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We give a general definition of unpolarized light that rests on invariance properties rather than specific
values of second-order field correlations or, equivalently, the Stokes parameters. It turns out that to require
invariance with respect to rotation around the propagation axis and symmetry with respect to left- and right-
handed circular polarization is not sufficient to fully characterize completely unpolarized light, such as natural
light. Actually, a third requirement demanding invariance with respect to phase retardation is needed. Depend-
ing on whether it is satisfied or not, we speak of type I or type II unpolarized light, and we specify the general
form of both classical distribution functions and density operators consistent with the respective conditions.

PACS number~s!: 42.50.Ar, 42.25.Ja, 42.50.2p

I. INTRODUCTION

Unpolarized light is usually characterized in terms of
second-order correlations, with respect to the electric-field
strength, or, equivalently, physical quantities such as the
Stokes parameters@1#. One speaks of unpolarized light when
~i! there are no correlations between the components of the
~complex! electric-field strength in two orthogonal direc-
tions,^Ex*Ey&5^ExEy* &50, and~ii ! the partial intensities are
equal,^Ex*Ex&5^Ey*Ey&. Here the angular brackets denote a
classical average. Of course, the quantum-mechanical de-
scription is quite similar: the corresponding expectation val-
ues with respect to the field operatorsÊx ,Êy fulfill the con-
ditions ^Êx

†Êy&5^ÊxÊy
†&50 and ^Êx

†Êx&5^Êy
†Êy&. In other

words, the coherence matrix composed of the averages men-
tioned is a multiplum of the unit matrix. Trivially, the latter is
an invariant with respect to a unitary transformation, i.e.,
either a rotation of thex,y basis around the propagation axis
or the transition from linear to circular polarization. We feel
that rotational symmetry is a general property, namely, not
restricted to second-order correlations, of unpolarized light.
More experimentally speaking, we will require that any two
observers who use a different~rotated! linear-polarization ba-
sis, when dealing with unpolarized light, will arrive at the
same results, whatever they measure. For instance, when
they split an unpolarized light beam, with the help of a po-
larizing prism, into two linearly polarized beams, not only
the mean photon numbers in those beams but also their mean
square fluctuations should coincide, and this should be so for
all orientations of the polarizing prism. Actually, our point of
view is not shared by Karasev@2#, who definesunpolarized
light by the specific valuess15s25s350 of the Stokes pa-
rameters considered as quantum-mechanical expectation val-
ues. Not surprisingly, he finds for special examples that the
fluctuations in the aforementioned experiment, in fact, de-
pend on the orientation of the polarizing prism, which leads
him to the paradoxical statement that ‘‘unpolarized light has
a polarization structure, which is latent when the mean inten-
sities are measured and detectable when the noise intensities
are measured.’’

However, it is well known that truly unpolarized light in

our sense, i.e., light without any polarization structure, actu-
ally exists, namely, in the form of natural light emitted by
any thermal source, like the Sun. So our concept is physi-
cally meaningful, and we will ask what is the most general
state, both classical and quantum mechanical, that fulfills the
condition of rotational invariance. Actually, this requirement
does not exclude~eventually partial! circular polarization.
Hence an additional symmetry property, namely, invariance
with respect to the interchange of left- and right-handed cir-
cular polarization, has to be demanded. In addition, it should
be noted that natural light has a further characteristic prop-
erty: It remains unchanged when passing a phase retarder,
e.g., a quarter-wave plate@1#. Hence we will impose, in a
second step, also the condition of retardation invariance on
unpolarized light. It will turn out that this leads to a drastic
reduction of the variety of possible states.

The paper is organized as follows. In Sec. II we present in
some detail our general definition of unpolarized light and
give a classical description of unpolarized light in terms of
distribution functions. In Sec. III we extend this description
by interpreting the classical distribution function as Glaub-
er’s P function, to quantum mechanics. Moreover, we for-
mulate necessary conditions to be obeyed by density opera-
tors describing unpolarized light. In Sec. IV we construct, by
forming averages over the Poincare´ sphere or suitable parts
of it, a very general form of a field density operator that is
both rotationally invariant and symmetric with respect to
left- and right-handed circular polarization. Requiring, in ad-
dition, retardation invariance, we find the most general form
of the density operator that describes truly unpolarized light.
Further we list general properties of fourth-order field corre-
lations characteristic of unpolarized light. Finally, in Sec. V
we discuss some relevant examples of unpolarized-light
states, in particular, the analogs of Fock and Glauber states,
and give a short summary.

