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Strongly pulsating lasers with delay
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A simple model of a clasB- laser subject to a delayed feedback is investigated. The response of the laser
exhibits strongly pulsating intensity oscillations which we analyze using asymptotic methods. We concentrate
on a single branch of periodic solutions and progressively increase the amplitude of the feedback. We show that
the response of the laséamplitude of the oscillations and perjotbllows simple scaling laws which are
typical to classB lasers subject to optoelectronic feedback. Specifically, the intensity of the laser field quickly
saturates at a constant amplitude and collapses as the feedback surpasses a critical amplitude.

PACS numbsgs): 42.65.Sf, 42.60.Mi

I. INTRODUCTION riodic branch of solutions for different orders of magnitude
of the feedback rate.

Strongly pulsating intensity oscillations are commonly Our analysis takes advantage of the nearly conservative
observed at the output of periodically modulated clBds-  properties of the laser equations, which suggests introducing
sers[1-3], and have been studied numerical§—7] and an energy function. As we shall demonstrate, this energy
analytically[8]. However, strongly pulsating oscillations re- function considerably facilitates the analysis of the pulsating
sulting from a delayed feedback have been less investigateRgriodic solutions as the bifurcation parameter is progres-
theoretically. The delayed feedback is an important source ofiVely changed. To our knowledge, an explicit use of an en-
numerical difficulties when the oscillations consist of se-€rdy function has never been applied to cléskasers with

quence of spikes separated by a long period of almost Corg_elay, but this could be a useful topl fpr other more compli-
stant amplitude. The lack of long-time accuracy is often ig_cated laser problems such as periodically modulated lasers
nored in numerical integration of laser delay-differential CO¢L‘Z}”S&?;$§%§%§ ?se::‘sy?(?lltf)?/vesdb%?jes]r.no del is formu-
zg:::zoor}%;;srgs Lk(;]i(lzgvr;rfg lse:g];[?ﬂjsgﬁgogzgi?:ggn;én fated in Sec. I1. Sections Il and IV concentrate on the case Qf
Kashchenkd10]considered a varey of ciaiiasers con- _S1iab TOUETE delays respectuey Ou fesuts re i
trol[ed .by optoelectronic feedback Qnd exhibiting.pullsating|ayed intensity.pulses.

oscillations. They proposed to describe these oscillations by
approximate maps which are derived from the original laser
equations. Their method consists of determining successive
approximations for the passive and active parts of the oscil- A simple model of a laser with feedback was studied by
lations which are then connected at specific times. Howeveftsuka and Cherfil1]. They found numerically a rich vari-
their theory is not based on an asymptotic argument. In thi€ty of bifurcation diagrams exhibiting coexisting harmonic
paper, we develop an asymptotic theory for strongly pulsatand pulsating periodic solutions and period-doubling bifur-
ing oscillations. Separate approximations for the slow andations[14]. In terms of dimensionless variables and param-
fast parts of the solutions are obtained in terms of a larg&ters, the problem studied jal] is equivalent to one of the
parameter which measures the size of the laser oscillation§!0dels considered ii10], and consists of two nonlinear
The approximate solutions are compared to the numericdlifferential equations for the inversion of populatianand
solution of the original laser equations. A systematic com-he intensity of the laser field [12]:

parison between approximate and numerical solutions for

II. FORMULATION

different values of the amplitude parameter is missing in ear- ~ —=—y—yy(7—0)— Bx{w+s[y+ yy(7— )]}, (1)
lier studieqg9,10], but is essential for an understanding of the T
validity of the map as an alternative to numerical integration.

