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Unpolarized light: Classical and quantum states
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We give a general definition of unpolarized light that rests on invariance properties rather than specific
values of second-order field correlations or, equivalently, the Stokes parameters. It turns out that to require
invariance with respect to rotation around the propagation axis and symmetry with respect to left- and right-
handed circular polarization is not sufficient to fully characterize completely unpolarized light, such as natural
light. Actually, a third requirement demanding invariance with respect to phase retardation is needed. Depend-
ing on whether it is satisfied or not, we speak of type | or type Il unpolarized light, and we specify the general
form of both classical distribution functions and density operators consistent with the respective conditions.

PACS numbsds): 42.50.Ar, 42.25.Ja, 42.50p

[. INTRODUCTION our sense, i.e., light without any polarization structure, actu-
ally exists, namely, in the form of natural light emitted by
Unpolarized light is usually characterized in terms ofany thermal source, like the Sun. So our concept is physi-
second-order correlations, with respect to the electric-field¢ally meaningful, and we will ask what is the most general
strength, or, equivalently, physical quantities such as th&tate, both classical and quantum mechanical, that fuffills the
Stokes parametef&]' One Speaks of unpo|arized ||ght when condition of rotational invariance.-ACtL.Ja"y, this requir-ement
(i) there are no correlations between the components of thig0€s not excluddeventually partigl circular polarization.
(compley electric-field strength in two orthogonal direc- Hence an additional symmetry property, namely, invariance
tions,(E E,)=(E,Ey)=0, and(ii) the partial intensities are with respect to the interchange of left- and right-handed cir-
equal,(E} E,)=(E*E,). Here the angular brackets denote acular polarization, has to be demanded. In add|t|on', it should
JATX X yy . be noted that natural light has a further characteristic prop-
classical average. Of course, the quantum-mechanical d

L NS , ; ®ity: It remains unchanged when passing a phase retarder,
scription is quite similar: the corresppncjmg expectation val—e.g. a quarter-wave plafd]. Hence we will impose, in a

ues with respect to the field operatdtg, E, fulfill the con-  second step, also the condition of retardation invariance on
ditions (EJE,) =(ExE])=0 and(E}E,)=(EJE,). In other  unpolarized light. It will turn out that this leads to a drastic
words, the coherence matrix composed of the averages mereduction of the variety of possible states.
tioned is a multiplum of the unit matrix. Trivially, the latter is The paper is organized as follows. In Sec. Il we present in
an invariant with respect to a unitary transformation, i.e.,some detail our general definition of unpolarized light and
either a rotation of the,y basis around the propagation axis dive a classical description of unpolarized light in terms of
or the transition from linear to circular polarization. We feel distribution functions. In Sec. Il we extend this description
that rotational symmetry is a genera| property, name|y, noby interpreting the classical distribution function as Glaub-
restricted to second-order correlations, of unpolarized lighter’s P function, to quantum mechanics. Moreover, we for-
More experimentally speaking, we will require that any two mulate necessary conditions to be obeyed by density opera-
observers who use a differemotated linear-polarization ba-  tors describing unpolarized light. In Sec. IV we construct, by
sis, when dealing with unpolarized light, will arrive at the forming averages over the Poincesghere or suitable parts
same results, whatever they measure. For instance, whé it, @ very general form of a field density operator that is
they split an unpolarized light beam, with the help of a po-both rotationally invariant and symmetric with respect to
larizing prism, into two linearly polarized beams, not only left- and right-handed circular polarization. Requiring, in ad-
the mean photon numbers in those beams but also their medlifion, retardation invariance, we find the most general form
square fluctuations should coincide, and this should be so f@f the density operator that describes truly unpolarized light.
all orientations of the polarizing prism. Actually, our point of Further we list general properties of fourth-order field corre-
view is not shared by Karasd®], who definesunpolarized lations characteristic of unpolarized light. Finally, in Sec. V
light by the specific values,=s,=s;=0 of the Stokes pa- We discuss some relevant examples of unpolarized-light
rameters considered as quantum-mechanical expectation v&tates, in particular, the analogs of Fock and Glauber states,
ues. Not surprisingly, he finds for special examples that th@nd give a short summary.
fluctuations in the aforementioned experiment, in fact, de-
pend on the orientation of the polarizing prism, which leads Il. BASIC CONSIDERATIONS
him to the paradoxical statement that “unpolarized light has
a polarization structure, which is latent when the mean inten-
sities are measured and detectable when the noise intensitiesAccording to what has been said in the Introduction, we
are measured.” require, as the first necessary conditiathmeasurable prop-
However, it is well known that truly unpolarized light in erties of unpolarized light to remain unchanged when the

A. Definition of unpolarized light
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X,y basis is rotated by an angi& around the axis of light (c) Retardation invarianceTo discuss this requirement
propagation, i.e., with respect to the transformation we have to go back to linear polarization. From Egj. we
et

E cosd sind)|[E, J

E, ] | —sing coss/\E,)" @ |E||2=3(|E > +IES B, —iE,E} +]E, ),
(We focus first on a classical description. The extension to |E|?=3(|Ex|*—IEf E,+IELE} +|E,|?),
guantum mechanics will be given lajer.