II. BASIC CONSIDERATIONS

A. Definition of unpolarized light

According to what has been said in the Introduction, we
require, as the first necessary condition,all measurable prop-
erties of unpolarized light to remain unchanged when the
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x,y basis is rotated by an angleq around the axis of light
propagation, i.e., with respect to the transformation

S Ex8
Ey8

D 5S cosq sinq

2sinq cosq D S Ex

Ey
D . ~1!

~We focus first on a classical description. The extension to
quantum mechanics will be given later.!

Since ~eventually partially! circularly polarized light is
not excluded by the requirement of rotational invariance, we
introduce a second~necessary! condition: The field distribu-
tion function ~or the density operator in the quantum me-
chanical description! must be symmetric with respect to left-
and right-handed circular polarization. We will call light that
satisfies the two conditions mentioned type II unpolarized
light. We reserve the term type I unpolarized light for such
light that, in addition, is invariant with respect to phase re-
tardation. Since only the relative phase is of physical rel-
evance, we will write the corresponding transformation as

S Ẽx

Ẽy
D 5S exp~ iw/2! 0

0 exp~2 iw/2!
D S Ex

Ey
D . ~2!

We emphasize again that type I unpolarized light really ex-
ists in the form of so-called natural light, that is, light emitted
by thermal sources. Our goal will be to find out the most
general state of unpolarized light, of both type I and type II.

B. Classical description

Classically, we will describe a light field by a distribution
function f (Ex ,Ey) . Then, the requirements stated in Sec.
II A have to be fulfilled by this function. Obviously, this is
the case, whenf is a function of corresponding invariants
only. So our primary goal is to construct the latter. This will
be done for the different invariance conditions.

(a) Rotational invariance.Certainly, the appropriate way
to deal with this problem is to pass from linear to circular
polarization, according to the unitary transformation

S El

Er
D 5

1

A2
S 1 i

i 1D S Ex

Ey
D , ~3!

where the subscriptsl and r refer to left- and right-handed
circular polarization@3#. In terms ofEl andEr , the rotation
~1! simply reads

El85e2 iqEl , Er85eiqEr . ~4!

From Eq. ~4! it becomes obvious that the rotation has the
following fundamental invariants:

J15uEl u, J25uEr u, J35ElEr . ~5!

Hence any distribution function that depends only on them,
f̃ (uEr u,uEl u,ErEl), satisfies our first requirement.
(b) Left-right symmetry.This condition evidently imposes

on f̃ the condition that it be symmetric inuEr u and uEl u. So
we arrive at the result that type II unpolarized light is gen-
erally described by a distribution function that depends sym-
metrically onuEl u and uEr u and, moreover, onElEr .

(c) Retardation invariance.To discuss this requirement
we have to go back to linear polarization. From Eq.~3! we
get

uEl u25
1
2 ~ uExu21 iEx*Ey2 iExEy*1uEyu2!,

uEr u25
1
2 ~ uExu22 iEx*Ey1 iExEy*1uEyu2!,

ElEr5
i

2
~Ex

21Ey
2!. ~6!

Obviously, the termsEx*Ey, ExEy* , andEx
2,Ey

2 are not invari-
ant under the retardation transformation~2!. It is only the
sum uEl u21uEr u2 that satisfies this requirement. Hence the
general state of type I unpolarized light is characterized by a
distribution function that depends only on the total intensity
I5uEl u21uEr u25uExu21uEyu2. In fact, natural light is of this
type, the distribution function being given by@4#

f ~Ex ,Ey!5const3exp$22I /^I &%. ~7!

III. QUANTUM-MECHANICAL DESCRIPTION

A. Glauber’s P representation

It is well known that there exists a precise correspondence
between the quantum-mechanical and the classical descrip-
tion of light in the sense that any classical distribution func-
tion f (ax ,ay) can be interpreted as Glauber’sP function
@5#, whereax anday are the complex field amplitudesEx
andEy normalized such thatuaxu2 gives us the mean photon
number in thex-polarized mode, etc. This means that the
quantum-mechanical analog of a classical field characterized
by a distributionf (ax ,ay) is a quantum field described by
the density operator

r̂5E f ~ax ,ay!uax ,ay&^ay ,axud2axd
2ay , ~8!

whereuax ,ay& stands for the direct product of two Glauber
statesuax&x and uay&y referring to two orthogonal linear po-
larization modes and the integration extends over the whole
~complex! ax plane as well as theay plane. With the help of
Eq. ~8! or, equivalently, the representation

r̂5E f̃ ~a l ,a r !ua l ,a r&^a r ,a l ud2a ld
2a r ~9!

with respect to circular-polarization modes, the results ob-
tained in Sec. II for classical fields are readily transferred to
quantum mechanics. However, in this way one will not find
the most general density operator for unpolarized light, since
the manifold of quantum states, compared to that of classical
distribution functions, is in fact greater: Glauber’sP function
may take negative values~which is not possible for a classi-
cal distribution function! or it may even not exist as a non-
pathological function. Actually, quantum states that allow no
positive definiteP representation have attracted special in-
terest, since they represent nonclassical light.

