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A simple model of a class-B laser subject to a delayed feedback is investigated. The response of the laser
exhibits strongly pulsating intensity oscillations which we analyze using asymptotic methods. We concentrate
on a single branch of periodic solutions and progressively increase the amplitude of the feedback. We show that
the response of the laser~amplitude of the oscillations and period! follows simple scaling laws which are
typical to class-B lasers subject to optoelectronic feedback. Specifically, the intensity of the laser field quickly
saturates at a constant amplitude and collapses as the feedback surpasses a critical amplitude.

PACS number~s!: 42.65.Sf, 42.60.Mi

I. INTRODUCTION

Strongly pulsating intensity oscillations are commonly
observed at the output of periodically modulated class-B la-
sers @1–3#, and have been studied numerically@4–7# and
analytically @8#. However, strongly pulsating oscillations re-
sulting from a delayed feedback have been less investigated
theoretically. The delayed feedback is an important source of
numerical difficulties when the oscillations consist of se-
quence of spikes separated by a long period of almost con-
stant amplitude. The lack of long-time accuracy is often ig-
nored in numerical integration of laser delay-differential
equations, and is known to lead to spurious solutions. In a
series of papers, Loiko and Samson@9# and Grigorieva and
Kashchenko@10# considered a variety of class-B lasers con-
trolled by optoelectronic feedback and exhibiting pulsating
oscillations. They proposed to describe these oscillations by
approximate maps which are derived from the original laser
equations. Their method consists of determining successive
approximations for the passive and active parts of the oscil-
lations which are then connected at specific times. However,
their theory is not based on an asymptotic argument. In this
paper, we develop an asymptotic theory for strongly pulsat-
ing oscillations. Separate approximations for the slow and
fast parts of the solutions are obtained in terms of a large
parameter which measures the size of the laser oscillations.
The approximate solutions are compared to the numerical
solution of the original laser equations. A systematic com-
parison between approximate and numerical solutions for
different values of the amplitude parameter is missing in ear-
lier studies@9,10#, but is essential for an understanding of the
validity of the map as an alternative to numerical integration.

Our approximations lead to simple expressions of the am-
plitude and the period of the oscillations which clarify poorly
understood facts on the bifurcation diagram of lasers subject
to delay. In particular, we show that the amplitude of the
oscillations quickly saturates at a constant amplitude as the
amplitude of the feedback is increased from zero. However,
these oscillations collapse at a higher amplitude of the feed-
back. Our results substantiate analytically the numerical
study by Otsuka and Chern@11# on a two-variable model of
a laser subject to feedback. In@12#, we analyzed the period-
doubling bifurcation. In this paper, we concentrate on a pe-

riodic branch of solutions for different orders of magnitude
of the feedback rate.

Our analysis takes advantage of the nearly conservative
properties of the laser equations, which suggests introducing
an energy function. As we shall demonstrate, this energy
function considerably facilitates the analysis of the pulsating
periodic solutions as the bifurcation parameter is progres-
sively changed. To our knowledge, an explicit use of an en-
ergy function has never been applied to class-B lasers with
delay, but this could be a useful tool for other more compli-
cated laser problems such as periodically modulated lasers
controlled by continuous delayed feedback@13#.

The plan of the paper is as follows. The model is formu-
lated in Sec. II. Sections III and IV concentrate on the case of
small and moderate delays, respectively. Our results are dis-
cussed in Sec. V in terms of the interaction of real and de-
layed intensity pulses.

II. FORMULATION

A simple model of a laser with feedback was studied by
Otsuka and Chern@11#. They found numerically a rich vari-
ety of bifurcation diagrams exhibiting coexisting harmonic
and pulsating periodic solutions and period-doubling bifur-
cations@14#. In terms of dimensionless variables and param-
eters, the problem studied in@11# is equivalent to one of the
models considered in@10#, and consists of two nonlinear
differential equations for the inversion of populationx and
the intensity of the laser fieldy @12#:

dx

dt
52y2gy~t2u!2bx$w1s@y1gy~t2u!#%, ~1!

dy

dt
5x~11y!. ~2!