Since (eventually partially circularly polarized light is [P

not excluded by the requirement of rotational invariance, we ElEr:E(ExJ“ E))- ©®
introduce a seconthecessarycondition: The field distribu-
tion function (or the density operator in the quantum me- Qbviously, the term&} E,, EXE;f, andE)z(,E)z, are not invari-
chanical descriptionmust be symmetric with respect to left- ant under the retardation transformatie®. It is only the
and right-handed circular polarization. We will call light that sum |E,|?+|E,|? that satisfies this requirement. Hence the
satisfies the two conditions mentioned type Il unpolarizedyeneral state of type | unpolarized light is characterized by a
light. We reserve the term type | unpolarized light for suchdistribution function that depends only on the total intensity
light that, in addition, is invariant with respect to phase re-| =|E||2+|Er|2=|Ex|2+|Ey|2- In fact, natural light is of this

tardation. Since only the relative phase is of physical reltype, the distribution function being given I¥]
evance, we will write the corresponding transformation as

. f(Ey,E,)=cons exp[—21/{1)}. (7)
E.\ [expliel2) 0 E, o
E |- i E | 2)
y 0 exp—ie/2)) | By Ill. QUANTUM-MECHANICAL DESCRIPTION
We emphasize again that type | unpolarized light really ex- A. Glauber’s P representation

ists in the form of so-called natural I|ght, that iS, I|ght emitted It is We" known that there exists a precise Correspondence
by thermal sources. Our goal will be to find out the mostpetween the quantum-mechanical and the classical descrip-
general state of unpolarized light, of both type I and type Il.tjon of light in the sense that any classical distribution func-
tion f(ay,ay) can be interpreted as Glaubeis function
B. Classical description [5], wherea, and a, are the complex field amplitudes,

. 2 .

Classically, we will describe a light field by a distribution andE, ngrmﬁllzed ISU_Ch thata,|* gives ushFhe mean p:otog
function f(E,,E,) . Then, the requirements stated in Sec.number in thex-polarized mode, etc. This means that the
Il A have to be fulfilled by this function. Obviously, this is duantum-mechanical analog of a classical field characterized
the case, wheri is a function of corresponding invariants PY 2 distributionf(ay, a,) is a quantum field described by

only. So our primary goal is to construct the latter. This will the density operator
be done for the different invariance conditions.

(a) Rotational invarianceCertainly, the appropriate way ﬁzf f(ax,ay)|ax,ay>(ay,ax|d2axd2ay, (8)
to deal with this problem is to pass from linear to circular

polarization, according to the unitary transformation where|ax,ay> stands for the direct product of two Glauber

E 1/1 i\(E states|a,)y and|a,), referring to two orthogonal linear po-
( ') = _< _ ) X), (3) larization modes and the integration extends over the whole
B J2\i 1/\Ey (complex a, plane as well as the, plane. With the help of

Eq. (8) or, equivalently, the representation
where the subscriptsandr refer to left- and right-handed

circular polarizatior{3]. In terms ofE; andE, , the rotation - ~
(1) simply reads r p=| flar,ap)lar,a)(ar a|d®ed®a ©)
E/ =e '"E,, E/=¢€"E,. (4)  with respect to circular-polarization modes, the results ob-

_ _ _ tained in Sec. Il for classical fields are readily transferred to
From Eq.(4) it becomes obvious that the rotation has thequantum mechanics. However, in this way one will not find

following fundamental invariants: the most general density operator for unpolarized light, since
the manifold of quantum states, compared to that of classical
Ji=IEl, J=|El, Js=EE,. (5 distribution functions, is in fact greater: GlaubePunction

may take negative valudwhich is not possible for a classi-

Hence any distribution function that depends only on themea| distribution functioh or it may even not exist as a non-
f(|E(|,|E||,E/E)), satisfies our first requirement. pathological function. Actually, quantum states that allow no

