bubbles collapse or expand, and gpectrum to a thermal spectrum has led to the hypothesis that
rapid flash of light is observed after each collapse. This phethe light might come from a process of blackbody radiation
nomenon has been known for 60 yegt$ but came under or bremsstrahlung5,8]. Along this line it has been argued
systematic investigation only recently when experimentalistshat the gas in the collapsing bubble is compressed so
succeeded in trapping bubbles and maintaining sonoluminestrongly that a plasma is formed, which then radiates. How-
cence as a stable process over hours or even [@3k ever, one can quickly convince oneself that neither black-
During stable sonoluminescen 3] a bubble is trapped body radiation nor bremsstrahlung can possibly account for
at the pressure antinode of a standing sound wave, whicthe radiation observed in sonoluminescence. Either of them
typically has a frequency of about 25 kHz. With an astonishwould lead to a continuous spectrum whose major part
ing clocklike precision the bubble sends off one sharp flaslwould lie below the absorption edge of water at 180 nm and
of light per acoustic cycle. Less than 10 ps is commonlywould therefore be absorbed by it. Estimating from the cor-
given as a conservative estimate of the pulse length. Theesponding visible part of the spectrum the amount of energy
observed jitter has been found to be extremely small and tthat would be absorbed, one obtains such a large number that
show curious phase properties whose origin could so far natne would expect to see rather obvious macroscopic conse-
be identified[4]. The spectral density of the light emitted quences of the absorpti¢@], such as, for instance, dissocia-
drops with wavelength and resembles the tail of a blackbodyion of the water molecules, formation of radicals, etc.,
spectrum of several tens of thousand kel\sh which have not been observed. Moreover, blackbody radia-
Whereas the dynamics of the bubble motion has been sugion is an equilibrium phenomenon and involves several
cessfully explained and a theoretical model byfdtedt, Bar-  atomic transitions; it could very unlikely explain pulse
ber, and Puttermaf6] based on rather involved hydrody- lengths of less than 10 ps. Neither is any explanation involv-
namic calculations reproduces the experimentally measureiedg bremsstrahlung satisfactory, because it would entail the
time dependence of the bubble rad[i§ remarkably well, presence of free electrons and rather slow recombination ra-
the process of the light emission has so far defied any thediation.
Rather more convincing is Suslick’s theof%0], which
explains the sonoluminescence spectra on the basis of
* Present address: Theory of Condensed Matter Group, Cavendigiressure-broadened rotational and vibrational lines in di-
Laboratory, Madingley Road, Cambridge CB3 OHE, England. Elec-atomic emission spectra. For silicone-oil sonoluminescence
tronic address: cce20@phy.cam.ac.uk one finds excellent agreement of synthetic and observed
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spectra by considering emission from excited-stasef @].  the Hamiltonian. In other words, the mirror is exposed to
For water, however, any attempts to model the spectrum oradiation-pressure fluctuations, whose mean-square deviation
the basis of this theory have so far been unsuccessful, als given by

though the well-known 310-nm system of OH is thought to )

be largely responsible for the broad peak around this wave- AF“=(0
length in the observed spectruf®,11]. The most recent . P . :
spegculation on the nature gf sonoluminescence radiation is Iénc_;wmg that the force operatof” is (just like the Hamil-

neor o callision-nduced emissft2, whch, however, 1% % LSO UL B s e o Sperer,
in its present version contains still too many indeterminate’ "’ q P P

points and adjustable parameters to permit a judgment on ﬁgrs., one can use the decomposition of the |dent|t3_/ Into pro-
tenability. Jection operators onto a complete set of photon eigenstates,

of which then only two-photon states survive, and rewrite
[20]

72|0)—(0].710)2.

B. Quantum vacuum radiation as a candidate

This paper pursues a line of thought loosely inspired by ZZEJ J "ol 7 "2
Schwingel{13], who suggested that sonoluminescence could AF 2 dk | dk’KOl7 k. k") (1.9
be some kind of dynamic Casimir effect, which the present )
writer agrees with insofar as the light emission observed inf his means that virtual two-photon states are perpetually ex-
sonoluminescence has, just like the Casimir effect, its origirfitéd by the mirror in the vacuum, in accordance with the
in the interaction of the vacuum fluctuations of the quantizedluctuating radiation pressure. Yet the fluctuating forces on
electromagnetic field with a dielectric medium. Sonolumi-the left- and right-hand sides of the mirror are balanced
nescence is, however, much more closely related to the Urgainst each other, so that no mean radiation pressure acts on
ruh effect. the mirror. By virtue of Lorentz invariance, the same is true
Let first the Casimir effect14,15 be recalled: two paral- for a mirror that moves with constant velocity.
lel conducting or dielectric plates in vacuum experience an However, when the mirror moves noninertially, the
attractive force, which arises from the boundary conditiong@diation-pressure fluctuations on opposite sites of the mirror
the plates impose on the vacuum electromagnetic field. In @€ out of balance and the mirror experiences a nonvanishing
more intuitive picture one can understand the Casimir effecfrictional force. The virtual two-photon states turn into real
in terms of van der Waals forces; the electromagnetic zerostates and the loss of momentum by the radiation of the
point fluctuations induce local fluctuating dipoles in each ofPhoton pairs provides the physical mechanism for the fric-
the plates and because of the spatial correlations of the flu¢lon experienced by the mirror. The fluctuation-dissipation
tuations the interaction of these dipoles leads to a net attra¢beorem puts this into formulas and interrelates the power
tive force. spectrum of the fluctuations on the stationary mirror and the
The Unruh effec{16,17 is a dynamic generalization of dissipative part of the response function that connects the
the Casimir effect and predicts radiation by noninertiallyforce on the moving mirror to its velocif21]. o
moving mirrors[18]. This phenomenon is not exclusive to It is a well-established fact that radiation by moving mir-
perfect mirrors, i.e., perfect conductors; quantum radiatiof0rs shows thermal properties, although one is dealing with
by moving dielectrics has also been investigafed, and ~ Zero-temperaturgguantum field theory. The original state-
moreover some of the pathological points of the perfectment of the Unruh effedt16,17)is that a mirror moving with.
reflector theories can be circumvented in the more physicafonstant proper acceleratianin vacuum appears to be radi-
case of dielectrics. Again, the intuitive picture of the procesting particles as if it were a blackbody at a temperature
is that the zero-point electromagnetic field excites fluctuating’ unrin=7:a/(27kgC). The reason for this behavior is that the
dipoles in the(perfect or imperfegtmirror and these dipoles Photons are radiated in correlated pairs; in the language of
are the source of radiation when the mirror moves nonuniguantum optics, they form a two-mode squeezed state and
formly. the observation of the single-photon spectrum involves a
A more rigorous way of understanding why a moving tracing over the other photon of the pair, which is well
mirror that interacts with the vacuum fluctuations of theknown to entail thermal properties of the stf2&]. Formally
quantized photon field emits radiation is to start by considthis connection is established by representing the two-mode
ering a nominally stationary mirror, with the intention of State in a dual Hilbert space and making contact with the
eventually applying the fluctuation-dissipation theorem. Thetheory of thermofield dynamid3].
radiation pressure on the mirror is given by the vacuum ex- As tO an experimental verification of the Unruh effect, the
pectation value of the force operatof, which is obtained record is empty—understandably so, because the Unruh tem-
from the stress-energy-momentum tensor of the electromaderature is tiny for commonly achievable accelerations. The
netic field subjected to appropriate boundary conditions oPnly viable suggestion for an experiment has come from
the surface of the mirror. The net force on a single stationary’@blonovitch[24], who thought that the sudden ionization of

mirror in vacuum is of course zero by virtue of translation @ 9as or a semiconductor crystal might produce an acceler-
invariance ating discontinuity in the refractive index fast enough to ra-

diate a measurable amount of photons.
7]0)=0. From all of the above, quantum vacuum radiation seems
to be a good candidate for explaining the radiation process in
However, the mean-square deviation of this force does natonoluminescence. The surface of the bubble is the moving
vanish, since the force operatéf does not commute with interface of discontinuous polarizability, i.e., the moving

