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The problem of photon creation from vacuum in an ideal cavity with vibrating walls is studied in the
resonance case, when the frequency of vibrations equals twice the frequency of some unperturbed electromag-
netic mode. Analytical solutions are obtained in two cases: for the one-dimensional (recaler electrody-
namicg and for the three-dimension@D) cavity. In the first example, we have a strong intermode interaction;
nonetheless, an explicit solution in terms of the complete elliptic integrals is found. The rate of photon
generation in the principal mode rapidly assumes a constant value proportional to the product of the frequency
by the dimensionless amplitude of oscillations. The total amount of photons created in all the modes increases
in time ast?. In the second example, the eigenmode spectrum is nonequidistant and the problem can be
reduced to the problem of a single harmonic oscillator with a time-dependent frequency. The number of
photons in the resonant mode of a 3D cavity increases exponentially in time and the field appears in a highly
squeezed state with a strongly oscillating photon distribution function. The problem of detecting the created
photons is analyzed in the framework of a simplified model, when a detector is replaced with a harmonic
oscillator. It turns out that the presence of the detector changes the picture drastically: both the detector and the
field mode occur in highly mixednonthermal quantum states, with identical nonoscillating photon distribu-
tion functions. The detector gains exactly half of the total energy of excitation inside the cavity. The estima-
tions show a possibility of creating up to several hundred or even thousand photons, provided that the cavity’s
Q factor exceeds 8 and the amplitude of the wall’s oscillations is greater than¥@m at a frequency of
the order of 10 GHz.

PACS numbegs): 42.50.Dv, 03.65-w

I. INTRODUCTION with the time-dependent boundary conditions

Recent progress in experiments with highelectromag- A0 =A(L(t),t)=0 (1.2
netic cavities provides a possibility to verify the most deli-
cate features of quantum phys[ds-4]. Among them there is [L(t) is the given law of motion of the right boundary,
a wide class of phenomena combined under the naome  whereas the left boundary is assumed to be at rest=dl]
stationary Casimir effectNSCE [5], which are caused by was obtained in Ref20], where the transverse vibrations of
the reconstruction of the quantum state of a field due to & string with a uniformly varying length (t)=_L(1+ at)
time dependence of the geometrical configuration. The maniyere studiedsee alsd21], where not only the string, but
festations of these phenomena can be divided conventionallyiso the electromagnetic field in a one-dimensidaal) cav-
in two (closely connectedgroups. The first one is related to ity with a uniformly increasing length was consideyeorty
the modification of the known Casimir for¢6], when it acts years later, this solution was rediscovered2a] [where an
on amoving boundary. This problem was studied, €.g., inexact solution foiL(t) = (t?+1)*? was also found and some
Refs.[7-13 (for ideal mirrorg and[14-19 (for partially  graphical method of finding the solution for an arbitrary law
reflecting and dielectric mirro)s Here we address another of motion L(t) was propose]j The evolution of the classical
manifestation of the NSCE, namely, the effecpbibton cre-  electromagnetic field between uniformly movifig opposite

ation in an empty cavity with moving boundaries. directiong ideal walls of a one-dimensional resonator was
As far as we know, the first exact solution of the waveinvestigated in[23,24. The three-dimensional rectangular
equation in one space dimensiome assume=17=1) cavities (waveguides with uniformly moving walls were

considered in the framework of the classical electrodynamics
) 5 in [25]. The case of a spherical ideal cavity whose radius was
A A (1.1) a linear function of time was studied j@6]. Exact solutions

o> ox? for the transverse vibrations of a two-dimensional rectangu-
lar membrane, when the length of one boundary uniformly
increased in time, was found [27].
* Electronic address: dodonov@sci.fian.msk.su Moore’s papel{28] seems to be the first one devoted to
TElectronic address: aklimov@anen.cencar.udg.mx the quantum aspects of the problem, in particular to the prob-
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53 GENERATION AND DETECTION OF PHOTONS IN A CAVITY ... 2665
lem of generating photons from vacuum in the cavities withturn into the asymptotic formulas of Refd.2,34,33 in the
moving boundaries. Considering a model of the “scalar elecappropriate limit cases. For this purpose we use an approach
trodynamics”(when the field depends on a single space codifferent from Moore’s. Namely, we shall expand the field
ordinatg, Moore found a complete set of solutions to the operator in the Heisenberg picture over the “instantaneous”
problem(1.1) and(1.2) in the form eigenfunctions of the Helmholtz equation. Actually, such a
_ o , method of solving the problems with moving boundaries was
An(X,)=(4mn)~"qexd —imnR(t—x)] known for a long time(see, e.g.[38]). In connection with
—exf —imnR(t+x)]}, (1.3  the problem involved it was used in Ref89-43, but only
approximate or numerical solutions of the arising infinite set

where functionR(&) must satisfy the functional equation  of coupled ordinary differential equations were found. We
shall demonstrate that in the resonance case these equations

R(t+L(t))—R(t—L(t)=2. (1.9 can be simplified significantly so that they can be solved
exactly
This solution was discovered independently28] [note that In general, the three-dimensional situation is more com-

for a linear function L(t) such an approach was used actu-plicated than the simplified 1D model of the scalar electro-
ally in [20,21]]. However, only a few exact solutions of Eq. dynamics. For this reason, the exact solutions of the quantum
(1.4) are known nowadays for the functiohgt) different  problem in three space dimensions were found until now
from the linear one. Most of them were found in the frame-only in the case otiniformly moving ideal walls[8,44]. A
work of the “inverse problem,” where the unknown function singleideal boundary moving along an arbitrary prescribed
L(t) was extracted from Eq1.4) with the given dependence nonrelativistic trajectory was considered [id5] (see also
R(¢) [30,31. Approximate solutions of Eq(l1.4), valid in  [46] for the 1D model; a more general case of a moving
the case of a nonrelativistic motion of the boundary, weredielectric medium with a single boundary was studied in
found in[11,28,29,32,3Bin the form of the asymptotic se- [19]. We shall demonstrate that in the parametric resonance
ries with respect to a small parameter of the order ofcase the problem can be also treated analytically. This re-
dL/dt (see alsd24]). However, these solutions are not valid markable possibility is due to the fact that the intervals be-
when the boundary oscillates at a frequency comparable wittween the neighboring field eigenfrequencies are not constant
the frequencies of the field modg34]. But just this case in the 3D cavity. As a consequence, a reduction of the field
seems to be the most interesting from the point of view of goroblem to the problem of a parametrically excited one-
possible experimental verification. Indeed, if the characterisdimensional oscillator becomes possible. In contradistinction
tic time of changing the position of the wall is much longer to the 1D model, the number of photons in the resonance
than the period of the field oscillations, then we have ammode increases in time exponentially and the field appears in
adiabatic situation, where no photons can be prodysed a highly squeezeduantum state with a strongly oscillating
Appendix A). photon distribution function.

Since the maximal velocity of the boundary, that could be  An important point is how to detect the photons created
achieved under the laboratory conditions is very small infrom the vacuum due to the motion of the wall. One of the
comparison with the speed of light, the only hope to observeossibilities is to put some probe object inside the cavity. For
the effect can be connected with thesonancebetween the the cavities with dimensions of several centimetges, for
mechanical and field oscillations, where a gradual accumuthe eigenfrequencies about 10 GQHa realistic detector
lation of the small changes in the quantum state results fieould be some Rydberg atom. Here we confine ourselves to a
nally in a significant effect. Thus it is worth considering first simplified model of a probescillator resonantly interacting
an ideal parametric resonance case, where the boundary pevith the field mode by means of the standard electromag-
forms small harmonic oscillations at twice the unperturbechetic coupling. We show that the interaction drastically
eigenfrequency of the lowest field mode. For this law ofchanges the photon statistics, so that both the field and the
motion, we found earlief12,35 an asymptotical solution of probe oscillators appear in highly mixed, but moderately
Eq. (1.4), valid in the long-time limite wt>1, € being the squeezed, nonthermal states, with identical photon distribu-
dimensionless amplitude of the boundary oscillations. Surtion functions, which do not exhibit oscillations.
prisingly, this solution gives the correct result even in the The plan of the paper is as follows. Sections II-VI are
opposite case wt<1, which was considered earlier i84]. devoted to the 1D model. In Sec. Il we give the scheme of
According to[12,35, with ewt>1 the photon generation the field quantization in the case of moving boundaries. In
rate becomes time independent, being proportional to th&ec. Il we take advantage of the method of averaging over
product of the amplitude of wall oscillations by their fre- fast oscillations to obtain simplified equations for slowly
qguency. An exact solution for aalmost harmoniclaw of  varying amplitudes in the resonance case. The solutions of
motion was given recently if.3]. The evolution of thelas-  these equations will be found in Secs. IV and V. In Sec. VI
sical field in a 1D ideal cavity, whose boundaries performedwe calculate the rate of photon generation in the principal
harmonic oscillations at a frequency comparable with themode and the total number of photons in all the modes. Then
field eigenfrequencies, was investigated [B6], while a  we turn to the 3D case. In Sec. VIl we reduce the field
similar problem for the spherical cavity was considered inproblem to the problem of a one-dimensional parametric os-
[37]. cillator. Then, using the theory of a quantum nonstationary