We would like to add that the arguments presented above
apply not only to Glauber’sP function but also to the
Wigner function~in fact, to anys-parametrized quasiprob-
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ability distribution @6#!. Compared to theP function, the
Wigner function has the advantage that it is free from singu-
larities, in any case. So it provides a general description of
quantum states, and in order to represent unpolarized light it
has to have the same mathematical structure as a classical
distribution function~see Sec. II B!. However, this is a nec-
essary condition only, and it should be noticed that a Wigner
function cannot be chosen as an arbitrary function, it is rather
subjected to subtle mathematical restrictions. So one cannot
construct, in an easy way, a generalexplicit form of Wigner
functions representing unpolarized light.

B. Restrictions on the density operator

The preceding discussion motivates us to analyze the
problem of appropriately describing unpolarized light in the
framework of quantum-mechanical density operators. As a
basis we will use Fock states with respect either to linearly
polarized modes,unx ,ny&5unx&xuny&y , or circularly polar-
ized modes,unl ,nr&5unl& l unr& r . To study the effect of a ro-
tation on the density operator, we will use a Fock basis cor-
responding to circular-polarization modes, i.e., we expand
the density operator in the form

r̂5 (
nl ,nr
ml ,mr

r~nl ,nr ;ml ,mr !unl ,nr&^mr ,ml u. ~10!

How does a field stateunl ,nr& transform under a rotation? To
answer this question, we use the familiar representation of
Fock states in terms of photon creation operators,âl

† and
âr
† , respectively,

unl ,nr&5
~ âl

†!nl~ âr
†!nr

Anl !nr !
uvac&. ~11!

Rotation of an orthogonal basis is described by the quantum-
mechanical analog of Eq.~4!,

âl85e2 iqâl , âr85eiqâr . ~12!

Hence the Fock stateunl ,nr& transforms as

unl ,nr&→exp$ i ~nl2nr !q%unl ,nr&. ~13!

Requiring the density operator~10! to be invariant under this
transformation leads us to the first necessary condition:

r~nl ,nr ;ml ,mr !50 unlessnl2nr5ml2mr . ~14!

The left-right symmetry, on the other hand, requires the sec-
ond necessary condition,

r~nl ,nr ;ml ,mr !5r~nr ,nl ;mr ,ml !, ~15!

to be satisfied.
The conditions ~14! and ~15! can be used to check

whether agivendensity operator describes unpolarized light
that is~at least! of type II. However, they are not suitable to
constructdensity operators with the desired properties, since,
in addition, the requirement that the density operator is a
~normalized! positive definite Hermitian operator has to be
fulfilled, which is no simple task. Hence we will proceed in

Sec. IV in a different way, namely, we will construct states
of unpolarized light by suitably averaging over the Poincare´
sphere, that is, over different polarization states.

First, let us formulate the condition of retardation invari-
ance. To do this in a transparent manner, one has to rewrite
the density operator as an expansion in terms of Fock states
unx ,ny& referring to linear-polarization modes. Using the
quantum-mechanical analog of the transformation~3!

S âlâr D 5
1

A2
S 1 i

i 1D S âxâyD , ~16!

one can readily express the statesunx ,ny& in terms of states
unl ,nr& and vice versa. Then the density operator takes the
form

r̂5 (
nx ,ny
mx ,my

r~nx ,ny ;mx ,my!unx ,ny&^my ,mxu, ~17!

and phase retardation is described by the transformation

S ã̂x
ã̂y

D 5S exp~ iw/2! 0

0 exp~2 iw/2!D S âxâyD , ~18!

in accordance with Eq.~2!. It follows from Eq.~18!, together
with the equivalent of Eq.~11! for linear-polarization Fock
states, that the latter transform as

unx ,ny&→exp$ i ~ny2nx!w/2%unx ,ny&. ~19!

Hence retardation invariance is ensured when

r~nx ,ny ;mx ,my!50 unlessnx2ny5mx2my .
~20!

This equation represents the third necessary condition to be
fulfilled by type I unpolarized light. In the Appendix we will
show that this requirement, together with the condition of
rotational invariance, leads to a diagonal form of the density
operator.