F=(0
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mirror. In the visible range water has a refractive index of 1.3electric described by a constant refractive indexthe radi-
and the gas inside the bubble has a refractive index of praated spectral density will be obtained as a functional of
tically 1 even when strongly compressed. Although the disR(t).
continuity of 0.3 in the refractive index is not huge, itis large  Section Il deals with the quantization of the photon field
enough to radiate an appreciable number of photons if then the presence of a stationary spherical bubble in a homo-
motion is sufficiently fast. In fact, the discontinuity in the geneous dielectric. In Sec. Il the ScHinger equation for
refractive index will enter the final results for the radiatedthe photon state vector is written down and the vacuum-to-
spectrum merely as a prefactor and hence only its order afvo-photon transition amplitude is calculated by a method of
magnitude is important. time-dependent perturbation theory that accommodates both
Of much greater significance is the highly nonlinear dy-an adiabatic time dependence of the Hamiltonian and a per-
namics of the bubble motion. At the point when the bubbleturbative addition to the zeroth-order Hamiltoni@b]. Sec-
collapses and starts reexpanding, the velocity of the interfacéon IV states and examines the results for the radiated en-
changes its sign. As known from experimefit$ as well as  ergy and the spectral density. The appearance of a thermal-
from model calculations of the bubble dynam(&s8], this like spectrum is demonstrated and numerical results are
turnaround is extremely fast, which means that tremendoupresented. Finally, Sec. V gives a summary and a critical
accelerations and higher moments of the motion are inreflection on the theory of quantum vacuum radiation by
volved. The present theory predicts a burst of photons as sonoluminescent bubbles. Strengths and weaknesses of the
consequence. theory are scrutinized and open questions are voiced. Read-
As it will be shown in more detail in the course of this ers not interested in the technicalities of the theory are en-
paper, the theory of quantum vacuum radiation resolves secouraged to look over Sec. IV for an aggregate of the essen-
eral to date unexplained issues. The fact that the photons atial results and to read Sec. V for a guided summary and
radiated in correlated pairs leads to thermal properties of thimterpretation of all results.
one-photon spectrum, unrelated to the temperature in the Several appendixes contribute technical details necessary
bubble, which is presumably far too small to cause any majofor the clarity of the presentation. Appendix A calculates the
effect. Hamiltonian for a uniformly moving dielectric in preparation
In accordance with a weakly frequency-dependent refracfor Sec. Ill. Appendix B gives the mode expansion for the
tive index, the radiation spectrum shows features at the resddelmholtz equation in spherical coordinates, which is essen-
nance frequencies of the dipolar molecules in the mediumtial throughout the paper. The force on a stationary dielectric
As water molecules are highly polarizable, this is to be exdis determined in Appendix C.
pected a discernible effect; it explains the relation of the peak CGS units are used everywhere in the pagieandc are
around 310 nm in the spectrum to the well-known OH line.set equal to 1 unless explicitly indicated. All special func-
Barely any photons are created below the absorption edgions are defined as in Ref6,27).
of water, as the polarizability is far too small in this region.
Therefore, few photons are absorbed and no macroscopically 1. QUANTIZATION OF THE PHOTON FIELD
noticeable changes of the water are to be expected. o
The pulse length predicted by the theory of quantum The Hamiltonian for the electromagnetic field in the pres-
vacuum radiation is of the order of the time it takes for theence of a medium with dielectric functias(r) reads
zero-point fluctuations to correlate around the bubble. With

bubble sizes of around &Am or less, the time light takes to 1 D2
cross the bubble is in the femtosecond range. Otherwise the HO:EJ d3r(—+ BZ). (2.1
time scale is of course influenced by the dynamics of the &
motion of the bubble interface at and just after the collapse.
A bubble of radiusR is described by
C. Outline and overview
The theory of quantum vacuum radiation by a gas bubble e(r:R)=1+(n?—1)6(r—R), 2.2

in water will be expounded in the following sections. Water
will be understood as a nonabsorbing dielectric describable
by a constant refractive index. This is a good approximatiorwhere@ is the Heaviside step function. This is to say that the
in the spectral region of interest where water is only weaklydielectric constant equals 1 in the interior of the bubble and
dispersive. By virtue of adiabaticity the refractive index N in the surrounding medium. The Maxwell equations im-
can be replaced by(w) in the end result for the radiated Ply continuity conditions for the fields across the boundary;
spectrum. The gas inside the bubble is optically so thin, evethese are
at the collapse of the bubble, that its refractive index will be
assumed to be 1 throughout the calculation. D

The bubble will be considered as externally driven, i.e., D, , | continuous,
the radius of the bubble as a prescribed function of time; the €
hydrodynamics of the bubble motion is not the concern of
this paper. However, the backreaction of the radiation pro- B
cess on the motion of the bubble will be specified.

Hence the problem is reduced to a model of a spherical
cavity of radiusR(t) in a homogeneous nondispersive di- or in spherical coordinates

continuous, (2.3
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- _ _ pguside Dg“tSide which the radial component of the displacemBrtanishes,
D|n5|de: DoutS|de D|n5|de: D|n5|de: R .
r r : 0 YA P Tz and the transverse magnetitM), for which the radial com-

ponent of the magnetic field vanishes. The mode functions
. (2.9 . . . )
BQSIdeZ B?b“ts'de. A, and thelr properties are spelle_d out in Append|x_B.
As mentioned above, the gquantization procedure is per-

The Hamiltonian (2.1) depends parametrically on the formed at an arbitrary but constant bubble radRis This
bubble radiuR via the dielectric functiorz(r;R). Although  implies that although the Hilbert space of the quantized sys-
a problem with a varying bubble size is aspired to be solvediem stays always the same, the set of base vectors spanning it
for the purpose of quantizing the photon field the radius ofchanges withR. A unitary transformation from the base at
the bubble will be kept constant. In order to quantize theradiusR to the one at radiuR’ exists in principle, but is
system for a time-dependent radiBét) one would need to hard if not impossible to find explicitly. So the bubble radius
know the eigenfunctions of the time-dependent HamiltoniarR serves as a parameter in traversing a continuous sequence
(AB); but knowing them would amount to the exact solutionof bases and in a strict notation the photon annihilation and
of the whole problem, which is of course unachievable. Ascreation operators and the photon eigenstates should be
the calculation to follow in Sec. Il will employ perturbation supplemented by a lab&. The vacuum or ground state of
theory to first order in the velocity of the bubble surfacethe field is defined by
B=R(t) over the speed of light in vacuum, a quantization
for constantR is fully sufficient.

The field is quantized by ascribing operator nature to th
field variables and imposing canonical commutation rela
tions for the vector fieldA and its conjugate momentum ks;RY=aST(R)|O;R), (ks;RIk.;R)=8(k—kK')Ssq;
II=—D. These are most easily implemented by expanding
the field operators in terms of photon annihilation and cretwo-photon states are denoted by
ation operatorsy; anda , respectively, for a mode of mo-
mentumk and polarlzatlons and demanding that the latter ks, K.
fulfill the standard commutation relations

inside__ poutside inside__ poutside
Br _Br BH _80

ag(R)|0;Ry=0, (O;R|0;R)=1;

eslngle photon states are written as

;Ry=ay R)a "(R)|O;R),

sl

, (ke KL iR 1 iRy = 8(K—1) 800K —1") 8¢
(85,82 = 8(k—k') bss., SR P °P
+ 0(k=1") 0y 6(K" =1) 8grp;
s'q_
[ag.a,,]1=0. (29 and so on for all higher photon number states.