In the present paper we shall obtain explicit expressiongscillator[47], we calculate all the characteristics of the reso-
for the rate of photon generation, both in the principal modenance mode. The interaction between the probe oscillator
and in all modes, which hold for any moment of time andand the resonance mode is the subject of Sec. VIII. Section
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IX is devoted to the discussion of the possibility of observing QM(0)=8¢n, ' (M(0)= —i wpSyn-

the phenomenon under laboratory conditions. We arrive at

the conclusion that the current experimental level is suffi-This way we satisfy automatically both the boundary condi-

cient, in principle, to discover the effect. tions (1.2) and the initial condition(2.3). Putting expression
The aim of Appendix A is to demonstrate explicitly the (2.4) into the wave equatiofil.1), one can, after some alge-

impossibility of photon creation in the case of an adiabaticora, arrive at an infinite set of coupled differential equations

motion of the wall. Appendix B contains the details of cal- [43]

culations of the propagator for the two-dimensional coupled

system “field oscillator plus probe oscillator.” Some useful .

formulas related to the properties of multidimensional f<”>+w§(t)Qf<“)=2)\(t); 9ka<“)+)‘ E Okj (n)

Gaussian quantum states are given in Appendix C.

2 - q.0M
Il. FIELD QUANTIZATION WITH MOVING BOUNDARIES A (t)% 93kgn Qi @9
We adopt the scheme of the field quantization in an empty, hare
cavity with time-dependent boundary conditions, proposed
by Moore [28] [for its generalization to the case when the Ko ( )
cavity is filled with a(nondispersivenonuniform and time- w(t)= , AN()=—=

L

nd the constant antisymmetric coefficieg;§ read

dependent dielectric medium s¢48]]. Let us consider a L)’

cavity formed by two infinite ideal plates, one being at rest at,
x=0, with the other moving according to a prescribed law
L(t)>0 whent>0. Confining ourselves to the electromag-
netic modes whose vector potential is directed alaraxis, Okj= —gj=(— 1) " k2 (j#k). (2.6
we can write down the field operator the Heisenberg rep-

resentation Ax,t) att<0 (when both the plates were at iest gquation (2.5 possesses exact first integrals. Namely, for
as any two sets of solutiongQ{"} and{Q{?},

- 1  nwx- . . .
Ain=2; ﬁsml_—obnexp(—lwnt)vL Hec., (2.2 ; [Qf<1>Qf<2)—Qﬁl)QQ)]“‘Z)\(t)E gikQi”'QI?'=const

WhereBn means the usual annihilation photon operator andor arbitrary functionsw(t) andA(t). These integrals corre-
w,=mn/Ly. The choice of coefficients in Eq2.1) corre- spond to the following conserved quantity

sponds to the standard form of the field Hamiltonian
IA\? 1
X (E) + E wn(b by+ 5
(2,2) where A;(x,t) and A,(x,t) are arbitrary solutions of the

wave equation satisfying the boundary conditions.

For an arbitrary moment of time the field operator can be If the wall returns to its initial positiorL, after some

written as interval of timeT, then the right-hand side of E(R.5) dis-
appears, so dt>T one gets

1 (Lo
8

ING
ax

L(t) . .
f (A1A,—A1A,)dx=const
o 0

A 1 .

A(X,I)ZZE ﬁ[bnd/(”)(x,t)Jr H.c.]. Qf(n)(t)z ff(n)e_iwkt-f— ﬂ(kn)eiwkt, 2.7
To find the explicit form of functions (™ (x,t), g“ andnk”) being some constant coefficients. Consequently,
n=1,2,..., wehave to take into account that the field op- at t=T the initial annihilation operator@ cease to be
erator must satisfyi) the wave equatioft.1), (ii) the bound- “physical” due to the contribution of the terms with “incor-
ary conditions(1.2), and(iii) the initial condition rect signs” in the exponentials expit). Introducing a new

set of physical operator, anda/., which result, at>T,
- . nmx ] in relations such a2.1) and (2.2), but with a,, instead of
¥ (x,t<0)—smL—oexp(—|wnt). (2.3 B one can easily check that the two sets of operators are
related by means of the Bogoliubov transformation
Following (tr)we approach of Ref$39-43, we expand the
. n X : . ) R .
fnuenocl'jg)rk;;/;is(x,t) in a series with respect to thastanta- émZE (Banm+ bgﬁ:m)! 2.9

>0 E (M)~ |22 KX with the coefficients
M(x,t>0)=2, Q™ (1) L(t)smm

(2.9
(n \[ (n
with the initial conditions \[g » Bam= ' (2.9
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The amount of photons created in theh mode equals the L(t)=Lo[1+¢& sin(2w;t)], wy=m/L,. (3.1
average value of the operatéﬁ]ém, since just this operator
has a physical meaning &t T. Assuming that initially the ~Assuminge <1, it is natural to look for the solutions of Eq.
field was in the vacuum sta{®,) (defined with respect to (2.5 in the form (2.7), but now we allow the coefficients
the initial operatorsf)n), one gets gﬁ,? and nﬁﬁ) to be slowly varying functions of timeThe
further procedure is well known in the theory of parametri-
B rn - cally excited systemgb0—-52. First we put expressio(2.7)
Fm=(0p|a} A/ Op) = ; | Boml*= mngl ~ 7|2 into Eq.(2.5 and neglect the termé 7 (having in mind that
(2.10 &, m~e, while €, 7~¢?), as well as the terms proportional to
_ o o ~ N2~¢£2. Multiplying the resulting equation fof), by the
The calculation of the last sum in this equation is our firstizsiors expid) and expliamd) and performingaveraging
goal. over fast oscillationswith frequencies proportional te,
(since the functiong, » practically do not change their val-
ues at the time scale ofi? w,) we get the equations faf,
and 7, respectively. After some algebra we arrive at the

) o ) system of equations looking much more simple than the ini-
Equation(2.5 forms an infinite set of coupled equations 3| gne:

with time-dependent coefficients, moreover, each equation

also contains an infinite number of terms. The simplest at- d ) - -

tempt to simplify these equations seems to neglect their grbr — T +3&, (3.2
right-hand sides completely, since the functiogt), which

Ill. SIMPLIFIED EQUATIONS IN THE RESONANCE
CASE

is proportional to the velocity of the wall, is very small in d

real conditions. Then one would arrive at a system of equa- a_g(k”)=(k+ 2)e,—(k—2)&V,, k=2 (3.3
tions describinguncoupledoscillators with time-dependent

frequencies. However, this simple ideawisong Indeed, let d

us evaluate the relative magnitudes of terms in both sides of — 7,<1“>= — g<l“>+377g‘>, (3.4
Eq. (2.5). If the relative displacement of the wall’s position dr

SL/L is characterized by some dimensionless parameter

and the characteristic frequencihe inverse characteristic

time) of the motion isw,,, then\ ~ ew,,, so the three groups

of terms on the right-hand side are proportionakto,w; ,

ew?, and €2w?, respectively. Since is very small under

the laboratory conditionésee the discussion in Sec.)Xall 1

these terms are much smaller than the leading terms on the T= Eswlt' (3.6)

left-hand side, whose order i®2. However, one should

compare the terms on the right-hand side not with the leadyhe initial conditions now read

ing terms on the left-hand side, but with therrections to

the leading termsdue to the variations of the frequency. ENO0) =6, 7(0)=0. (3.7

These corrections are proportional t6(w§)~wk5wk

~wZe. Consequently, the right-hand side terms can be neAlthough the new system also consists of an infinite number

glected only under the conditian, <y, i.e., in the case of Of equations, each equation separately contains now only

an adiabatic motion of the wall. But in the adiabatic situa- three terms. _ _ _

tion, evidently, no photons can be generated, as was demon- It is worth noting that if we deleted the right-hand side of

strated explicitly, e.g., ii32,40,49 (see also Appendix A Ed. (2.5 from the beginningfollowing an incorrect “naive”
Thus, the photons can be created only provided tha@PProach then we would obtain a quite different system of

wy~wy. In such a case, the first two groups of terms on thetguations, without termé, and 7, with m>1 on the right-

right-hand side of Eq(2.5) have the same order of magni- hand sides. This example demonstrates explicitly why the

tude as the corrections on the left-hand side. Besides, Naive approach is wrong. .