IV. CONSTRUCTION OF DENSITY OPERATORS

A. Type II unpolarized light

From a classical point of view, one will think of unpolar-
ized light as a light beam that, nevertheless, has a definite, in
general elliptic, polarization in any sufficiently short time
interval. Of course, observed over a long time interval, the
elliptic polarization will change randomly, and the same will
hold true also for the phase.~To give the phase of elliptically
polarized light a unique meaning, we will identify it with the
phase of thex component of the electric-field vector.! This
picture suggests modeling unpolarized light by an ensemble
of fields that are completely, however differently, polarized
and, moreover, have random phases. Formally, this means
we construct the density operator by forming a suitable mix-
ture of states corresponding to different, in general elliptic,
polarizations. Since the best visualization of the variety of
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polarizations is provided by the Poincare´ sphere, our first
step will be to integrate over the latter, or eventually suitable
parts of it.

The Poincare´ sphere is parametrized by spherical angles
Q andf limited by 0<Q<p and2p<f,p @7#. In par-
ticular, the poles represent circular-, and the equator linear-
polarization states. Following Glauber@7#, we introduce a
creation operator for photons possessing arbitrary polariza-
tion

âQf
† 5eif/2cos

Q

2
âl
†1e2 if/2sin

Q

2
âr
† . ~21!

The correspondingn-photon~Fock! state can then be written
in the familiar form@see Eq.~11!#

un&Qf5
~ âQf

† !n

An!
uvac& ~22!

or, utilizing Eq. ~21!,

un&Qf5(
j50

n AS nj D S cosQ2 D j S sinQ2 D n2 j

3e i~2 j2n!f/2u j & l un2 j & r . ~23!

Then an arbitrary density operator for the polarization state
characterized byQ andf, can be represented in the form

r̂Qf5(
n,m

rnmun&Qf Qf^mu5(
n,m

rnm(
j50

n

(
k50

m AS nj D Smk Dei ~2 j2n22k1m!f/2

3S cosQ2 D j1kS sinQ2 D n1m2 j2k

u j & l un2 j & r r ^m2ku l^ku. ~24!

The density matrixrnm has to satisfy the condition that it is a~normalized! positive definite Hermitian matrix, the simplest
case being a pure state with expansion coefficientscn for which r(n,m)5cncm* . It should be noted thatformally the operator
~21! is not periodic with 2p, but with 4p. In fact, it follows from Eq.~21! that âQ,f12p

† 52âQf
† . Physically, however, this

does not matter because the resulting change of the sign ofun&Qf for oddn has no physical effect, since quite generally a state
vector is defined only up to an arbitrary phase factor. To exclude mathematical artifacts we will integrate over the azimuthal
anglef from 2p/2 to 5p/2, or, equivalently, from 0 to 4p. This gives us the averaged density operator

r̂Q[
1

4pE0
4p

r̂Qfdf5(
n,m

rnm(
j50

n

(
k50

m AS nj D Smk D d~2 j2n,2k2m!S cosQ2 D j1kS sinQ2 D n1m2 j2k

u j & l un2 j & r r ^m2ku l^ku.

~25!

Due to the Kronecker symbol in Eq.~25! r̂Q is a sum of terms that are separately invariant under the transformation~13!; i.e.,
it is rotationally invariant, for any value ofQ.

The density operator~25! is, however, in general not symmetric with respect to left- and right-handed circular polarization.
In fact, the relevant prefactors of the termu j & l un2 j & r r ^m2ku l^ku and its ‘‘image’’ u j & r un2 j & l l ^m2kur^ku are
@cos(Q/2)# j1k@sin(Q/2)#n1m2 j2k and @cos(Q/2)#n1m2 j2k@sin(Q/2)# j1k, respectively. This means that the symmetry opera-
tion in question amounts to interchanging cos(Q/2) and sin(Q/2), for fixedQ. It is only for the special caseQ5p/2 that
r̂Q is symmetric. Noticing, however, that sin(p/41a)5cos(p/42a) and cos(p/41a)5sin(p/42a), we can readily symme-
trize ~25! by adding (1/2)r̂Q1

and (1/2)r̂Q2
, whereQ1 andQ2 lie symmetrically with respect to the equator,Q5p/2. More

generally, we can construct from~25! a density operator that has the desired symmetry property, in addition to being rotation-
ally invariant, by averaging overQ, thereby using a~positive definite! weight functionw(Q) that is symmetric with respect
to the equator,Q5p/2, but otherwisearbitrary. We thus arrive at a very general representation of type II unpolarized light by
a density operator of the form

r̂ ~ II ! 5 E
0

p

dQ w~Q! r̂Q 5 E
0

p

dQ w~Q! (
n,m

rnm (
j50

n

(
k50

m AS n
j D S m

k D d ~2 j2n, 2k2m!

