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The problem of photon creation from vacuum in an ideal cavity with vibrating walls is studied in the
resonance case, when the frequency of vibrations equals twice the frequency of some unperturbed electromag-
netic mode. Analytical solutions are obtained in two cases: for the one-dimensional model~scalar electrody-
namics! and for the three-dimensional~3D! cavity. In the first example, we have a strong intermode interaction;
nonetheless, an explicit solution in terms of the complete elliptic integrals is found. The rate of photon
generation in the principal mode rapidly assumes a constant value proportional to the product of the frequency
by the dimensionless amplitude of oscillations. The total amount of photons created in all the modes increases
in time as t2. In the second example, the eigenmode spectrum is nonequidistant and the problem can be
reduced to the problem of a single harmonic oscillator with a time-dependent frequency. The number of
photons in the resonant mode of a 3D cavity increases exponentially in time and the field appears in a highly
squeezed state with a strongly oscillating photon distribution function. The problem of detecting the created
photons is analyzed in the framework of a simplified model, when a detector is replaced with a harmonic
oscillator. It turns out that the presence of the detector changes the picture drastically: both the detector and the
field mode occur in highly mixed~nonthermal! quantum states, with identical nonoscillating photon distribu-
tion functions. The detector gains exactly half of the total energy of excitation inside the cavity. The estima-
tions show a possibility of creating up to several hundred or even thousand photons, provided that the cavity’s
Q factor exceeds 1010 and the amplitude of the wall’s oscillations is greater than 10210 cm at a frequency of
the order of 10 GHz.

PACS number~s!: 42.50.Dv, 03.65.2w

I. INTRODUCTION

Recent progress in experiments with high-Q electromag-
netic cavities provides a possibility to verify the most deli-
cate features of quantum physics@1–4#. Among them there is
a wide class of phenomena combined under the namenon-
stationary Casimir effect~NSCE! @5#, which are caused by
the reconstruction of the quantum state of a field due to a
time dependence of the geometrical configuration. The mani-
festations of these phenomena can be divided conventionally
in two ~closely connected! groups. The first one is related to
the modification of the known Casimir force@6#, when it acts
on amovingboundary. This problem was studied, e.g., in
Refs. @7–13# ~for ideal mirrors! and @14–19# ~for partially
reflecting and dielectric mirrors!. Here we address another
manifestation of the NSCE, namely, the effect ofphoton cre-
ation in an empty cavity with moving boundaries.

As far as we know, the first exact solution of the wave
equation in one space dimension~we assumec5\51)

]2A

]t2
2

]2A

]x2
50 ~1.1!

with the time-dependent boundary conditions

A~0,t !5A„L~ t !,t…50 ~1.2!

@L(t) is the given law of motion of the right boundary,
whereas the left boundary is assumed to be at rest atx50#
was obtained in Ref.@20#, where the transverse vibrations of
a string with a uniformly varying lengthL(t)5L0(11at)
were studied~see also@21#, where not only the string, but
also the electromagnetic field in a one-dimensional~1D! cav-
ity with a uniformly increasing length was considered!. Forty
years later, this solution was rediscovered in@22# @where an
exact solution forL(t)5(t211)1/2 was also found and some
graphical method of finding the solution for an arbitrary law
of motionL(t) was proposed#. The evolution of the classical
electromagnetic field between uniformly moving~in opposite
directions! ideal walls of a one-dimensional resonator was
investigated in@23,24#. The three-dimensional rectangular
cavities ~waveguides! with uniformly moving walls were
considered in the framework of the classical electrodynamics
in @25#. The case of a spherical ideal cavity whose radius was
a linear function of time was studied in@26#. Exact solutions
for the transverse vibrations of a two-dimensional rectangu-
lar membrane, when the length of one boundary uniformly
increased in time, was found in@27#.

Moore’s paper@28# seems to be the first one devoted to
the quantum aspects of the problem, in particular to the prob-
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lem of generating photons from vacuum in the cavities with
moving boundaries. Considering a model of the ‘‘scalar elec-
trodynamics’’~when the field depends on a single space co-
ordinate!, Moore found a complete set of solutions to the
problem~1.1! and ~1.2! in the form

An~x,t !5~4pn!21/2$exp@2 ipnR~ t2x!#

2exp@2 ipnR~ t1x!#%, ~1.3!

where functionR(j) must satisfy the functional equation

R„t1L~ t !…2R„t2L~ t !…52. ~1.4!

This solution was discovered independently in@29# @note that
for a linear function L(t) such an approach was used actu-
ally in @20,21##. However, only a few exact solutions of Eq.
~1.4! are known nowadays for the functionsL(t) different
from the linear one. Most of them were found in the frame-
work of the ‘‘inverse problem,’’ where the unknown function
L(t) was extracted from Eq.~1.4! with the given dependence
R(j) @30,31#. Approximate solutions of Eq.~1.4!, valid in
the case of a nonrelativistic motion of the boundary, were
found in @11,28,29,32,33# in the form of the asymptotic se-
ries with respect to a small parameter of the order of
dL/dt ~see also@24#!. However, these solutions are not valid
when the boundary oscillates at a frequency comparable with
the frequencies of the field modes@34#. But just this case
seems to be the most interesting from the point of view of a
possible experimental verification. Indeed, if the characteris-
tic time of changing the position of the wall is much longer
than the period of the field oscillations, then we have an
adiabatic situation, where no photons can be produced~see
Appendix A!.

Since the maximal velocity of the boundary, that could be
achieved under the laboratory conditions is very small in
comparison with the speed of light, the only hope to observe
the effect can be connected with theresonancebetween the
mechanical and field oscillations, where a gradual accumu-
lation of the small changes in the quantum state results fi-
nally in a significant effect. Thus it is worth considering first
an ideal parametric resonance case, where the boundary per-
forms small harmonic oscillations at twice the unperturbed
eigenfrequency of the lowest field mode. For this law of
motion, we found earlier@12,35# an asymptotical solution of
Eq. ~1.4!, valid in the long-time limit«vt@1, « being the
dimensionless amplitude of the boundary oscillations. Sur-
prisingly, this solution gives the correct result even in the
opposite case«vt!1, which was considered earlier in@34#.
According to @12,35#, with «vt@1 the photon generation
rate becomes time independent, being proportional to the
product of the amplitude of wall oscillations by their fre-
quency. An exact solution for analmost harmoniclaw of
motion was given recently in@13#. The evolution of theclas-
sical field in a 1D ideal cavity, whose boundaries performed
harmonic oscillations at a frequency comparable with the
field eigenfrequencies, was investigated in@36#, while a
similar problem for the spherical cavity was considered in
@37#.

In the present paper we shall obtain explicit expressions
for the rate of photon generation, both in the principal mode
and in all modes, which hold for any moment of time and

turn into the asymptotic formulas of Refs.@12,34,35# in the
appropriate limit cases. For this purpose we use an approach
different from Moore’s. Namely, we shall expand the field
operator in the Heisenberg picture over the ‘‘instantaneous’’
eigenfunctions of the Helmholtz equation. Actually, such a
method of solving the problems with moving boundaries was
known for a long time~see, e.g.,@38#!. In connection with
the problem involved it was used in Refs.@39–43#, but only
approximate or numerical solutions of the arising infinite set
of coupled ordinary differential equations were found. We
shall demonstrate that in the resonance case these equations
can be simplified significantly so that they can be solved
exactly.

In general, the three-dimensional situation is more com-
plicated than the simplified 1D model of the scalar electro-
dynamics. For this reason, the exact solutions of the quantum
problem in three space dimensions were found until now
only in the case ofuniformlymoving ideal walls@8,44#. A
single ideal boundary moving along an arbitrary prescribed
nonrelativistic trajectory was considered in@45# ~see also
@46# for the 1D model!; a more general case of a moving
dielectric medium with a single boundary was studied in
@19#. We shall demonstrate that in the parametric resonance
case the problem can be also treated analytically. This re-
markable possibility is due to the fact that the intervals be-
tween the neighboring field eigenfrequencies are not constant
in the 3D cavity. As a consequence, a reduction of the field
problem to the problem of a parametrically excited one-
dimensional oscillator becomes possible. In contradistinction
to the 1D model, the number of photons in the resonance
mode increases in time exponentially and the field appears in
a highly squeezedquantum state with a strongly oscillating
photon distribution function.

An important point is how to detect the photons created
from the vacuum due to the motion of the wall. One of the
possibilities is to put some probe object inside the cavity. For
the cavities with dimensions of several centimeters~i.e., for
the eigenfrequencies about 10 GHz!, a realistic detector
could be some Rydberg atom. Here we confine ourselves to a
simplified model of a probeoscillator resonantly interacting
with the field mode by means of the standard electromag-
netic coupling. We show that the interaction drastically
changes the photon statistics, so that both the field and the
probe oscillators appear in highly mixed, but moderately
squeezed, nonthermal states, with identical photon distribu-
tion functions, which do not exhibit oscillations.

