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Simulation of quantum-state endoscopy
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We demonstrate the experimental feasibility of quantum-state endo§eopyBardroff, E. Mayr, and W. P.
Schleich, Phys. Rev. A1, 4963 (1995] to measure the complete quantum state of a single mode of the
electromagnetic field in a cavity. We perform numerical simulations of an experiment in progress.

PACS numbels): 42.50—p, 03.65.Bz, 84.40.1k

In a recent papdrl] we proposed the method of quantum- ©
state endoscopy to measure the complete quantum state of a ly) = 2 w,|n). (D)
single mode of the electromagnetic field. In the present paper n=0

we perform numerical simulations of an experimental realy emphasize that in this method the field state has to be
ization of this scheme based on realistic paramdi2fsTo  prepared identically before each atom enters the cavity.
keep the paper self-contained we first briefly summarize th&joreover, we note that the method in its present form only
essential features of this method and then study the influencgorks for pure stategs].
of various sources of errors. We show that the currently The central quantity in the method of quantum-state en-
available experimental techniques allow us to reconstruct thdoscopy is the probabilit?, for an atom to leave the cavity
field state in the cavity—even for a Schlinger cat state in the excited state. In order to firfl, we describe the in-
[3.4]. teraction of the quantized field and the resonant two-level
Figure 1 shows a possible experimental realization ofatom by the well-known Jaynes-Cummings model. We ne-
quantum-state endoscopy. Atoms from a thermal Rb bearglect damping of the field inside the resonator, because the
are promoted in regioR by laser excitation and microwave maximal interaction timeg40 us) is much shorter than the
transfer[5] to the circular Rydberg state) with principal  lifetime of the field energy in the caviup to 5 mg. We also
quantum number 51. The atoms then interact with a classicdleglect the decay of the atomic states, because the transit

field F, preparing a coherent superposition time of the atom across the apparai@0 us) is much
shorter than the radiative decay tii@0 mg. This model

immediately provides the probabilifyl]
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of |e) and|g) with principal quantum number 50. The fre- T
quency of thge)-|g) transition is 51.099 GHz. Here is the
Rabi frequency associated with the classical field of effective
interaction lengtH, v denotes the atomic velocity, andis
the relative internal phase of the atom. The as-prepared atom
interacts with the field of the cavitf. We use the same
microwave sourcé to prepare the atomic state and the field
inside the cavity. By shifting the phase of the classical field
F relative to the cavity field using a dephagemwe are able
to adjust the phase of the atomic superposition. After the
interaction the internal state of the atom is detected. From th ) (n=50). The atom interacts then with a single mode of the
number of atoms exiting the cavity in the excited state we are, jiation field, which is in a pure quantum state described by

able to calculate the photon-number probability amplitudes)hoton-number probability amplitudes, . A sourceS prepares the
wy, of the initial cavity field state field C and generates the classical fi€ld A dephaseb allows us
to adjust the relative phase. We probe the internal state of the
atom leaving the cavity via state selective field ionization. We
*Permanent address: Crystal Physics Laboratory, Hungariarecord the atomic populatioR.(t,¢) in the excited state as a func-
Academy of Science, P.O. Box 132, H-1504, Hungary. tion of atom-cavity interaction timeé and phasep.

FIG. 1. Schematic illustration of quantum-state endoscopy. A
classical microwave field prepares a circular Rydberg atom in a
coherent superposition of excited stge (n=51) and ground state
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to detect the atom in state) after an interaction time, paper, this minimization method is more stable than the
which is fixed by the velocity and the effective sizé of = method of Ref[1] based on linear equations.
the cavity mode. Her€ ,= yn+ 1Q where(} is the vacuum What parameters of quantum-state endoscopy determine
Rabi frequency. the set of states we can reconstruct? How many number

The terms of the first sum of E@2) are proportional to States is a state allowed to contain for this method to be still
the probabilities|w,|? whereas in the second sum they con-successful? We answer these questions by giving a heuristic
sist of real and imaginary parts of the prodwetw*, , of ~ argument. We note that endoscopy works when we can re-
neighboringprobability amplitudes Hence the second sum Solve two neighboring Rabi frequenciesyi2+1Q and
contains information about the phase between neighboringynQ in Eq. (2). We therefore have to resolve a frequency
photon-number probability amplitudes/,. Note that a differenceAQ,=2(yn+1—yn)Q~n"20. When we re-
straightforward application fails if one amplitude, van-  call the Fourier theoremQ,AT~1, whereAT=ty—t; de-
ishes. notes the time window in which we make the measurements,

It is the dependence d?, on the atomic phase that we find the estimate
allows us to reconstruct the field state. When we assume that
the initial field state is a finite superposition, n~(QAT)? (5)

nmax

for the maximum number of photon states. Hence, the Rabi
|‘/’>:n§=:0 Wn[n), 3) frequency and the time window& T determine the type of
quantum state that endoscopy can reconstruct.