3S cos
Q

2 D j1k S sin
Q

2 D n1m2 j2k

u j & l un2 j & r r ^ m2ku l^ ku . ~26!

In particular, for a state with a fixed total photon numbern, Eq. ~26! reduces to

r̂ ~ II !~n!5E
0

p

dQ w~Q! (
j50

n S n
j D S cos

Q

2 D 2 j S sin
Q

2 D 2n22 j

u j & l un2 j & r r ^ n2 j u l^ j u. ~27!
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We have already indicated by the superscript II that what we
describe by~26! and ~27! is unpolarized light that lacks re-
tardation invariance. This is readily checked. We would like
to mention that there are additional quantum states of type II
unpolarized light not covered by Eq.~26!. In fact, it is ob-
vious that the Fock statesuk& luk& r (k51,2, . . . ), andhence
also arbitrary superpositions of them, are both rotationally
invariant and symmetric with respect to left- and right-
handed circular polarization, the simplest case being a pair of
a left- and a right-handed circularly polarized photon.~This
has been observed already in Ref.@2#.! So we arrive at the
interesting result that quantum optics, in contrast to classical
theory, allows type II unpolarized light to be also in certain
pure states. This is, nevertheless, not so surprising in view of
the fact that even a Fock state with its intrinsic phase uncer-
tainty can be modeled classically only by a statistical mix-
ture. The pure states in question are readily generalized to a
mixture of the form

r̂ ~ II !5(
n,m

r~n,m!un& r un& l l ^mur^mu. ~28!

To find a general representation of type I unpolarized
light, we will follow more closely the intuitive classical con-
cept of unpolarized light mentioned above.

B. Type I unpolarized light

It appears natural that in completely unpolarized lightall
possible polarizations should be present with their correct
weight. Formally, this means that the integration should be
done over thefull Poincare´ sphere, the weight thus being
given by the surface element sinQdQdf. ~Actually we will
integratetwice over the Poincare´ sphere, as has been moti-
vated in Sec. IV A.! Since the integration overf has actually
been performed in the foregoing, we have only to properly
integrate the previous result~25! over Q. This amounts to
evaluating integrals of the form

I st[
1

2E0
p

sinQ dQ coss
Q

2
sint

Q

2

52E
0

p/2

coss11Q sint11Q dQ. ~29!

The result is well known@8#:

I st5
G~s/211!G~ t/211!

G~@s1t#/212!
. ~30!

Hence we obtain from Eq.~25!

r̂̄5(
n,m

rnm(
j50

n

(
k50

m AS nj D Smk D d~2 j2n,2k2m!

3
G~@ j1k#/211!G~@n1m2 j2k#/211!

G~@n1m#/212!

3u j & l un2 j & r r ^m2ku l^ku, ~31!

where the overbar denotes~twice! the average over the
whole Poincare´ sphere. A special case of Eq.~31! is the
unpolarizedn-photon state

r̂̄~n!5
1

n11 (
j50

n

u j & l un2 j & r r ^n2 j u l^ j u. ~32!

Since the corresponding matrix is a multiplum of the unit
matrix, it is trivially invariant with respect to any unitary
transformation, in particular to rotation and phase retarda-
tion, and, moreover, to passing from the circular- to the
linear-polarization basis@see Eq. ~16!#. This means that

r̂̄(n) can also be written as

r̂̄~n!5
1

n11 (
j50

n

u j &xun2 j &y y^n2 j ux^ j u. ~33!

As becomes obvious from Eq.~32!, the density operator

r̂̄(n) is symmetric with respect to left- and right-handed cir-
cular polarization too. Hence it describes, in fact, a special
state of type I unpolarized light. Clearly, a straightforward
generalization of this result is a statistical mixture of
n-photon states~32! with arbitrary weightsrnn ,

r̂ ~ I!5(
n

rnn r̂̄~n!. ~34!

This corresponds either to the assumption that our averaging
procedure starts already from adiagonal, and hencestation-
ary, density matrixrnm5rnndmn describing the excitation of
the polarization modes, or that an additional averaging pro-
cedure has been carried out that makes the off-diagonal ma-
trix elementsrnm(nÞm) vanish, thus producing astationary
density operator.

