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We demonstrate the experimental feasibility of quantum-state endoscopy@P. J. Bardroff, E. Mayr, and W. P.
Schleich, Phys. Rev. A51, 4963 ~1995!# to measure the complete quantum state of a single mode of the
electromagnetic field in a cavity. We perform numerical simulations of an experiment in progress.

PACS number~s!: 42.50.2p, 03.65.Bz, 84.40.Ik

In a recent paper@1# we proposed the method of quantum-
state endoscopy to measure the complete quantum state of a
single mode of the electromagnetic field. In the present paper
we perform numerical simulations of an experimental real-
ization of this scheme based on realistic parameters@2#. To
keep the paper self-contained we first briefly summarize the
essential features of this method and then study the influence
of various sources of errors. We show that the currently
available experimental techniques allow us to reconstruct the
field state in the cavity—even for a Schro¨dinger cat state
@3,4#.

Figure 1 shows a possible experimental realization of
quantum-state endoscopy. Atoms from a thermal Rb beam
are promoted in regionP by laser excitation and microwave
transfer@5# to the circular Rydberg stateue& with principal
quantum number 51. The atoms then interact with a classical
field F, preparing a coherent superposition
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of ue& and ug& with principal quantum number 50. The fre-
quency of theue&-ug& transition is 51.099 GHz. Herev is the
Rabi frequency associated with the classical field of effective
interaction lengthl , v denotes the atomic velocity, andw is
the relative internal phase of the atom. The as-prepared atom
interacts with the field of the cavityC. We use the same
microwave sourceS to prepare the atomic state and the field
inside the cavity. By shifting the phase of the classical field
F relative to the cavity field using a dephaserD we are able
to adjust the phasew of the atomic superposition. After the
interaction the internal state of the atom is detected. From the
number of atoms exiting the cavity in the excited state we are
able to calculate the photon-number probability amplitudes
wn of the initial cavity field state
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We emphasize that in this method the field state has to be
prepared identically before each atom enters the cavity.
Moreover, we note that the method in its present form only
works for pure states@6#.

The central quantity in the method of quantum-state en-
doscopy is the probabilityPe for an atom to leave the cavity
in the excited state. In order to findPe we describe the in-
teraction of the quantized field and the resonant two-level
atom by the well-known Jaynes-Cummings model. We ne-
glect damping of the field inside the resonator, because the
maximal interaction time~40 ms! is much shorter than the
lifetime of the field energy in the cavity~up to 5 ms!. We also
neglect the decay of the atomic states, because the transit
time of the atom across the apparatus~600 ms! is much
shorter than the radiative decay time~30 ms!. This model
immediately provides the probability@1#
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FIG. 1. Schematic illustration of quantum-state endoscopy. A
classical microwave fieldF prepares a circular Rydberg atom in a
coherent superposition of excited stateue& (n551! and ground state
ug& (n550!. The atom interacts then with a single mode of the
radiation field, which is in a pure quantum state described by
photon-number probability amplitudeswn . A sourceS prepares the
field C and generates the classical fieldF. A dephaserD allows us
to adjust the relative phasew. We probe the internal state of the
atom leaving the cavity via state selective field ionization. We
record the atomic populationPe(t,w) in the excited state as a func-
tion of atom-cavity interaction timet and phasew.
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to detect the atom in stateue& after an interaction timet,
which is fixed by the velocityv and the effective sizeL of
the cavity mode. HereVn5An11V whereV is the vacuum
Rabi frequency.

The terms of the first sum of Eq.~2! are proportional to
theprobabilities uwnu2 whereas in the second sum they con-
sist of real and imaginary parts of the productwnwn11* of
neighboringprobability amplitudes. Hence the second sum
contains information about the phase between neighboring
photon-number probability amplitudeswn . Note that a
straightforward application fails if one amplitudewn van-
ishes.

It is the dependence ofPe on the atomic phasew that
allows us to reconstruct the field state. When we assume that
the initial field state is a finite superposition,
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of number states, we can determine the coefficientswn as
shown in Ref.@1# by measuring the probabilityPe(t,w) for
at least two phaseswm , wherem51,2 and at leastnmax dis-
crete interaction timestn , where n51, . . . ,nmax: Two
phases are necessary to retrieve information about realand
imaginary parts of the termswnwn11* . Moreover since there
is an arbitrary overall phase factor and the normalization
condition, we need at least 2nmax independent equations to
calculate thenmax11 complex coefficientswn . The prob-
abilitiesPe(tn ,wm) for different interaction timestn and dif-
ferent phaseswm provide via Eq.~2! the necessary equations.