Of particular interest is the measurement of a coherent
state| «e'?) of amplitudea and phase and that of a Schro
dinger cat stat¢3,4]:

of number states, we can determine the coefficienisas
shown in Ref[1] by measuring the probabilitP.(t,¢) for
at least two phases, , whereu=1,2 and at leastiy,y dis-
crete interaction timest,, where v=1,... Npha: TWO ) . _
phases are necessary to retrieve information aboutarehl )= K| ae') +[ae™")}. 6)
imaginary parts of the terms,wy ;. Moreover since there
is an arbitrary overall phase factor and the normalizatiorHere./ " is the normalization constant. In the experiment we
condition, we need at leastng,, independent equations to Prepare the coherent state directly by coupling the classical
calculate then,,,,+1 complex coefficientsv,. The prob- ~sourceS to the cavity[3]. The cat state can be prepared by
abilities Pe(tV’(PM) for different interaction timesv and dif- Sendlng an atom through the r?sonator Contalnlng |n|t|a”y a
ferent phases,, provide via Eq(2) the necessary equations. coherent state prepared I This atom, prepared in a co-
While the different phases are provided by settings of théerent superposition d) and|g) by F, interacts disper-
dephaseD, a wide distribution of interaction times follows Sively with the cavityC. The atom is tuned out of resonance
from the thermal distribution of the atomic velocities. In ad- by a static electric field applied across the mirror€ofBoth
dition to the detection of the internal state of the atom aftesStates|e) and|g) correspond to different indices of refrac-
the interaction with the quantized field, we also record thelion, and dephase the field i@ by different amounts. The
time of flight of each atom through the whole apparatusinitial coherent state is therefore split into two coherent com-
From this we can calculate the velocityof the atom and Ponents with different phases. In comparison to the setup
thereby, via the size of the cavity, the effective interaction shown in Fig. 1 we have to add a second classical field after

time t=L/v. After we have detected enough atoms, we calthe cavity, which mixes again statgs) and|g), so that the
culate the coefficientsv, by a least-square fit, that is, we Measurement of the atomic state gives no information about

minimize the expression the state in the cavity. The final field state, after atomic de-
tection, is then 3] a quantum superposition of the two co-
n(t, @.)\2 herent states.EqB).. _ _ _
AL AL Our numerical simulation processes in two steps. First, we
n(t,,eu) simulate the outcome of an actual experiment by making
4 random choices according to the appropriate probabilities
P.. Then, simulating data interpretation, we use these ran-
Heren(t,,¢,) is the number of atoms recorded for the time dom outcomes in the minimization process to reconstruct the
t, and the phasep, andng(t,,¢,) is the corresponding field in C. We use the atomic phases,=0,m/2,,3n/2,
number of excited atoms. We denote the statistical uncemnd N=70 equally spaced interaction times
tainty in the transfer rate by(ty,goﬁ)=n‘1’2(t,,,<pﬂ). Due t,=(10+30w»/N)us withv=1,... N. We take the value of
to various experimental uncertainties that we include in thighe Rabi frequency)=10° rad/s from[2].
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FIG. 3. Quality of the reconstruction of the coherent states
a=1 anda=2 in its dependence on the number of atoms.

FIG. 2. Reconstruction of a coherent state. Comparison betweedetection, that is, the detector does not give the true state of
the Wigner functions of a coherent state with=1 () and the  the atom. Therefore, we assume that 2% of all atoms are
reconstructed statéh). The oscillations of the Wigner function of detected in a completely random state.
the reconstructed state result from the cutgff,=12 in the expan- In the second stage we interpret the data. In particular, we
sion (3())5 in number states. For the simulation we have usedse the results of the simulation, that is the total number
Niot= 1. atoms. For the remaining parameters, in particular then(t ,©,) of atoms recorded for the time, and the phase
errors included, see the text. VTR .

¢, and the corresponding numbeg(t,,¢,) of atoms de-
_ tected in the excited state, to minimize the expres$ioBq.