(b) Left-right symmetryThis condition evidently imposes positive definiteP representation have attracted special in-
on f the condition that it be symmetric ifiE,| and|E,|. So terest, since they represent nonclassical light.
we arrive at the result that type Il unpolarized light is gen- We would like to add that the arguments presented above
erally described by a distribution function that depends symapply not only to Glauber'sP function but also to the
metrically on|E,| and|E,| and, moreover, og,E, . Wigner function(in fact, to anys-parametrized quasiprob-
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ability distribution [6]). Compared to theP function, the Sec. IV in a different way, namely, we will construct states
Wigner function has the advantage that it is free from singu-of unpolarized light by suitably averaging over the Poincare
larities, in any case. So it provides a general description ofphere, that is, over different polarization states.
guantum states, and in order to represent unpolarized light it First, let us formulate the condition of retardation invari-
has to have the same mathematical structure as a classicice. To do this in a transparent manner, one has to rewrite
distribution function(see Sec. Il B However, this is a nec- the density operator as an expansion in terms of Fock states
essary condition only, and it should be noticed that aWignetnX,ny> referring to linear-polarization modes. Using the
function cannot be chosen as an arbitrary function, it is rathequantum-mechanical analog of the transformati@n
subjected to subtle mathematical restrictions. So one cannot

1 (1 i\[la,

ﬁ(i 1)(éy)’ (10

construct, in an easy way, a geneeaplicit form of Wigner
one can readily express the staba§,ny) in terms of states

functions representing unpolarized light.
The preceding discussion motivates us to analyze thén, ,n,) and vice versa. Then the density operator takes the
problem of appropriately describing unpolarized light in thefgrm
framework of quantum-mechanical density operators. As a
basis we will use Fock states with respect either to linearly R
polarized modes|n,,n,)=|ny),Iny),, or circularly polar- p= 2 p(ngngmemyln,nym,,ml, (17
ized modes|n,,n,)=|n,)|n,), . To study the effect of a ro- ey
tation on the density operator, we will use a Fock basis cor-

responding to circular-polarization modes, i.e., we expantyng phase retardation is described by the transformation
the density operator in the form

&
a

B. Restrictions on the density operator

My, My,

X . a| [exiel2) 0 a,
pP= n%r P(nlanr!ml!mr)lnlanr><mramll- (10) (ay)_( 0 exq—i§0/2)><éy)' (18)
m,m,

How does a field staten, ,n,) transform under a rotation? To in. accordancg with Eq2). It follows_from Eq.(;8), Fogether
answer this question, we use the familiar representation Ogg?etshihi\?tzggll?o\?tteﬂriqﬁl) for linear-polarization Fock
Fock states in terms of photon creation operatafsand : nstorm as

~ T .
A respeCt|V9|y, | Ny 1ny>4’exp[i (ny_ nx) QD/ZH Ny 1ny>- (19)

@hm@ahn

vni!In/!
Rotation of an orthogonal basis is described by the quantum- p(M,NyiMye,My) =0 unlessn,—ny=m,—m,. (20)

mechanical analog of Edq4),

Iny,n;)= |vac. (11 Hence retardation invariance is ensured when

93

a, a=ea. (12) This equation represents the third necessary condition to be

fulfilled by type | unpolarized light. In the Appendix we will
show that this requirement, together with the condition of
rotational invariance, leads to a diagonal form of the density
Iny,ney—expli(n—n,) 9} n;,n,). (13)  operator.

é{ =e

Hence the Fock stat@, ,n,) transforms as

Requiring the density operat(JIO)_ to be invariant undgr this IV. CONSTRUCTION OF DENSITY OPERATORS
transformation leads us to the first necessary condition:
A. Type Il unpolarized light

p(N,Ne;my,m)=0 unlessn—n =m—m;. (14 From a classical point of view, one will think of unpolar-

dzed light as a light beam that, nevertheless, has a definite, in
general elliptic, polarization in any sufficiently short time
interval. Of course, observed over a long time interval, the

The left-right symmetry, on the other hand, requires the se
ond necessary condition,

p(n,,n;m,m)=p(n,,n;;m,,m), (15  elliptic polarization will change randomly, and the same will
hold true also for the phas€lo give the phase of elliptically
to be satisfied. polarized light a unique meaning, we will identify it with the

The conditions(14) and (15 can be used to check phase of thex component of the electric-field vectpiThis
whether agivendensity operator describes unpolarized lightpicture suggests modeling unpolarized light by an ensemble
that is(at least of type Il. However, they are not suitable to of fields that are completely, however differently, polarized
constructdensity operators with the desired properties, sinceand, moreover, have random phases. Formally, this means
in addition, the requirement that the density operator is ave construct the density operator by forming a suitable mix-
(normalized positive definite Hermitian operator has to be ture of states corresponding to different, in general elliptic,
fulfilled, which is no simple task. Hence we will proceed in polarizations. Since the best visualization of the variety of
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polarizations is provided by the Poincasphere, our first é;[)d))n
step will be to integrate over the latter, or eventually suitable |n>®¢=—l|vac> (22
parts of it. \/”_