The plan of the paper is as follows. Sections II–VI are
devoted to the 1D model. In Sec. II we give the scheme of
the field quantization in the case of moving boundaries. In
Sec. III we take advantage of the method of averaging over
fast oscillations to obtain simplified equations for slowly
varying amplitudes in the resonance case. The solutions of
these equations will be found in Secs. IV and V. In Sec. VI
we calculate the rate of photon generation in the principal
mode and the total number of photons in all the modes. Then
we turn to the 3D case. In Sec. VII we reduce the field
problem to the problem of a one-dimensional parametric os-
cillator. Then, using the theory of a quantum nonstationary
oscillator@47#, we calculate all the characteristics of the reso-
nance mode. The interaction between the probe oscillator
and the resonance mode is the subject of Sec. VIII. Section
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IX is devoted to the discussion of the possibility of observing
the phenomenon under laboratory conditions. We arrive at
the conclusion that the current experimental level is suffi-
cient, in principle, to discover the effect.

The aim of Appendix A is to demonstrate explicitly the
impossibility of photon creation in the case of an adiabatic
motion of the wall. Appendix B contains the details of cal-
culations of the propagator for the two-dimensional coupled
system ‘‘field oscillator plus probe oscillator.’’ Some useful
formulas related to the properties of multidimensional
Gaussian quantum states are given in Appendix C.

II. FIELD QUANTIZATION WITH MOVING BOUNDARIES

We adopt the scheme of the field quantization in an empty
cavity with time-dependent boundary conditions, proposed
by Moore @28# @for its generalization to the case when the
cavity is filled with a~nondispersive! nonuniform and time-
dependent dielectric medium see@48##. Let us consider a
cavity formed by two infinite ideal plates, one being at rest at
x50, with the other moving according to a prescribed law
L(t).0 whent.0. Confining ourselves to the electromag-
netic modes whose vector potential is directed alongz axis,
we can write down the field operatorin the Heisenberg rep-
resentation Aˆ (x,t) at t<0 ~when both the plates were at rest!
as

Âin52(
n

1

An
sin
npx

L0
b̂nexp~2 ivnt !1 H.c., ~2.1!

where b̂n means the usual annihilation photon operator and
vn5pn/L0 . The choice of coefficients in Eq.~2.1! corre-
sponds to the standard form of the field Hamiltonian

Ĥ[
1

8pE0
L0
dxF S ]A

]t D
2

1S ]A

]x D 2G5(
n

vnS b̂n†b̂n1 1

2D .
~2.2!

For an arbitrary moment of time the field operator can be
written as

Â~x,t !52(
n

1

An
@ b̂nc

~n!~x,t !1 H.c.#.

To find the explicit form of functions c (n)(x,t),
n51,2, . . . , wehave to take into account that the field op-
erator must satisfy~i! the wave equation~1.1!, ~ii ! the bound-
ary conditions~1.2!, and~iii ! the initial condition

c~n!~x,t,0!5sin
npx

L0
exp~2 ivnt !. ~2.3!

Following the approach of Refs.@39–43#, we expand the
function c (n)(x,t) in a series with respect to theinstanta-
neous basis

c~n!~x,t.0!5(
k
Qk

~n!~ t !A L0
L~ t !

sin
pkx

L~ t !
, ~2.4!

with the initial conditions

Qk
~n!~0!5dkn ,Q̇k

~n!~0!52 ivndkn .

This way we satisfy automatically both the boundary condi-
tions ~1.2! and the initial condition~2.3!. Putting expression
~2.4! into the wave equation~1.1!, one can, after some alge-
bra, arrive at an infinite set of coupled differential equations
@43#

Q̈k
~n!1vk

2~ t !Qk
~n!52l~ t !(

j
gk jQ̇j

~n!1l̇~ t !(
j
gk jQj

~n!

1l2~ t !(
j ,l

gjkgjlQl
~n! , ~2.5!

where

vk~ t !5
kp

L~ t !
, l~ t !5

L̇~ t !

L~ t !
,

and the constant antisymmetric coefficientsgjk read

gk j52gjk5~21!k2 j
2k j

j 22k2
~ jÞk!. ~2.6!

Equation ~2.5! possesses exact first integrals. Namely, for
any two sets of solutions$Qk

(1)% and$Qk
(2)%,

(
k

@Qk
~1!Q̇k

~2!2Q̇k
~1!Qk

~2!#12l~ t !(
k,l

glkQk
~1!Ql

~2!5const

for arbitrary functionsv(t) andl(t). These integrals corre-
spond to the following conserved quantity

E
0

L~ t !

~A1Ȧ22Ȧ1A2!dx5const

where A1(x,t) and A2(x,t) are arbitrary solutions of the
wave equation satisfying the boundary conditions.

If the wall returns to its initial positionL0 after some
interval of timeT, then the right-hand side of Eq.~2.5! dis-
appears, so att.T one gets

Qk
~n!~ t !5jk

~n!e2 ivkt1hk
~n!eivkt, ~2.7!

jk
(n) andhk

(n) being some constant coefficients. Consequently,
at t.T the initial annihilation operatorsb̂n cease to be
‘‘physical’’ due to the contribution of the terms with ‘‘incor-
rect signs’’ in the exponentials exp(ivkt). Introducing a new
set of physical operatorsâm and âm

† , which result, att.T,
in relations such as~2.1! and ~2.2!, but with âm instead of
b̂m , one can easily check that the two sets of operators are
related by means of the Bogoliubov transformation

âm5(
n

~ b̂nanm1b̂n
†bnm* !, ~2.8!

with the coefficients

anm5Am

n
jm

~n! , bnm5Am

n
hm

~n! . ~2.9!
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The amount of photons created in themth mode equals the
average value of the operatorâm

† âm , since just this operator
has a physical meaning att.T. Assuming that initially the
field was in the vacuum stateu0b& ~defined with respect to
the initial operatorsb̂n), one gets

Pm[^0buâm
† âmu0b&5(

n
ubnmu25m(

n51

`
1

n
uhm

~n!u2.

~2.10!

The calculation of the last sum in this equation is our first
goal.

III. SIMPLIFIED EQUATIONS IN THE RESONANCE
CASE

Equation~2.5! forms an infinite set of coupled equations
with time-dependent coefficients, moreover, each equation
also contains an infinite number of terms. The simplest at-
tempt to simplify these equations seems to neglect their
right-hand sides completely, since the functionl(t), which
is proportional to the velocity of the wall, is very small in
real conditions. Then one would arrive at a system of equa-
tions describinguncoupledoscillators with time-dependent
frequencies. However, this simple idea iswrong. Indeed, let
us evaluate the relative magnitudes of terms in both sides of
Eq. ~2.5!. If the relative displacement of the wall’s position
dL/L is characterized by some dimensionless parametere
and the characteristic frequency~the inverse characteristic
time! of the motion isvw , thenl;evw , so the three groups
of terms on the right-hand side are proportional toevwv j ,
evw

2 , and e2vw
2 , respectively. Sincee is very small under

the laboratory conditions~see the discussion in Sec. IX!, all
these terms are much smaller than the leading terms on the
left-hand side, whose order isvk

2 . However, one should
compare the terms on the right-hand side not with the lead-
ing terms on the left-hand side, but with thecorrections to
the leading termsdue to the variations of the frequency.
These corrections are proportional tod(vk

2);vkdvk

;vk
2e. Consequently, the right-hand side terms can be ne-

glected only under the conditionvw!vk , i.e., in the case of
an adiabaticmotion of the wall. But in the adiabatic situa-
tion, evidently, no photons can be generated, as was demon-
strated explicitly, e.g., in@32,40,49# ~see also Appendix A!.

Thus, the photons can be created only provided that
vw;vk . In such a case, the first two groups of terms on the
right-hand side of Eq.~2.5! have the same order of magni-
tude as the corrections on the left-hand side. Besides,a
strong intermode interactionexists @12,35,41# due to the
equidistantcharacter of the eigenfrequency spectrum in the
1D cavity. Nonetheless, there exists a specialnonadiabatic
case, when Eq.~2.5! can be simplified significantly. More-
over, just this case seems to be the most similar to the real
experimental situation. Indeed, the most realistic law of mo-
tion of the wall corresponds to itsharmonic oscillationswith
some small amplitude and it is clear that the most significant
effect can be achieved under the condition of theparametric
resonance, when the frequency of the wall’s vibrations coin-
cides with twice the frequency of some electromagnetic
mode. So let us consider the following law of motion of the
wall:

L~ t !5L0@11« sin~2v1t !#, v15p/L0 . ~3.1!

Assuming«!1, it is natural to look for the solutions of Eq.
~2.5! in the form ~2.7!, but now we allow the coefficients
jm
(n) and hm

(n) to be slowly varying functions of time. The
further procedure is well known in the theory of parametri-
cally excited systems@50–52#. First we put expression~2.7!
into Eq.~2.5! and neglect the termsj̈,ḧ ~having in mind that
j̇,ḣ;«, while j̈,ḧ;«2), as well as the terms proportional to
l2;«2. Multiplying the resulting equation forQk by the
factors exp(ivkt) and exp(2ivkt) and performingaveraging
over fast oscillationswith frequencies proportional tovk
~since the functionsj,h practically do not change their val-
ues at the time scale of 2p/vk) we get the equations forjk
and hk , respectively. After some algebra we arrive at the
system of equations looking much more simple than the ini-
tial one:

d

dt
j1

~n!52h1
~n!13j3

~n! , ~3.2!

d

dt
jk

~n!5~k12!jk12
~n! 2~k22!jk22

~n! , k>2 ~3.3!

d

dt
h1

~n!52j1
~n!13h3

~n! , ~3.4!

d

dt
hk

~n!5~k12!hk12
~n! 2~k22!hk22

~n! , k>2. ~3.5!