A closer inspection of Eq.~31! shows that off-diagonal
matrix elementsrnm are not consistent with the requirement
of retardation invariance. So we arrive at the result that a
general expression for the quantum state of type I unpolar-
ized light is given by Eq.~34!. We will show in the Appendix
that it is actually the most general one. Moreover, it will turn
out from the analysis given there that the requirements of
rotational and retardation invariance actually imply the sym-
metry with respect to left- and right-handed circular polar-
ization. It follows directly from the diagonality of the density
operatorr̂ (I) , Eq. ~34!, that the field phase is randomly dis-
tributed. In fact, forming in Eq.~34! the trace over the sub-
space corresponding toy polarization yields, of course, a
diagonal density matrix for thex-polarization mode. Accord-
ing to the well-known formula for the phase distribution of a
single-mode light field,

w~w!5
1

2p S 11 (
mÞn

rmnexp@ i ~n2m!w# D , ~35!

which is based on the phase-state concept originally intro-
duced by London@9#, this means that the phase distribution
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is uniform in this case. Interestingly, this is also so for type II
unpolarized light, since in the above-mentioned trace opera-
tion applied to Eq.~26!, the nondiagonal matrix elements are
lost too, as a result of the appearance of the Kronecker sym-
bol in Eq. ~26!. Hence we can state that the field phase is
randomly distributed in both type I and type II unpolarized
light. In fact, preference of certain phases would indicate
some regularity to be present in unpolarized light, which
contradicts the intuitive classical concept of such light men-
tioned above.

C. Field correlations

We mentioned already in Sec. I that a basic characteristic
of unpolarized light is the absence of second-order field cor-
relations related to two orthogonal linear polarization direc-
tions ~or, equivalently, to left- and right-handed circular po-
larization!, together with the equality of the intensities.
However, current technology enables us to measure also
higher-order correlations. Of special interest are fourth-order
correlations for which different detection schemes have ac-
tually been devised@2,10#. Of course, it is a straightforward
matter to evaluate any correlation function from a given den-
sity operator, Eq.~26! or ~34!.

In the following, we will specify the nonvanishing fourth-
order correlations that occur in stationary unpolarized light
fields. We will focus on classical correlations. In fact, the
latter are readily translated into quantum mechanics, care has
to be taken only to write the field operators innormal order
in the corresponding expectation values.

Requiring rotational invariance, we find that, in fourth
order, only the following correlation functions can be differ-
ent from zero,

B[^Ex*
2Ex

2&5^Ey*
2Ey

2&,

C[^Ex*Ey*ExEy&,

D[^Ex*
2Ey

2&5^Ey*
2Ex

2&,

E[^Ex*
2ExEy&5^Ex*Ey*Ey

2&,

F[^Ex*Ey*Ex
2&5^Ey*

2EyEx&, ~36!

and, moreover, the restraints

B52C1D, E52F ~37!

must be obeyed. Exclusion of~eventually partially! circu-
larly polarized light leads to the conditionE5F50. Requir-
ing, in addition, retardation invariance, it is immediately seen
that alsoD must vanish. This is the criterion that distin-
guishes type II and type I unpolarized light. Higher-order
correlation functions for both types of unpolarized light were
studied in some detail in Ref.@11#.

V. EXAMPLES AND SUMMARY

In this section we will give some examples of unpolarized
light.

A. Type I unpolarized light

(a) Natural or thermal unpolarized light.This is of course
the most prominent representative of unpolarized light, nor-
mally produced by conventional sources. It is distinguished
from other forms of unpolarized light by the property that the
distribution function factorizes, f (uExu21uEyu2)
5g(uExu2)g(uEyu2), or equivalently, f (uEl u21uEr u2)
5g(uEl u2)g(uEr u2) @see Eq.~7!#, which implies a similar fac-
torization of the correlation functions, e.g.,
^Ex*Ey*ExEy&5^uExu2&^uEyu2&. Moreover, it is an important
feature of natural light that anymultitime correlation func-
tion can be expressed through the basic second-order corre-
lation ^Ex* (t1)Ex(t2)&5^Ey* (t1)Ey(t2)& depending only on
the time differencet22t1 @4#. In terms of unpolarized

n-photon statesr̂̄(n), Eqs.~32! and ~33!, the density opera-
tor for natural light can be written as

r̂ nat5~12p!2(
n50

`

pn~n11!r̂̄~n!, ~38!

wherep5exp$2\v/kBT% is the Boltzmann factor that can be
expressed through the mean photon number as
p5^n&/(11^n&).