At the same time the normal-mode expansions should be
chosen such as to diagonalize the Hamiltoniari) to the
Hamiltonian of a photon field

Ho=>, f d3k

S

Ill. TWO-PHOTON EMISSION IN FIRST-ORDER
PERTURBATION THEORY

1 The evolution of the state vectpy) of the photon field is
allal+ = 5| =K. (2.6  governed by the Schdinger equation

d
All this is achieved by the following expansion of the elec- 'a| ) =[Ho(R)+AH(R,B8)]|#), 3.9
tric displacemenD and the magnetic fiel@:

where, according to the Hamiltoni@A6) derived in Appen-

DTE:sf dk \/—_[aIEA(l) H.cl, dix A,
H L J dd >* B2 3.2
0=5 r—+B7), (3.29
Bre= \/—f dk _[ak (2)+H cl,
_ 3 e—1
(2.7) SH ,8] d r— (D/AB),, (3.2b
DTM_Sf d3k _[ T'V'A(Z) H.cl, and,BER is the velocity of the bubble surface.
Vo For the present purposes antisymmetrization of the opera-

tor product inAH can be dispensed with. What will be ex-
1) M A TM tracted from the mode expansion @\B), are products of
BTM:‘/EJ dk \/_;[ak A tH.C]. two-photon creation operatoralal,, which induce two-
photon transitions from the vacuum. Since, however, cre-
The mode functiong\, , are two linearly independent so- ation operators commute mutually, operator ordering is ines-
lutions of the Helmholtz equation. They satisfy the Coulombsential.
gauge conditiorV-A; »=0. The fields have been decom-  The assumption made here, i.e., in using the Hamiltonian
posed into their two transverse polarizations, chosen iffior a rigidly and uniformly moving dielectric derived in Ap-
spherical coordinates as the transverse eledffie), for  pendix A, is that the dielectric moves as a whole with a
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velocity 8, which is time dependent butindependent. This d 1 dHg
implies an inward-moving compression of the dielectric m-rI"/ = E,—En m—r " for m#n.
around the bubble. However, to describe the sonolumines- (3.5

cence process by the HamiltonidB.2) means to ignore
variations of the refractive index due to such compression, Seeking a solution of the Schiimger equatior(3.1), one

which is a crude but innocuous approximation as long as thg, ,aqs the wave vectd(t)) into the eigenvectors of the
energies of the phonons excited in the water stay below thoﬁﬁstantaneous{ o(R())

of the emitted photons. Furthermore, mass diffusion or non-
diffusive mass flow into and out of the bubH28] relieves
this compression to some extent, the degree of which, how- :i
ever, is difficult to assess as long as the flow mechanism is [¥(V) INRIONXNRIOHD)- 39
essentially unknown. n
Initially the photon field is in its vacuum state while the }
bubble is at rest and has some radiuisAs discussed at the Then the Schidinger equatior(3.1) becomes
end of Sec. Il, the photon eigenstates depend parametrically
on the radiusR of the bubble. Hence the initial condition for | a IR _ 9
the state vectofy) reads i Hﬁ |n>) E(”W’ﬂﬂ”)(&(ﬂ‘!’)”

n

|#h(t0)) =|0;R(to)). 3.3

The integration of the Schdinger equation3.1) poses a
nontrivial problem since standard methods of perturbation :i [Ealm)(nl¢)+AH[m)(nl )],
theory cannot be applied. The Hamiltoniaf (3.2b cannot n
be treated as an ordinary perturbation becalise as well
asH,, depends on the paramefer The established way of which, by taking the scalar product with an eigenstaté, is
dealing with slowly parameter-dependent Hamiltonians is théurned into
adiabatic approximatiof29]. However, the standard adia-
batic approximation requires the knowledge of the complete
set of eigenfunctions of the Hamiltonian for all allowed val- iiﬂ<n| 1/1)< m
ues of the parameter. In the present case only the eigenfunc-
tions of part of the Hamiltonian, namely, those ldf,, are
known. Hence what is required is a judicious combination of
standard perturbation theory and the standard adiabatic ap- =Em<m|¢>+$ (m|AH|nY(n| ).
proximation; needed is a theory that is capable of dealing
both with a perturbative interaction Hamiltonian and with a n
Hamiltonian depending on a slowly varying parameter.

Following the adiabatic theory by PayR9], one starts From here, application of the relatid8.5) yields
with the eigenvalue equation for the unperturbed Hamil-

dR

9
n>+|ﬁ(m|z,/;)

n

tonian Hy, solved for all possible values of the parameter 5 9
R = (mle) —En(m|i) +iB i <m’|¢)<m‘ﬁ m’>
Ho(R)IN(R))=E(R)IN(R)), (3.4 En=En

where E(R) is the nth eigenvalue andn(R)) the corre- . , (n|y) Ho

sponding eigenvector. Hereis just a label; the eigenvalue =—I $ E_E <m R n>

spectrum need not be discrete. In general, the levels can be nnEm

multiply degenerate, so that(R)) in fact stands for a whole

subspace of orthonormal eigenvectors to the same eigenvalue + i<m|AH Iny{(n|y),

E,(R). Where degeneracy matters it will be explicitly indi-

cated by statem’(R)) also belonging t&(R). "

Differentiating (3.4) with respect taR and calculating the o
overlap with a statém(R)| one obtains where the sum ovem’ takes states degenerate withinto
account. Since eventually the transition probability
dHg JE, |(m|)|? and not the transition amplituden|) will be of
m—g (") TEm\ M ogIM) =R (m[n) physical interest, one can gauge away the second term on the

left-hand side of the above equation by defining

+E i
nl M =g/
Thus, provided that no level crossing occurs, i.e., if fior

#n, E(R)—E,(R) is different from zero for all possible
R, as it will be the case in the present application, one hasone finds

t
<m|1,0>=c;mex;{—ijt dr Eqn(7)|; 3.9
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&Cm+ i al ICyi 1 KK R dHo
o TP Cmd M GR(M . Pote \FKRZR
m' (Em=Em)

O,R> ei(aﬂrw')(’[*’[o)

—i(k,k";R|AH|O;R)e(®F @)t (3.10h

’ Cn (QHO t
i i Em_En<m dR n>exp{ todT(Em En)} The first equation is of no special interest, but the second
n(nsEm) equation will readily provide the solution of the problem
) [t posed—the perturbative description of the photon creation
_'i cn<m|AH|n)eX[{|ft dr(Em- En)}' (38 by the moving bubble surface. Note that E8.100 makes it
n 0 very clear that both the parameter dependendd #R) and

the motional perturbatiodH are of vital importance, as
o _ . both terms on the right-hand side of E8.100 are of order
which is the key formula for the present approximation g The necessity of both of these terms for a correct descrip-
method. If it were not for the term containingH, this ex-  {ion js seen even more clearly if one considers moving per-
pression would lead to merely the standard adiabatic aprect reflectors. In this case the respective contributions stem-
proximation(cf., for instance, Ref[30]). It should be noted ming from dH,/dR and from AH diverge if taken
that both terms on the right_—hand side(8f8) are of_the same  geparately; in the sum of the two terms in E8.10b these
order, namely3*; the matrix element obH,/dR is multi- divergences cancel and finite, physically sensible results are

plied by 8 andAH is itself of orderp. _ recovered, which are in agreement with those obtained by
The initial condition(3.3) for the wave functioniy) trans- ifferent method$19,25,33—3%

lates into the following initial conditions for the coefficients According to (3.7) the transition amplitude from the
Cm(t) defined by(3.7): vacuum into a two-photon state is given by

Co(to):l, Cm#o(to)zo_ (39) <k,k/;R| w):Ckk,(t)e—i(u)+w')(t—to)' (311)

and the initial vacuum evolves into the state

As soon as the bubble starts moving, i.e., the interface ve- .
locity B(t>ty) becomes different from zero, the rate of [4)=0:R)
change of thec,, is nonzero, as described by E§.8). For % P . )
timest>t, one hascy(t)~1 andc,,.o(t)=0O(B) or higher. + %f dkf dk’ cyp () e (@)K k" R).
Hence, working only to first order i3, one has to retain o0
only the vacuum state in the summation oweon the right- (3.12
hand side of Eq(3.9).