Here we have introduced a new ‘‘slow’’ time scale

t5
1

2
«v1t. ~3.6!

The initial conditions now read

jk
~n!~0!5dkn , hk

~n!~0!50. ~3.7!

Although the new system also consists of an infinite number
of equations, each equation separately contains now only
three terms.

It is worth noting that if we deleted the right-hand side of
Eq. ~2.5! from the beginning~following an incorrect ‘‘naive’’
approach!, then we would obtain a quite different system of
equations, without termsjm andhm with m.1 on the right-
hand sides. This example demonstrates explicitly why the
naive approach is wrong.

In contradistinction toexactequations~2.5!, Eqs. ~3.2!–
~3.5! are approximate. However, it should be emphasized
that the degree of approximation is very good when«!1
~this parameter can hardly exceed the value of the order of
1027 in realistic situations; see Sec. IX!. In particular, the
unitarity conditionfor the Bogoliubov transformation~2.8!,

(
m

~ uanmu22ubnmu2!51, ~3.8!

is an exact consequenceof the new equations. Indeed, mul-
tiplying both sides of Eqs.~3.3! and ~3.5! by kjk

(n) or
khk

(n) , respectively, and performing the summation overk,
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one gets the relations~hereafter the over-dot denotes differ-
entiation with respect to the slow timet)

(
k
kjk

~n!j̇k
~n!5(

k
khk

~n!ḣk
~n!52j1

~n!h1
~n! , ~3.9!

resulting in the identity

(
k
k~@jk

~n!#22@hk
~n!#2!5n, ~3.10!

which is equivalent to Eq.~3.8! due to Eq.~2.9!.
It is remarkable that even modes are not coupled to the

odd ones. Moreover, one can easily verify that due to the
initial conditions ~3.7! all the functionshk

(n)(t) equal zero,
provided either of the sufficesn or k is an even number:

h2l
~n!~ t !5hk

~2 j !~ t !50.

Consequently, there is no creation of photons in the even
modes~see also@12,35,41#!. Thus we need the solutions of
Eqs.~3.2!–~3.5! only for the odd values of the indicesn and
k.

IV. REDUCING TO A SINGLE INTEGRAL EQUATION

It is convenient to introduce the variables

mk
~n!5jk

~n!1hk
~n! , nk

~n!5jk
~n!2hk

~n! , ~4.1!

which satisfy a ‘‘more homogeneous’’ set of equations

d

dt
m1

~n!52m1
~n!13m3

~n! , ~4.2!

d

dt
mk

~n!5~k12!mk12
~n! 2~k22!mk22

~n! , k>3 ~4.3!

d

dt
n1

~n!5n1
~n!13n3

~n! , ~4.4!

d

dt
nk

~n!5~k12!nk12
~n! 2~k22!nk22

~n! , k>3 ~4.5!

and the initial conditions

mk
~n!~0!5nk

~n!~0!5dkn . ~4.6!

To get rid of the infinite number of equations we introduce
two generating functions

M ~n!~t,z!5 (
k51

`

mk
~n!~t !zk, ~4.7!

N~n!~t,z!5 (
k51

`

nk
~n!~t !zk, ~4.8!

wherez is an auxiliary variable and the summation is per-
formed over odd values ofk. Using relations such as
kzk5z(dzk/dz), it is not difficult to obtain the following
first-order partial differential equations:

]M ~n!

]t
5S 1z2z3D ]M ~n!

]z
2m1

~n!~t !S z1
1

zD , ~4.9!

]N~n!

]t
5S 1z2z3D ]N~n!

]z
1n1

~n!~t !S z2
1

zD . ~4.10!

Let us consider Eq.~4.9!. For the given functionm1
(n)(t) its

solution satisfying the initial conditionM (n)(0,z)5zn reads

M ~n!~t,z!5F11z22e24t~12z2!

11z21e24t~12z2!G
n/2

22E
0

tF1
2S 12z2

11z2D
2

e28xG21/2

m1
~n!~t2x!dx.

~4.11!

Since the summation in Eq.~4.7! begins atk51, the function
M (n)(t,z) must satisfy the boundary condition

]M ~n!~t,z!/]zuz505m1
~n!~t !. ~4.12!

But the derivative of the first term in the right-hand side of
Eq. ~4.11! with respect toz equals zero atz50. Thus

]M ~n!~t,z!/]zuz505 lim
z→0

E
0

t

m1
~n!~t2x! f ~x;z!dx,

where the function

f ~x;z!58ze28xF12S 12z2

11z2D
2

e28xG23/2

possesses the following properties: limz→0f (x50;z)
5 limz→0(11z2)3/z25`, limz→0f (xÞ0;z)50, and
*0

` f (x;z)dx5(11z2)2/(11z)2. Consequently,
limz→0f (x;z)5d(x), giving rise to Eq.~4.12!.

Due to the definition~4.7!, M (n)(t,0)50 for any value of
t. This observation immediately results in the closed integral
equations for the functionsm1

(n) with n51,3, . . . .

E
0

tm1
~n!~t2x!

A12e28x
dx5

1

2 S 12e24t

11e24tD n/2. ~4.13!

In a similar way one can obtain an integral equation for the
function n1

(n)(t). However, it is convenient to introduce a
function

l1
~n!~t !5e4tn1

~n!~t ! ~4.14!

obeying the equation~again forn51,3, . . . )

E
0

tl1
~n!~t2x!

A12e28x
dx5

1

2
e4tS 12e24t

11e24tD n/2. ~4.15!

Let us consider first the case ofn51. Differentiating both
sides of Eqs.~4.13! and ~4.15! with respect tot and taking
into account the initial conditionsm1

(1)(0)5l1
(1)(0)51 one

can verify the relations

m1
~3!52m1

~1!2ṁ1
~1! , ~4.16!

2668 53V. V. DODONOV AND A. B. KLIMOV



l1
~3!5l1

~1!1ṁ1
~1! . ~4.17!

Besides, there exists an additional identity

ṁ1
~1!1l̇1

~1!54l1
~1! ,

which is equivalent to

ṁ1
~1!1e4tṅ1

~1!50. ~4.18!

From Eqs.~4.16!–~4.18! one gets

h1
~3!52j1

~1!2ḣ1
~1! , ~4.19!

j1
~3!52h1

~1!2 j̇1
~1! . ~4.20!

At n>3 the same procedure@but with different initial con-
ditions m1

(n)(0)5l1
(n)(0)50# leads after simple algebraic

manipulations to the recurrence relations

2nm1
~n12!522nm1

~n!24l1
~n!2ṁ1

~n!1l̇1
~n! , ~4.21!

2nl1
~n12!5~2n14!l1

~n!1ṁ1
~n!2l̇1

~n! . ~4.22!

Their consequence is the relation

m1
~n12!1l1

~n12!5l1
~n!2m1

~n! , ~4.23!

which is valid actually forn>1. Subtracting from Eq.~4.21!
a similar equation withn replaced byn22, and replacing the
differencel1

(n)2l1
(n22) by the summ1

(n)1m1
(n22) , one can,

after simple algebra, arrive at the three-term recurrence rela-
tion

nm1
~n12!5nm1

~n22!2ṁ1
~n! .

Similarly, adding to Eq.~4.22! a similar equation with
n22 instead ofn and using again Eq.~4.23!, one can arrive
at a relation for the functionsl1

(n) , which results in exactly
the same recurrence relation for the functionsn1

(n) :

nn1
~n12!5nn1

~n22!2 ṅ1
~n! .

Consequently, we have the same relations for the functions
j1
(n) andh1

(n) :

nj1
~n12!5nj1

~n22!2 j̇1
~n! , n>3 ~4.24!

nh1
~n12!5nh1

~n22!2ḣ1
~n! , n>3. ~4.25!

An immediate consequence of Eqs.~4.19! and ~4.25! is a
closed expression for the photon generation rate in the prin-
cipal cavity mode@see Eq.~2.10! with m51; remember that
the summation is performed overoddnumbers#

dP 1

dt
5 (

n51

`
2

n
h1

~n!ḣ1
~n!522h1

~1!~t !j1
~1!~t !. ~4.26!

Moreover, Eqs.~4.20! and ~4.24! result in the relation

(
n51

`
2

n
j1

~n!j̇1
~n!522h1

~1!~t !j1
~1!~t !. ~4.27!

Comparing it with the second equality in~4.26!, we arrive at
the identity

(
n

1

n
~@j1

~n!#22@h1
~n!#2!51, ~4.28!

which is exactlyequivalent to the unitarity condition of the
Bogoliubov transformation~2.8!

(
n

~ uan1u22ubn1u2!51, ~4.29!

due to Eq.~2.9!.
Comparing Eqs.~3.2!–~3.5! with superscriptn51 and

Eqs. ~4.19!, ~4.20!, ~4.24!, and ~4.25!, it is not difficult to
check the relations

j1
~2 j11!5~21! j~2 j11!j2 j11

~1! ,

h1
~2 j11!5~21! j~2 j11!h2 j11

~1! .

For thetotal rate of photon generation inall the modeswe
get, using Eqs.~2.10! and ~3.9!, the expression

dP

dt
5(

k
(
n

2k

n
hk

~n!ḣk
~n!52(

n

2

n
h1

~n!~t !j1
~n!~t !.

~4.30!