(b) Amplitude-stabilized unpolarized light.It is described
by the distribution function

f ~Ex ,Ey!5const3d„uExu21uEyu22I 0), ~39!

whereI 0 is the fixed total intensity.
(c) Unpolarized Glauber light.Due to the use of resonator

mirrors with polarization-dependent reflectivities laser light
is polarized. To a good approximation, it is represented by a
Glauber stateua& referring to a definite polarization mode.
However, when a laser will be built without any polarization-
dependent element, one would expect that the polarization
changes in a random manner, similar to the phase in single-
mode operation. This means that the polarization, character-
ized by a point on the Poincare´ sphere, will diffuse over the
latter @12#. Moreover, the phase will undergo a diffusion pro-
cess, too. The result is light described by the density operator

r̂̄G5(
n

exp~2uau2!uau2n~n! !21r̂̄~n!, ~40!

where r̂̄(n) is the density operator for the unpolarized
n-photon state, Eq.~32! or ~33!. Actually, the density opera-
tor ~40! is identical to that following from Eq.~39! when the
distribution function is taken as Glauber’sP function.

(d) Single unpolarized photons.They can be produced, to
some approximation, by drastically attenuating pulses of un-
polarized light emitted from a conventional source, e.g., a
light-emitting diode. It is well known that an unpolarized
photon is in the mixed state,

r̂̄~1!5 1
2 ~ u1&xu0&y yŠ0ux^1u1u0&xu1‹y y^1ux^0u!

5 1
2 ~ u1& l u0& r r Š0u l^1u1u0& l u1‹r r ^1u l^0u!, ~41!

which is the simplest unpolarizedn-photon state, Eq.~32! or
~33!.
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B. Type II unpolarized light

A possible way to produce light of this type is to start
from linearly polarized light and change the polarization di-
rection randomly, by means of a suitable optically active
element driven by a randomly varying external force, utiliz-
ing, e.g., the Faraday effect. Different forms of linearly po-
larized light thus give rise to different states of unpolarized
light. Formally, we get the latter by integrating along the
equator of the Poincare´ sphere only, i.e., by specializing
w(Q)5sinQd(Q2p/2) in Eq. ~26!

r̂ eq
~ II !5(

n,m
22~n1m!/2rnm(

j50

n

(
k50

m AS nj D Smk D
3d~2 j2n,2k2m!u j & l un2 j & r r ^m2ku l^ku. ~42!

In the following we list some relevant special cases.
(a) Type II n-photon state.The density operator reads@cf.

also Eq.~27!#

r̂ eq
~ II !~n!522n(

j50

n S nj D u j & l un2 j & r r ^n2 j u l^ j u. ~43!

(b) Type II Glauber light. Here we have to insert
rnm5exp(2uau2)ana*m(n!m!)21/2 in Eq. ~42!. Classically,
one can describe this light by an ensemble of linearly polar-
ized fields with fixed amplitudeE0 and random polarization
direction. This means that we can write

Ex5E0cosw, Ey5E0sinw, ~44!

wherew is distributed over the range 0, . . . ,2p with equal
weight. From this definition field correlations are readily
evaluated.

(c) Two-mode squeezed vacuum state. While in a two–
mode squeezed vacuum state the two modes are normally
linearly polarized, one can readily depolarize such a field by
converting the linear polarization states into left- and right-
handed circular ones, respectively. The result is a special
example of the above-mentioned type II unpolarizedpure
states. It is given by@13#

uc&5(
n

1

coshr
exp~2ixn!~2tanhr !nun& r un& l , ~45!

wherer is the squeezing parameter andx is a phase.
In summary, we have given a general definition of unpo-

larized light that does not rest on specific properties of
second-order field correlations but is based on three general
principles: ~i! invariance with respect to rotation of an or-
thogonal basis around the propagation axis,~ii ! symmetry
with respect to an interchange of left- and right-handed cir-
cular polarization, and~iii ! invariance with respect to phase
retardation, i.e., change of the relative phase between the
field oscillations in two orthogonal directions. Fulfilling the
requirements~i! and~ii ! only, we arrive at a form of light we
call type II unpolarized light. When condition~iii ! is satis-
fied, in addition, we speak of type I unpolarized light of
which natural ~thermal! light is the most prominent and

widespread representative. We have given both a classical
and a quantum-mechanical description of those light forms,
specifying the general form of both classical distribution
functions and density operators consistent with the respective
conditions. In constructing those quantum states, averaging
over the Poincare´ sphere proved to be a valuable tool. Our
results show that there exists a variety of unpolarized light
states. In the second part of this paper we will deal with
realistic schemes for actually generating some of those new
forms of unpolarized light.