While the different phases are provided by settings of the
dephaserD, a wide distribution of interaction times follows
from the thermal distribution of the atomic velocities. In ad-
dition to the detection of the internal state of the atom after
the interaction with the quantized field, we also record the
time of flight of each atom through the whole apparatus.
From this we can calculate the velocityv of the atom and
thereby, via the size of the cavityL, the effective interaction
time t5L/v. After we have detected enough atoms, we cal-
culate the coefficientswn by a least-square fit, that is, we
minimize the expression

f[(
n,m

1
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Heren(tn ,wm) is the number of atoms recorded for the time
tn and the phasewm and ne(tn ,wm) is the corresponding
number of excited atoms. We denote the statistical uncer-
tainty in the transfer rate bys(tn ,wm)5n21/2(tn ,wm). Due
to various experimental uncertainties that we include in this

paper, this minimization method is more stable than the
method of Ref.@1# based on linear equations.

What parameters of quantum-state endoscopy determine
the set of states we can reconstruct? How many number
states is a state allowed to contain for this method to be still
successful? We answer these questions by giving a heuristic
argument. We note that endoscopy works when we can re-
solve two neighboring Rabi frequencies 2An11V and
2AnV in Eq. ~2!. We therefore have to resolve a frequency
differenceDVn[2(An112An)V'n21/2V. When we re-
call the Fourier theoremDVnDT'1, whereDT5tN2t1 de-
notes the time window in which we make the measurements,
we find the estimate

n'~VDT!2 ~5!

for the maximum number of photon states. Hence, the Rabi
frequency and the time windowDT determine the type of
quantum state that endoscopy can reconstruct.

Of particular interest is the measurement of a coherent
stateuaeiu& of amplitudea and phaseu and that of a Schro¨-
dinger cat state@3,4#:

uc&5N $uaeiu&1uae2 iu&%. ~6!

HereN is the normalization constant. In the experiment we
prepare the coherent state directly by coupling the classical
sourceS to the cavity@3#. The cat state can be prepared by
sending an atom through the resonator containing initially a
coherent state prepared byS. This atom, prepared in a co-
herent superposition ofue& and ug& by F, interacts disper-
sively with the cavityC. The atom is tuned out of resonance
by a static electric field applied across the mirrors ofC. Both
statesue& and ug& correspond to different indices of refrac-
tion, and dephase the field inC by different amounts. The
initial coherent state is therefore split into two coherent com-
ponents with different phases. In comparison to the setup
shown in Fig. 1 we have to add a second classical field after
the cavity, which mixes again statesue& and ug&, so that the
measurement of the atomic state gives no information about
the state in the cavity. The final field state, after atomic de-
tection, is then@3# a quantum superposition of the two co-
herent states Eq.~6!.

Our numerical simulation processes in two steps. First, we
simulate the outcome of an actual experiment by making
random choices according to the appropriate probabilities
Pe . Then, simulating data interpretation, we use these ran-
dom outcomes in the minimization process to reconstruct the
field in C. We use the atomic phaseswm50,p/2,p,3p/2,
and N570 equally spaced interaction times
tn5(10130n/N)ms with n51, . . . ,N. We take the value of
the Rabi frequencyV5105 rad/s from@2#.
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In the first stage, the values of the total number of atoms
n(tn ,wm) in each class is selected, according to the velocity
distribution in the beam, andne(tn ,wm) is obtained by mak-
ing, for each atom, a random choice betweenue& and ug&
according to the ‘‘true’’ probability distributionPe(tn ,wm)
calculated with the exact cavity fielduc&. At this stage, we
also take into account uncertainties in the interaction times
tn . The atomic velocity is inferred from the time of flight
~around 600ms! through the apparatus. Since the ‘‘origin’’ of
time is known within a finite accuracy~a 10ms laser pulse
prepares the Rydberg atoms!, the value of the interaction
time tn deduced from this measurement may differ slightly
from the ‘‘true’’ interaction timetn

(true) , which determines the
exact probability distributionPe . To simulate this effect, we
randomly choose for each atom a true timetn

(true) uniformly
distributed over the interval@ tn2Dt/2,tn1Dt/2# with a
width Dt50.33 ms. Analogously, we include the effect of
the uncertaintiesDw andDv in the phaseswm and the clas-
sical Rabi frequencyv, respectively. The noise in the atomic
phasew is caused by stray fields, which slightly detune the
atom during the flight betweenF andC. The fluctuations in
v are caused by inhomogeneities of the classical field and
the finite width of the atomic beam. In our simulation, we
use the valuesDw50.03 rad andDv/v50.03 compatible
with the experiment of Ref.@2#. We also consider the possi-
bility that the measurement of an atom fails completely. This
could be caused by a second atom in the cavity or a bad

detection, that is, the detector does not give the true state of
the atom. Therefore, we assume that 2% of all atoms are
detected in a completely random state.