Differentiating it once more, we get

d2P

dt2
52(

n

2

n
@ḣ1

~n!j1
~n!1h1

~n!j̇1
~n!#.

Then Eqs.~4.19!, ~4.20!, ~4.24! and~4.25! lead to the simple
formula

d2P

dt2
52~@j1

~1!#21@h1
~1!#2!. ~4.31!

Consequently, we need only two functions,h1
(1)(t) and

j1
(1)(t) to calculate all physically interesting characteristics
of the system under study. To find these functions we must
solve Eqs.~4.13! and ~4.15!.

V. SOLVING INTEGRAL EQUATIONS

Since we havea convolutionof two functions on the left-
hand sides of Eqs.~4.13! and~4.15!, it is natural to apply the
Laplace transformationto these equations. Using the known
integrals@see, e.g.,@53#, Eqs. ~3.191.3! and ~3.197.3!# one
can find the following expressions for the Laplace transforms
m̄1
(n)(s) and n̄1

(n)(s) of the functionsm1
(n)(t) and n1

(n)(t),
respectively:
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m̄1
~n!~s!5

GS s81
1

2D
GS s8DGS 12D

I ~s,n!,

n̄1
~n!~s!5

GS s811D
GS s81

1

2DGS 12D
I ~s,n!,

where

I ~s,n!5E
0

1

xs/421~12x!n/2~11x!2n/2 dx

5

GS s4DGS 11
n

2D
GS s4111

n

2D
FS s4 , n2 ; s4111

n

2
;21D

and F(a,b;c;z) is the Gauss hypergeometric function. For
n51 we havec5a2b12 for which an explicit expression
for the hypergeometric function is known@54#:

F~a,b;a2b12;21!5
22aAp

b21 H G~a2b12!

GS a2DGS 321
a

2
2bD

2
G~a2b12!

GS 11a

2 DGS 11
a

2
2bD J .

This formula leads to the relations

m̄1
~1!~s!5

1

2 H 12
s

8F GS s81
1

2D
GS s811D G

2J , ~5.1!

n̄1
~1!~s!52

1

2 H 12
s

8F GS s8D
GS s81

1

2D G
2J . ~5.2!

So we have to find the explicit expression for the function
R(t), whose Laplace transform reads

R̄~s!5F G~s!

GS s1
1

2D G
2

.

The known integral representation for Euler’sb-function
@53,54#

G~s!

GS s1
1

2D
5

1

Ap
E
0

`

e2sy~12e2y!21/2 dy

yields

R̄~s!5
1

pE0
`E

0

` dy dz e2s~y1z!

A~12e2y!~12e2z!
.

Since exp(2sa) is the Laplace transform of the function
d(t2a), we get

R~t!5
1

pE0
`E

0

` d~t2y2z!dy dz

A~12e2y!~12e2z!

5
1

pEe2t

1 dx

Ax~12x!~x2e2t!
.

The last integral can be transformed to the standard form of
the complete elliptic integral of the first kind@53#

K~k!5E
0

p/2 da

A12k2sin2a
,

resulting in the expression

R~t!5
2

p
K~A12e2t!u~t!, ~5.3!

u(t) being Heaviside’s step function. Then Eqs.~5.1!–~5.3!,
together with the initial conditions~4.6!, lead to the relations

m1
~1!~t !52

1

p

]

]t
@e24tK~A12e28t!#,

n1
~1!~t !5

1

p

]

]t
@K~A12e28t!#.

It is convenient to introduce the notation

k5A12e28t, k̃5A12k25e24t ~5.4!

and to use the differentiation rules@53#

dK~k!

dk
5
E~k!

kk̃2 2
K~k!

k
,
dE~k!

dk
5
E~k!2K~k!

k
,

~5.5!

where

E~k!5E
0

p/2

daA12k2sin2a

is the complete elliptic integral of the second kind@53#. Fi-
nally we get

j1
~1!5

2

p

E~k!1k̃K~k!

11k̃
, h1

~1!52
2

p

E~k!2k̃K~k!

12k̃
.

~5.6!

The general structure of solutions to Eqs.~4.24! and~4.25! is

2670 53V. V. DODONOV AND A. B. KLIMOV



h1
~n!5

2

p
y$@ k̃g2

~n!~y!1k̃2g1
~n!~y!#K~k!

2@ f1
~n!~y!1k̃ f2

~n!~y!#E~k!%,

j1
~n!5

2

p
y$@ k̃g2

~n!~y!2k̃2g1
~n!~y!#K~k!

1@ f1
~n!~y!2k̃ f2

~n!~y!#E~k!%,

wherey[k22 and functionsf6
(2 j11)(y),g6

(2 j11)(y) are poly-
nomials of the degreej . In particular,

f1
~1!5 f2

~1!5g1
~1!5g2

~1!51,

f1
~3!58y27, f2

~3!58y21,

g1
~3!58y23, g2

~3!58y25,

while the polynomials withn>5 have more complicated ex-
plicit expressions resulting from the recurrence relations
~4.24! and ~4.25!. However, we do not need these expres-
sions to calculate the total numbers of photons produced in
the principal mode and in all the modes.

VI. RATE OF PHOTON GENERATION

Putting expressions~5.6! into Eq. ~4.26!, we obtain the
following explicit formula for the photon generation rate in
the first cavity mode:

dP 1

dt
5
4«v1

p2

E2~k!2k̃2K2~k!

k2 . ~6.1!

If t!1, thenk5A8t!1, and the power series expansions of
the elliptic integrals@53#

K~k!5
p

2 H 11
1

4
k21

9

64
k41•••J ,

E~k!5
p

2 H 12
1

4
k22

3

64
k42•••J

lead to the linear law

dP 1

dt
'
1

2
«2v1

2t, «v1t!1. ~6.2!

This expression coincides exactly with the result of Ref.
@34#, which was obtained in the framework of a quite differ-
ent approach.

In the long-time limitt@1 we havek̃→0. Then the lead-
ing terms of the asymptotic expansions@53#

K~k!' ln
4

k̃
1
1

4 S ln4
k̃

21D k̃21•••,

E~k!'11
1

2 S ln4
k̃

2
1

2D k̃21•••

result in the constant rate of photon creation

dP 1

dt
5
4«v1

p2 , «v1t@1. ~6.3!

This dependence was found earlier in@12,35#, where an as-
ymptotical solution of the Moore equation~1.4! was ob-
tained. However, in that papers a factor 2 was missed and the
answer was half that of Eq.~6.3!.

The total number of photons in the first mode can be
obtained by integrating Eq.~6.1!. Taking into account the
relation

dt5
kdk

4k̃2 , ~6.4!

one can check that the expression on the right-hand side of
Eq. ~6.1! is a complete differential due to Eq.~5.5!. So the
final result appears surprisingly simple:

P 1~k!5
2

p2E~k!K~k!2
1

2
. ~6.5!

The plot of this dependence, given in Fig. 1, shows how the
initial parabola

P 1~ t !5
1

4
~«v1t !

2, «v1t!1 ~6.6!

is smoothly transformed into the linear dependence

P 1~ t !5
4

p2 «v1t1
2

p2 ln42
1

2
1O ~te28t! ~6.7!

for «v1t@1. Actually the asymptotical formula~6.7! works
quite well beginning att'0.5.

Using Eqs.~4.31! and ~5.6! we find the second time de-
rivative of the total amount of photons created in all the
modes:

d2P

dt2
5

16

p2k4 $@E~k!2k̃2K~k!#21k̃2@E~k!2K~k!#2%.

~6.8!

FIG. 1. Number of photons created in the first mode versus the
dimensionless timet8[t.
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It decreases from the value12(«v1)
2 at t50 @it is seen im-

mediately from Eq.~4.31!# to the value (2«v1 /p)
2 at

t→` ~i.e., its variation is only 20%!. To integrate Eq.~6.8!
we use, besides Eq.~6.4!, the relations@see, e.g., Eqs.
~5.113.4! and ~5.113.5! from @53##

E @K~k!2E~k!#
dk

k2 5
1

k
@E~k!2k̃2K~k!#,

E @E~k!2k̃2K~k!#
dk

k2k̃2
5
1

k
@K~k!2E~k!#.

The result is

dP

dt
5

4

p2k2 @E~k!2k̃2K~k!#@K~k!2E~k!#. ~6.9!

The dependence ont appears to be practically linear~see
Fig. 2!. For t!1 we havedP /dt52t5dP 1 /dt, i.e., the
photons are created only in the first mode. But ift@1, then
dP /dt516t/p2@dP 1 /dt.

Equation~6.9! can be also integrated analytically. The fol-
lowing formula holds due to Eqs.~5.5! and ~6.4!:

P5
1

p2 F S 12
1

2
k2DK2~k!2E~k!K~k!G . ~6.10!

Thus we have quadratic dependences of the total amount of
photons on time in both the short-time and long-time limits:
P5t2 at t!1 and

P5
8

p2 t21
4t

p2 ~ ln421!2
ln4

p2 ~12 ln2!1O~te28t!

at t@1. Figure 3 shows this parabolic law explicitly. More-
over, the plot ofP versust2 is visually undistinguishable
from the straight line. However, while att→0 the total num-
ber almost coincides with that in the first mode,P'P 1 , at
t→` we haveP 1!P .