Handling the time dependence of the energy eigenvalue¥he factor 3 takes care of the identical photon states
E, requires special care. For a cavity, such as the bubble ifk,k’;R)=|k’,k;R), not to be double counted.
the present problem, one has two limiting cases. The first is It remains to evaluate the two matrix elements in Eq.
that the cavity walls are very poor reflectors; then it is con-(3.10h. With Hgy as in(3.29, one finds for the first
venient to label the cavity modes by wave number or energy
as these are adiabatically conserved. However, if the cavity .
has a very highQ value, i.e., is close to perfectly reflecting, KGR
the number of nodes of the eigenfunction will be the adia-
batically conserved quantity and not the wave nuniji3dj. . )
The probability of reflection from an interface of a medium X § d(x(k.k ,R|Dr2+n2Eﬁ|0,R>,
of refractive index n with the vacuum is given by
(n—1)2%/(n+1)2 For an air-water interface in the visible

(3.13
spectrum wheren= 1.3 this leads to a reflection probability . . : _ o ;
of less than 2%. Hence the bubble is a poor-quality cavity'snhgzled %@gﬂﬁ g?gl(ifaﬂ_'o(ggbi%s I?)Er}igvg]c();’thﬂlﬁr’oggﬁ

and the energy eigenvalues are adiabatically conserved. Th&R) and through the discontinuity &= (D,.D ).

justifies the use of wave numbers for the labeling of eigen- With AH as in (3.2b, the second matrix element in

states.
SinceH,, and hence)Hy/dR, andAH are quadratic in (3.108 reads

the fields, the only transitions they can induce from the initial (
l_ 2)

dHg
dR

O'R—ll le
T2 n?

vacuum state lead to two-photon states, whence to first ordgk,k' :R|AH|O;R)=5
in B [32] the system of differential equatior{8.8) for the
coefficientsc, reduces to

xf Rd3r(k,k’;R|(D/\B)r|0;R>.

r

J
O;R’ﬁ‘O;R>=—i(O;R|AH|O;R), (314

(3.10a  As photon states are eigenstatedHgf, one can write
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i(w+')(kk';R[(DAB),|0;R) e B

i(w+o')(t—tg) ’. — .
"Rli at ota S o(k,k";R|.7;|0;R).
=(k,k';R[i[Ho,(D/\B),]|0;R) .

= < KK’ R‘ i(D/\ B), O;R> (3.15  Thisis atruly remarkable result as it exposes the fluctuations
ot of the radiation pressure as the origin of the photon-pair cre-
! , ) ) ) ) ation. As described by Edq1.1) for the mean-square devia-
to first order inf. In further manipulating this expression, i, of the force, the fluctuations on a stationary mirror are
one can make use of the classical energy-momentum Consgfaq in with the excitation of virtual two-photon states. The
vation law in a bulk dielectric (nonuniform motion of a mirror or a dielectric interface
P makes these virtual states become real, which has been ex-
—(D/\B)i+VJ-T”=O, (3.16 plained in the two paragraphs following E@L.1) and is
at shown manifestly by Eq(3.19. The fluctuation-dissipation
theorem underlies this connection; it, however, predicts only
the dissipative force acting on the moving interface and not
the photon-creation amplitude. Hence the fluctuation-
(3.17 dissipation theorem cannot supersede the above derivation,
but is, nevertheless, a useful check on it. Referefitlgd
Since the photon field is a non-self-interacting field inShOWS explicitly that the force_on_ a '“.”0‘"”9 dielec_tric as cal-
ulated from the fluctuation-dissipation theorem is the same

Minkowski space, there is no doubt that this conservatio h btained f h . lit@ f
law is valid also quantally. Using this and the above relatior®> the one obtained from the transition amplit@.9 (cf.

. Iso Ref[19], especially Sec.)7
1 1 a
(3.19 one can rewrite3.19 The integration of Eq(3.19 is complicated by the fact

that the force matrix element depends parametricallyRon

where the stress tensor in the medium is given by

- DD 1_(Dp*
T'=—-——-BB;+ 56| —+B~|.
€ 1" 270 &

B 1 and therefore on time. Formally, the transition amplitude
(k,k';R|AH|O;R>=i - ——2> reads
0wt w n
t
3 ’. A , - _ i(w+w')(7—tg)
xLRd r(k,k’;R|V;T"|0;R). Cuw (V== todrﬂ(r)e
X(k,k';R(7)|.7|0;R(7)). (3.20

Applying Gauss'’s theorem leads to

The matrix elements of the force operator, which is given by

BR? 1) (CbH), are calculated by expanding tliz and B fields into

(k,k";R|AH|0;R)y = —i T

— normal modes as detailed in Sec. Il and Appendix B. An
n unsophisticated calculation yields

X fﬁdﬂ(k,k’;RlT'WO;R)
(kte . krg;R(7)|.71|0;R(7))

BR? . 1) . L (—1)
=l T\t T 2 7 TE=11,\ ATE=L1 1\
+ - _ q C
w+w n Zw(l n2) Voo % ATE A K)o
1 D? . . .
X f}; dQ<k,k’;R E(”ZEIZ_ = X{ 1+ 1)1 (kR)j i (K'R) + [KRji(kR) ]’
X[k Rji(k" R IYT(k) Y™ (K'), (3.213
+52—B,2> 0;R>. (3.18
Inserting (3.13 and (3.18 into the expression3.10D, (krw K ;R(7) 7 05R(7)
one finds for the time derivative of the transition amplitude n 1 (—1)
between the vacuum and a two-photon staté’) = Z( 1- ?> \/ww’lz M k). ™MK 0
,m
o |1 12) e X k' RE=1(1+ 1)} (KR (K RV Y™ (k)
+ !
ot n 2 otw (3.21b
. i 2 n2,.n2A.
X ¢ dO{kKk'R|| 1+ —|D?~Bf+B?|O:R).
(krg, ki R(7)|.7,|0;R(7)) =0, (3.219

A comparison with the force operator, given by Eq.(C5)
uncovers the relation of the photon creation to the pressurahere the normalization constant§ = ™ *(k) are as given
on the bubblegc,, /dt can be reexpressed as in Egs.(B8) and (B9).
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The probability of creating a photon pair in the mode radiated by the bubble interface during one acoustic cycle

|k,k’) from the initial vacuum state is given by the modulus reads

square of the amplitude,,,, Eq. (3.20), featuring the above 1 (e -

matrix elements of the force operator. The state of the photon W= —f d3kf A’k (w+ ") cw (T2 (4.

field is specified by Eq(3.12. Hencec,,, carries all infor- 2) = -

mation one needs to determine the expectation values of allhere T is the period of the sound field. Insertirg, (t)

interesting observables, especially the total radiated energyym (3.20 and(3.21) one obtains for7”

and the spectral density, which are the subject of the follow-

H H 2 2 ’
ing section. e (nc=1) fw fw , 0w fT
7/——877_2”2 Oda) Odw P OdT

T H ’ ’
xf dr’ B(7)B(7")e Tk k' \R(7),R(7")),
IV. RADIATED ENERGY AND SPECTRAL DENSITY 0

As | ¢y (1)]? is the probability of having a photon pair in 4.2

the mode|k,k’) at timet, the total energy of the photons with the auxiliary functionJ defined as

o

I(k,k',R(7),R(7"))= 2}1 21+ DL HKRT)ATE K R T HKR(T)) AT T HKR(7))

XU+ DjikR(T) (K R(7) + [KR(7)ji(kKR(TD]'TK'R(7) ji(K"R(7))]"}

XA+ DjikRT DK R )+ KR JIKR DT TR R(T) (K R(7)]'}

+ MR KR THKR(T). T UK R(T ) KK R (1) = 1(1+1)]
X[KK'RE(7") =1 (14 1)1, (KR(7)j i (K" R(7)j (KR(7))ji (K'R(7')] (4.3

and the normalization factorg|= ™ (k) as given by Egs. In the present application the arguments of the Bessel
(B8) and(B9). functions inJ are generally greater than 1, partly appreciably

A spectrometer measures the single-photon spectrunmuch greater, so that expansions for Bessel functions of
which by symmetry is isotropic for a spherical bubble. Thesmall arguments are of no use here. As the summation over
quantity of interest is therefore the angle-integrated spectrdhe index! runs up to infinity, the sum will be dominated by
density radiated during one acoustic cycle, terms for which the argument and the index of each of the
Bessel functions are comparable in magnitude. Hence De-
bye’s uniform asymptotic expansion has to be emploléd
[27], formulas 9.3.3 and 9.3.7So, for instance, one obtain-
s,in the regimex=(1+3),

Aw)= 0 Bg dﬂkﬁdsk’lckk«T)IZ, (4.9

which becomes

11 -
2-1)2 o ! T T ; .z o, T
:ﬂw):%wzfo d"”(wf—w')zfodeodT' j1(x) V—Wcos(vtanﬁ v 4)
X B()B(r)e @ T3k k' R(),R(7)). and
ta 1/2
4.9 X0\ (0] — - %) sin » tang—vp— 7).