The Poincaresphere is parametrized by spherical angles
0O and ¢ limited by 0<O <7 and —w<¢<7 [7]. In par-  or, utilizing Eq.(21),
ticular, the poles represent circular-, and the equator linear-
polarization states. Following Glaubgr], we introduce a

: ; . . n / i @\ni
creation operator for photons possessing arbitrary polariza- e = (”)( 003(2> (sin—)
tion IMes ,—Z’o j 2 2
St il 0., i 0, X e!2I=mei2) iy In—j) 23
agg=€""C0s;a +e sinS-a; . (21 Iin=Jjr.

The corresponding-photon(Fock) state can then be written Then an arbitrary density operator for the polarization state
in the familiar form[see Eq(11)] characterized by) and ¢, can be represented in the form

n m

. ffn\(m\ ..

P@zf;zz an|n>(~)¢ ®¢<m|22 anz E ()( k>el(2] N2kt m)$i2
n,m n,m ]=0 k=0 J

o) jtk 0) n+m-—j—k
COSE) (sm§)

X

|j>lln_j>rr<m_k|l<k|- (24)

The density matrixp,,,, has to satisfy the condition that it is(aormalized positive definite Hermitian matrix, the simplest

case being a pure state with expansion coefficiept®r which p(n,m)=c,c,. It should be noted thdormally the operator

(21) is not periodic with 27, but with 44. In fact, it follows from Eq.(21) that ézﬂ)y(bﬁw: —é;[)qs. Physically however, this

does not matter because the resulting change of the sign f for oddn has no physical effect, since quite generally a state
vector is defined only up to an arbitrary phase factor. To exclude mathematical artifacts we will integrate over the azimuthal
angle ¢ from — 7/2 to 5#/2, or, equivalently, from O to #. This gives us the averaged density operator

. 1 (4, n.m n\ /m . ®\itk C) n+m—j—k' '
PEE o Pgbd(ls:;m anJz::O go V(j)<k)@(ZJ—n,Zk—m)(COSE) (SII’I?) |J>I|n_J>rr<m_k|l<k|-

(29

Due to the Kronecker symbol in ER5) pg is a sum of terms that are separately invariant under the transforniagpn.e.,
it is rotationally invariant, for any value dd.

The density operatd25) is, however, in general not symmetric with respect to left- and right-handed circular polarization.
In fact, the relevant prefactors of the terdj)|n—j), . (m—k|(k| and its “image” |j);/n—j) (m—kK| (k| are
[cos@/2)] *H sin@/2)]"* ™ 1~k and[cos@®/2)]" "™ 1 " sin(@/2)]' "X, respectively. This means that the symmetry opera-
tion in question amounts to interchanging d®&) and sin@/2), for fixed ®. It is only for the special cas® = /2 that
pe is symmetric. Noticing, however, that siféd+ ) = cos(@/4— ) and costr/4+ a) =sin(m/4— a), we can readily symme-
trize (25) by adding (1/25)@1 and (1/2)6@2, where®, and®, lie symmetrically with respect to the equat@ = w/2. More
generally, we can construct fro(@5) a density operator that has the desired symmetry property, in addition to being rotation-
ally invariant, by averaging ove®, thereby using dpositive definitg¢ weight functionw(®) that is symmetric with respect
to the equator® = 7/2, but otherwisarbitrary. We thus arrive at a very general representation of type Il unpolarized light by
a density operator of the form

p = Fd(@w(@)ﬁ@: fwd(aw(@)Z Pam 2 2 \/( ”)( k)mi—n, 2k—m)
0 0 nm =0 k=0 J

jtk ® n+m-—j—k
cosy || sin—) D0 1= o mekli( K] 26

X
2 2

In particular, for a state with a fixed total photon numbgEg. (26) reduces to

0\2 ® \2n-2
cosy| [simg | linln=ie o neil il @)