The energy of the principal mode is simplyv1P 1 . For the
total energy in all the modes we have the formula@see Eq.
~2.10!#

E5v1 (
m51

`

mPm5v1 (
m51

`

(
n51

`
m2

n
uhm

~n!u2. ~6.11!

It is remarkable that this double sum can be calculated ex-
actlywithout a knowledge of the explicit expressions for co-
efficientshm

(n). Let us introduce the function

S~n!5 (
m51

`

m2uhm
~n!u2.

Differentiating it with respect to the slow timet and using
Eqs.~3.4! and ~3.5! we get~remember that all the functions
hm
(n) andjm

(n) are real!

Ṡ~n!522j1
~n!h1

~n!24(
m51

`

m~m12!hm
~n!hm12

~n! .

Differentiating this equation once more, we get

S̈~n!52j1
~n!ḣ1

~n!22j̇1
~n!h1

~n!14@j1
~n!#224@h1

~n!#2116S~n!.

The total energy equalsE5v1(n51
` S(n)/n. But one can

check, using relations~4.19!–~4.20!, ~4.24! and ~4.25!, the
identity

(
n51

`
1

n
~ j̇1

~n!h1
~n!2j1

~n!ḣ1
~n!!51.

Combining it with identity ~4.28!, we arrive at a simple
equation

Ë216E52v1 .

Its solution, satisfying the evident initial conditions
E(0)5Ė(0)50, reads

E~t!5
1

4
v1sinh

2~2t!. ~6.12!

The total energy grows much faster than the total number of
photons. Therefore we have a rapid pumping in the high-
frequency modes at the expense of the energy of the low-
frequency field oscillations. A similar phenomenon in the

FIG. 2. Total rate of photon generation versus the dimensionless
time t8[t.

FIG. 3. Total number of photons versus the dimensionless time
t8[t.
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case of a classical field in a 1D cavity was discovered in@36#
in the framework of a different approach, namely, with the
aid of an explicit account of the repeated wave reflections
from an oscillating boundary. The physical mechanism of
such a pumping is the Doppler up-shift of the field reflected
from the mirror oscillating at the frequency coinciding with
the interval between the equidistant eigenfrequencies.

VII. A 3D RESONANCE CAVITY: REDUCING TO A SINGLE
PARAMETRIC OSCILLATOR

Now let us proceed to the three-dimensional case. For
definiteness we choose a rectangular cavity with dimensions
Lx ,Ly ,Lz ~briefly designated by the symbol$L%). If these
dimensions do not depend on time, each field mode is deter-
mined by three integersm,n,l , responsible for the eigenfre-
quency

vmnl5p@~m/Lx!
21~n/Ly!

21~ l /Lz!
2#1/2, ~7.1!

and by two orthogonal directions of polarization. In order to
simplify the exposition and to get rid of extra unessential
indices, let us consider the case whenLz!Lx;Ly . Then the
frequencies withlÞ0 are much greater than those with
l50. It is clear that the interaction between low- and high-
frequency modes in the nonstationary case is weak. Conse-
quently, studying the excitation of thelowest modeswe may
confine ourselves to the case ofl50. Then the only possible
polarization of the vector potential is along thez axis, so the
low-frequency part of theHeisenberg field operatorat t,0
reads

Âz~x,y,t,0!5(
n

~2p/vn!
1/2cn~x,yu$L%!

3@ b̂nexp~2 ivnt !1b̂n
†exp~ ivnt !#.

~7.2!

The difference from the similar expression~2.1! is that now
the suffix n is replaced by its ‘‘vector’’ counterpart
n5(m,n) and the functioncn(x,yu$L%) depends on two
space coordinates

cn~x,yu$L%!52~LxLyLz!
21/2sin

mpx

Lx
sin
npy

Ly
.

The coefficients in Eq.~7.2! are chosen again in correspon-
dence with the standard form of the field Hamiltonian~2.2!.

Now let the dimensionLx depend on time according to
the given lawL(t). To satisfy the boundary conditions

Azux505Az ux5L~ t !5Azuy505Azuy5Ly50

we write the field operator att.0 in the same functional
form ~7.2!, but with the time-dependent parameterL(t):

Âz~x,y,t !52Ap(
n

cn„x,yuL~ t !,Ly…Q̂n~ t !. ~7.3!

In the stationary case the operatorsQ̂n(t) coincide with the
~coordinate! quadrature components of the field mode opera-
tors. Putting~7.3! into the wave equation

]2Az /]t
22DAz50,

we arrive at an equation similar to Eq.~2.5!. The difference
is that now all the indices are ‘‘two-vectors’’ and the frequen-
cies are given by Eq.~7.1! with l50 andL(t) instead of
Lx . The constantnumerical coefficientsgkj are given by a
formula

gkj5LE
0

L

dxE
0

Ly
dyE

0

Lz
dz c j~r uL !

]ck~r uL !

]L
.

Their explicit form is more complicated now than the simple
formula ~2.6!. However, these coefficients remain antisym-
metrical gkj52gjk , due to the normalization of functions
ck ,

E
0

$L%
dr cmcn5dmn ,

and due to zero boundary conditions atx5L. ~Moreover,
they do not depend on the cavity dimensions.!

Although we use the same notation as in the 1D case, the
operatorsQ̂n(t) in Eq. ~7.3! differ from their analogs in a
similar decomposition~2.4!. In Sec. II we dealt with com-
plex functionsQk

(n)(t), whereas nowQ̂n(t) means the Her-
mitian operator coinciding with the~‘‘coordinate’’! quadra-
ture componentof the field mode operator.

Supposing again that the wall oscillates at twice the
eigenfrequency of some unperturbed mode

L~ t !5L0@12«cos~2vmt !#, u«u!1

@we have changed the phase of vibrations in comparison with
Eq. ~3.1! because of technical reasons#, we look for the so-
lution in the form~carets over operators are omitted!

Qk~ t !5jk~«t !exp~2 ivkt !1hk~«t !exp~ ivkt !. ~7.4!

But now all the termson the right-hand side of Eq.~2.5!
disappear after averaging over fast oscillations, since the
spectrumv j is not equidistant. Indeed, the first and second
sums on the right-hand side do not contain functionsQk due
to the antisymmetricity of coefficientsgkj , whereas the last
sum is proportional tol2;«2. Consequently, after the mul-
tiplication by the proper exponential functions, the right-
hand side will consist of the terms containing factors such as
exp(i@6vj6vk62vm#t) with jÞk. After averaging, all
these terms turn into zero.

Thus, in this special~nonadiabatic! case the problem is
reduced to that of a one-dimensional parametric oscillator
with the time dependence of the eigenfrequency in the form

v~ t !5v0@112g cos~2v0t !#, ~7.5!

v0[vmn being the unperturbed eigenfrequency of the reso-
nance mode. The frequency modulation depthg is related to
the cavity length modulation depth« as
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g5
1

2
«@11~nL0 /mLy!

2#21/2.

At this point it is convenient to abandon the Heisenberg
picture and to proceed to the Schro¨dinger representation. Of
course, both representations are equivalent, as soon as the
field problem has been reduced to studying a finite-
dimensional quantum system. However, the most of numer-
ous investigations of the time-dependent quantum oscillator,
since Husimi’s paper@55#, were performed in the Schro¨-
dinger picture. So it is natural to use the known results. Ac-
cording to@47,55,56#, all the characteristics of thequantum
oscillator are determined completely by thecomplexsolution
of the classicaloscillator equation of motion

ü1v2~ t !u50, ~7.6!

satisfying the normalization condition

u̇u*2u̇* u52i . ~7.7!

Let us assume that the functionv(t) takes the constant value
v0 at t<0 and t.t f.0. Moreover, it is convenient to
choose the initial conditions for theu-function as

u~0!51/Av0, u̇~0!5 iAv0. ~7.8!

Then the quantum-mechanical average number of photons
created from the ground state due to the time dependence of
the frequency in the interval of time 0,t,t f is given by the
formula

^n&5
1

4v0
~ uu̇u21v0

2uuu2!2
1

2
. ~7.9!

Looking for the solution of Eq.~7.6! in the parametric reso-
nance case~7.5! in the form

u~ t !5
1

Av0

@j~ t !eiv0t1h~ t !e2 iv0t# ~7.10!

@the opposite signs in the arguments of the exponential func-
tions in Eqs.~7.4! and ~7.10! are due to the different repre-
sentations: the former equation is written in the Heisenberg
picture, while the latter in the Schro¨dinger one# and using the
method of averaging over fast oscillations, one can easily
obtain the first-order differential equations for the amplitudes
~provided thatugu!1)

j̇5 iv0gh, ḣ52 iv0gj. ~7.11!

Their solutions satisfying the initial conditions~7.8! ~up to
the terms of the order ofg) read@57#

j~ t !5cosh~v0gt !, h~ t !52 i sinh~v0gt !. ~7.12!

Due to Eqs.~7.9!, ~7.10!, and~7.12!, the average number of
photons~and the total energy in the cavity! grows exponen-
tially in time:

^n&5uhu25sinh2~v0gt !. ~7.13!

It is well known that the initial vacuum state of the oscillator
is transformed into thesqueezed vacuum stateif the fre-
quency depends on time~see, e.g., reviews@47,58# and nu-
merous references therein!. Moreover, looking at Eq.~7.13!
one can immediately recognize the combinationv0gt as the
so-calledsqueezing parameter. Therefore the probability to
registraten photons exhibits typical oscillations

P 2m5
@ tanh~v0gt !#

2m

cosh~v0gt !