In the f|rst stage, the. values of the totallnumber of atom§4), as a function of the photon probability amplitudes.
n(t,,¢,) in each class is selected, according to the velocity\ote that we have to solve this minimization problem sub-
distribution in the beam, ana(t,,¢,) is obtained by mak- jected to the normalization constraiBt,_ ,"m{w,|?= 1. The
ing, for each atom, a random choice betwdeh and[g)  state obtained in this way reproduces the data of the simula-
according to the “true” probability distributiorPe(t,,¢,)  tion in the best possible way. We use the so-called dual
calculated with the exact cavity fields). At this stage, we method for the minimization with constrainfg] summa-
also take into account uncertainties in the interaction timesized in the Appendix. In contrast to many other methods
t,. The atomic velocity is inferred from the time of flight sych as the Newton algorithm it provides us with the global
(around 60Qus) through the apparatus. Since the “origin” of minimum without anya priori knowledge of the field state.
time is known within a finite accuracfa 10 us laser pulse  As soon as the dual method has brought us close enough to
prepares the Rydberg atomshe value of the interaction the global minimum we go over to a faster converging New-
time t, deduced from this measurement may differ slightlyton algorithm in order to find the coefficients with high ac-
from the “true” interaction timet{"™®, which determines the curacy. This minimization procedure works nicely for coher-
exact probability distributioP,. To simulate this effect, we ent states up to an average numbef9 of photons. This
randomly choose for each atom a true tinﬁ]‘é‘e) uniformly ~ number is governed by E¢5) which for the Rabi frequency
distributed over the interva[t,—At/2,t,+At/2] with a Q=10 rad/s and the time window T=ty—t;~30 us set
width At=0.33 us. Analogously, we include the effect of by the measurement yielas=9.
the uncertaintied ¢ andAw in the phases,, and the clas- In Fig. 2 we compare the Wigner functi$8] of a coher-
sical Rabi frequencw, respectively. The noise in the atomic ent statgfa) of amplitudea=1 with the state obtained via
phaseg is caused by stray fields, which slightly detune theour simulation of quantum-state endoscopy. Here, we have
atom during the flight betweeR andC. The fluctuations in  used a total number of atomé,,=10° to probe the field
o are caused by inhomogeneities of the classical field angtate. The agreement is quite good. As a quantitative measure
the finite width of the atomic beam. In our simulation, we of the quality of the reconstruction, we use the absolute
use the values\ ¢=0.03 rad andA w/w=0.03 compatible square of the scalar product of the exact stagte and the
with the experiment of Ref2]. We also consider the possi- reconstructed statg("). For the example of Fig. 2, we
bility that the measurement of an atom fails completely. Thisobtain the valud(y|#(")|?*=0.998. Let us stress that this
could be caused by a second atom in the cavity or a badxcellent reconstruction would be obtained in the actual ex-
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FIG. 4. Dependence of the number of atoms probing the state
necessary to achieve a quality 0.93 of the reconstruction on the

amplitude of the coherent stajte). FIG. 5. Reconstruction of a Schiimger cat via quantum-state

. . . endoscopy. Comparison between the Wigner functions of a"Schro
periment in a time of the order of 1000 s. We can send up tQiinger cat(a) and the reconstructed stdt®. Again the oscillations

1¢? atolms/s through the cavity. ) . are due to the finite sum of number states with,,=14. Here
In Fig. 3 we show the dependence [o§(¢")]° and its  o=15 and #=1.47. The quality of reconstruction is
approach towards unity versus the number of atdns. (| )2=0.95. For the simulation we have usdh,=3x10°
Moreover, we find an approximately logarithmic dependenceitoms.
of the total number of atomsl,,; on the amplitudea to
achieve a fixed quality as shown in Fig. 4. phase betweew, _; andw, . have large errors. Then we
We also reconstruct a Scliinger cat state, Ed6), with  measure the same state but displaced by a known coherent
the amplitudea=1.5 and the phasé=1.47 rad. In Fig. 5 state|a,) as mentioned above. Hence endoscopy can iden-
we show the reconstruction of the Wigner function. Here wetify and deal with such problematic states.

obtain the quality|(|¢)|?=0.95. We conclude by summarizing our main results. We have
A problem of our method is to measure states that hav@resented numerical simulations of quantum-state endoscopy
vanishing coefficientsv,, like an even Schidinger cat, based on experimentally accessible parameters. These simu-

lations take into account uncertainties in the amplitude of the

)= a)+|—a)}. classical field preparing the atomic superposition, in the time

of preparation, in the phase of the resulting atomic dipole
Due to the symmetry of this state all even coefficients areand include failure of detection. We have shown that this
zero and consequently it is impossible to recover the phasewethod is very robust and can reconstruct withaytriori
between neighboring coefficients. To avoid this we add &nowledge a coherent state up to nine photons and a Schro
coherent statéa) with the sourceS and obtain the state  dinger cat with amplitude 1.5. This is made possible by find-
ing the global minimum of the expression, Hg), with the
|<~//):./7]/'1{|ao+a)+Iao—a)}, help of the dual method. This minimum corresponds to the
quantum state of the cavity field, which reproduces the data
which we can measure since all probability amplitudes arén the best possible way. Our results clearly show that the
then nonzero. The statery), which we add, can first be time has come for. experimental realization of quantum-state
measured using the same method. Finally, we are able tendoscopy on Schdinger cats.