The variablesx and y are defined as deviations from the
nonzero steady state of the original laser equations. The pa-
rametersg andu denote the amplitude and the delay of the
laser field, respectively.w.1 is the pump parameter normal-
ized by its threshold value.s andb are defined by

s5
w21

g11
and b5K21/2s21/2, ~3!
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whereK[ts /tp , gs and tp denote the population and the
photon lifetimes, respectively.K is typically an O(103–
105) large parameter which implies thatb is small. Equa-
tions ~1! and ~2! are physically valid, provided that the am-
plitude of the feedback is sufficiently small. Specifically, we
shall assume that

b!g!1, ~4!

and investigate the bifurcation diagram of the periodic solu-
tions usingu as our control parameter. Large-amplitude os-
cillations are typically observed if inequalities~4! are satis-
fied. Our bifurcation analysis is guided by the linear stability
analysis of the basic solutionx5y50 @12#. Hopf bifurcation
points are located atu5uH , whereuH satisfies

sin~uH!5
bw

g
and g.gc[bw. ~5!

~If g,gc , the basic solution is always stable!. In Fig. 1, we
show the first branch of periodic solutions for different val-
ues ofg.gc . The maximum ofx has been computed from

the averaged energŷE&[P21*0
PE(t)dt, where the func-

tion E is defined by~10! below, andP denotes the period.
We then use the relation max(x)5C5A2^E&. In this way, we
obtain an accurate value for the maximum ofx which can be
compared directly to our asymptotic approximation which
uses the energy~10! as a starting point. Note the change of
direction at the second Hopf bifurcation point in Fig. 1~c!. In
the following sections, we continuously increaseg and ana-
lyze how the amplitude of the solution is increasing. Because
the bifurcating solution changes considerably between the
two Hopf bifurcations, we need separate studies for different
parts of the bifurcation diagram.

III. LOW DELAY

Figure 2 shows the bifurcation diagram for low values of
u ~the figure also shows an approximation of the bifurcation
diagram which is described below!. It exhibits a quasivertical
Hopf bifurcation, and the amplitude saturates near a constant
value. We explain each modification of the solution by dis-
tinct asymptotic approximations. Each approximation reveals
essential features of the solution which we emphasize. All
mathematical details are deferred to the Appendix.

FIG. 1. Bifurcation diagrams of the first branch of the periodic
solutions. The figure representsC5max(x) as a function of the
delay u. The values of the fixed parameters arew51.1 and
bw5631024. The value ofg for each figure is~a! g5731024,
~b! g5gcrit51.093731023, and ~c! g51.531023. Note that the
direction of bifurcation changes at the second Hopf bifurcation
point asg5gcrit . Full and dotted lines correspond to stable and
unstable solutions, respectively.

FIG. 2. Numerical and approximate bifurcation diagrams for
small values ofu. The figure representsC5max(x) as a function of
u. The asymptotic approximation~indicated by an arrow! is valid
for b!g!1. The approximate result is given by max(x)5C, where
C satisfies Eq.~25!. The values of the parameters areg50.01 and
bw/g50.06.
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A. Hopf bifurcation

As u progressively increases from zero, the basic steady-
state solution changes stability at a Hopf bifurcation point
u5uH which satisfies Eq.~5!. Becausebw/g is numerically
small,uH can be approximated as

uH.u0[
bw

g
. ~6!

In the vicinity of u5uH , the periodic solution is nearly har-
monic in time, and can be constructed using a perturbation
analysis. We use the fact thatuH.u0 is small, and simplify
the expression for the amplitude derived in@12#. We find that
the maximum ofx is given by

max~x!52u0
23/2@6~u2uH!#1/2. ~7!

Note that the coefficient multiplying the square root is large
since u0 is small. From~7!, we learn that the amplitude
changes by anO(1) quantity if the deviationu2uH is
O(u0

3) small. This explains why the Hopf bifurcation branch
appears almost vertically in Fig. 2.