~2m!!

~2mm! !2
, P 2m1150.

~7.14!

This distribution possesses the photon-number variance
sn5

1
2sinh

2(2v0gt). Similar formulas for the amount of pho-
tons created in a cavity filled with a medium with a time-
dependent dielectric permeability~and stationary boundaries!
were found in@48#.

VIII. INTERACTION WITH A PROBE OSCILLATOR

To detect the photons created inside the cavity due to the
motion of the wall, at least two approaches are conceivable.
The first one is to make small holes in the walls, to accumu-
late a sufficient amount of photons inside the cavity during
some time interval~about 1 s, as will be shown in Sec. IX!,
then to pass a beam of Rydberg atoms through the cavity
~eigenfrequencies of a cavity with dimensions of several cen-
timeters have the order of 10 GHz and correspond to the
transitions between the excited levels of the Rydberg atoms
with the principal quantum numbern;100), and to use the
elaborated methods@1–4# of extracting the information on
the field inside the cavity, comparing the states of the atoms
in the input and output beams.

Another way is to use some trap when a detector occurs
inside the cavity all the time. Then the interaction between
the field and the detector can change significantly the dynam-
ics of the field excitation by the vibrating wall. Here we
demonstrate this effect in the framework of a simplified
model, when aharmonic oscillatortuned to the frequency of
the resonant mode is placed at the point of maximum of the
amplitude mode functioncmn(x,yu$L%) in the 3D rectangu-
lar cavity discussed Sec. VII.

Assuming the interaction between the oscillator and the
field to be described by means of the standard minimal cou-
pling term 2(e/mc)p•A, we arrive at the following two-
dimensional Hamiltonian governing the evolution of the
coupled ‘‘field oscillator plus detector’’ system:

H5
1

2
@P21v2~ t !Q21p21v0

2q224v0kpQ#. ~8.1!

HereP,Q are the quadrature components of the field oscil-
lator andp,q are those of the probe oscillator. We neglect the
interaction with nonresonant modes since it is reasonable to
suppose that under the resonance conditions their contribu-
tion is not essential at«!1.

In general, the dimensionless coupling coefficientk must
depend on time due to the decomposition~7.3!. However,
since this coefficient is small, its variations of the order of
«k can be neglected in comparison with the relative varia-
tion of the eigenfrequencydv/v;«. Sok is assumed to be
constant.
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Suppose that the lowest cavity mode is resonant. Then
one can evaluate the dimensionless coupling constant as
k;(e2/2pmc2L)1/2 ~here we return to the dimensional vari-
ables!. The maximum value of the parameter« is ~see Sec.
IX ! «max;dmaxvs/2pc, where dmax;0.01 is the maximal
possible relative deformation in the material of the wall and
vs;53103 m/s is the sound velocity inside the wall.
Then the ratiog/k cannot exceed the valuedmax(mvs

2L/
8pe2)1/2;0.05 for L;1 cm andm' the mass of electron
~for these parametersk;231027). Consequently, one may
believe that in the real conditionsg/k!1.

In the time-independent casev(t)5const5v0 , we have
two eigenfrequencies

v65v0~16k! ~8.2!

~provided thatuku!1). Let us assume that the wall vibrates
exactly at twice the lower frequencyv2 :

v~ t !5v0@112g cos~2v2t !#. ~8.3!

Then the lower and upper modes practically do not interact
in the limit of g!k.

The propagator of the Schro¨dinger equation with the
Hamiltonian~8.1! can be calculated in the framework of the
general theory of multidimensional quantum systems with
arbitrary quadratic Hamiltonians, first proposed in@59# and
exposed in detail, e.g., in@47#. It reads~see Appendix B for
the details of calculations!

G~x2 ,x1,t !5
1

p iA2D
expH 2

i

2D
@x2Ax222x2Bx1

1x1Cx1#J . ~8.4!

Hereafter it is assumed, for the sake of simplicity, that the
quadrature component variables are chosen in such dimen-
sionless forms that one may write formally\5v051. The
vector x15(Q1 ,q1) corresponds to the initial point in the
two-dimensional coordinate space andx25(Q2 ,q2) to the
final one.A, B, andC are 232 matrices

A5 I2sinhm cosw2coshm sinF sinhm sinw2kD

sinhm sinw2kD sinhm cosw2coshm sinF
I ,

B5 I 2sinhm cosw22coshm sinw22sinw1 cosw12coshm cosw22sinhm sinw2

2cosw11coshm cosw22sinhm sinw2 sinhm cosw22coshm sinw22sinw1
I ,

C5 I2sinhm cosF2coshm sinF kD2sinhm sinF

kD2sinhm sinF sinhm cosF2coshm sinF
I .

The new scalar functions are defined as~here it is conve-
nient to retain the unperturbed frequencyv0)

F5~v11v2!t52v0t,

w5~v12v2!t52v0kt5kF,

m5gv0t, D512coshm cosF.

Evidently, F@w@m, so the higher-order terms were ne-
glected in the expressions for matricesA,B,C in accordance
with these relations.

Let the initial state be the ground one, both for the field
and the probe oscillators,

c~Q,q,0!5A1

p
expF2

1

2
~Q21q2!G . ~8.5!

Then, after some tedious algebra, related to the calculation of
a Gaussian integral for the convolution of the propagator
with the initial wave function, one can arrive at the expres-
sion for the wave function of the coupled ‘‘field plus probe
oscillator’’ system att.0 in the form of a Gaussian wave
packet,

c~Q,q,t !5A 1

pcoshm
expS 2 i t2

1

2
@a~ t !Q21b~ t !q2

22c~ t !qQ# D , ~8.6!

with the coefficients

a~ t !511 i tanh~m!e22iw22 ikeiF$tanh~m!e2 iF

3@11tanh~m! sin~F!eiw#2sin~w!%,

b~ t !512 i tanh~m!e22iw22 ikeiF$tanh~m!e2 iF

3@12tanh~m! sin~F!eiw#1sin~w!%,

c~ t !5tanh~m!e22iw21 ik@12cos~w!e2 iF

1 i tanh2~m! sin~F!ei ~w22F!#.

In all the formulas above, the terms of the order ofk2 were
neglected, as well as the terms proportional tog ~except, of
course, the arguments of the hyperbolic functions!.

Equation~8.6! shows that the coupled system results in a
two-mode squeezed stateat t.0. In the short-time limit
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m!1 the squeezing effect is very small, since coefficients
a andb are close to unity, whilec is of the order ofk:

a~ t !511 ik sin~w!eiF,

b~ t !512 ik sin~w!eiF,

c~ t !5 ik@12cos~w!e2 iF#.

On the contrary, ifm*1, then all the terms proportional to
k can be neglected, so that

a~ t !511 ix, b~ t !512 ix, c~ t !5x,

x5tanh~m!e22iw2.

The properties of any Gaussian state are determined com-
pletely by itscovariance matrix

M5uMabu5 IMpp Mpx

M xp M xx
I ,

Mab5
1

2
^ẑaẑb1 ẑbẑa&, a,b51,2,3,4,

where the four-dimensional~in the present case! vectorz is
defined asz5(p,x)5(P,p,Q,q) ~evidently, ^z&50 in the
case under study!. Using the general formulas for multidi-
mensional Gaussian states given in@47# ~see Appendix C!,
one can obtain the following explicit expressions for the two-
dimensional blocks of matrixM in the most interestinglong-
time limit (m*1):

Mpp5
1

2
cosh2m I11tanhm sinf 2tanhm cosf

2tanhm cosf 12tanhm sinf
I ,

M xx5
1

2
cosh2m I12tanhm sinf tanhm cosf

tanhm cosf 11tanhm sinf
I ,

Mpx5
1

4
sinh~2m!I 2cosf 2tanhm2sinf

tanhm2sinf cosf
I ,

wheref52w2 . Consequently, there exists a strong correla-
tion between the field and probe oscillators in the long-time
limit. For instance, the correlation coefficient between the
quadrature components reads

r qQ[
^qQ&

A^q2&^Q2&
5

sinhm cosf

A11~sinhm cosf!2
.

~If f'p/2, this coefficient, as well as other analogous ele-
ments of the covariance matrix, does not turn exactly into
zero; in such a special caser qQ;k, due to neglected terms
of the order ofk.)

It is clear that thedensity matrixof the probe oscillator
@which is obtained from the density matrix of the total sys-
tem r(Q,q;Q8,q8)5c(Q,q)c* (Q8,q8) by settingQ5Q8
and integrating overQ# also has the Gaussian form. Its prop-
erties are determined completely by the reduced covariance
matrix ~accidentally, it coincides withM xx whenv051)

M pr5
1

2
cosh2m I12tanhm sinf tanhm cosf

tanhm cosf 11tanhm sinf
I .

~8.7!

A similar matrix for the field oscillator can be obtained from
Eq. ~8.7! by means of changing the sign of parameterm. As
shown in @60#, the photon statistics in Gaussian one-mode
states is determined completely by two invariants of the co-
variance matrix

d5detM , T5TrM .