Our approximations lead to simple expressions of the am- d_y =x(1+Y) ©)
plitude and the period of the oscillations which clarify poorly dr y).

understood facts on the bifurcation diagram of lasers subject

to delay. In particular, we show that the amplitude of theThe variablesx andy are defined as deviations from the
oscillations quickly saturates at a constant amplitude as theonzero steady state of the original laser equations. The pa-
amplitude of the feedback is increased from zero. Howeveriametersy and 6 denote the amplitude and the delay of the
these oscillations collapse at a higher amplitude of the feedaser field, respectivelyv>1 is the pump parameter normal-
back. Our results substantiate analytically the numericaized by its threshold values and 8 are defined by

study by Otsuka and Chefd1] on a two-variable model of

a laser subject to feedback. [b2], we analyzed the period- s= W__l and B=K~1%~12 3)
doubling bifurcation. In this paper, we concentrate on a pe- v+1 '

1050-2947/96/5@)/27657)/$10.00 53 2765 © 1996 The American Physical Society



2766 DIDIER PIEROUX AND THOMAS ERNEUX 53

50 —
4
40 —
30 —
o _
20 —
10 —
O———L o e e e e e e e e e e e e e -
T 1] T 1 I T T T T 1
0.05 0.10 0.15
' I ! | ! | L

FIG. 2. Numerical and approximate bifurcation diagrams for
FIG. 1. Bifurcation diagrams of the first branch of the periodic Small values ob. The figure represenS=max) as a function of
solutions. The figure represen®=max{) as a function of the ¢- The asymptotic approximatiofindicated by an arrowis valid
delay 6. The values of the fixed parameters ame=1.1 and for B<<y<1. The approximate result is given by mak¢C, where
Bw=6x10"%. The value ofy for each figure iga) y=7x10"%, C satisfies Eq(25). The values of the parameters are0.01 and
(b) y=yerir=1.0937 103, and(c) y=1.5x10 3. Note that the ~BW/y=0.06.
direction of bifurcation changes at the second Hopf bifurcation

point asy=vy.;. Full and dotted lines correspond to stable and —p-1(P _
unstable soluii”ct)ns respectively. the avt_arage(_j energlE) =P~ [oE(7)dr, where the fur]c
' tion E is defined by(10) below, andP denotes the period.

whereK=1¢/7,, v and r, denote the population and the We then use the relation mag&C=y2(E). In this way, we
photon lifetimes, respectivelyK is typically an O(10°— obtain an acpurate value for the ma>_<|mum><ot/h|ch can be_
1) large parameter which implies tha is small. Equa- compared directly to our asymptotic approximation which
tions (1) and (2) are physically valid, provided that the am- Uses the energfl0) as a starting point. Note the change of
plitude of the feedback is sufficiently small. Specifically, we direction at the second Hopf bifurcation point in Figcjl In
shall assume that the following sections, we continuously increageand ana-
lyze how the amplitude of the solution is increasing. Because
B<y<l, (4)  the bifurcating solution changes considerably between the

two Hopf bifurcations, we need separate studies for different
and investigate the bifurcation diagram of the periodic soluparts of the bifurcation diagram.

tions usingé as our control parameter. Large-amplitude os-
cillations are typically observed if inequaliti€¢d) are satis-
fied. Our bifurcation analysis is guided by the linear stability
analysis of the basic solutioo=y =0 [12]. Hopf bifurcation
points are located &= 6y, where 6§ satisfies Figure 2 shows the bifurcation diagram for low values of

# (the figure also shows an approximation of the bifurcation
5) diagram which is described belpwt exhibits a quasivertical

Hopf bifurcation, and the amplitude saturates near a constant

value. We explain each modification of the solution by dis-
(If y<w., the basic solution is always staplén Fig. 1, we tinct asymptotic approximations. Each approximation reveals
show the first branch of periodic solutions for different val- essential features of the solution which we emphasize. All
ues of y>v.. The maximum ofx has been computed from mathematical details are deferred to the Appendix.

Ill. LOW DELAY

. Bw
sin(6y) = > and y> y.=pw.
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A. Hopf bifurcation

As 6 progressively increases from zero, the basic steady-
state solution changes stability at a Hopf bifurcation point
0= 0., which satisfies Eq(5). BecauseBw/ y is numerically
small, 6, can be approximated as

QHZ 005 BTW (6)

In the vicinity of 6= 6y, the periodic solution is nearly har-
monic in time, and can be constructed using a perturbation
analysis. We use the fact that,= 6, is small, and simplify
the expression for the amplitude derived 12]. We find that

the maximum ofx is given by

max(x) =26, 16(6— 6,4)1*2 7)

Note that the coefficient multiplying the square root is large
since 6, is small. From(7), we learn that the amplitude
changes by arO(1) quantity if the deviationd— 6, is
0(68) small. This explains why the Hopf bifurcation branch
appears almost vertically in Fig. 2.