/3<“><n>=f"d we) > ( r-')
0 i=o\ |l
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We have already indicated by the superscript Il that what wavhere the overbar denotd$wice) the average over the
describe by(26) and (27) is unpolarized light that lacks re- whole Poincaresphere. A special case of E(1) is the
tardation invariance. This is readily checked. We would likeunpolarizedn-photon state

to mention that there are additional quantum states of type I

unpolarized light not covered by E@26). In fact, it is ob- ~ 1 & i o

vious that the Fock statdk),|k), (k=1,2,...), andhence p(N)=—"7 ZO =) {n=jli (- (32
also arbitrary superpositions of them, are both rotationally :

invariant and symmetric with respect to left- and right- since the corresponding matrix is a multiplum of the unit
handed circular polarization, the simplest case being a pair Ghatrix, it is trivially invariant with respect to any unitary
a left- and a right-handed circularly polarized phot6Fhis  transformation, in particular to rotation and phase retarda-
has been observed already in Rf].) So we arrive at the tjon, and, moreover, to passing from the circular- to the

interesting result that quantum optics, in contrast to classica|near-polarization basi§see Eq.(16)]. This means that
theory, allows type Il unpolarized light to be also in certain~

pure statesThis is, nevertheless, not so surprising in view of P(N) ¢an aiso be written as

the fact that even a Fock state with its intrinsic phase uncer- 10

tainty can be modeled classically only by a statistical mix- n) = iVoln—i n—il(i 33
ture. The pure states in question are readily generalized to a (M= 5T jZO DA =1)y A=kl 33
mixture of the form

As becomes obvious from Ed32), the density operator

p"=2 p(n,m)|ny[n) (m| (m|. (28)  p(n) is symmetric with respect to left- and right-handed cir-
nm cular polarization too. Hence it describes, in fact, a special

To find a general representation of type | unpolarize dstate of type | unpolarized light. Clearly, a straightforward

liaht il ol loselv the intuiti lassical generalization of this result is a statistical mixture of
ight, we will follow more closely the intuitive classical con- n-photon state¢32) with arbitrary weightsp,,
cept of unpolarized light mentioned above.

B. Type | unpolarized light ;)(I)ZE Pnn ;;(n)_ (34)
It appears natural that in completely unpolarized light "
possible polarizations should be present with their correct
weight. Formally, this means that the integration should belhis corresponds either to the assumption that our averaging
done over thefull Poincaresphere, the weight thus being procedure starts already fromdéagonal and hencestation-
given by the surface element €ld@d¢. (Actually we will  ary, density matrixp,m= pnndmn describing the excitation of
integratetwice over the Poincarsphere, as has been moti- the polarization modes, or that an additional averaging pro-
vated in Sec. IV A\ Since the integration ovep has actually ~cedure has been carried out that makes the off-diagonal ma-
been performed in the foregoing, we have only to properlytrix elementsp,(n#m) vanish, thus producing stationary
integrate the previous resul®5) over ®. This amounts to density operator.
evaluating integrals of the form A closer inspection of Eq(31) shows that off-diagonal
matrix element,,, are not consistent with the requirement
_ 1]” . ® .0 of retardation invariance. So we arrive at the result that a
ls==| sin® dO cosS—sin' = :
2Jo 2 2 general expression for the quantum state of type | unpolar-
ized light is given by Eq(34). We will show in the Appendix

DN . that it is actually the most general one. Moreover, it will turn

—2[0 cos™ '@ sin "6 do. (29 out from the analysis given there that the requirements of

rotational and retardation invariance actually imply the sym-

The result is well knowr8]: metry with respect to left- and right-handed circular polar-
ization. It follows directly from the diagonality of the density
T(s/2+1)T(t/2+1) operatorp", Eq. (34), that the field phase is randomly dis-

(300  tributed. In fact, forming in Eq(34) the trace over the sub-
space corresponding tp polarization yields, of course, a
diagonal density matrix for the-polarization mode. Accord-
ing to the well-known formula for the phase distribution of a
single-mode light field,

ST T([s+t]/2+2)

Hence we obtain from E(25)

55 m, 2 VI [ KJaei-naem

D+ K2+ N[+ m—j —k}/2+ 1)

I'([n+m]/2+2) L .- .
which is based on the phase-state concept originally intro-
Xinn=i) ((m—Kk| (K|, (31))  duced by London9], this means that the phase distribution

1
W@)=5 | 1+ 2 porexi(n-me]|, (39
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is uniform in this case. Interestingly, this is also so for type I A. Type | unpolarized light

unpolarized light, since in the above-mentioned trace opera- ) Natural or thermal unpolarized lighThis is of course
tion applied to Eq(26), the nondiagonal matrix elements areé ye most prominent representative of unpolarized light, nor-
lost too, as a result of the appearance of the Kronecker symy,»y produced by conventional sources. It is distinguished

bol in Eq. (26). Hence we can state that the field phase i other forms of unpolarized light by the property that the
randomly distributed in both type | and type Il unpolarized yistribution function factorizes, f(|E,|2+|E,|?)
light. In fact, preference of certain phases would indicate:g(|EX|2)g(|Ey|2) or  equivalently. f(|E||2+|E)rl|2)