B. Pulsating oscillations

After the bifurcation transition, the oscillations become
progressively pulsating, i.e.,y remains close to21 except
during short intervals of time wherey is large. We propose to
construct these pulsating solutions for small values ofb and
g. Settingb5g50 in Eqs.~1! and~2! leads to the following
problem for (x,y)5(X,Y):

dX

dt
52Y, ~8!

dY

dt
5X~11Y!. ~9!

This problem is conservative, and admits a one-parameter
family of periodic solutions@12#. Its first integral motivates
introducing an energyE5E(x,y) defined by

E[ 1
2x

21y2 ln~11y!. ~10!

Differentiating ~10! and using Eqs.~1! and ~2! leads to the
following differential equation forE:

dE

dt
52gxy~t2u!2bx2$w1s@y1gy~t2u!#%. ~11!

The right-hand side of Eq.~11! depends onx andy, but is a
small quantity proportional tob andg. This means that we
may replace (x,y) by (X,Y) in first approximation, and in-
tegrate this equation. Specifically, we start att5tn , with the
initial conditions

x~tn!5xn,0, y~tn!50 ~12!

and consider a complete orbit in the phase plane (x,y) which
terminates whent5tn11 and

x~tn11!5xn11,0, y~tn11!50. ~13!

See Fig. 3. Using~10!, we may then compute the initial and
final energies, i.e.,En[

1
2xn

2 andEn11[
1
2xn11

2 . We wish to
find equations for the changeEn112En and the period
tn112tn . From Eq.~1! and using~8!, the equation for the
period is

tn112tn52E
xn

xn11dX

Y
1O~b,g!, ~14!

whereY5Y(X) satisfies Eq.~10!, with E5En , x5X, and
y5Y. Integrating Eq.~11! from t5tn to t5tn11 , we then
obtain an equation for the energy,

En112En52gE
tn

tn11
XY~ t2u!dt2bwE

tn

tn11
X2dt

1O~b2,bg,g2!, ~15!

where we have used the fact that the integral ofX2Y for a
closed orbit is zero.

Equations~14! and ~15! are the result of an asymptotic
analysis based on small values ofb andg. We now evaluate
the integrals in these equations. To this end, we use an ap-
proximation forX andY which is valid for large-amplitude
pulsating solutions. The approximation is obtained from~8!
and ~9! by using the method of matched asymptotic expan-
sions@15#, and the leading uniform solutions is given by@16#

FIG. 3. Poincare´ map. The change in energy is determined for a
complete orbit starting atx(tn)5xn,0, y(tn)50, and finishing at
x(tn11)5xn11,0, y(tn11)50. The values of the parameters used
in the figure areg50.05, bw/g50.06, andxn524.97.
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X.T1CF12exp~CT!

11exp~CT!G , ~16!

Y.2C2F exp~CT!

@11exp~CT!#2G , ~17!

whereC@1 is a large parameter measuring the amplitude of
the solution, andT is another time variable.C and T are
defined by

C[2xn . ~18!

T[t2tn2C. ~19!

Functions ~16! and ~17! are defined for the interval
2C<T<C, and are compared to the exact numerical solu-
tion in Fig. 4. The period and the maximum ofx are given by

tn112tn.2C, ~20!

max~x!.C. ~21!

The evaluation of the integrals in the energy equation~15!
depends onu. We analyze each case in Sec. III C.

C. Poincarémap and fixed points

We first consider a small delay defined by the scaling

u5O~C21!. ~22!

In this case, the intensity pulsesy(t) andy(t2u) are clearly
overlapping. We determine the integrals in~15!. All details
are given in the Appendix. We obtain the following result:

En112En522gC2f ~c!2 2
3bwC3, ~23!

wherec[Cu, and f (c) is defined by

f ~c![
11exp~c!

12exp~c!
1

2cexp~c!

@12exp~c!#2
. ~24!

Finally, we may expressC in terms of the energyEn since
C5(2En)

1/2. Equation~23! is a one-dimensional map for the
change of energy~or amplitude! after each complete orbit in
the phase plane (x,y). Knowing the energyEn ~or C) then
gives the period and the amplitude of the solution using~20!
and ~21!.