The main difficulty in calculating the radiated energy

7" and the spectrum{w) is the evaluation of the auxiliary \yhere the abbreviations= (1 + ) andx=yrseg have been

function 3. To find an analytical approximation fdf is a  jntroduced.

rather laborious task. ) With the help of the above asymptotic approximations and
First, note that both”” and /{w), Egs.(4.2) and (4.5, by turning the summation ovérinto an integration one can

contain a prefactorr(*— 1)? multiplying J, so that they van-  derive thatJ behaves approximately likek' R(7)R(7') in

ish in the ||m|tn—>1, as they ShOUld; in this limit there is no the Short_wa\/e|ength regime, i'e_, when the photon wave-

dielectric interface to prOduce radiation. This jUStiﬁeS an eX'IengthS are shorter than the minimum bubble radius. Numeri-

pansion arounai=1 in J, which to first order does nothing ca] investigation of the behavior 6fconfirms this and yields
but reduce the normalization factor§™ ™ ' in (4.3 to 1,

by virtue of Eq.(B10); otherwiseJ is independent of. J~11&K'R(7)R(7"). (4.6)
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Employing this approximation, one can integrate the expres- R/
sion (4.2) for 77" and obtains after, a short calculation,

WP D? 1 T RA(7)
7'=1.16 n2 48017[0 dr (97_5 R(T)B(T)
(4.

One of the interesting consequences of this result is that the
dissipative force acting on the moving dielectric interface
can be seen to behave liIR#B*)(t) (plus terms with lower
derivatives of8). This dependence tallies with results of
calculations for frictional forces on moving perfect mirrors X
(see especiallyf36]); the dissipative part of the radiation 0.0

pressure on a moving dielectric or mirror is proportional to Time ¢ [arb. units]

the fourth derivative of the velocity.

The expressioii4.7) indicates also that any discontinuity ~ FIG. 1. Model profile of Eq(4.9) for the squared radius at the
in BC)(t) or lower derivatives of3 unavoidably leads to a collapse of the bubble, printed for four different values of the pa-
divergence inZ"[and also in the spectral densi#(w)]. In rametery. The solid line corresponds to the function with the larg-
particular, one is not permitted to assume a step-functio§st -
profile for R(t) during the collapse of the bubble, since this _ .
would give the physically meaningless result of infinite pho-EXPerimental data on sonoluminescent bubljiEssuggest
ton production, which is not salvageable by a cutoff or anythat Ro~10 um andRy,,~0.5 um are sensible values to
other artificial regularizatiofil3]. assume. Witm~1.3 one obtains

What produces the massive burst of photons from a col- o _
lapsing sonoluminescent bubble is the turnaround of the ve- 7'=25%1071 3 for y~1fs, (4.1D

locity at the minimum radius of the bubble. There the veloc-, ;i corresponds roughly to the experimentally observed

ity rapidly changes sign, from collapse to reexpansion of the, ., ¢ of energy per burst. Calculating the radiated spectral
bubble. This means that the acceleration is peaked at thﬁ’ensity in the same model gives

moment and so are higher derivatives of the velocity.

(S}

>’Radius square Rz(t)

g

In order to estimate the total energy radiated during one (n2—1)2 #
acoustic cycle, one can use the approximaiiéré) to re- Aw)=116—7— E(Rg_ R 2w3e 27,
write the expressiof4.2) as 4.12
. (n2—1)2 = A (T IR?(7) o 2 This is one of the most important end results of this calcula-
4 :1-16—2_296077 n fo daa fo dr ar © | tion, as it exhibits the same dependence as blackbody ra-

4.9 diation. Equating the exponent {#.12 to Aw/kT, one de-
rives that a turnaround time of 1 fs corresponds to a
temperature of around 4000 K. This is, however, just a very
crude estimate, as many simplifications and approximations
have been made in proceeding frgth?2) to (4.12); in gen-

where() is the sum of the photon frequencies in a pair. As
77" is a functional of the time-dependent radiR&), one has

to modelR(t) appropriately in order to be able to obtain a eral, the functional dependence of on o will not be as

number for’7". At the collapse of the bubble the function giyhie - although its overall behavior is as characterized by
R(t) has a sharp dip; hence it is reasonable to adopt thgq_ (4.12.

model profile It must be noted that the modet.9) is of course grossly

oversimplified and has several quite unrealistic properties.
For short enoughy the velocity B(t)=R(t) can be very
large and even exceed 1, i.e., be superluminal. This is, how-
ever, without any consequences since oitself but its

for the time dependence of the bubble radius. Figure 1 illusfourth derivative g% is what matters for the emission of
tratesR?(t) for various values of the parametetr which photons by the moving interface. For complete peace of
describes the time scale of the collapse and reexpansion prBlind one can opt for more complicated model functions
cess. The shortey the faster is the turnaround of the veloc- Where the maximum velocity is controlled. If one chooses,
ity at minimum radius and the more violent is the collapse.[0f instance,

In the figurey is half of the width of the dip halfway be- ¢

tweenRg and Ry, In this simple model the total radiated R(t)=Ryin+ Bottanh—,

energy(4.8) reads, in Sl units, Y

R%(t)=R3— (R3—R%;) (4.9

(t/y)?+1

the calculation of expressions fo#” and A w) is much

. 3N’ =12 b, ., more laborious than for the modé.9), but gives results
7=11 51202 c4y5(R°_Rmi”) ' (4.10 equivalent to(4.10 and(4.12. In particular, one obtains
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FIG. 2. Spectral density calculated numerically from E45) FIG. 3. Same data as in Fig. 2, but as a function of photon
as a function of photon frequency, for a model profile with wavelength. Note that one can barely make out the features that are
Ro=45 um, R;,=3 um, andy=10 fs. clearly visible in Fig. 2.

E( )2 fi 1 w? fully sufficient; calculations foR,,,, smaller than 3um will
e c? ’3'30 min A5 1+ 21/ most likely require merely~ 100 fs—10 ps, which is closer
to what one expects this time scale to be on physical
(n*-1)% # N grounds.
Aw)=1. 1657 27 'Rnw’e . The features seen in the spectrum in Fig. 2 seem to be due

to resonances between photon wavelengths and bubble size,
The parameter’ just like y controls how quickly the turn- but again extensive numerical studies are needed to explore
around from collapse to reexpansion of the bubble takethem[37]. A comparison of Figs. 2 and 3 makes it very clear
place, but otherwise/’ is distinct fromy in physical inter- that plotting data over the photon wavelength rather than
pretation and value. frequency tends to conceal such features; it might therefore

The major problem in the above derivation is that thebe beneficial to plot experimental data over the photon fre-
approximation(4.6) is good only at photon wavelengths that quency as well.
are smaller than the bubble radiBs i.e., when all products Given the time dependence of the bubble radi(g, one
kR andk’R are greater than 1. OnédR reaches down to the can, in principle, technical difficulties aside, predict the
order of 1 or even below, one has to expect resonances of tig@noluminescence spectrum radiated by the bubble from
photon wavelengths with the bubble radius. An explorationEgs. (4.5 and(4.3). The next section summarizes the ques-
of any such resonance effects requires taking into accouritons answered by the theory of quantum vacuum radiation
the full kR dependence of the auxiliary integralin Eq.  and spells out some of the as yet unanswered ones.