B. Pulsating oscillations

After the bifurcation transition, the oscillations become
progressively pulsating, i.ey, remains close to-1 except

during short intervals of time wheseis large. We propose to 6 _3 0 3 6
construct these pulsating solutions for small valueg @ind X
v. SettingB=y=0 in Egs.(1) and(2) leads to the following
problem for &,y)=(X,Y): FIG. 3. Poincarenap. The change in energy is determined for a
complete orbit starting at(7,) =x,<0, y(7,)=0, and finishing at
dx X(Tn+1) =Xn+1<0, Y(7h41)=0. The values of the parameters used
e () in the figure arey=0.05, Bw/y=0.06, andx,= — 4.97.

v See Fig. 3. Using10), we may then compute the initial and
;= X@+Y). (9 final energies, i.e.E,=3x? andE,,;=3x3,,. We wish to
find equations for the changg,,,—E, and the period

This problem is conservative, and admits a one-parametéin+1~ 7n- From Eq.(1) and using(8), the equation for the
family of periodic solutiong12]. Its first integral motivates Period is
introducing an energ¥=E(x,y) defined by Xns1d X

7-r'l-%—l_Tn:_f 7+O(Bly)1 (14)

Xn

E=1x2+y—In(1+y). (10

Differentiating (10) and using Eqs(1) and (2) leads to the whereY=Y(X) satisfies Eq(10), with E=E,, x=X, and
following differential equation foiE: y=Y. Integrating Eq(11) from 7= 7, to 7=7,,4,, We then
obtain an equation for the energy,

dE
5= (=) — B w+s[y+yy(r— )]}, (11)

T

n+
Eni1i—En=—v

n

1 Tn+1
xv(t—e)dt—,ewf X2dt
The right-hand side of Eq11) depends ox andy, but is a ) ) "

small quantity proportional t@ and y. This means that we +O(B%B7,7), (19
may replace X,y) by (X,Y) in first approximation, and in-
tegrate this equation. Specifically, we startrat7,,, with the
initial conditions

where we have used the fact that the integraké¥ for a
closed orbit is zero.
Equations(14) and (15) are the result of an asymptotic
X(7,)=%,<0, y(7,)=0 (12)  analysis based on small valuespfindy. We now evaluate
the integrals in these equations. To this end, we use an ap-
and consider a Complete orbit in the phase plaqg)(which proximation forX andY which is valid for Iarge-amplitude
terminates whem=r,,,; and pulsating solutions. The approximation is obtained fr(@n
and (9) by using the method of matched asymptotic expan-
X(The 1) =Xn+1<0, Y(7,41)=0. (13)  sions[15], and the leading uniform solutions is given [&6]
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C. Poincare map and fixed points

We first consider a small delay defined by the scaling
6=0(C™ Y. (22

In this case, the intensity pulsgér) andy(7— 6) are clearly
overlapping. We determine the integrals(itb). All details
are given in the Appendix. We obtain the following result:

Enr1—Ep= _27C2f(¢)_%BWC31 (23
15 wherey=C@0, andf(y) is defined by
I T 1T I L] I LR L) l LI I LIS I T 17 I 1
-15 -10 -5 0 5 10 15 1+exp( ) 2ypexp( )
T =
120 W= —ean " i—eowpz ¥

~ 4

4 Finally, we may expres€ in terms of the energ¥, since
. C=(2E,)Y2 Equation(23) is a one-dimensional map for the

80 — change of energyor amplitude after each complete orbit in
T the phase planex(y). Knowing the energy, (or C) then
>~ gives the period and the amplitude of the solution ug2@®
10 7 and(21).