Periodic solutions of the original laser equations corre-
spond to fixed points of the map. WithEn115En , Eq. ~23!
leads to the condition

g f ~c!1 1
3bwC50. ~25!

In Fig. 2, we have representedC.max(x). Using Eq.~23!,
we have found that this solution is always stable. The limits
c→0 ~equivalently, u→0) and c→` ~equivalently,
u→`) are instructive. From~25!, we find

u→u0!1 as c→0 ~26!

and

C→C*[
3

u0
@1 as c→`. ~27!

Thus the branch of periodic solutions connects the approxi-
mation of the Hopf point given by~6!, and approaches a
constant atu→`. The behavior of the solution forc5Cu
large~equivalently,u@C21) suggests that there exists a bet-
ter approximation of the solution foru5O(1). This problem
is analyzed in Sec. IV.

IV. MODERATE DELAY

In Sec. III, we found that the branch of periodic solutions
approaches a constant asc5Cu→`. In this section, we
investigate this region by assuming

u5O~1!. ~28!

Because of~28!, the pulsesy(t) andy(t2u) do not overlap
significantly, which implies a different limit for the integrals
in ~15!.

The numerical bifurcation diagram for the periodic solu-
tions, and foru5O(1), is shown in Fig. 5. The bifurcation
diagram exhibits an almost vertical bifurcation near
u5uH , which we studied in Sec. III. We note that the branch
of stable periodic solutions terminates by a limit point. In the

FIG. 4. Periodic solution of the leading conservative problem
~8! and ~9! ~full line!. An approximation of the solution valid for
large amplitude~largeC) is given by~16! and~17!. They are shown
by dotted lines (C515).
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Appendix, we reevaluate the first integral in Eq.~15! and
obtain the following equation forEn112En :

En112En522Cg~u2C!2 2
3bwC3 ~u,C!. ~29!

From this equation, we obtain a quadratic equation for the
fixed pointsEn115En given by

1
3bwC22gC1gu50. ~30!

The two real and positive roots are

C5C6[
g6~g224ubw/3!1/2

2bw/3
~u<uL[3g2/4bw!.

~31!

~31! corresponds to two distinct branches connected at the
limit point u5uL . Note the limiting behavior ofC1 and
C2 :

C1→C* and C2→u as u→0. ~32!

Thus C1 matches our previous approximation for
u5O(C21), andC2 approaches the limitC5u. A separate
analysis is then necessary in order to show that this branch of
solutions is connecting a second Hopf bifurcation point lo-
cated atuH.p. Using ~29!, we have verified thatC1 is
stable andC2 is unstable. The unstable solutions have been
obtained numerically by using a continuation method.

FIG. 6. Harmonic and pulsating solutions. Each figure repre-
sentsy(t) andy(t2u) by full and dotted lines, respectively. The
overlap between the real and delayed pulses is shown in detail on a
separate figure. Each figure corresponds to a specific point indicated
in Fig. 5. ~a! u50.060 044 5. The value ofu is slightly above the
first Hopf bifurcation point located atuH50.06. As a result,y(t) is
nearly harmonic in time.~b! u50.07. u is still close touH but
y(t) is already pulsating. Note thaty(t) and y(t2u) are clearly
overlapping. ~c! u510, upper branch.u is now far from uH .
y(t) and y(t2u) are spiking at different times, and no overlap
between these pulses are observed. As a result, the amplitude of the
solution remains almost constant asu is varied.~d! u510 but lower
branch. The distance betweeny(t) andy(t2u) is close to half of
the period.~e! u53.215 91.u is close to the second Hopf bifurca-
tion point. y(t) is again harmonic but unstable, andy(t2u) is p
shifted.