(4.3, which is fairly difficult even numerically.

The results of a computer simulation of a model similar to
the one specified by4.9 with Ry=45 um, R,;,=3 um,
and y=10 fs are shown in Figs. 2 and 3. Comparing these A. Successfully resolved issues
with the values of” predicted by Eq(4.12), one sees that
the numerical results show an enhancement of about a factor
1000 inZ relative to the analytical approximation. This is
due to resonant behavior {#.9), sinceR,, is not any more The results of the preceding section seem in concord with
appreciably much larger than the wavelength of the observethe experimentally observed facts in sonoluminescence.
light. Numerical studies in the regimeR,;;<1 are hindered Knowing the time dependence of the bubble radr(f), one
by substantial expanse in computation time; work by thecan evaluate the radiated spectral density from E45) and
present author is in progreg37]. One can expect to see an (4.3). The analytical estimaté&.11) for the total energy ra-
even greater enhancementdfiover the predictions of Eq. diated during one acoustic cycle and the results of numerical
(4.12 for what are believed to be realistic values Ryf;,, calculations presented in Figs. 2 and 3 show good qualitative
i.e., values around 0.mm. Thus one can presumably sub- and quantitative agreement with the experimental {&ta
stantially relax the requirement on how small the turnaroundrhe functionR(t) has been modeled by a dip, as written
time y between collapse and reexpansion of the bubble hadown in Eq.(4.9 and made visual in Fig. 1. The width of
to be in order for the present theory to yield the experimenthis dip is characterized by the important parametewhose
tally observed number of photons. The crude model that leghhysical significance is that it is a measure of the time scale
to the estimaté4.11) would demandy to be as short as 1 fs, of the turnaround of the velocity between the collapse and
if it were to account for the experimental data for the sonoluthe reexpansion of the bubble. To model the experimentally
minescence of an air bubble in water. The numerical calcuebserved data on the basis of the numerical calculations
lation resulting in Figs. 2 and 3 suggests that 10 fs is  worked through so far, this turnaround has to happen in

V. SUMMARY AND CRITICAL REFLECTION

1. Results for the spectral density and restrictions on the
turnaround time y
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about 10 fs. Further numerical analysis of E¢4.5 and dence of the refractive index on the photon frequency.

(4.9 in the regime where the radiated photon wavelength®\s long asn depends only weakly ow, one can replace
get in resonance with the bubble size can be anticipated ta by n(w) in Egs.(4.5) and(4.12 by virtue of adiabaticity.
relax this requirement to a turnaround time of roughly 100This explains that the experimental data show features at
fs—10 ps, which seems quite realistic. Unfortunately, it isfrequencies close to the vibration-rotation excitations of the
notoriously difficult to determiney experimentally, as it is  water moleculg9]. In particular, one can expect this to be
arduous to measure the bubble radius close to the collapsgie dominant effect in the spectra of multibubble sonolumi-
the laser light that is used to determine the bubble radius b%escence, as the resonances discussed uidabove will

means of fitting the scattering data to the Mie theory is therhverage out if bubbles grow and collapse in a random man-
most likely reflected by the shock-wave front propagating,

through the water rather than by the actual bubble surface
[7]. In addition, one might also have to take into account that .
the bubble shape deviates, perhaps even substantially, from 4. Predicted pulse length

Spherical. Although this does not affect the pl’esent theory of Apart from predicting the radiated Spectrum, the theory of
the radiation mechanism to any discernible extent, since tthantum vacuum radiation solves several Conceptua| prob_
spectrum of the vacuum fluctuations is known to be affectedems that previous theories have not been able to deal with
by the shape only to higher ordeg9], it will noticeably alter  satisfactorily. Most importantly, the present theory has no
the light-scattering properties so that the Mie scatteringjifficulty in explaining the extreme shortness of the emitted
theory is no longer applicable. Nevertheless, the currentlfight pulses; their duration is determined by the parameter
available experimental data seem to suggest s some- describing the turnaround time at the collapse and the time
where in the interval 100 fs—10 pg]. it takes for the fluctuations to correlate around the bubble. As
the latter is on the scale of merely one or a few femtosec-
onds, v is the decisive quantity. Thus one expects the pulse
The similarity of the observed photon spectrum to alength to lie between 100 fs and 10 ps, which tallies with the
blackbody spectrum has its origin in the fact that the photorexperimental observations.
radiation emerges in coherent pairs. To obtain the single-
photon spectrum, which is the one measured in spectral
analyses, one has to trace over one photon in the pair, as
done by integrating ovek’ in Eq. (4.4). This process of Another major question that is successfully answered by
tracing is known to engender thermal properties of thethe present theory concerns the absence of radiation below
single-photon spectrum, even though the original two-photorihe absorption edge of water at around 180 nm. Water has
state was a pure state and one has dealt with zeregssentially no polarizability below this wavelength, so that
temperature quantum field theory through2®]. In other  the real part of its refractive index is very close to 1. Hence
words, it is the particular correlations within the radiatedthe mechanism of exciting vacuum fluctuations into real pho-
photon pairs that engender the thermal-like properties of thtéon pairs is inoperative below 180 nm; no radiation is emit-
spectrum, and thermal processes are completely independdagl and no radiation has to be reabsorbed. This explains the

of this and in the case of sonoluminescence presumably gibsence of any macroscopically discernible effect on the wa-
no significance whatsoever. ter by the large amounts of absorbed light predicted by theo-

ries of blackbody radiation or bremsstrahlufeg. Sec. | A.

2. Thermal properties of the spectral density

5. Absence of radiation in the uv

3. Features in the spectrum

Features in the otherwise smooth experimental spectra
can be explained by a combination of three things.

(i) Resonance effects in the radiation mechanism occur Thinking about experiments that distinguish the present
when the size of the bubbR(t) and the photon wavelengths from other theories of sonoluminescence, one quickly comes
\ are of the same order of magnitude. The features seen ump with two relatively simple ones. One is to look for pho-
the numerically calculated spectral density in Fig. 2 are dugons emitted in the x-ray transparency window of watl];
to higher-order resonances of this kind, where Ehés an  both the blackbody and the bremsstrahlung theories predict a
integer multiple ofx; for direct resonances one expects muchperceptible amount of photons with wavelengths of around 1
stronger effects. General predictions for such features caf, whereas the present theory denies any photon emission at
hardly be made as their detailed qualities are determined bguch short wavelengths since the polarizability of water is
the time dependence &, which leads to the next point. essentially zero for x rays, i.en—1~0.

(ii) Choosing gases other than air for the bubble contents The second presumably easily set up experiment is to
leads to a modified dynamics of the bubble surface, as ga®rce the bubble into an elongated rather than spherical shape
solubilities in water vary; but even a slightly differeR(t) by using piezoelectric transducers on two or all three axes
around the collapse will change the structure of the resoand to examine the angular distribution of the emitted light.
nance effects between andR, which is why one expects a For such a case the present theory, unlike others, predicts an
strong dependence of the sonoluminescence spectra on thaisotropic intensity; the number of photons radiated into a
gas that saturates the water, as indeed observed in expegiven direction is roughly proportional to the cross section of
ments[11,3§. the bubble perpendicular to that direction. Thus, if the bubble

(i) The experimentally seen features in the spectrums spheroidal rather than spherical during the radiation pro-
might just as well be caused by dispersion, i.e., the depercess, one expects anisotropy.