strong intermode interactiorexists [12,35,4] due to the In contradistinction teexactequations(2.5), Egs. (3.2—

equidistantcharacter of the eigenfrequency spectrum in the(3-5 are approximate. However, it should be emphasized

1D cavity. Nonetheless, there exists a spenihadiabatic ~ that the degree of approximation is very good wheal

case, when Eq(2.5) can be simplified significantly. More- (this parameter can hardly exceed the value of the order of

over, just this case seems to be the most similar to the redi0” ' in realistic situations; see Sec.)Xin particular, the

experimental situation. Indeed, the most realistic law of mounitarity conditionfor the Bogoliubov transformatio(2.8),

tion of the wall corresponds to itearmonic oscillationsvith

some small amplitude and it is clear that the most significant > (anm®=1Baml®d =1, (3.9

effect can be achieved under the condition of plagametric m

resonancewhen the frequency of the wall’s vibrations coin- ]

cides with twice the frequency of some electromagnetidS @n exact consequencd the new equations. Indeed, mul-

mode. So let us consider the following law of motion of thetiplying both sides of Egs(3.9 and (3.5 by k& or

wall: k7", respectively, and performing the summation oker

nf(n)z(k+2)77(krlr)2_(k_2) 77(er)2, k=2. (35)

2o

Here we have introduced a new “slow” time scale
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one gets the relationdhereafter the over-dot denotes differ- EIVILEE] MM 1
entiation with respect to the slow time Fyi S 3 —ui"(7) z+ (4.9
T z Jz
ke g(n) — KM 7= — gm 3.9 IN(M 1 INM 1
2 KEDEN =20 ko == & (39 ——=|- 2| (| -] @10

resulting in the identity Let us consider Eq4.9). For the given function{"(7) its

solution satisfying the initial conditioM (M (0,z)=z" reads

2 KEMP =[P =n, (3.10
1+22—e *7(1—-2%)|"? r
MW(7,2)= 2~ 4r 2 _zf 1
which is equivalent to Eq3.8) due to Eq.(2.9). 1+z°+e "(1-2) 0
It is remarkable that even modes are not coupled to the 1-72\2 —12

odd ones. Moreover, one can easily verify that due to the -1 e & M (r=x)dx.
initial conditions (3.7) all the functions7{"(t) equal zero, 1z
provided either of the sufficas or k is an even number: (4.1

7ol (t)= 72 (t)=0. Since the summation in E¢4.7) begins ak= 1, the function

MM (r,z) must satisfy the boundary condition
Consequently, there is no creation of photons in the even

modes(see alsd12,35,41). Thus we need the solutions of IM(7,2)] 92| ,_ o= " (7). (4.12
Egs.(3.2—(3.5) only for the odd values of the indicesand o ] ) ) )
K. But the derivative of the first term in the right-hand side of

Eq. (4.11) with respect taz equals zero az=0. Thus

IV. REDUCING TO A SINGLE INTEGRAL EQUATION r
&M(”)(r,z)/&z|Z:0=Iimf wiV(7—x)f(x;z)dx,

It is convenient to introduce the variables z2-0J0
w"=E0+ 7Y, =" -5, (4.1)  where the function
which satisfy a “more homogeneous” set of equations s -z2\? 7%
f(x;z2)=8ze ¥ 1—| ——=| e =
d 1+z
M_ _ My 3,0m 4.2

drit Ma Toks (4.2 possesses the following properties: Jimgf(x=0;z)
=lim,_o(1+2%)°%z?=»,  lim, of(x#0;2)=0, and
[of(x;2)dx=(1+2%)%(1+2)> Consequently,

d
— ,,(n_ (n) (n)
gtk = (kE2Qmc=(k=2me,, k=3 (A3 i e 7)= 5(x), giving rise to Eq(4.12).

Due to the definitior(4.7), M("(7,0)=0 for any value of
7. This observation immediately results in the closed integral

_— (n)_ _(n) (n) .
=3, 449 equations for the functiona{"” with n=1,3, .. . .
(n) —47\ n/l2
d Ty (T— x) 1 1-e
= me (N (ke 2)p(M = i _
=kt 2)nl, - (k=2)1nl,, k=3 (45 W Tre o (4.13
and the initial conditions In a similar way one can obtain an integral equation for the
. - function »{")(7). However, it is convenient to introduce a
my (0)=1 7 (0)= Jyy - (4.9 function
To get rid of the infinite number of equations we introduce A7) =e* " (7) (4.14
two generating functions '
- obeying the equatiofagain forn=1,3,...)
(n) _ (n) k
M (T,Z) kzl My (T)Z y (47) ,r)\(n (7_ X) 1 . 1_e747 n/2 il
\/ﬁ 1te % - (4.19
— (n) k . . . L
N(n)(T,Z)—kzl n 1z (48 Let us consider first the case of=1. Differentiating both

sides of Egs(4.13 and (4.15 with respect tor and taking
wherez is an auxiliary variable and the summation is per-into account the initial conditiong{”(0)=x{"(0)=1 one
formed over odd values ok. Using relations such as can verify the relations
kz*=2z(dZ*/dz), it is not difficult to obtain the following 3 O W
first-order partial differential equations: M= T T ML (4.16
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A=A+ pl. (4.177  Comparing it with the second equality (4.26), we arrive at
the identity
Besides, there exists an additional identity
: 1
(D 1\ (1) — gy (1)
pEE S P11, (429

which is equivalent to

4.18 which is exactlyequivalent to the unitarity condition of the

()| gt (1)
py e =0. Bogoliubov transformatiori2.8)

From Egs.(4.16—(4.18 one gets

i (4.19 2 (|aml?=1Bul® =1, (4.29
= - 0. @20
due to Eq.(2.9.
At n=3 the same proceduféut with different initial con- Comparing Egs(3.2—(3.5 with superscriptn=1 and
ditions «{M(0)=\{"(0)=0] leads after simple algebraic Egs.(4.19, (4.20, (4.24), and (4.29), it is not difficult to
manipulations to the recurrence relations check the relations

2np{" 2= —2npM— V- wVHNY, (4.2 i o
“ e €=~ 12 + DL,
2" = 2n+ NP+ VAP, 422
Ci+D_—1)i2i+1)nH
Their consequence is the relation n (=D Dy
u AN PFD =\ (4.23 For thetotal rate of photon generation ail the modesve
get, using Eqs(2.10 and (3.9), the expression

which is valid actually fom=1. Subtracting from Eq4.21)
a similar equation withm replaced byn— 2, and replacing the
differencer (" —\{""2) by the sum,u,(”)+,u,(” 2)| one can,

2
AP =3 Lo e,
after S|mple algebra arrive at the three-term recurrence rela- T n
tion (4.30

a2 =n =2 _ ;0 . T
M1 M1 K1 Differentiating it once more, we get

d7

Similarly, adding to Eq.(4.22 a similar equation with .

n—2 instead of and using again Eq4.23, one can arrive d ﬁ'/): _2 —[77(”)5 + n(”)f(”)]
at a relation for the functions{", which results in exactly dr? ! '
the same recurrence relation for the functiofy :

nv<1“+2)= nv(ln—z)_ i’<1n)- Then Egs(4.19, (4.20, (4.24) and(4.25 lead to the simple
formula
Consequently, we have the same relations for the functions
& and 7" d27
, 57 = 2L P01, (4.3)
ng P =ng"P-g", n=3 (4.24
np"*P=ny""2— 5"  n=3. (4.25  Consequently, we need only two functiong{")(7) and

£Y(7) to calculate all physically interesting characteristics

An immediate consequence of Eq4.19 and (4.25 is @  of the system under study. To find these functions we must
closed expression for the photon generation rate in the prinsolve Eqs(4.13 and (4.15.

cipal cavity moddgsee Eq(2.10 with m=1; remember that

the summation is performed ovedd numbe@
V. SOLVING INTEGRAL EQUATIONS

dr;y _ E VM= —29P(nEN(r). (4.26 Since we have convolutionof two functions on the left-
dr 4=1n hand sides of Eq$4.13 and(4.159), it is natural to apply the
. ] Laplace transformatiorio these equations. Using the known
Moreover, Eqs(4.20 and (4.24) result in the relation integrals[see, e.g.[53], Egs.(3.191.3 and (3.197.3] one
w can find the foIIowing expressions for the Laplace transforms
> ;gﬁm'&&”): 2P (n&P(n. @29 ﬁgﬁsi)(es‘):tsgg 1(s) of the functions{”(r) and »{’(7),
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s 1 yields
I'=+<=
(n) 8 2 +
()= —gr—7g7 (5N, B f f dy dz esv+?
F&%{ﬁ Jil-eY)(1-e?’
S Since expfsa is the Laplace transform of the function
ri=+1 o(7—a), we get
) 8
(s) s 1 71 (s8N, . dy d
z z
F§+§F(§) R
V(l-eY)(1-e7?
where 101 dx

a ;fef\/x(l—x)(x—ef) '