FIG. 5. Numerical and approximate bifurcation diagrams of the
periodic solutions for low and moderate values ofu. The asymp-
totic approximation~indicated by an arrow! is valid provided that
g andb are sufficiently small. It is given byC5max(x), whereC is
given by ~31!. Stable and unstable solutions correspond to full and
dotted lines, respectively. Note that the amplitude of the first branch
of periodic solutions is much higher than the other branches of
periodic solutions which are emerging from Hopf bifurcation points
located atu.2p, 3p, and 4p. The oscillations are nearly har-
monic for these branches, and may coexist with the first branch of
pulsating periodic solutions. The solution at different points of the
first branch of solutions@indicated by the labels~a!–~e!# are shown
in Fig. 6. The values of the parameters areg50.01 and
bw/g50.06.
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V. DISCUSSION

We have analyzed a single branch of periodic solutions
which emerges and terminates at a Hopf bifurcation. We de-
rive a simple map for the change of energy after each oscil-
lation. This leads to a condition for the maximum amplitude
of the periodic solution. Our asymptotic analysis is success-
ful in predicting the various changes of the amplitude as the
control parameter is changed, as well as the stability of the
solution. In this section, we review our main results and
emphasize the different behaviors of the intensity. Of par-
ticular interest is the relative behaviors of the real and de-
layed intensity pulses given byy(t) and y(t2u), respec-
tively. For low values ofu, y(t) andy(t2u) are harmonic
in time and are overlapping completely; see Fig. 6~a!.
Slightly increasingu leads to periodic pulsating oscillations
andy(t) andy(t2u) overlap partially; see Fig. 6~b!. This
overlap disappears for larger values ofu, and the amplitude
of the solution remains almost constant asu is further in-
creased; see Fig. 6~c!. Finally, we note that the amplitude of
y(t) decreases smoothly asu approaches half of the period;
see Fig. 6~d!. This last feature cannot be understood in terms
of y(t) and y(t2u), but rather in terms ofx(t) and
y(t2u), which are the key variables changing the energy
@see Eq.~11!#. As u approaches half of the period,x(t) ap-
proaches zero, which explains the decrease of the energy.
Figure 6~e! shows the periodic solution near its second Hopf
bifurcation point.

The idea of describing pulsating oscillations by a map for
a laser subject to a delayed feedback was first proposed in@9#
and@10#. The map is obtained by patching different approxi-
mations of the solution at specific times. The method works
best when the real delayed intensity pulses appear at differ-
ent times~i.e., weak or no overlap!. However, when the in-
tensity pulses are partially overlapping, we have found that
the energy of the nearly conservative oscillations is a useful
function. It is the condition for a bounded energy that leads
to an integral condition which can be solved systematically
for all possible cases.
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APPENDIX

1. Small u5O„C21
…

In this appendix, we determine the two integrals in Eq.
~15! by using the approximations~16! and ~17!. We have

I 1[E
tn

tn11
XY~ t2u!dt5E

2C

C

XY~T2u!dT ~A1!

.2C2E
2`

` 12exp~j!

11exp~j!

exp~j2c!

@11exp~j2c!#2
dj

~A2!

asC→`. j[CT, andc is defined by

c[Cu. ~A3!

We solve the integral by substitution and partial fractions,
and obtain

I 152C2f ~c!52C2F11exp~c!

12exp~c!
1

2cexp~c!

@12exp~c!#2G .
~A4!

The second integral in Eq.~15! is given by

I 25E
tn

tn11
X2dt5E

2C

C

X2dt ~A5!

.E
2C

0

~C1T!2dt1E
0

C

~2C1T!2dT

5 2
3C

3. ~A6!

2. Moderate u5O„1…<C

We start withI 1 given by~A1!, and introduce the variable
j5C(T2u). Assumingu,C, we find

I 1.2C2E
2C~C2u!

C~C2u!

~2C1u1C21j!
exp~j2c!

@11exp~j2c!#2
dj.

~A7!

As C→`, ~A7! becomes

I 1.2C~u2C!E
2`

` exp~j2c!

@11exp~j2c!#2
dj52C~u2C!.

~A8!

If C2u is O(C21), we have reevaluated the integral and
have found the same result.
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