some (;ggulahrity to.l_ae p{ese.nt Iin unpolarifzed lri]glht'hWhiCh:gdEI|2)g(|Er|2) [see Eq(7)], which implies a similar fac-
contradicts the intuitive classical concept of such light meny i-oion™ of * the  correlation functions,  e.g.,

tioned above. (Ex Ej ExE,)=(|E4x|*)(|E,|?). Moreover, it is an important
feature of natural light that ansnultitime correlation func-
_ _ tion can be expressed through the basic second-order corre-
C. Field correlations lation (E (t1)Ex(t2)) =(EJ (t1)Ey(t2)) depending only on
We mentioned already in Sec. | that a basic characteristithe time differencet,—t; [4]. In terms of unpolarized
of unpolarized light is the absence of second-order field corn_photon stateg(n), Egs.(32) and(33), the density opera-
relations related to two orthogonal linear polarization direc-or for natural light can be written as
tions (or, equivalently, to left- and right-handed circular po-
larization), together with the equality of the intensities. A * ~
However, current technology enables us to measure also pra=(1-p)2 2 p"(n+1)p(n), (39)
higher-order correlations. Of special interest are fourth-order n=0
correlations for which different detection schemes have ac\'/vherep:exp{—ﬁw/kBT} is the Boltzmann factor that can be

tually been devisefl2,10]. Of course, it i§ a straightfprward expressed through the mean photon number as
matter to evaluate any correlation function from a given den-p:<n>/(1+<n>)

sity operator, Eq(26) or (34).

In the following, we will specify the nonvanishing fourth-
order correlations that occur in stationary unpolarized ligh
fields. We will focus on classical correlations. In fact, the f(Ex,E,)=consi &(E,|2+|E,[>—10), (39)
latter are readily translated into quantum mechanics, care has
to be taken only to write the field operatorsriormal order  wherel,, is the fixed total intensity.
in the corresponding expectation values. (c) Unpolarized Glauber lightDue to the use of resonator

Requiring rotational invariance, we find that, in fourth mirrors with polarization-dependent reflectivities laser light
order, only the following correlation functions can be differ- js polarized. To a good approximation, it is represented by a
ent from zero, Glauber statéa) referring to a definite polarization mode.

w22 202 However, when a laser will be built without any polarization-
B=(Ex EX>:<Ey Ey>’ dependent element, one would expect that the polarization
changes in a random manner, similar to the phase in single-

(b) Amplitude-stabilized unpolarized light.is described
tby the distribution function

C=(EXEJE,E,), mode operation. This means that the polarization, character-
ized by a point on the Poincasphere, will diffuse over the
D=(E}*EZ)=(E}°ED), latter[12]. Moreover, the phase will undergo a diffusion pro-

cess, too. The result is light described by the density operator
E=(E}°E,E,)=(EfE} ED),

pe=2 exp(—lal®)|al*(n)p(n), (40
F=(E}E}EZ)=(E}°E\E,), (36) n
and, moreover, the restraints where p(n) is the density operator for the unpolarized
n-photon state, Eq32) or (33). Actually, the density opera-
B=2C+D, E=-F (37)  tor (40) is identical to that following from Eq(39) when the
distribution function is taken as GlaubeiPsfunction.
must be obeyed. Exclusion géventually partially circu- (d) Single unpolarized photon$hey can be produced, to

larly polarized light leads to the conditid®=F = 0. Requir- SOme approximation, by drastically attenuating pulses of un-
ing, in addition, retardation invariance, it is inmediately seerpolarized light emitted from a conventional source, e.g., a
that alsoD must vanish. This is the criterion that distin- light-emitting diode. It is well known that an unpolarized
guishes type Il and type | unpolarized light. Higher-orderphoton is in the mixed state,

correlation functions for both types of unpolarized light were N

studied in some detail in Reff11]. p(1)= 3 (]1)4]0)y (O] 4(1]+]0)y| 1)y (1]£(O])

V. EXAMPLES AND SUMMARY = %(|1>I|O>r r<0|l<1|+|0>l|1>r r<1|l<0|)v (41)

In this section we will give some examples of unpolarizedwhich is the simplest unpolarizedphoton state, Eq.32) or
light. (33).
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B. Type Il unpolarized light widespread representative. We have given both a classical