B. Suggested experiments



53 THEORY OF QUANTUM RADIATION OBSERVED 5. .. 2783

C. Agenda and open questions from some kind of moving charge or, field-theoretically
The most important point still to be attended to is to ex-SP€aKing, from the coupling to a fermion field. As we struc-

tend the numerical calculations of the spectral dengitp) ture our thmlgpg, we are most inclined to conS|d9r atoms as
L . the basic entities of all materials and try to explain all physi-
down to realistic minimum bubble sizes ofudm or lesq37]. X . X
This will allow one to make more precise statements as tcal phenomena on this basis. However, there is no reason for
. . P ) % doing; we are completely at liberty to mentally regroup
the turnaround time required to produce the experimentally

these charges in a variety of different ways and should
observed number of photofsf. Sec. A 3 and to explore the 456 whichever is most appropriate for the problem at

effects of resonances if the bubble size is comparable t0 thg;q. In the case of sonoluminescence atoms are obviously
photon wavelengthé&cf. Sec. VA3. ~ not the basic entities to be considered, since atomic transi-
Another effect to be studied in detail is the photon radia-+jons are about 1000 times slower than a sonoluminescence
tion produced by the rapid variation of the refractive index ofpylse. Here the basic structure of the medium with respect to
water due to the rapidly varying compression around thehe radiation process is most suitably thought of as an assem-
outside of the bubbld37]. Preliminary estimations have bly of dipoles with a certain dielectric response. This point of
shown that this mechanism is of secondary importance fogiew enables one to consider the cooperative response of the
the sonoluminescence problem; to understand the principleharges to the zero-point fluctuations of the electromagnetic

of it might, however, be useful in view of other applications. field, and quantum vacuum radiation emerges as a conse-
An academic but nevertheless interesting question to asfuence quite naturally.
is where the photons actually are produced. A model calcu-
lation for a one-dimensional moving dielectric filling a half- ACKNOWLEDGMENTS
space[19] has indicated that, although the emission of this
kind of quantum vacuum radiation depends on the existence It is a pleasure to thank Peter W. Milonni for drawing my
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where the photons are produced and what the support of tHgoving dielectrics to this problem. Furthermore, | am grate-
radiation pressure on the dielectric is, are buried in the asful to Peter L. Knight for telling me about the apparent ther-
sumption of a perfectly rigid dielectric. mal properties of pure two-mode states when traced over one
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restrictions on the velocity and the acceleration of the bubbl&ions, and many questions. | have also benefited from a dis-
surface in that theory and of scrutinizing the bubble dynam<cussion with Paul M. Goldbart about the completeness of
ics at the moment of collapse, the important role of the backspherical solutions of the wave equation. | would like to
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roughly proportional to the fourth derivative of the velocity
of the interface, as discussed just below Eq7). APPENDIX A: HAMILTONIAN FOR A DIELECTRIC IN
One of the puzzles that remain is why stable single- UNIFORM MOTION
bubble sonoluminescence is seen only in water, although . . - : —
multibubble sonoluminescence has been observed in a varé— Th(_ebalrr;hof tTlstappendlxt_lsf@olg(_en\t/ﬁ a Hamlltonlafn that i
ety of fluids. The present author’s conjecture is that the rea- escribes he electromagnetic Tield in the preésence ot a mov

son for this is buried in the unusual properties of gas solu '3 dielectric. For a one-dimensional scalar model it has

bility of water, which conspire with hydrodynamic been show19] that the Hamiltonian for a rigid dielectric in

mechanisms to lead to an exceptionally sharp and violenltm'form motion, which can be derived easily from consider-

collapse of a driven bubble. In other fluids such conditionsat'ons of Lorentz invariance, is adequate for the perturbative

might be reached at random, but not in a regular fashion t((5‘alculat|on of the photon spectra radiated by nonuniformly

produce radiation from stably maintained bubbles moving dielectrics. In particular, it has been verified that
' such an approach is correct both in the limit of a very dilute

dielectric[19,41 and in the opposite limit of a perfect con-

ductor where well-known results for moving mirrors are re-
To close, a conceptual remark might be appropriate. Atovered[19,34,35.

first sight, the idea that the burst of photons seen in sonolu- The present formalism is a generalization of RéB] to

minescence has its origin in the zero-point fluctuations of thehe electromagnetic field and to three dimensions. In its spirit

electromagnetic field might seem utterly strange, as oné follows the approaches of Arzeliggl2] and Van Bladel

tends to think of low-energy photons emitted from material[43].

media as coming from atomic transitions. Pondering this, The standard way of deriving a Hamiltonian is to proceed

one has to admit that all we really know is that photons comdrom a Lagrangian density. The Lagrangian density for a

D. Credo
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homogeneous dielectric moving rigidly and uniformly is a  Another way of arriving at the same result is to appeal to
function of the dielectric constastof the medium and of the the Lorentz invariance of the Maxwell theory. The Hamil-

velocity 8 of the medium relative to the frame of the ob- tonian density must in any frame be given by
server

1
= Ae,B). JKZE(D-EJrB-H), (A7)

It is uniquely determined by the following three require- \yhere the fields are as measured in this frame. For a non-
ments. . _ . magnetic dielectri®=H, but theD and E field are con-

(i) In the limit of B=0 it should reduce to the familiar nected by some nontrivial constitutive relation that can be
Lagrangian density for a stationary dielectric found by Lorentz transforming the constitutive relation

1/D2 D'=¢E’, valid in the rest frame of the medium, into the
Le,B=0)==| —— BZ) (A1) laboratory frame. There the constitutive relations read
Ye, 5|5 .
1
(i) For an optically transparent medium one should re- E=2Dy. (A8a)

cover the Lagrangian density of the vacuum, which, by Lor-
entz invariance, is independent of the velogity

€ 1 ) e—1
1 1 EL_S_BZ g(l_ﬁ )DL_Tﬁ/\B . (A8D)
Ae=18)=— ZFWF"“EE(EZ— B?). (A2)

Utilizing these to replac& andH in Eq. (A7), one recovers
The symbolF ,,, denotes the field strength tensor of the elec-the Hamiltonian densityA5) obtained earlier by different
tromagnetic fieldF,,=V,A,~V,A,. Its dual is defined Means.
F = 3€40a5F “P.

(iii ) 4 must be a Lorentz scalar. The only true scalars that APPENDIX B: MODE EXPANSION FOR THE

are guadratic in the fields and that depend solely on the fielHELMHOLTZ EQUATION IN SPHERICAL COORDINATES
strengthF ,, and on the four-velocityl, of the medium are sATE ™
F..F*, u,F*u°F,,, andu,F*"u°F,

From the above the Lagranglan denS|ty is found to be

The mode function in the expansiong2.7) are
solutions of the Helmholtz equation

w?e(NA(r,K)+V2A(r,k)=0, w=|Kk|. (B1)

1 e—1
,Z(E,ﬂ) -—=F,F* —Tu FA%u LYF (A3)

4 n Rewriting this equation as
Now the Hamiltonian can be derived by going through the (
canonical formalism —V2 JeA=—w?\eA (B2
IR
8%
== (Ad4a)  makes obvious that this is the eigenvalue equation of the
Hermitian operator (}£)VZ%(1/\/s), and hence the mode
H=M-A— 7. (Adb) functions VeA form a complete set of orthogonal functions.

In order to diagonalize the Hamiltoniaf2.1) into the
Hamiltonian(2.6) of the photon field by means of the mode

This leads to the Hamiltonian densit . . .
'S leads to the Hamiltomian density expansiong2.7), the mode functions should satisfy the or-

e(1— B?) [TI2 -1 thonormalization conditions
/—58_—[;2( Bz) _Bzﬁ-(ﬂ/\B)
1 a1 (B wm? } J d® e(N[AT ™MKAL ™ (k")
5T a2 (A5)
26— p* +AG ™M KA ™ (k)= 6% (k—k')
SubstitutingIT= — D and, with a perturbative treatment in (B3)

mind, expanding in powers of the velocify; one obtains o
for both the TE and the TM polarizations.