1
I(s,n)= f x4 (1—x)"2(1+x) "2 dx
0

The last integral can be transformed to the standard form of
the complete elliptic integral of the first kif®3]

_ F(Z)F(”g F(

sns 1 1
F(s+1+n AP AE I oo [
- _ K)= ’
4 2 J1—k%sifa

and F(a,b;c;z) is the Gauss hypergeometric function. For resulting in the expression
n=1 we havec=a—b+2 for which an explicit expression

for the hypergeometric function is knows4]: 2
R(7)=—K(J1—-e ") 6(7), (5.3
2 ar ['(a—b+2) &
F(a,b;ja—b+2;—-1)=
b-1 a i % 6(7) being Heaviside’s step function. Then E¢s.1)—(5.3),
2 2 2 together with the initial condition&t.6), lead to the relations
1+a a M(ll)(T)Z—;E[E_MK(\/l—e_&)].
I'N——|T{1+=-b
2 2
190
This formula leads to the relations vW(r)== —-IK(V1- e 87)].
a oT
s 1\7°2
1 s r §+ 5 It is convenient to introduce the notation
o
(8)=511-3 S : (5.9
rig+1 =Jl-e %, k=yl1—-«*= (5.9
) and to use the differentiation rul¢S3]
s
{3
1 8 dK(x) E(x) K(xk) dE(xk) E(x)—K(k
(1)(3)_ 1—= (5.2 ()_ (2)_ (), (): (k) (),
2 8 s 1 dx KK K dx K
Ilg+s3 (5.5

So we have to find the explicit expression for the functionwhere
R(7), whose Laplace transform reads

2
_ I'(s) 12 E(K)=j day1— k3sirfa
R(s)= 0
| s+ 2 is the complete elliptic integral of the second kif&8]. Fi-
nally we get
The known integral representation for Euleydfunction
(53,54 1 2 E(x)+kK(x) W 2 E(x)—kK(k)
r(s) . ek ek
—z_f efSY(l_efy)fllzdy (56)
I'| s+ : Vo
2 The general structure of solutions to E¢624) and(4.25 is
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2 - ~
7" =~k ™ (y) + i () K (x) e
—[FP(y) + kDY) E(0)},
0.6
(n) 2 ~ () ~2(N)
& =—Y{[kg(y) — k“g"(y) IK(x)
ar 0.4
+[ P (y) — Kt (y) E(x)},
wherey= « 2 and functions @ (y),g® *1)(y) are poly- >
nomials of the degreg. In particular,
f(+1)= f(}): g(j_): g(jl_): 1, 00 0i2 014 016 018 ; 1.I2 1.4

fP=8y-7, f¥=8y-1, _ .
FIG. 1. Number of photons created in the first mode versus the

gf)=8y—3, g(_3)=8y—5, dimensionless time¢' = 7.
while the polynomials witm=5 have more complicated ex- d7y  dew;
plicit expressions resulting from the recurrence relations dt 72’ gw t>1. (6.3

(4.24 and (4.25. However, we do not need these expres-
sions to calculate the total numbers of photons produced ifhis dependence was found earlier[ir2,35, where an as-

the principal mode and in all the modes. ymptotical solution of the Moore equatiofi.4) was ob-
tained. However, in that papers a factor 2 was missed and the
VI. RATE OF PHOTON GENERATION answer was half that of E¢6.3).

The total number of photons in the first mode can be
obtained by integrating Eq6.1). Taking into account the
relation

Putting expression$5.6) into Eq. (4.26), we obtain the
following explicit formula for the photon generation rate in
the first cavity mode:

A7) 4sw; E2(k)— k2K(k) _ e
i e 6.0 dr= 27z €4

If 7<1, thenk=\/87<1, and the power series expansions ofoN€ can check that the expression on the right-hand side of
the elliptic integral53] Eqg. (6.1 is a complete differential due to E¢G.5). So the
final result appears surprisingly simple:

T 1 9
K(x)=5 1+ZK2+aK4+... , ) 2 1
Z1(k)= —=E(k)K(k)— X (6.5
T
— 2 3 4
E(i) =5 1= & =gz = The plot of this dependence, given in Fig. 1, shows how the
initial parabola
lead to the linear law
- 1
d7, 1 ) A= Z(swlt)z, swt<l (6.6)
~=glwit, sot<l. (6.2

dt 2

. . . . is smoothly transformed into the linear dependence
This expression coincides exactly with the result of Ref.

[34], which was obtained in the framework of a quite differ- 4 2 1
ent approach. P()= —ewt+ —Ind— §+@( e %) (6.7
In the long-time limit7>1 we havex— 0. Then the lead- ™ &

ing terms of the asymptotic expansiorES3
g ymp pansiofis] for ew,t>1. Actually the asymptotical formulé6.7) works

4 1/ a4 quite well beginning at-~0.5.
K(k)=~In=+ —( In——1|&k%>+---, Using Egs.(4.3) and(5.6) we find the second time de-
ko4 k rivative of the total amount of photons created in all the
modes:
1 ~2
E(K)~1+§ |n;—§ K- d2» 16

92 = ZAE(K)— K2K (k) ]+ K7 E(k)—K(k)]%}.
result in the constant rate of photon creation (6.8
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: P
,5dP/dt 14
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0.2

0 Il 1 I L 1 1
14 o 0.2 0.4 0.6 0.8 1 12 14

t

FIG. 2. Total rate of photon generation versus the dimensionless FIG. 3. Total number of photons versus the dimensionless time
¢ r— t’ =T7.
timet' =7.

It decreases from the valuc w,)? att=0 [it is seen im- - S m?
o D — (M2
mediately from Eq.(4.31)] to the value (2w,/w)? at ‘g“"lmzl m/)m_“’lrgl Z’l n |7m'[% (6.1
t—oo (i.e., its variation is only 20% To integrate Eq(6.8)
we use, besides Eq6.4), the relations[see, e.g., Egs. It is remarkable that this double sum can be calculated ex-

(5.113.4 and(5.113.5 from [53]] actly without a knowledge of the explicit expressions for co-
q 1 efficients»". Let us introduce the function
K ~
| tct0-B01s = LB - Rk 01, .

sV= 2> ml|p ).

dx 1

72— KK —E(x)]. Differentiating it with respect to the slow time and using
KK Egs.(3.4) and (3.5 we get(remember that all the functions
7" and & are real

f [E(x)— k*K(x)]

The result is
d» 4 . a(N)— _9gn) _(n)_ (n), (n)
= (B0~ K (0K ~E(0)]. (69 SM=-28NyN =4 20 m(m+2) .

The dependence om appears to be practically linegsee ~ Differentiating this equation once more, we get

Fig. 2). For <1 we haved#/dr=2r=d>* /dr, i.e., the
photons are created only in the first mode. Butif 1, then

(2 = 2> (72 0
d7Yd7=167/7">d7 /d7. The total energy equal§=w,>;_,S™/n. But one can

Equation(6.9) can be also integrated analytically. The fol- . . _
lowing formula holds due to Eq$5.5) and (6.4): i(ijheenctlifc;/ using relation¢4.19(4.20, (4.24 and (4.29, the

SW=28" "~ 2&" i+ 4[24 p" ]2+ 165"

7)_1
] 2

1 %
1-= 2>K2 —E(x)K(k)|. (6.1 1. :

k* K5 (k) —E(x)K(x)|.  (6.10 ngl 5(5(1”)77(1”)—5(1”) 7M)=1.

Thus we have quadratic dependences of the total amount

photons on time in both the short-time and long-time limits:
7=17*atr<1 and

gombining it with identity (4.28, we arrive at a simple
equation

B 8 , 4r In4 . £—164=2w,.
=Tt (=1 = 27 (1-n2) + O(re ™) Its solution, satisfying the evident initial conditions
#(0)=(0)=0, reads
at 7> 1. Figure 3 shows this parabolic law explicitly. More-
over, the plot of versus7? is visually undistinguishable
from the straight line. However, while &t 0 the total num-
ber almost coincides with that in the first modé=~>",, at
t—o we haver’, <. The total energy grows much faster than the total number of
The energy of the principal mode is simpby~; . Forthe  photons. Therefore we have a rapid pumping in the high-
total energy in all the modes we have the formidae Eq. frequency modes at the expense of the energy of the low-
(2.10] frequency field oscillations. A similar phenomenon in the

Z(r)= %wlsinh?(zr). (6.12
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case of a classical field in a 1D cavity was discoverel86]

GENERATION AND DETECTION OF PHOTONS IN A CAVITY ...