Evidently, the parameterT is twice the energy of quantum
fluctuations. The parameterd characterizes thedegree of pu-
rity of the quantum state due to the relation@61#

Trr̂25
1

2Ad
,

wherer̂ is the statistical operator of the system. Thedegree
of squeezing, i.e., the minimal possible value of the variance
of some quadrature component, normalized by its vacuum
value @\/(2mv) for an oscillator with massm and fre-
quencyv#, is determined jointly by both parametersT and
d according to the relation@62#

s[2^q2&5T2AT224d.

Both subsystems have identical invariants

T54d5cosh2m,

so form*1 they appear in highly mixed quantum states. As
to the degree of squeezing, it turns out rather moderate

s5e2mcoshm5
1

2
~12e22m!.

The average number of quanta in each subsystem equals

^n&5
1

2
~T21!5

1

2
sinh2m,

i.e., half that in the free mode case. The variance of the
number of quanta~photons! reads@60#

sn[^n2&2^n&25
1

4
~2T224d21!5

1

4
sinh2m cosh~2m!.

The so-called Mandel parameter

Q[
sn

^n&
5
1

2
cosh~2m!

turns out to be much greater than unity form@1, indicating
that the photon statistics is highly super-Poissonian. The pho-
ton distribution function can be easily expressed in terms of
the Legendre polynomials, on the basis of the general for-
mula ~C2! of Appendix C:

P n5
2~ iz!n

A113cosh2m
Pn~2 iz!, ~8.8!
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where

z5
sinhm

A113cosh2m
.

Actually the right-hand side of Eq.~8.8! is a polynomial of
degreen with respect to the variablez2, due to the recur-
rence relation

nP n5z2@~2n21!P n211~n21!P n22#.

If m@1, thenz2'1/3. Figure 4 demonstrates the difference
between the free-mode distribution~7.14! and the coupled-
mode one~8.8! for m52, when ^n&'13 in the free-mode
case.

Since the expressions for the variances given above were
obtained in the framework of theapproximatemethod of
slowly varying amplitudes, it is desirable to check their ac-
curacy. For this purpose it is natural to check the conserva-
tion of thequantum universal invariants, first introduced in
Ref. @63# and discussed in detail in@47,61# ~later similar
constructions in classical Hamiltonian dynamics, with appli-
cations to the particle beam propagation problems, were con-
sidered in @64–66#!. As proven in those studies, for any
Hamiltonian that isquadraticwith respect to the coordinates
and momenta operators~and more generally, for any Hamil-
tonian, which can be written as a linear combination of gen-
erators of a semisimple Lie algebra@47,61,63#!, there exist
certain combinations of the second- and higher-order mo-
ments, which are conserved in timeindependently on con-
crete time dependences of the coefficientsin the correspond-
ing quadratic or linear forms. For instance, in the two-
dimensional case~considered in this section! there are two
independent second-order invariants. The first one reads
~provided that the Hamiltonian does not contain linear terms,
as in the case under study!

D25D111D2212D12,

where

D i j5^p ip j&^xixj&2
1

4
^p ixj1xjp i&^p j xi1xip j&.

This special form of the invariant was found also in@67#.
Taking the values of the second-order moments from the
expressions for matricesMpp , M xx , andMpx , one gets
D115D225

1
4cosh

2m and D1252 1
4sinh

2m, so the invariant
D2 is conserved exactly: D2[

1
2. The same is true for the

second universal invariantD4[detM . Consequently, the
method of slowly varying amplitudes yields quite good and
reliable results.

IX. DISCUSSION

Let us discuss now the possibility of observing the effect
of photon creation due to the motion of a boundary in a
laboratory. Obviously, it depends crucially on the achievable
values of the wall displacement amplitude. For the cavity
dimensions of the order of 1–100 cm, the resonance fre-
quencyv0 /p varies from 30 GHz to 300 MHz. It is difficult
to imagine that the wall could be forced to oscillate as a
whole at such a high frequency. Rather, one could think of
the oscillations of thesurfaceof the cavity wall. In such a
case one has to find a way of exciting a sufficiently strong
standing acoustic wave at frequencyvw52v0 inside the
wall. The amplitudea of this wave~coinciding with the am-
plitude of oscillations of the free surface! is connected to the
relative deformation amplituded inside the wall by the for-
mula d5vwa/vs , wherevs is the sound velocity. Since the
usual materials cannot bear the deformations exceeding the
valuedmax;1022 @68#, the maximal possible velocity of the
boundary appears to bevmax;dmaxvs;50 m/s~independent
of the frequency!. Thus the maximal dimensionless displace-
ment«5a/L0 is «max;(vs/2pc)dmax;331028 for the low-
est mode with the frequencyv0;cp/L0 . It also does not
depend on the frequency. Consequently, the maximal rate of
photon generation in the principal mode of a 1D cavity
equals@see Eq.~6.3!#

S dP 1

dt D
max

5
4

p2

vs
c

dmax
v1

2p
;631028v1/2p. ~9.1!

It is proportional to the frequency. Forv1/2p510 GHz~cor-
responding to a distance between the plates of the order of
several centimeters! we get 600 photons/s.

This number can be significantly increased in a 3D cavity,
due to the exponential law~7.13!. For the same frequency
v0/2p510 GHz, the maximal value of parameterm5gv0t
equalsmmax;600t, time t being expressed in seconds. Even
if the amplitude of the vibrations were 100 times less than
the maximal possible value, int51 s one could get about
sinh2(6)'43104 photons in an empty cavity. The available
level of experiments in cavity QED is quite sufficient to
detect such an amount of photons@3#. Note that the concrete
shape of a 3D cavity considered in Sec. VII is not important.
The significant requirements are~i! the nondegenerate char-
acter of the eigenfrequency spectrum and~ii ! the condition of
the parametric resonance between the oscillating wall and
some electromagnetic mode. It is interesting that thetotal
energy of photons created in the 1D cavity is approximately
the same as in the 3D case~see Sec. VI!. But in the 1D

FIG. 4. Plots of the photon distribution functions in the free-
mode and coupled-mode cases form52.
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situation this energy is spread over many interacting modes,
resulting in moderate numbers of quanta in each mode. Ac-
cording to the asymptotical solution found in@12#, the rate of
photon generation in themth ~odd! mode of the 1D cavity is
approximatelym times less than in the principal mode with
m51 ~provided that«vt@1).

To create the above-mentioned 600 or 43104 photons,
one should vibrate the wall for not less than 1 s. The neces-
saryQ factor of the cavity must beQ;331010. This value
was already achieved in experiments several years ago@3#.

An unsolved problem is how to excite the high-frequency
surface vibrations with a sufficiently large amplitude. One
could consider, for instance, using some kind of piezoeffect.
This method was successfully applied in early experiments
devoted to solving the mode-locking and pulse production
problems in lasers with the aid of vibrating mirrors. The
displacements of the mirror from 0.1 to 0.7mm at the fre-
quency 500 kHz were achieved in@69#. In @70# the resonance
vibrations of the mirror in a laser with a length of 250 cm
~i.e., at a frequency of about 100 MHz! were excited with the
aid of a quarz transducer. However, for our purposes the
frequency 100 MHz is too small, since the parameterm be-
comes 100 times smaller compared to the estimations given
above ~remember that«max does not depend on the fre-
quency!. Besides, in such a case one must cool a 3-m cavity
below 4 mK to eliminate the thermal noise. Diminishing the
dimensions of the cavity to 1 cm, we simultaneously raise
the temperature limit to 0.4 K and increase the parameter
m. Thus we arrive at the value of the frequency 10 GHz and
the minimal necessary amplitude of vibrations about 10210

cm.
Of course, many other difficult experimental problems

must be solved, for instance, how to avoid heating the wall in
a strong acoustic wave in order to prevent the destruction of
the superconductivity. Besides, in the case of piezoexcitation,
the applied electric voltage and the oscillations of electrons
and ions inside the piezoelectric could create their own fields
inside the cavity. However, these parasitic fields would be
polarized in the directionperpendicularto the surface~since
the region inside the cavity is the near field zone for the
electric dipole arising due to a possible uncompensated
charge density in the material!. Therefore they could be dis-
tinguished from the field created due to the nonstationary
vacuum fluctuations~physically, it is created by fluctuating
currents at the ideal conducting surface of the wall!, which is
polarized parallel to the surface.

In any case, it is well worth endeavoring to perform the
proposed experiment, since it would be a clear demonstration
of the reality of vacuum fluctuations. Indeed, an impressive
interpretation of the result could be as follows: one takes an
emptybox, ‘‘knocks’’ on its wall, and then discovers that the
box is ‘‘filled with photons.’’

Recently, a possibility of generating a fantastic amount
(1011 cm22) of visiblephotons between two ideal plates due
to the nonstationary Casimir effect was predicted in the case
when one plate performed periodic instantaneous jumps be-
tween two stationary positions@71#. However, this result
seems dubious for two reasons. First, it was obtained in the
framework of the adiabatic approach@i.e., removing all the
terms on the right-hand side of Eq.~2.5!#, which is obviously
incompatible with the ‘‘jump’’ approximation. Second, imag-

ining that one can periodically and almost instantaneously
~for a period of time much less than the period of vibrations
in the light wave, i.e.,;10214 s! change the distance be-
tween plates from 1024 to 231025 cm is even more fantas-
tic than discussing the possibility of exciting the surface vi-
brations with the amplitude of the order of 10210 cm. A
correct evaluation of the amount of photons created between
two plates, one of which exhibits a fast~nonperiodic! effec-
tive displacement due to the creation of a ‘‘plasma mirror’’
inside a semiconductor by a powerful femtosecond laser
pulse, was given in@72#. It yields not more than 1–100
photons/cm2 created from vacuum.