calculate the statpj) from [4). ~_ Two of us (P.J.B. and E.M. thank the Deutsche For-
In the same way we can treat any quantum state in whiclychyngsgemeinschaft for support. One of D) was sup-

at least one of the probability amplitudes  vanishes. Since ported by the National Scientific Research Foundation of
the probabilitiegw,|? are independent of all relative phases Hungary under Contract No. 017380. This work was
our algorithm still provides the correct number statistics. Inpartially supported by the EC in the framework of the net-
particular it immediately shows that one number state hasvork program. The Laboratoire Kastler Brossel is Labora-
vanishing or rather small probability. In that case we knowtoire de I'Universite Pierre et Marie Curie et de I'ENS
that the reconstructed phasewm‘0 and therefore the relative associeau CNRS.
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APPENDIX: METHOD OF MINIMIZATION W(Ag)=maxW(\)

Our problem is to minimize the nonquadratic functifjn . ]
Eq. (4), of the variablesw, with respect to the nonlinear of the so-called dual functiomv(N). This search for the

normalization constraint minimum in x and the maximum i\ is motivated by the
condition Eq.(A2) specifying the orientation of the saddle

Nmax point. Thex value corresponding tag is the global mini-
nZo |wp|?=1. (Al)  mumxg. In Ref.[7] it is shown that the dual function is

always concave. Hence the maximurmvweg(\) is unique[9].

Many methods such as the Newton algorithm use local Tay- We now apply this method to our problem and introduce
lor expansions of the function and constraints and thereforée (1+3Nna9-dimensional vector

yield local minima only. They do not guarantee that the

minima obtained are indeed global ones. These methods gen- |wo?

erally converge fast but depend critically on an initial guess |, |2

of the position of the global minimum.

In the present paper we use the so-called dual mdthjpd
which provides us with the global minimum without any |ana><lz
priori knowledge of its position. We first briefly describe the N
principle of this method and then apply it to our problem. Re(wowy)
In order to minimize a scalar functiofi=f(x) of a X= : (A3)
n-dimensional real vectot subjected to the vector constraint Re(w w
g(x) =0 we have to find 7] the saddle pointXs,\g) of the Nmax— 1 nma)
Lagrange function Im(wow?)
L(x,N)=f(x)+ATg(x).
*
Here g and N denote m-dimensional real vectors, with lm(anaxflwnma)
m=<n andA"=(\y, ... \,). Therefore the gradients
When we denote thmth component ok by x,, the normal-
ViL(X,N) [x=xg a=2g=0 ization condition, Eq(A1), reads
and Nmax™ 1
xX)= Xm— 1. (A4)
VaAL(X, M) [x=xg A=2g=9(Xs) =0 9 mzl "

of L(x,A) with respect to the vectossand\ have to vanish. |n addition these components have to satisfy the constraints
We note that the vanishing gradientAnguarantees that the

vector Xg satisfies the constraimixs) =0. Moreover (W 2 Wi 1| 2=[ REWWE, ) T2+ [IM(Waw?, )%,
L(Xg,Ag)=minL(X,A A2 ) ) )
(Xs:hs) (X As) (A2) which read in the new variables
must be satisfied. According to the Kuhn-Tucker condition
?Azcr;]uxssed in Ref.7] the location of theglobal minimum is In(¥)=XXns1=XT4n in~Xiizn ino (A
S.

Therefore we now have to find the saddle pomtwherenzl,...,nmax. Note that due to the £n,,, con-

(Xs,Ag). For this purpose we emp'OY the dual method. Westraints, Egs(A4) and (A5), the number of degrees of free-

use two unconstrained optimizations: First we search for th% :

minimum Om remains Bpgy. . . . .

The advantage of this particular choicexofEq. (A3), is
w(N)= min,L(x,\) that f is now a quadratic and convex function, becaBge
Eq. (2), is linear inx, andg is quadratic inx. Consequently
of the Lagrange functioh with respect tox but for fixed the minimum ofL with respect tox is unique and easy to
\. Second we search for the maximum find.
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