2673

we arrive at an equation similar to E.5). The difference

in the framework of a different approach, namely, with theis that now all the indices are “two-vectors” and the frequen-
aid of an explicit account of the repeated wave reflectiongies are given by Eq(7.1) with |=0 andL(t) instead of
from an oscillating boundary. The physical mechanism ofL,. The constantnumerical coefficientg,; are given by a
such a pumping is the Doppler up-shift of the field reflectedformula

from the mirror oscillating at the frequency coinciding with
the interval between the equidistant eigenfrequencies.

VII. A3D RESONANCE CAVITY: REDUCING TO A SINGLE
PARAMETRIC OSCILLATOR

z L
—Ldefoydny dz wj(r|L)M.
0 0 0 aL

Now let us proceed to the three-dimensional case. Fof heir explicit form is more complicated now than the simple
definiteness we choose a rectangular cavity with dimensionf®rmula (2.6). However, these coefficients remain antisym-

Lx.Ly,L, (briefly designated by the symbéL}). If these

metrical g, = —gjc, due to the normalization of functions

dimensions do not depend on time, each field mode is detet/k .

mined by three integens,n,l, responsible for the eigenfre-
quency

om=TL(M/L,) %+ (n/Ly) 3+ (1/L,) %], (7.1

and by two orthogonal directions of polarization. In order to

L}
0 dr ¢rmin= Smn,

simplify the exposition and to get rid of extra unessentialand due to zero boundary conditions>atL. (Moreover,

indices, let us consider the case whgreL,~L, . Then the
frequencies withl #0 are much greater than those with
[=0. It is clear that the interaction between low- and high-

they do not depend on the cavity dimensigns.
Although we use the same notation as in the 1D case, the
operatorsQ,(t) in Eq. (7.3 differ from their analogs in a

frequency modes in the nonstationary case is weak. Cons&imilar decompositior(2.4). In Sec. Il we dealt with com-

guently, studying the excitation of tHewest modesve may
confine ourselves to the caselef0. Then the only possible
polarization of the vector potential is along thexis, so the
low-frequency part of théleisenberg field operatoat t<<0
reads

AL(X,Y,t<0)= >, (27 0n) V(%Y [{L})

X[ bpexp(—iwgt) +blexpiw,t)].
(7.2)

The difference from the similar expressi¢hl) is that now

the suffix n is replaced by its “vector” counterpart
n=(m,n) and the functiony,(x,y|{L}) depends on two
space coordinates

nq-ry

Iy LD = 2L,y L)~ Yosine i e

Lx y

The coefficients in Eq(7.2) are chosen again in correspon-
dence with the standard form of the field Hamiltoni@n2).

Now let the dimensiorlL, depend on time according to
the given lawL (t). To satisfy the boundary conditions

z|x 0o— A |x L(t zly 0~ Az|y Ly ™ =0

we write the field operator a@t>0 in the same functional
form (7.2), but with the time-dependent paramets):

/lz<x,y,t>=2ﬁ2n PaYIL(D),L)Qu(D). (7.3

In the stationary case the operatojﬁ(t) coincide with the

(coordinate quadrature components of the field mode opera-

tors. Putting(7.3) into the wave equation

A, 19t>— AA,=0,

plex functionsQ{™(t), whereas nowQ,(t) means the Her-
mitian operator coinciding with thé'coordinate”) quadra-
ture componenbf the field mode operator.

Supposing again that the wall oscillates at twice the
eigenfrequency of some unperturbed mode

L(t)=Lo[1—ecos20w,t)], |e|<1

[we have changed the phase of vibrations in comparison with
Eq. (3.1 because of technical reasgnae look for the so-
lution in the form(carets over operators are omitted

Qk(t) = gk(St)eXF( —i wkt) + ﬂk(St)eX[Xi wkt). (74)

But now all the termson the right-hand side of Eq2.5
disappear after averaging over fast oscillations, since the
spectrume; is not equidistantindeed, the first and second
sums on the right-hand side do not contain functiQasdue
to the antisymmetricity of coefﬁmen'@kl , Whereas the last
sum is proportional ta?>~¢g2. Consequently, after the mul-
tiplication by the proper exponential functions, the right-
hand side will consist of the terms containing factors such as
expll* o= w*20,]t) with j#k. After averaging, all
these terms turn into zero.

Thus, in this specia(nonadiabati¢ case the problem is
reduced to that of a one-dimensional parametric oscillator
with the time dependence of the eigenfrequency in the form

o(t)=w[1+2ycog2wt)], (7.5

wo=wn, being the unperturbed eigenfrequency of the reso-
nance mode. The frequency modulation deptis related to
the cavity length modulation depthas
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1 12 It is well known that the initial vacuum state of the oscillator

y=5el1+(nlo/mLy)"] "% is transformed into thesqueezed vacuum staiethe fre-

guency depends on timsee, e.g., reviewgt7,58 and nu-

At this point it is convenient to abandon the HeisenbergMerous references thergirMoreover, looking at Eq(7.13
picture and to proceed to the Sétioger representation. Of ©n€ can immediately recognize the combinatiggyt as the
course, both representations are equivalent, as soon as i calledsqueezing parametetherefore the probability to

field problem has been reduced to studying a finiteegistraten photons exhibits typical oscillations

dimensional quantum system. However, the most of numer- [tant wgyt)]2™ (2m)!

ous investigations of the time-dependent quantum oscillator, Pom= 0 ———— . Pam+1=0.
since Husimi's papef55], were performed in the Schro coslfwgyt) (2"m!)

dinger picture. So it is natural to use the known results. Ac- (7.14

cording to[47,55,58, all the characteristics of thguantum
oscillator are determined completely by tt@mplexsolution
of the classicaloscillator equation of motion

This distribution possesses the photon-number variance
o= 3sini(2wyyt). Similar formulas for the amount of pho-
tons created in a cavity filled with a medium with a time-
dependent dielectric permeabilitgnd stationary boundaries

- 2 _
U+ w*(t)u=0, 79 were found in[48].

satisfying the normalization condition
VIII. INTERACTION WITH A PROBE OSCILLATOR

K R = 24
uu® —utu=2i. 7.7 To detect the photons created inside the cavity due to the

motion of the wall, at least two approaches are conceivable.
The first one is to make small holes in the walls, to accumu-
late a sufficient amount of photons inside the cavity during
some time interva{about 1 s, as will be shown in Sec.)IX

. Lo then to pass a beam of Rydberg atoms through the cavity
u(0)= 1/‘/“’—’ u(0)=i \/‘”—0' (7.8 (eigenfrequencies of a cavity with dimensions of several cen-

Then the quantum-mechanical average number of photo t|smeters have the order of 10 GHz and correspond to the

created from the ground state due to the time dependenceng)rf"‘nSItlonS between the excited levels of the Rydberg atoms

. . . o with the principal quantum number~100), and to use the
}gtranl:ﬁguency in the interval of time-<0t<<ty is given by the elaborated methodsl—4] of extracting the information on

the field inside the cavity, comparing the states of the atoms
1 1 in the input and output beams.
(n)= —(|U|2+wg|u|2)— —. (7.9 Another way is to use some trap when a detector occurs
4o 2 inside the cavity all the time. Then the interaction between
the field and the detector can change significantly the dynam-
ics of the field excitation by the vibrating wall. Here we
demonstrate this effect in the framework of a simplified
model, when @armonic oscillatortuned to the frequency of
1 the resonant mode is placed at the point of maximum of the
Jog amplitude mode functiony,,(x,y|{L}) in the 3D rectangu-
lar cavity discussed Sec. VII.
[the opposite signs in the arguments of the exponential func- Assuming the interaction between the oscillator and the
tions in Egs.(7.4) and(7.10 are due to the different repre- field to be described by means of the standard minimal cou-
sentations: the former equation is written in the Heisenbergling term —(e/mc)p-A, we arrive at the following two-
picture, while the latter in the Schdimger oné and using the dimensional Hamiltonian governing the evolution of the
method of averaging over fast oscillations, one can easilgoupled “field oscillator plus detector” system:
obtain the first-order differential equations for the amplitudes

. 1
(provided thaf y|<1) H= E[P2+ ©2(1) Q%+ pP+ w2q?— 4wokpQ]. (8.