Periodic solutions of the original laser equations corre-
- spond to fixed points of the map. With, . ,=E,, Eq. (23
- leads to the condition

0:||1||||1]|||||1---|
-1.0 -0.5 0_1_0 0.5 1.0

yi()+3BwWC=0. (25)

In Fig. 2, we have represent&t~max). Using Eq.(23),

we have found that this solution is always stable. The limits
—0 (equivalently, /—0) and ¢—o (equivalently,
f#— o) are instructive. Froni25), we find

FIG. 4. Periodic solution of the leading conservative problem
(8) and (9) (full line). An approximation of the solution valid for
large amplituddlargeC) is given by(16) and(17). They are shown
by dotted lines C=15).

60— 6y<1 as y—0 (26)
T4 C 1-expCT) 16 and
R Epwsveres oY (16) .
C—>C*EG—>1 as —oo, (27)
exp(CT) 0
Y=2C?% ————|, (17) . . .
[1+expCT)] Thus the branch of periodic solutions connects the approxi-

mation of the Hopf point given by6), and approaches a

whereC> 1 is a large parameter measuring the amplitude ofonstant at/—. The tztalhavior of the solution faf=Cé
the solution, andT is another time variableC and T are large (equivalently,#>C™ ) suggests that there exists a bet-
defined by ter approximation of the solution fat=0(1). This problem

is analyzed in Sec. IV.

C=—X,. (18
IV. MODERATE DELAY

T=r—r,—C. (19 In Sec. lll, we found that the branch of periodic solutions

approaches a constant gs=Céf—x. In this section, we

investigate this region by assumin
Functions (16) and (17) are defined for the interval 9 g Y g

—C=<T=QC, and are compared to the exact numerical solu- 6=0(1). (28)
tion in Fig. 4. The period and the maximum»ofre given by
Because 0£28), the pulseg/(7) andy(7— #) do not overlap

The1— Th=2C, (20) ;srig(rlig)cantly, which implies a different limit for the integrals
The numerical bifurcation diagram for the periodic solu-
max(x)=C. (2D tions, and forg=0(1), is shown in Fig. 5. The bifurcation

diagram exhibits an almost vertical bifurcation near
The evaluation of the integrals in the energy equatibh) 0= 6, which we studied in Sec. lll. We note that the branch
depends orf. We analyze each case in Sec. lll C. of stable periodic solutions terminates by a limit point. In the
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FIG. 5. Numerical and approximate bifurcation diagrams of the
periodic solutions for low and moderate valueséfThe asymp-

- —————

totic approximation(indicated by an arroyvis valid provided that

v andp are sufficiently small. It is given b€ = max), whereC is

given by(31). Stable and unstable solutions correspond to full and R i mnan
dotted lines, respectively. Note that the amplitude of the first branch s0 75 100 10 15 20 25

of periodic solutions is much higher than the other branches of
periodic solutions which are emerging from Hopf bifurcation points  FIG. 6. Harmonic and pulsating solutions. Each figure repre-
located at§=2m, 3, and 4r. The oscillations are nearly har- sentsy(r) andy(7— 6) by full and dotted lines, respectively. The
monic for these branches, and may coexist with the first branch obverlap between the real and delayed pulses is shown in detail on a
pulsating periodic solutions. The solution at different points of theseparate figure. Each figure corresponds to a specific point indicated
first branch of solution§indicated by the label&)—(e)] are shown in Fig. 5.(a) §=0.060 044 5. The value df is slightly above the
in Fig. 6. The values of the parameters ase=0.01 and first Hopf bifurcation point located at,=0.06. As a resulty(7) is
Bw/y=0.06. nearly harmonic in time(b) 6=0.07. 6 is still close to 6, but
y(7) is already pulsating. Note thg{7) andy(7— 6) are clearly
Appendix, we reevaluate the first integral in E§5) and  overlapping.(c) #=10, upper branchg is now far from 6.
obtain the following equation foE,,;—E,: y(7) andy(7— 6) are spiking at different times, and no overlap
between these pulses are observed. As a result, the amplitude of the
Eni1—E,=—2Cy(6—C)—3BwWC® (4<C). (290  solution remains almost constant@ss varied.(d) 6= 10 but lower
branch. The distance betweg(r) andy(7— 6) is close to half of
From this equation, we obtain a quadratic equation for thehe period.(e) 6=3.215 91.6 is close to the second Hopf bifurca-