A possible way to produce light of this type is to start and a quantum-mechanical description of those I?ghf{ for_ms,
from linearly polarized light and change the polarization di-SPECifying the general form of both classical distribution

rection randomly, by means of a suitable optically activefunCt!o_”S and density operators consistent with the respective

element driven by a randomly varying external force, utiliz- conditions. I_n constructing those quantum states, averaging
ing, e.g., the Faraday effect. Different forms of linearly po-°Ver the Poincarephere proved to be a valuable tool. Our
larized light thus give rise to different states of unpolarized'®SUlts show that there exists a variety of unpolarized light

light. Formally, we get the latter by integrating along the States. In the second part of this paper we will deal with
equator of the Poincarephere only, i.e., by specializing realistic schemes for actually generating some of those new

o _ : forms of unpolarized light.
W(©)=sind®—/2) in Eq.(26) Note added in proofRecently, we became aware of ear-
nom lier papers by H. Prakash and N. Chan@Pdys. Rev. A4,
pI= p-(n+miz, S 3 /(n)(m) 796(19_7])] and G.S. AgarwalNuovo Cimento Lett1, 53
ed = "M (o i/\k (1971] in which similar problems were studied. Those au-
thors, however, restricted themselves to type | unpolarized
X 8(2j—n,2k—m)|j)[n—j), (m—k|(k|. (42  Ilight and used techniques different from ours.

In the following we list some relevant special cases. ACKNOWLEDGMENTS
(a) Type Il n-photon statélhe density operator reagisf. i
also Eq.(27)] We are grateful to H.-A. Bachor, M. v. Eijkelenborg, U.

Herzog, M. Pavi&, and J. Vaccaro for stimulating discus-
sions and valuable hints.

ﬁ%‘&(m:z—“on(?)|j>||n—j>rr<n—j|.<j|. (43)

APPENDIX: DENSITY OPERATOR FOR TYPE |

(b) Type Il Glauber light. Here we have to insert UNPOLARIZED LIGHT

Pam=exp(=|a)a’a*M(nim!) "2 in Eq. (42). Classically,
one can describe this light by an ensemble of linearly polar- In this appendix we will show that the forit84) of the
ized fields with fixed amplitud&, and random polarization density operator for type | unpolarized light follows uniquely

direction. This means that we can write from the requirements of both retardation and rotational in-
variance, and hence is the most general one.
E,=Eocosp, E,=Eqsing, (44) We start from an expansion of the density operator with

respect to a linear-polarization Fock basis
where ¢ is distributed over the range 0. . ,27 with equal
weight. From this definition field correlations are readily
evaluated. p= > p(ne,ny;me,myn,ny(m,mJ. (A1)
(c) Two-mode squeezed vacuum stétéhile in a two— NNy
mode squeezed vacuum state the two modes are normally MMy

linearly polarized, one can readily depolarize such a field byF. oo . .
. . - : . irst we require invariance under a phase-retardation trans-
converting the linear polarization states into left- and right-

handed circular ones, respectively. The result is a specigﬁ\r/rgstéon’ Eq.(18). The transformed density operator is
example of the above-mentioned type Il unpolarizede 9 y
states. It is given by13]

p= En p(ny,ny;my,my)exd i o(—ng+ny+m,—my)/2]
x Ny

! exp(2i yn)(—tantr)"|n),|n),, (45 r:x,my

coshr

|¢>=§

_ _ X [ny,ny)(my ,m,|. (A2)
wherer is the squeezing parameter agpds a phase.
In summary, we have given a general definition of unpo-The invariance condition, to be fulfilled for arbitrary values

larized light that does not rest on specific properties ofpf ¢ then restricts the density operator to the form
second-order field correlations but is based on three general

principles: (i) invariance with respect to rotation of an or- R
thogonal basis around the propagation axig, symmetry p= > p(ng,ny;m,,my)8(n,—n,,me—m,)
with respect to an interchange of left- and right-handed cir- MMy

cular polarization, andiii) invariance with respect to phase My

retardation, i.e., change of the relative phase between the ><|nx,ny)(my,mx|. (A3)
field oscillations in two orthogonal directions. Fulfilling the

requirementsi) and(ii) only, we arrive at a form of light we In order to impose the condition of rotational invariance

call type Il unpolarized light. When conditiofiii ) is satis- on this density operator, we make use of the well-known fact
fied, in addition, we speak of type | unpolarized light of that rotation of the orthogonal basis, E42), is generally
which natural (therma) light is the most prominent and described by the unitary transformation
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P(9)=exp(—idLy), (A4) Invariance with respect to rotation is then equivalent to com-
A mutability of p andL,,
wherelL, is the angular-momentum operator, which can be

expressed afl4] [p,L,]=0. (A6)
~ 1 i i
_ T oata _ata Let us now calculate this commutator. Applying the operator
Lo=757 (8@, =ayay). (A5) (A5) to Eq. (A3) we obtain