Let us assume that the functien(t) takes the constant value
wy at t<0 and t>t;>0. Moreover, it is convenient to
choose the initial conditions for the-function as

Looking for the solution of Eq(7.6) in the parametric reso-
nance casé/.5) in the form

u(t)= [&(t)e! o'+ p(t)e' '] (7.10

=ilw . n=—lwyYé. 7.1
¢ v 07 (719 Here P,Q are the quadrature components of the field oscil-

Their solutions satisfying the initial condition@.8) (up to  lator andp,q are those of the probe oscillator. We neglect the
the terms of the order of) read[57] interaction with nonresonant modes since it is reasonable to
suppose that under the resonance conditions their contribu-
£(t)=coslwgyt), n(t)=—isinNwyyt). (7.12 tion is not essential at<1.
In general, the dimensionless coupling coefficiemnust
Due to Egs(7.9), (7.10, and(7.12), the average number of depend on time due to the decompositidh3). However,
photons(and the total energy in the cavitgrows exponen- since this coefficient is small, its variations of the order of
tially in time: ek can be neglected in comparison with the relative varia-
tion of the eigenfrequencyw/w~¢. So is assumed to be
(nYy=|7|?=sink(wyyt). (7.13  constant.
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Suppose that the lowest cavity mode is resonant. Then The propagator of the Schiimger equation with the
one can evaluate the dimensionless coupling constant a$amiltonian(8.1) can be calculated in the framework of the
k~(e*2rmc®L) Y2 (here we return to the dimensional vari- general theory of multidimensional quantum systems with

ableg. The maximum value of the parameteris (see Sec. arbitrary quadratic Hamiltonians, first proposed[9] and

IX) €max™ Omas/2C, Where 8,,~0.01 is the maximal exposed in detalil, e.g., 7). It reads(see Appendix B for
possible relative deformation in the material of the wall andthe details of calculations
vs~5%x10° m/s is the sound velocity inside the wall.

Then the ratioy/x cannot exceed the valuéma>g(mv§L/

8me?)2~0.05 forL~1 cm andm~ the mass of electron

1 i
(for these parameters~2x 10 7). Consequently, one may G(Xy,Xq,t)= ———=exp — —A[szxz—szBxl
believe that in the real conditiong k<<1. mi\2A 2
In the time-independent casg(t) =const vy, we have
two eigenfrequencies +x1Cx1]] ) (8.4
w+=wy(l*k) (8.2
(provided thatx[<1). Let us assume Fhat the wall vibrates pereafter it is assumed, for the sake of simplicity, that the
exactly at twice the lower frequenay. : quadrature component variables are chosen in such dimen-
o(t)=wg[1+2y cod2w _1)]. (8.3 sionless forms that one may write formgﬂy: wo= 1. The
vector X;=(Q4,q4) corresponds to the initial point in the
Then the lower and upper modes practically do not interactwo-dimensional coordinate space arg=(Q,,q,) to the
in the limit of y<k. final one.A, B, andC are 2<x2 matrices
|
—sinhu cosp—coshu sind sinhu sing— kA
B sinhu sing — kA sinhu cosp—coshu sind ||’

—sinhu cosp_ —coshu sing_—sing, €oSp, —coshu cosp_ —sinhu sing_
| —cosp.. +coshu cosp_ —sinhu sing_  sinhw cosp_ —coshu sing_ —sing..

—sinhu cosb —coshu sind kA —sinhu sind
B kA —sinhu sind sinh cosb — coshu sind ||’

The new scalar functions are defined(hsre it is conve- 1 1 , )
nient to retain the unperturbed frequensy) #(Q,q, )=/ mexp( —it=5[aHQ+b(tq
O=(w,+w_)t=2wt,
—ZC(t)QQ]), (8.6)
o=(w;—w )t=2wokt=«k®,
ith th fficient
s ywgt,  A—1— coshu cosb. wi e coefficients
a(t)=1+i tanhu)e 2¢-—ike' ®*{tanHu)e '®
Evidently, &> ¢> u, so the higher-order terms were ne- ® flx) , ttanf(x)
glected in the expressions for matricéd3,C in accordance X[1+tanh w) sin(®)e'¢]—sin(¢)},
with these relations. _ ) o ‘
Let the initial state be the ground one, both for the field b(t)=1—i tanh(u)e ¢~ —ixe'®{tani u)e™'®

and the probe oscillators, X[1—tanh( ) sin(®)e¢]+sin( )},
#(Q,q,0) = \/%exp[—%(Q%q?) . (8.5 c(t)=tanipu)e ¢~ +ix[1-cog)e '*

+i tantf(u) sin(®)e'(¢~2®)],
Then, after some tedious algebra, related to the calculation of
a Gaussian integral for the convolution of the propagatoln all the formulas above, the terms of the ordendfwere
with the initial wave function, one can arrive at the expres-neglected, as well as the terms proportionalt¢except, of
sion for the wave function of the coupled “field plus probe course, the arguments of the hyperbolic functjons
oscillator” system att>0 in the form of a Gaussian wave Equation(8.6) shows that the coupled system results in a
packet, two-mode squeezed stast t>0. In the short-time limit
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g

A similar matrix for the field oscillator can be obtained from
Eq. (8.7 by means of changing the sign of parameierAs
shown in[60], the photon statistics in Gaussian one-mode
states is determined completely by two invariants of the co-

. . variance matrix
On the contrary, ifu=1, then all the terms proportional to

pn<<1 the squeezing effect is very small, since coefficients 1

a andb are close to unity, while is of the order ofk: Mprzicosﬁ,u

1—tanhu sing  tanhu cosp
tanhu cosp  1+tanhu sing

a(t)=1+ik sin(¢)e'?,
b(t)=1-i«k Sin(cp)eiq’,

c(t)=ik[1—cogp)e '?].

x can be neglected, so that d=detM, T=TrM.
a(t)=1+iy, b(t)=1-ix, c(t)=y, Evidently, the parameteF is twice the energy of quantum
i fluctuations. The parametdrcharacterizes thdegree of pu-
x=tanh(u)e ¢ rity of the quantum state due to the relati@i]

The properties of any Gaussian state are determined com- A
pletely by itscovariance matrix Trp?=

2yd’
mT M’ITX ~ . . .
M =7 = , wherep is the statistical operator of the system. Tdegree
Myz My of squeezingi.e., the minimal possible value of the variance

1 of some quadrature component, normalized by its vacuum
=2 7425, B=1234, value [h/(z_mw) for an o_sqllator with massn and fre-
" ap 2<Z“ZB ZpZa)s P quencyw], is determined jointly by both parameteFsand

d according to the relatiof62]
where the four-dimensiondin the present casevectorz is

defined asz=(m,x)=(P,p,Q,q) (evidently,(z)=0 in the s=2(q%)=T—T°—4d.

case under study Using the general formulas for multidi-

mensional Gaussian states given[47] (see Appendix G Both subsystems have identical invariants
one can obtain the following explicit expressions for the two-

dimensional blocks of matrik in the most interestingpng- T=4d=cosfu,

time limit ( x=1): so for u=1 they appear in highly mixed quantum states. As

1+tanhy sing  —tanhu cosp to the degree of squeezing, it turns out rather moderate

1
M ==costu .
™2 —tanhu co 1—-tanhu sing|’ 1
- cosp e sing s=e “coshu= E(l—e‘zf‘).
1 1—tanhu sing  tanhu cosp
MXXZQCOSH/‘ tanhu cosp  1+tanhu sing|’ The average number of quanta in each subsystem equals
: 1 1
1 —COoSp —tanhu —sing = (T=1)= Zsi
M= sinh(2u) ! ’ (n) 2(T 1) zsmI"F,u,
4 tanhu — sing cosp

) i.e., half that in the free mode case. The variance of the
where¢=2¢_ . Consequently, there exists a strong correlanymper of quantdphotons reads[60]
tion between the field and probe oscillators in the long-time

limit. For instance, the correlation coefficient between the ) , 1 1.
quadrature components reads or=(n%)—(n) =2(2T°—4d-1)= ZSIHhZ,U« cosh2u).
oo (qQ)  sinhu cosp The so-called Mandel parameter
9 (PHQD 1+ (sinhw cosp)?’ o
. L === 5c0sh2u)
(If ¢~m/2, this coefficient, as well as other analogous ele- (n) 2

ments of the covariance matrix, does not turn exactly intot t10 b h ter th itv fop> 1 indicati
zero; in such a special casgo~ «, due to neglected terms urns out to be much greater than unity t@. » Indicating
of the order ofx.) that the photon statistics is highly super-Poissonian. The pho-

It is clear that thedensity matrixof the probe oscillator :ﬁn clj_istribL:jtion fulnction_ clan be tiasgy e_xpr(;;s:[zed in ternrsf of
[which is obtained from the density matrix of the total sys-m(ljIa (egg)nofri p0e¥]%??gs’ on the basis of the general for-
tem p(Q,4;Q",q')=¥(Q,q)#* (Q',q) by settingQ=Q’ PP :
and integrating ove®] also has the Gaussian form. Its prop- in

: : : ,, 2(iz) .
erties are determined completely by the reduced covariance e —— - 3} (8.9
matrix (accidentally, it coincides witt,, whenwg=1) J1+3cosKu
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FIG. 4. Plots of the photon distribution functions in the free-
mode and coupled-mode cases for 2.

where

sinhu
JV1+3cosRu

Actually the right-hand side of Ed8.8) is a polynomial of
degreen with respect to the variable?, due to the recur-
rence relation

nZ,=22[(2n—1)Z_1+(n—1)7_,].
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1
Aij :<7Ti’7Tj><Xin>_ Z<7Tin+Xj7Ti><7Tin+Xi7Tj>.