fixed pointsg,, ;=E, given by tion point.y(7) is again harmonic but unstable, aptr— ) is =
1 BWC2— yC+ y0=0. (30) shifted.
The two real and positive roots are C.—C* andC.—¢ as 6-0. (32
y=(y?—46Bw/3)1? Thus C, matches our previous approximation for
C=C.= 2BwI3 (0= 6,=3y%/4Bw). #=0(C™1), andC_ approaches the limi€= 6. A separate

(31) analysis is then necessary in order to show that this branch of
solutions is connecting a second Hopf bifurcation point lo-
(31) corresponds to two distinct branches connected at theated atf,= . Using (29), we have verified thaC, is
limit point #=6, . Note the limiting behavior ofC, and stable andC_ is unstable. The unstable solutions have been
C_: obtained numerically by using a continuation method.
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V. DISCUSSION APPENDIX

We have analyzed a single branch of periodic solutions 1. Small 9=0(C™)
which emerges and terminates at a Hopf bifurcation. We de- |, this appendix, we determine the two integrals in Eq.
rive a simple map for the change of energy after each oscili5) by ysing the approximationd6) and(17). We have
lation. This leads to a condition for the maximum amplitude
of the periodic solution. Our asymptotic analysis is success- Tn+1 c
ful in predicting the various changes of the amplitude as the 1= L XY(t= 6)dt=f CXY(T_ )dT (A1)
control parameter is changed, as well as the stability of the "

solution. In this section, we review our main results and , [ 1—expé)  expé—¢)

emphasize the different behaviors of the intensity. Of par- =2C f 1 1 ——2dé

; . . . , —ol+expé) [1+expé—y)]

ticular interest is the relative behaviors of the real and de- (A2)

layed intensity pulses given by(7) andy(r— 6), respec-

tively. For low values ofg, y(7) andy(7— @) are harmonic asC—x. é&=CT, andy is defined by

in time and are overlapping completely; see Figa)6 y=Co (A3)
Slightly increasingd leads to periodic pulsating oscillations '
andy(7) andy(7— 6) overlap partially; see Fig.(B). This  We solve the integral by substitution and partial fractions,
overlap disappears for larger valuesédyfand the amplitude and obtain

of the solution remains almost constant @gs further in-

creased; see Fig(®. Finally, we note that the amplitude of | = 2C2f () = 2C? 1+exp(y) N 2gexpl )
y(7) decreases smoothly #sapproaches half of the period,; ! 1—exp(y) [1—exp(4)]?]
see Fig. &d). This last feature cannot be understood in terms (A4)

of y(7) and y(r—6), but rather in terms ofx(7) and T

y(7— 6), which are the key variables changing the energy

[see Eq(11)]. As 6§ approaches half of the perio®(7) ap-

proaches zero, which explains the decrease of the energy. |2=f

Figure Ge) shows the periodic solution near its second Hopf

bifurcation point. 0 c
The idea of describing pulsating oscillations by a map for ZJ (C+T)2dt+f (—C+T)%dT

a laser subject to a delayed feedback was first propodéd in - 0

and[10]. The map is obtained by patching different approxi- =2c3, (AB)

mations of the solution at specific times. The method works

best when the real delayed intensity pulses appear at differ- 2. Moderate #=0(1)<C

ent times(i.e., weak or no overlgp However, when the in- . . . .

tensity pulses are partially overlapping, we have found that Ve Start withl, given by(Al), and introduce the variable

the energy of the nearly conservative oscillations is a usefu§ = C(T—6). Assumingd<C, we find

he second integral in Eq15) is given by

Th+1 c
X?dt= f X2dt (A5)
C

n

function. It is the condition for a bounded energy that leads cc—0) explé— i)
to an integral condition which can be solved systematically |1:2c;2f (—C+0+C %) ——————d&.
for all possible cases. -c(C-0) [1+exp(é— )] A7)
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