In the second stage we interpret the data. In particular, we
use the results of the simulation, that is the total number
n(tn ,wm) of atoms recorded for the timetn and the phase
wm and the corresponding numberne(tn ,wm) of atoms de-
tected in the excited state, to minimize the expressionf , Eq.
~4!, as a function of the photon probability amplitudeswn .
Note that we have to solve this minimization problem sub-
jected to the normalization constraint(n50

nmaxuwnu251. The
state obtained in this way reproduces the data of the simula-
tion in the best possible way. We use the so-called dual
method for the minimization with constraints@7# summa-
rized in the Appendix. In contrast to many other methods
such as the Newton algorithm it provides us with the global
minimum without anya priori knowledge of the field state.
As soon as the dual method has brought us close enough to
the global minimum we go over to a faster converging New-
ton algorithm in order to find the coefficients with high ac-
curacy. This minimization procedure works nicely for coher-
ent states up to an average numbern̄'9 of photons. This
number is governed by Eq.~5! which for the Rabi frequency
V5105 rad/s and the time windowDT5tN2t1'30ms set
by the measurement yieldsn'9.

In Fig. 2 we compare the Wigner function@8# of a coher-
ent stateua& of amplitudea51 with the state obtained via
our simulation of quantum-state endoscopy. Here, we have
used a total number of atomsNtot5105 to probe the field
state. The agreement is quite good. As a quantitative measure
of the quality of the reconstruction, we use the absolute
square of the scalar product of the exact stateuc& and the
reconstructed stateuc (r )&. For the example of Fig. 2, we
obtain the valuez^cuc (r )& z250.998. Let us stress that this
excellent reconstruction would be obtained in the actual ex-

FIG. 2. Reconstruction of a coherent state. Comparison between
the Wigner functions of a coherent state witha51 ~a! and the
reconstructed state~b!. The oscillations of the Wigner function of
the reconstructed state result from the cutoffnmax512 in the expan-
sion ~3! in number states. For the simulation we have used
Ntot5105 atoms. For the remaining parameters, in particular the
errors included, see the text.

FIG. 3. Quality of the reconstruction of the coherent states
a51 anda52 in its dependence on the number of atoms.
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periment in a time of the order of 1000 s. We can send up to
102 atoms/s through the cavity.

In Fig. 3 we show the dependence ofz^cuc (r )& z2 and its
approach towards unity versus the number of atomsNtot .
Moreover, we find an approximately logarithmic dependence
of the total number of atomsNtot on the amplitudea to
achieve a fixed quality as shown in Fig. 4.

We also reconstruct a Schro¨dinger cat state, Eq.~6!, with
the amplitudea51.5 and the phaseu51.47 rad. In Fig. 5
we show the reconstruction of the Wigner function. Here we
obtain the qualityz^cuc (r )& z250.95.

A problem of our method is to measure states that have
vanishing coefficientswn , like an even Schro¨dinger cat,

uc&5N $ua&1u2a&%.

Due to the symmetry of this state all even coefficients are
zero and consequently it is impossible to recover the phases
between neighboring coefficients. To avoid this we add a
coherent stateua0& with the sourceS and obtain the state

uc̃&5Ñ $ua01a&1ua02a&%,

which we can measure since all probability amplitudes are
then nonzero. The stateua0&, which we add, can first be
measured using the same method. Finally, we are able to
calculate the stateuc& from uc̃&.

In the same way we can treat any quantum state in which
at least one of the probability amplitudeswn0

vanishes. Since

the probabilitiesuwnu2 are independent of all relative phases
our algorithm still provides the correct number statistics. In
particular it immediately shows that one number state has
vanishing or rather small probability. In that case we know
that the reconstructed phase ofwn0

and therefore the relative

phase betweenwn021 andwn011 have large errors. Then we
measure the same state but displaced by a known coherent
stateua0& as mentioned above. Hence endoscopy can iden-
tify and deal with such problematic states.