This special form of the invariant was found also [BV].
Taking the values of the second-order moments from the
expressions for matriced ..., M,,, and M _,, one gets
Aq;=A,=13cosfu and Aj,=— isinFfu, so the invariant
&, is conserved exactly”,=3. The same is true for the
second universal invarianfZ,=detM. Consequently, the
method of slowly varying amplitudes yields quite good and
reliable results.

IX. DISCUSSION

Let us discuss now the possibility of observing the effect
of photon creation due to the motion of a boundary in a
laboratory. Obviously, it depends crucially on the achievable
values of the wall displacement amplitude. For the cavity
dimensions of the order of 1-100 cm, the resonance fre-
guencywq /7 varies from 30 GHz to 300 MHz. It is difficult
to imagine that the wall could be forced to oscillate as a
whole at such a high frequency. Rather, one could think of
the oscillations of thesurfaceof the cavity wall. In such a
case one has to find a way of exciting a sufficiently strong
standing acoustic wave at frequeney,=2w, inside the
wall. The amplitudea of this wave(coinciding with the am-
plitude of oscillations of the free surfacis connected to the
relative deformation amplitudé inside the wall by the for-
mula 6= w,alvg, Whereuvg is the sound velocity. Since the
usual materials cannot bear the deformations exceeding the
value 8.~ 102 [68], the maximal possible velocity of the
boundary appears to hg,,x~ Smav s~ 50 m/s(independent

If u>1, thenz?~1/3. Figure 4 demonstrates the difference Of the frequency Thus the maximal dimensionless displace-

between the free-mode distributi@i.14) and the coupled-
mode one(8.8) for u=2, when(n)~13 in the free-mode
case.

mente =a/Lg iS & max~ (Vs/277C) Smax~ 3 X 10”8 for the low-
est mode with the frequency,~cw/Lg. It also does not
depend on the frequency. Consequently, the maximal rate of

Since the expressions for the variances given above wefghoton generation in the principal mode of a 1D cavity

obtained in the framework of thapproximatemethod of

slowly varying amplitudes, it is desirable to check their ac-
curacy. For this purpose it is natural to check the conserva-

tion of the quantum universal invariantdirst introduced in
Ref. [63] and discussed in detail ip47,61 (later similar

constructions in classical Hamiltonian dynamics, with appli-

equals[see Eq.(6.3)]

w3
maxzﬂ_

~6X10 8w /27w, (9.1

dt

m C

W Z 4 v
B
max

It is proportional to the frequency. Far;/27=10 GHz(cor-

cations to the particle beam propagation problems, were conesponding to a distance between the plates of the order of

sidered in[64—64). As proven in those studies, for any
Hamiltonian that igquadraticwith respect to the coordinates
and momenta operatofand more generally, for any Hamil-

several centimetersve get 600 photons/s.
This number can be significantly increased in a 3D cavity,
due to the exponential layr.13. For the same frequency

tonian, which can be written as a linear combination of genwy/27=10 GHz, the maximal value of parameter yw,t

erators of a semisimple Lie algebf47,61,63), there exist

equalspma— 600, timet being expressed in seconds. Even

certain combinations of the second- and higher-order moif the amplitude of the vibrations were 100 times less than

ments, which are conserved in tinmedependently on con-
crete time dependences of the coefficiémtthe correspond-

ing quadratic or linear forms. For instance, in the two-

dimensional caséconsidered in this sectigrthere are two

the maximal possible value, =1 s one could get about
sint?(6)~4x10* photons in an empty cavity. The available
level of experiments in cavity QED is quite sufficient to
detect such an amount of photdi3. Note that the concrete

independent second-order invariants. The first one readshape of a 3D cavity considered in Sec. VIl is not important.
(provided that the Hamiltonian does not contain linear termsThe significant requirements afg the nondegenerate char-

as in the case under study
=M1+ Agt2A4,

where

acter of the eigenfrequency spectrum gingdthe condition of
the parametric resonance between the oscillating wall and
some electromagnetic mode. It is interesting that tthtal
energy of photons created in the 1D cavity is approximately
the same as in the 3D cagsee Sec. V)l But in the 1D
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situation this energy is spread over many interacting modesning that one can periodically and almost instantaneously
resulting in moderate numbers of quanta in each mode. Acdor a period of time much less than the period of vibrations
cording to the asymptotical solution found[it2], the rate of  in the light wave, i.e.~10 1% s) change the distance be-
photon generation in theath (odd) mode of the 1D cavity is tween plates from 10* to 2X 10 ° cm is even more fantas-
approximatelym times less than in the principal mode with tic than discussing the possibility of exciting the surface vi-
m=1 (provided thate wt>1). brations with the amplitude of the order of 18 cm. A

To create the above-mentioned 600 ox #0* photons, correct evaluation of the amount of photons created between
one should vibrate the wall for not less than 1 s. The neceswo plates, one of which exhibits a fagtonperiodig effec-
saryQ factor of the cavity must b@~3x 10'% This value tive displacement due to the creation of a “plasma mirror”
was already achieved in experiments several yeard2go inside a semiconductor by a powerful femtosecond laser

An unsolved problem is how to excite the high-frequencypulse, was given if72]. It yields not more than 1-100
surface vibrations with a sufficiently large amplitude. Onephotons/cn? created from vacuum.
could consider, for instance, using some kind of piezoeffect. |n conclusion, let us formulate briefly the results and the
This method was successfully applied in early experimentgnsolved problems that are worth studying. The main result
devoted to solving the mode-locking and pulse productionyt ihe paper is the explicit demonstration of the possibility of
problems in lasers Wlth_ the aid of vibrating mirrors. The generating real photons from vacuum in a cavity with reso-
displacements of the mirror from 0.1 to Quin at the fre-  j 4y \ibrating walls and finding analytical solutions in one
quency 500 kHz were achieved[i89]. In [70] the resonance and three space dimensions. In addition, we have shown that

v_|brat|ons of the mirror in a laser W] I'th a Iength of .250 M the interaction between the field mode and the detector can

(I.e., atafrequency of about 100 MHwere excited with the hange the picture essentially, due to the back influence of

aid of a quarz transducer. However, for our purposes th 9 P Y . -
e detector on the mode. Thus the analysis of more realistic

frequency 100 MHz is too small, since the parametdoe- dels of the detect . sAtwo-level det
comes 100 times smaller compared to the estimations giveWO els of the detectors seems importéAttwo-level detec-

above (remember thate does not depend on the fre- tor was considered in the framework of the generalized
max

quency. Besides, in such a case one must cool a 3-m cavity@ynes-Cummings model ifv3]; its response turned out
below 4 mK to eliminate the thermal noise. Diminishing the guite different from the behavior of the harmonic oscillator.
dimensions of the cavity to 1 cm, we simultaneously raiséOther theoretical problems include, for instance, the evalua-
the temperature limit to 0.4 K and increase the parameteiion of the contribution of the nonresonant modes, the quan-
w. Thus we arrive at the value of the frequency 10 GHz anditative account of different losses, and the analysis of vari-
the minimal necessary amplitude of vibrations about£0 ous parasite effects. The existence oféhactsolution in the
cm. 1D resonance case gives rise to the conjecture on the pos-

Of course, many other difficult experimental problemssible internal symmetry of the simplified equatio(&2)—
must be solved, for instance, how to avoid heating the wall in3.5). Indeed, these equations appear to be closely connected
a strong acoustic wave in order to prevent the destruction ofvith the algebrasu(1,1). Besides, certain relations between
the superconductivity. Besides, in the case of piezoexcitatiorpur solutions and the solutions of Moore’s equatidnd)
the applied electric voltage and the oscillations of electronsound in Refs[12,13,33 must also exist. The approach used
and ions inside the piezoelectric could create their own fieldsn our paper can be applied for solving some problems in
inside the cavity. However, these parasitic fields would besther fields of physics, where equations such(h4) and
polarized in the directioperpendicularto the surfacdsince  (1.2) arise. A recent example of such a problem, related to
the region inside the cavity is the near field zone for thethe plasma oscillations in a slab with a corrugated surface,
electric dipole arising due to a possible uncompensatedias presented ifi74]. We hope that the method of averaging
charge density in the materjalTherefore they could be dis- over fast oscillations can result in new analytical solutions
tinguished from the field created due to the nonstationaryor other relations between the wall frequency and the field
vacuum fIUCtuationiéphySically, it is created by ﬂUCtuating mode frequencieén the 1D Cash name|y, Wherh)w: kwl
currents at the ideal conducting surface of the wathichis  with an integerk# 2. For odd values df the variablest and
polarized parallel to the surface. n will not be coupled, so the photon production from