To find the solutions of the Helmholtz equati¢B1) one
conveniently proceeds from the scalar solution

— d3r ( 2) /\ 2

This is a very natural result; the Hamiltonian for a stationary
dielectric is augmented by an energy-fluxlike correction, ) o
which vanishes for a transparent medium. +singy (nkr) 1Y, (k) Y(r), (B4)

4 )
:(277)3’?% e 1i'[coss,j,(nkr)
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which is normalized to behave like a plane wave A1) =0,

e'"k1/(27)%2 for kr—. The phases, will be chosen to

meet the required continuity conditions across the surface of

the bubble. n 1’22 oy 1 (ke (k)]
The vector field operators invariant under rotation gre A=\ — 7 T kr LRHIHKT '

V, L=—ir/AV, and VAL. Sincer fails to commute with o tm I(+1)

V2, only the last three operators may be used to generate YM(F)

rotation-invariant vector solutions of the Helmholtz equation. XY™ (k)

However, VO is an irrotational field; only the solenoidal 79
fieldsL® and (V/\L)® can be employed for representations 12 |
of the transversely polarized electromagnetic field. Choosing A = (E) 2 o1 ! i[krj (kr)]’
Awy~L® andA)~1/(nK)VAL® and observing the cor- @ \m) &7 o ket

rect normalization(B3), one obtains, for the mode functions

outside the bubble, e, (—m)
XY™ (k) =g YINE),
n\ 2 e idij! _
nor3) 3 Frmpteosios Ny 1
Aoyp=|—= E ) K Ji(kr)
(—m) ™ I,m VI(I+1) r
mx m ~
+sindy,(nkr)]Y, (k) ey Y'(T), XY™ (R)Y(F).
n\ 2 e idij! Here and in the following a prime after a bracket means a
A(w:(—) [cossyj (nkr) derivative with respect to the argument of the spherical
™ mVI(+1) Bessel function. The mode functions for the inside of the
(r) bubble have zero phase shift because the fields have to be

+sing )y (nkr)]Y" (k)(—|) regular at the origim =0, which excludes any contributions

a9 from the spherical Bessel functions of the second kipds
B these diverge for zero argument.
Aar=0, The above mode functions are essentially the transverse
(BY) electric(TE) and the transverse magnetitM) polarizations
12 gl g of the Hansen multipole field44], well known from an-
A(zwz(ﬂ) e 1 —_[nkrcoss,j (nkr) tenna thgory and solid-state absorption problénfg. They
™ m JI(I+1) nkr do not directly correspond to the standard basis of vector
m spherical harmonics commonly used in Mie scattering prob-
+nkrsingy, (nkn ]’ Y™ (k)i aYI'(F) lems[46], but are convenient combinations of those.
M 90 The phase shift$ =™ and the normalization constants
7 TE™=1 are determined by the continuity conditiot®4)
A ( n)l’ZE e iajl 1 Crcoss - (nk across the bubble surfacerat R. One obtains
— nkrco nkr
(2)‘P “ m nkr[ |J|( ) ./7/~TE I TM
( ) tan§|TE: N(?]-II—E' tamTM {fTM (B?)
+nkrsingyy,(nkr)]’ Y{"*(k) Y'(T), ! .
sing
and
A (n)l’2 e 19! |I(I+1)[ ], (kD) 1 1
=|— COSoy ) (NKr TE-1_ -
@ m\I(I+1) Nk 7 nkr — o E—i ) TE
+singjy (nkn Y™ (k) Y(F), L 1
- M = (B8)
and for those inside the bubble kR =" =it
n 1/2E ) i! (—m) where
Aa 0:(_) A —J|(kr)Ym*(k) Y(r),
IR RN sing = J(KRI[NKRJ(NKRY]’ ~ i (kRITKR} (kR)T,

(B6)

" " ZF=y(nkR[KkRji(kR)] —ji(KR[nkRy(nkR)]’,
A<1>¢:<E) S S e (kD) Y (R) (BY)
) 7 i+ =] 1(KR[NkRj(nkR)]' —n?j;(nkRI[kRji(kR)],

avl <r)
*(=1) ZM™=ny,(nkRI[kRji(kR)]" ] (kR)[NkRy(nkR)]".
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Note that where the integral runs over the complete solid angle; the
 TETM-1 tangential components of the force are zero as obvious from
lim. 5™ t=1 (B10)  symmetry.
n—1

Strictly speaking, the expressidi€5) is of course the
force on the dielectric and not the force on the bubble. Nev-
ertheless, since the two are complementary and the force
density hass support on the boundary, i.e., the force is really

due to the fact that in this limit the/= ™ are simplified by
the Wronskian of the spherical Bessel functions

1 applied only to the interface,it seems reasonable to speak of
JHOOY ()= (0)Y(X)= =% the force as acting on the bubble.
X
Another, less palpable and more formal, way of calculat-
and the / -lTE,TM obviously reduce to zero. ing the force density(C4) is to proceed from the stress-

energy-momentum tensor of the electromagnetic field. In this
approach care must be taken when interpreting formulas, be-
cause the momentum density of the photon field in a dielec-
There are several ways of deriving an expression for théric medium is subject to ambiguity. However, this issue will

force applied by an electromagnetic field on a dielectricnot be addressed here as the force density is unequivocally
body; the physically most intuitive one is to consider thedefined and interpretable.

force as ensuing from induced currents and surface-charge The stress exerted by the fields alone, i.e., the fields as in
densities. In Lorentz gauge or in Coulomb gauge withoutvacuum and exclusive of the polarization fields inside the
free charges the vector potential satisfies the wave equatioglielectric, is given by the spacelike components of the stress-

energy-momentum tensor in vacuum

APPENDIX C: FORCE ON A STATIONARY DIELECTRIC

J .
E(sA)—VzAZO. (C1 N 1
Tio(e=1)=—EE;-B;B;+ E(s”-(EZJr B?). (Ce)
On rewriting this equation as
In vacuum there is no doubt about the momentum density

A—V2A=|i4, carried by the field; it reads
one obtains an induced current density Ti(g)(azl)z €ijkEjBy, (C?
jing=—(e—1)A. (C2)  which is just the Poynting vector. Overall momentum bal-
o ance requires that the change in the mechanical momentum
By continuity density of the materiali.e., the force density on the dielec-
9o tric) together with the change in the momentum of the fields
p'”d+v.jind:0, alone(C7) equal the negative gradient of the stréG$) due
at to the fields,

one finds that the induced surface-charge density is J A . )
E["//Zlmech_‘_ TI((()))(8 =1)]=—- VJ-T'(JO)(g =1).

Pind:_v'(sng)- (C3

Thus the force density is given by
Therefore a stationary dielectric is acted upon by a force

/)
density f. :%’“EC“_

J . .
i ot __ETI(?))_VJTI(JO)'
f=pingE+ Jina/\B. (C9 o ) o )
A few trivial transformations taking into account vector iden-
On integrating this density over a dielectric with a cavity onetities and the Maxwell equations yield
has to bear in mind that the radial component of the electric
field is not continuous across the boundary. However, the
gradient of €—1)/e in (C3) brings about a5 function on
the surface of the cavity, which is multiplied by the electric
field in Eq. (C4) for the force density. The mathematically Upon integration over the bubble the first part of this expres-
and physically correct prescription is to substitute the electrigion is easily seen to lead to tiedependent terms in the
field by the average of is values on the two sides of thgforce (C5). In order to recognize the second part one should
boundary. Then one obtains for the radial component of th@ote thatV;E;=V-E is zero inside as well as outside the
force on a spherical bubble of radiis dielectric, but nonzero at the interfacé;E; gives as func-
LR tion on the surface multiplied by the difference of the outer
1 Fz) 5 % dQ

fi:

1 1 5

D24+ B2_ B2_ B2 and the inner electric fields. Thus one recovers the induced
reTroEe Eep surface-charge densityC3), the force on which engenders
(C5  the sameD,-dependent term as ifC5) before.

T=-

1
ek
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