2iL,p= nEn p(ny,ny;me,my)8(n,—ny,m—my){y(n,+1)n,n,+1n,—1)(m,,m,|
xNy
my . my

—Vng(ny+1)[ny—1,n,+1)(m,,my}, (A7)

2ipL2= > p(ny,ny;m,,my) 8(n,—ny,my—my){ym,(my+1)[ny,ny)(m—1,my+ 1]

ny.ny
My, my,

—V(my+1)my[n,,ny)(m,—1,m,+ 1} (A8)

Then the requiremenA6) implies the equation

P(nx_ 1|ny+ 1;m, ymy) \/nx(ny+ 1)5(nx_ ny— 2,m,— my) _P(nx+ l,ny— 1;m, ymy) \/(nx+ 1)ny5(nx_ ny+ 2,my— my)

—p(ny,ny;my+1;my—1)y(me+1)mys(n,—ny—2,m,—m,)
+p(ny,ny;me—1my+1)ym(my+1)8(n,—ny+2m—my)=0 (A9)

from which it follows that the relations

p(ng,ny;m,—1me—n,+ny,—1)y(n,+1)n,=p(n,+1n,—1;m, ,m—n,+n,—2) ym(my,—n,+ n,—1) (Al0)

and
p(ng,ny;m,—1me—n,+n,—1) ym(m,—n,+ ny,—1)=p(n,+1n,—1;m,,m—n,+n,—2)y(n,+1)n, (All)
|
must hold. Obviously, they have a nonzero solution only if p(Ny,NyiNg,Ny) = p(Ne+ 10y —1;n,+ 1,ny_1),(A15)
(n+Lny=my(m,—n,+ny—1). (A12)
Substituting heren,=n—n, (n fixed) and using the abbre-
Putting here viation p(ny,ny;n,,n)=p(n,,ny), we can rewrite Eq.
. (A.15) as
n,&+1=m,—p (p anintegey, (A13)

p(n—ny,ny)=p(n—[n,—1],n,—1), (A16)

we arrive at the condition _
which  means thatp(n—ny,n,) depends only onn,

—pny=pm,, (A14)  p(n—ny,ny)=p,,. This is in perfect agreement with Eq.
(34), which, therefore, has been shown to be a necessary
which implies p=0. [The alternative solutiomy=m,=0 implication of the required invariance with respect to both
makes no sense due to the appearaneg,efl andn,—1in  phase retardation and rotation. Moreover, one learns from the
Eq. (Al11).] Hence the density matrix(n,,n, ;m,,my) must  above analysis that invariance with respect to left- and right-
be diagonal, and, moreover, Eg\11) gives us the relation- handed circular polarization, in fact, need not be demanded,
ship as an additional condition, for type | unpolarized light.



53 UNPOLARIZED LIGHT: CLASSICAL AND QUANTUM STATES 2735

[1] M. Born and E. Wolf,Principles of Opticsgth ed.(Pergamon, Pike and S. SarkaiHilger, Bristol, 1986.
Oxford, 1980. [8] I.S. Gradstein and .M. Ryshilables of Series, Products and
[2] V.P. Karasev and A.V. Masalov, Opt. Spectrost}, 928 Integrals Bd. 2, 1st ed(Harri Deutsch, Thun, Frankfurt/M.,
(1993; see also V.P. Karassiov, J. Phys.28, 4345 (1993; 19812).
Phys. Lett. A190, 387 (1994. [9] F. London, Z. Phys40, 193 (1926.

[3] We conform to the customary convention based on the appaiF1g] H. Paul and J. Wegmann, Opt. Commua2, 85 (1994).
ent behavior of the electric-field vector when viewed face on[11] 3. wegmann and H. Paul, Acta Phys. Slovd6a407 (1995.
by the observer. Left-handed circular polarization then corre{3) This problem is currently investigated experimentally by M.A.

sponds to helicith=+1 and right-handed th=—1. van Eijkelenborg, C.A. Schrama, and J.P. Woerdman, Opt.
[4] L. Mandel and E. Wolf, Rev. Mod. Phy87, 231 (1965. Commun.119, 97 (1995

[5] R.J. _Glauber, uQu_antum Optics and Electronicedited by C. [13] B.L. Schumaker and C.M. Caves, Phys. Rev.34 3093
DeWitt, A. Blandin, and C. Cohen-TannoudjGordon and

(1985.
Breach, New York, 1966 .
[6] K.E. Cahill and R.J. Glauber, Phys. Red7, 1882 (1969. [14] ?3‘?'1((:16;2305' B.E.A. Saleh, and M.C. Teich, Phys. Re40A

[7] R.J. Glauber, irFrontiers in Quantum Optigsedited by E.R.