In any case, it is well worth endeavoring to perform theyacyum will be impossible. But some other interesting phe-
proposed experiment, since it would be a clear demonstratiofomena can be discoverdégee[41]). These questions are
of the reality of vacuum fluctuations. Indeed, an impressiveylanned to be considered in future works.
interpretation of the result could be as follows: one takes an
emptybox, “knocks” on its wall, and then discovers that the
box is “filled with ph.ot_c.ms.” _ _ ACKNOWLEDGMENTS
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APPENDIX A: IMPOSSIBILITY OF PHOTON CREATION j\lz)\lbs_)\zbl! A (0)=1, 7.\2:7\1b4_)\2b2,
IN THE ADIABATIC CASE
If the wall vibrates with a small amplitude at frequency A2(0)=0, A3=Ngbg—Asb;, A3(0)=0,
oy<w,, then one may neglect the right-hand side of Eq. :
(2.5), arriving at the problem of an oscillator with a time- Na=A3bs—=Ngbz, Ny(0)=1.

dependent frequenay(t) = wo[ 1— esin (wyt)], wherew, is
the unperturbed frequency of the given mode ardl. Then
the average number of photons produced in each field mo

In the case of the Hamiltonia(8.1) with wy=1 the block
Orgatricesbj read(the terms of the order of? are neglected

can be expressed through the energy reflection coefficient 1+T 0 0 0
R from an effective potential barrier corresponding to the b,=1, b4=H 1l bzz‘ 5 H
time dependence?(t) as follows[48,58: (n)=R/(1—R). 0 —2x 0

The general formula for the adiabatic reflection CoefﬁCiemwhereF(t)=4y cos(2v_1). The matrices\, and\, can be
can be found, e.g., ifi75]. In the case under study it can be excluded with the aid 5f t'he relations 2 4

simplified as
5 N2s=N1ho— Ny 3. (B2
1 T - —2iwgT
R= ‘HL a(r)e”“vomdr (A1) Two other matrices; and\ 5 satisfy the same second-order
0 equation
whereT is the duration of the process. Calculating the inte- N+ (by—Dby) +Nby=0, (B3)

gral, it is not difficult to obtain the inequality
R=<(ew?/4w3)?. It clearly shows that no photons can be but different initial conditions
produced under the adiabatic conditions, so the only hope to

observe the effect may be associated withrésonancebe- A1(0)=1, N\ (0)=by, (B4)
tween the electromagnetic and mechanical modes, when one .
of the walls of a cavity vibrates with the frequency A3(0)=0, A3(0)=-1. (BS)

wy,=2wq, and Eqg.(1.1) indicates a possibility of a large
reflection coefficient. However, in such a case the adiabati
approach is inapplicable.

&et us write the 4 2 matrix A as

Xy
z u

A=

APPENDIX B: CALCULATION OF THE PROPAGATOR
Then the elements of both rowsx,§) and (,u), must sat-

Suppose that a quantum system is described by a qu?‘s'fy the identical equations, which in the,§) case read

dratic Hamiltonian

X—2ky+[1+T(1)]x=0,
H= (W,X)%’C), (B1) y+2kx+y=0.

_ . . _ . Differentiating the first equation and comparing the result
wherex is anN-dimensional coordinate vectos, is the ca-  with the second one, it is easy to get the relation

nonically conjugated momentum vectx; ,m]=1idji, |,k

N| =

=1,... N (A=1), and.%(t) is quite arbitrarysymmetric 1 .
(but not necessarily reaPNx 2N matrix consisting of four y=- Z{XJF (1+D)x+Ix}. (B6)
NXN blocks
Therefore functiorx(t) must satisfy the fourth-order differ-
b, b, . . . ential equation
= y bl:b]_! b4:b4, b2:b3. . .. .
by by d*x/dt*+ (2+T)x+2Ix+ (1+T+I)x=0. (B7)
The propagator of the Schiimger equation in the coordinate According to the method of slowly varying amplitudes, one
representation can be expressed4%59 may look for the solution to EqB.7) in the form
X(t)=§+ei‘”+t+ 77+e7ia)+t+ é\_«_eiw,t_’_ n_efiw,t, (88)

i
G(Xp,X1,t)=[del —2miN3) ]~ Y2expl — = [Xoh3 1A X . . . .
(O xg, ) =[det(=2miA)] PSR £. and 7. being slowly varying functions of time. Due to

the conditiony<<k, the upper and lower splitted modes do
—2x2)\31x1+x1)\1)\31x1]], not interact with each other under the condition of the strict
parametric resonance at the lower frequency. Thus one
may assume , =const andn, =const. Averaging over fast
provided thatN X N matrices\(t) satisfy the system of lin- oscillations with the frequency«_ gives rise to the equa-
ear differential equationgherel means arNXN unit ma-  tions for ¢ and »_ (remember that all the higher-order
trix) terms such a&?, 72, kv, etc., are neglected
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& =iynp., m=-iyt,
whose solutions read
é&_=ae+be ", gp_=—i(ae”—be M.

Taking into account the relation 2w, —w_ one can
transform Eq.B6) into the form

y(t)=i(§+ei‘°+t— 77+efiw+t_ f,ei“’—t—I— niefiw_t),

up to the terms of the order & and y. Then the constant
coefficients¢, , ., a, andb can be determined from the
initial conditions(B.4) and(B.5). After rather tedious algebra

V. V. DODONOV AND A. B. KLIMOV

APPENDIX C: SOME RELATIONS
FOR GAUSSIAN STATES

If an N-dimensional quantum system is described by a
Gaussian wave functiofin the coordinate representatjon
Y(X)=.1" exp(—2ixRx), where./" is a normalization con-
stant andR is a symmetric compleX X N matrix, then the
variance matrices, defined in Sec. VIII, can be expressed
through the matrixR as[47] (A=1)

M,,=(R+R*)"1,

i
M‘ITXZE(R_R*)Mxxi

one can arrive finally at the following expressions for the

elements of matrices; and\j:

1
A}lzi[w,(cosm cosp_ —sinhu sing_)+ w, cosp. ],

1
)\%zzz[a}_(sinhﬂ cosp_ +coshu sing_)—w_ sing., ],

1
)\§1=§[w+(sinh;u cosp_ —coshu sing_)+w_sing.. ],

1
)\fzzi[w+(cosm cosp_ +sinhu sing_)+w_cosp. |;

1
)\§1=§[sinh/u cosp_ —coshu sing_ —sing. ],

1
)\§2=§[cosm cosp_ +sinhu sing_ —cosp., ],

1
)\§1=§[sinm sing_ —coshu cosp_ +cosp. ],

1
)\5225[ —sinhu cosp_ —coshu sing_ —sing., ].

From these expressions one can obtain matriges\; *A
andC=\,\; A (for the notation see Sec. V)IIThe matrix
A=x3"\,4A was calculated with the aid of the relatifsee
EQ. (B2)] A3 "As=bsz— A3 1\;.

— -1
My -

M’TT’]T

1 2
Z( 1+4M2)
The last formula is equivalent to the identity

1
—1.

M . 7

wM XX~ Mix: (Cl)
The left-hand side of this identity is one of the universal
invariants, because any quadratic Hamiltonian transforms an
arbitrary Gaussian state into another Gaussian state. More-
over, taking the trace of both sides of EG.1), one arrives at
a special form of thegeneralized uncertainty relation
[63,76, which holds for Gaussian statégsually the vari-
ance uncertainty relations for coordinates and momenta are
minimized at Gaussian stajes

The photon distribution function in amyne-modeGauss-
ian statewith zero mean valuesf (g) and(p) can be ex-
pressed in terms of the invariants of the variance makrix
andd (see Sec. VIl as[60,77]

n/2
2

V1+2T+4d
4d-1

P%\K4d+1)l—4T

whereP,(x) is the Legendre polynomial. More general ex-
pressions in terms of the multidimensional Hermite polyno-
mials, which hold for multimode systems with nonzero first-
order average values, can be found 7).

1+4d-2T
1+4d+2T

o
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