We conclude by summarizing our main results. We have
presented numerical simulations of quantum-state endoscopy
based on experimentally accessible parameters. These simu-
lations take into account uncertainties in the amplitude of the
classical field preparing the atomic superposition, in the time
of preparation, in the phase of the resulting atomic dipole
and include failure of detection. We have shown that this
method is very robust and can reconstruct withouta priori
knowledge a coherent state up to nine photons and a Schro¨-
dinger cat with amplitude 1.5. This is made possible by find-
ing the global minimum of the expression, Eq.~4!, with the
help of the dual method. This minimum corresponds to the
quantum state of the cavity field, which reproduces the data
in the best possible way. Our results clearly show that the
time has come for experimental realization of quantum-state
endoscopy on Schro¨dinger cats.
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FIG. 4. Dependence of the number of atoms probing the state
necessary to achieve a quality 0.93 of the reconstruction on the
amplitude of the coherent stateua&. FIG. 5. Reconstruction of a Schro¨dinger cat via quantum-state

endoscopy. Comparison between the Wigner functions of a Schro¨-
dinger cat~a! and the reconstructed state~b!. Again the oscillations
are due to the finite sum of number states withn max514. Here
a51.5 and u51.47. The quality of reconstruction is
z^cuc (r )& z250.95. For the simulation we have usedNtot533105

atoms.
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APPENDIX: METHOD OF MINIMIZATION

Our problem is to minimize the nonquadratic functionf ,
Eq. ~4!, of the variableswn with respect to the nonlinear
normalization constraint

(
n50

nmax

uwnu251. ~A1!

Many methods such as the Newton algorithm use local Tay-
lor expansions of the function and constraints and therefore
yield local minima only. They do not guarantee that the
minima obtained are indeed global ones. These methods gen-
erally converge fast but depend critically on an initial guess
of the position of the global minimum.

In the present paper we use the so-called dual method@7#,
which provides us with the global minimum without anya
priori knowledge of its position. We first briefly describe the
principle of this method and then apply it to our problem.

In order to minimize a scalar functionf[ f (x) of a
n-dimensional real vectorx subjected to the vector constraint
g(x)50 we have to find@7# the saddle point (xS ,lS) of the
Lagrange function

L~x,l![ f ~x!1lTg~x!.

Here g and l denotem-dimensional real vectors, with
m<n andlT[(l1 , . . . ,lm). Therefore the gradients

¹xL~x,l!ux5xS ,l5lS
50

and

¹lL~x,l!ux5xS ,l5lS
5g~xS!50

of L(x,l) with respect to the vectorsx andl have to vanish.
We note that the vanishing gradient inl guarantees that the
vectorxS satisfies the constraintg(xS)50. Moreover

L~xS ,lS!5minxL~x,lS! ~A2!

must be satisfied. According to the Kuhn-Tucker condition
discussed in Ref.@7# the location of theglobalminimum is
thenxS .

Therefore we now have to find the saddle point
(xS ,lS). For this purpose we employ the dual method. We
use two unconstrained optimizations: First we search for the
minimum

w~l![ minxL~x,l!

of the Lagrange functionL with respect tox but for fixed
l. Second we search for the maximum

w~lS!5maxlw~l!

of the so-called dual functionw(l). This search for the
minimum in x and the maximum inl is motivated by the
condition Eq.~A2! specifying the orientation of the saddle
point. Thex value corresponding tolS is the global mini-
mum xS . In Ref. @7# it is shown that the dual function is
always concave. Hence the maximum ofw(l) is unique@9#.

We now apply this method to our problem and introduce
the (113nmax)-dimensional vector

x[1
uw0u2

uw1u2

A

uwnmax
u2

Re~w0w1* !

A

Re~wnmax21wnmax
* !

Im~w0w1* !

A

Im~wnmax21wnmax
* !

2 . ~A3!

When we denote themth component ofx by xm the normal-
ization condition, Eq.~A1!, reads

g0~x![ (
m51

nmax11

xm21. ~A4!

In addition these components have to satisfy the constraints

uwnu2uwn11u25@Re~wnwn11* !#21@ Im~wnwn11* !#2,

which read in the new variables

gn~x!5xnxn112x11nmax1n
2 2x112nmax1n

2 , ~A5!

where n51, . . . ,nmax. Note that due to the 11nmax con-
straints, Eqs.~A4! and ~A5!, the number of degrees of free-
dom remains 2nmax.

The advantage of this particular choice ofx, Eq. ~A3!, is
that f is now a quadratic and convex function, becausePe ,
Eq. ~2!, is linear inx, andg is quadratic inx. Consequently
the minimum ofL with respect tox is unique and easy to
find.
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