Note added in proof.Recently, we became aware of ear-
lier papers by H. Prakash and N. Chandra@Phys. Rev. A4,
796 ~1971!# and G. S. Agarwal@Nuovo Cimento Lett.1, 53
~1971!# in which similar problems were studied. Those au-
thors, however, restricted themselves to type I unpolarized
light and used techniques different from ours.
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APPENDIX: DENSITY OPERATOR FOR TYPE I
UNPOLARIZED LIGHT

In this appendix we will show that the form~34! of the
density operator for type I unpolarized light follows uniquely
from the requirements of both retardation and rotational in-
variance, and hence is the most general one.

We start from an expansion of the density operator with
respect to a linear-polarization Fock basis

r̂5 (
nx ,ny
mx ,my

r~nx ,ny ;mx ,my!unx ,ny&^my ,mxu. ~A1!

First we require invariance under a phase-retardation trans-
formation, Eq. ~18!. The transformed density operator is
given by

r̂̄5 (
nx ,ny
mx ,my

r~nx ,ny ;mx ,my!exp@ iw~2nx1ny1mx2my!/2#

3unx ,ny&^my ,mxu. ~A2!

The invariance condition, to be fulfilled for arbitrary values
of w, then restricts the density operator to the form

r̂5 (
nx ,ny
mx ,my

r~nx ,ny ;mx ,my!d~nx2ny ,mx2my!

3unx ,ny&^my ,mxu. ~A3!

In order to impose the condition of rotational invariance
on this density operator, we make use of the well-known fact
that rotation of the orthogonal basis, Eq.~12!, is generally
described by the unitary transformation
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P̂~q!5exp~2 iqL̂2!, ~A4!

where L̂2 is the angular-momentum operator, which can be
expressed as@14#

L̂25
1

2i
~ âx

†ây2ây
†âx!. ~A5!

Invariance with respect to rotation is then equivalent to com-
mutability of r̂ and L̂2 ,

@ r̂,L̂2#50 . ~A6!

Let us now calculate this commutator. Applying the operator
~A5! to Eq. ~A3! we obtain

2i L̂ 2r̂5 (
nx ,ny
mx ,my

r~nx ,ny ;mx ,my!d~nx2ny ,mx2my!$A~nx11!nyunx11,ny21&^mx ,myu

2Anx~ny11!unx21,ny11&^my ,mxu%, ~A7!

2i r̂L̂25 (
nx,ny
mx,my

r~nx,ny;mx,my!d~nx2ny,mx2my!$Amx~my11!unx,ny&^mx21,my11u

2A~mx11!myunx,ny&^my21,mx11u%. ~A8!

Then the requirement~A6! implies the equation

r~nx21,ny11;mx ,my!Anx~ny11!d~nx2ny22,mx2my!2r~nx11,ny21;mx ,my!A~nx11!nyd~nx2ny12,mx2my!

2r~nx ,ny ;mx11;my21!A~mx11!myd~nx2ny22,mx2my!

1r~nx ,ny ;mx21,my11!Amx~my11!d~nx2ny12,mx2my!50 ~A9!

from which it follows that the relations

r~nx ,ny ;mx21,mx2nx1ny21!A~nx11!ny5r~nx11,ny21;mx ,mx2nx1ny22!Amx~mx2nx1ny21! ~A10!

and

r~nx ,ny ;mx21,mx2nx1ny21!Amx~mx2nx1ny21!5r~nx11,ny21;mx ,mx2nx1ny22!A~nx11!ny ~A11!

must hold. Obviously, they have a nonzero solution only if

~nx11!ny5mx~mx2nx1ny21!. ~A12!

Putting here

nx115mx2p ~p an integer!, ~A13!

we arrive at the condition

2pny5pmx , ~A14!

which implies p50. @The alternative solutionny5mx50
makes no sense due to the appearance ofmx21 andny21 in
Eq. ~A11!.# Hence the density matrixr(nx ,ny ;mx ,my) must
be diagonal, and, moreover, Eq.~A11! gives us the relation-
ship

r~nx ,ny ;nx ,ny!5r~nx11,ny21;nx11,ny21!.
~A15!

Substituting herenx5n2ny (n fixed! and using the abbre-
viation r(nx ,ny ;nx ,ny)5r(nx ,ny), we can rewrite Eq.
~A.15! as

r~n2ny ,ny!5r~n2@ny21#,ny21!, ~A16!

which means thatr(n2ny ,ny) depends only onn,
r(n2ny ,ny)5rnn . This is in perfect agreement with Eq.
~34!, which, therefore, has been shown to be a necessary
implication of the required invariance with respect to both
phase retardation and rotation. Moreover, one learns from the
above analysis that invariance with respect to left- and right-
handed circular polarization, in fact, need not be demanded,
as an additional condition, for type I unpolarized light.
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