In conclusion, let us formulate briefly the results and the
unsolved problems that are worth studying. The main result
of the paper is the explicit demonstration of the possibility of
generating real photons from vacuum in a cavity with reso-
nantly vibrating walls and finding analytical solutions in one
and three space dimensions. In addition, we have shown that
the interaction between the field mode and the detector can
change the picture essentially, due to the back influence of
the detector on the mode. Thus the analysis of more realistic
models of the detectors seems important.~A two-level detec-
tor was considered in the framework of the generalized
Jaynes-Cummings model in@73#; its response turned out
quite different from the behavior of the harmonic oscillator.!
Other theoretical problems include, for instance, the evalua-
tion of the contribution of the nonresonant modes, the quan-
titative account of different losses, and the analysis of vari-
ous parasite effects. The existence of theexactsolution in the
1D resonance case gives rise to the conjecture on the pos-
sible internal symmetry of the simplified equations~3.2!–
~3.5!. Indeed, these equations appear to be closely connected
with the algebrasu(1,1). Besides, certain relations between
our solutions and the solutions of Moore’s equation~1.4!
found in Refs.@12,13,35# must also exist. The approach used
in our paper can be applied for solving some problems in
other fields of physics, where equations such as~1.1! and
~1.2! arise. A recent example of such a problem, related to
the plasma oscillations in a slab with a corrugated surface,
was presented in@74#. We hope that the method of averaging
over fast oscillations can result in new analytical solutions
for other relations between the wall frequency and the field
mode frequencies~in the 1D case!, namely, whenvw5kv1
with an integerkÞ2. For odd values ofk the variablesj and
h will not be coupled, so the photon production from
vacuum will be impossible. But some other interesting phe-
nomena can be discovered~see @41#!. These questions are
planned to be considered in future works.
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APPENDIX A: IMPOSSIBILITY OF PHOTON CREATION
IN THE ADIABATIC CASE

If the wall vibrates with a small amplitude at frequency
vw!vn , then one may neglect the right-hand side of Eq.
~2.5!, arriving at the problem of an oscillator with a time-
dependent frequencyv(t)5v0@12esin (vwt)#, wherev0 is
the unperturbed frequency of the given mode ande!1. Then
the average number of photons produced in each field mode
can be expressed through the energy reflection coefficient
R from an effective potential barrier corresponding to the
time dependencev2(t) as follows@48,58#: ^n&5R/(12R).
The general formula for the adiabatic reflection coefficient
can be found, e.g., in@75#. In the case under study it can be
simplified as

R5U 1

4v0
2E

0

T

v̈~t!e22iv0t dtU2, ~A1!

whereT is the duration of the process. Calculating the inte-
gral, it is not difficult to obtain the inequality
R<(evw

2 /4v0
2)2. It clearly shows that no photons can be

produced under the adiabatic conditions, so the only hope to
observe the effect may be associated with theresonancebe-
tween the electromagnetic and mechanical modes, when one
of the walls of a cavity vibrates with the frequency
vw52v0 , and Eq.~1.1! indicates a possibility of a large
reflection coefficient. However, in such a case the adiabatic
approach is inapplicable.

APPENDIX B: CALCULATION OF THE PROPAGATOR

Suppose that a quantum system is described by a qua-
dratic Hamiltonian

H5
1

2
~p,x!BS p

x D , ~B1!

wherex is anN-dimensional coordinate vector,p is the ca-
nonically conjugated momentum vector,@xj ,pk#5 id jk , j ,k
51, . . . ,N (\51), andB(t) is quite arbitrarysymmetric
~but not necessarily real! 2N32N matrix consisting of four
N3N blocks

B5 Ib1 b2
b3 b4

I , b15b̃1 , b45b̃4 , b25b̃3 .

The propagator of the Schro¨dinger equation in the coordinate
representation can be expressed as@47,59#

G~x2 ,x1 ,t !5@det~22p il3!#
21/2expH 2

i

2
@x2l3

21l4x2

22x2l3
21x11x1l1l3

21x1#J ,
provided thatN3N matricesl j (t) satisfy the system of lin-
ear differential equations~here1 means anN3N unit ma-
trix!

l̇15l1b32l2b1 , l1~0!51, l̇25l1b42l2b2 ,

l2~0!50, l̇35l3b32l4b1 , l3~0!50,

l̇45l3b42l4b2 , l4~0!51.

In the case of the Hamiltonian~8.1! with v051 the block
matricesbj read~the terms of the order ofk2 are neglected!

b151, b45 I11G 0

0 1
I , b25 I 0 0

22k 0
I ,

whereG(t)54g cos(2v2t). The matricesl2 andl4 can be
excluded with the aid of the relations

l2,45l1,3b̃22l̇1,3. ~B2!

Two other matricesl1 andl3 satisfy the same second-order
equation

l̈1l̇~b22b̃2!1lb450, ~B3!

but different initial conditions

l1~0!51, l̇1~0!5b̃2 , ~B4!

l3~0!50, l̇3~0!521. ~B5!

Let us write the 232 matrixl as

l5 I x y

z u
I .

Then the elements of both rows, (x,y) and (z,u), must sat-
isfy the identical equations, which in the (x,y) case read

ẍ22k ẏ1@11G~ t !#x50,

ÿ12k ẋ1y50.

Differentiating the first equation and comparing the result
with the second one, it is easy to get the relation

y52
1

2k
$x̂1~11G!ẋ1Ġx%. ~B6!

Therefore functionx(t) must satisfy the fourth-order differ-
ential equation

d4x/dt41~21G!ẍ12Ġẋ1~11G1G̈!x50. ~B7!

According to the method of slowly varying amplitudes, one
may look for the solution to Eq.~B.7! in the form

x~ t !5j1e
iv1t1h1e

2 iv1t1j2e
iv2t1h2e

2 iv2t, ~B8!

j6 andh6 being slowly varying functions of time. Due to
the conditiong!k, the upper and lower splitted modes do
not interact with each other under the condition of the strict
parametric resonance at the lower frequencyv2 . Thus one
may assumej15const andh15const. Averaging over fast
oscillations with the frequency 2v2 gives rise to the equa-
tions for j2 and h2 ~remember that all the higher-order
terms such ask2, g2, kg, etc., are neglected!
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j̇25 igh2 , ḣ252 igj2 ,

whose solutions read

j25aegt1be2gt, h252 i ~aegt2be2gt!.

Taking into account the relation 2k5v12v2 one can
transform Eq.~B6! into the form

y~ t !5 i ~j1e
iv1t2h1e

2 iv1t2j2e
iv2t1h2e

2 iv2t!,

up to the terms of the order ofk2 andg. Then the constant
coefficientsj1 , h1 , a, andb can be determined from the
initial conditions~B.4! and~B.5!. After rather tedious algebra
one can arrive finally at the following expressions for the
elements of matricesl1 andl3:

l1
115

1

2
@v2~coshm cosw22sinhm sinw2!1v1cosw1#,

l1
125

1

2
@v2~sinhm cosw21coshm sinw2!2v1sinw1#,

l1
215

1

2
@v1~sinhm cosw22coshm sinw2!1v2sinw1#,

l1
225

1

2
@v1~coshm cosw21sinhm sinw2!1v2cosw1#;

l3
115

1

2
@sinhm cosw22coshm sinw22sinw1#,

l3
125

1

2
@coshm cosw21sinhm sinw22cosw1#,

l3
215

1

2
@sinhm sinw22coshm cosw21cosw1#,

l3
225

1

2
@2sinhm cosw22coshm sinw22sinw1#.

From these expressions one can obtain matricesB5l3
21D

andC5l1l3
21D ~for the notation see Sec. VIII!. The matrix

A5l3
21l4D was calculated with the aid of the relation@see

Eq. ~B2!# l3
21l45b32l3

21l̇3 .

APPENDIX C: SOME RELATIONS
FOR GAUSSIAN STATES

If an N-dimensional quantum system is described by a
Gaussian wave function~in the coordinate representation!
c(x)5N exp(2 1

2xRx), whereN is a normalization con-
stant andR is a symmetric complexN3N matrix, then the
variance matrices, defined in Sec. VIII, can be expressed
through the matrixR as @47# (\51)

M xx5~R1R* !21,

Mpx5
i

2
~R2R* !M xx ,

Mpp5
1

4
~114Mpx

2 !M xx
21 .

The last formula is equivalent to the identity

MppM xx2Mpx
2 5

1

4
1. ~C1!

The left-hand side of this identity is one of the universal
invariants, because any quadratic Hamiltonian transforms an
arbitrary Gaussian state into another Gaussian state. More-
over, taking the trace of both sides of Eq.~C1!, one arrives at
a special form of thegeneralized uncertainty relation
@63,76#, which holds for Gaussian states~usually the vari-
ance uncertainty relations for coordinates and momenta are
minimized at Gaussian states!.

The photon distribution function in anyone-modeGauss-
ian statewith zero mean valuesof ^q& and ^p& can be ex-
pressed in terms of the invariants of the variance matrixT
andd ~see Sec. VIII! as @60,77#

P n5
2

A112T14d
S 114d22T

114d12TD n/2
3PnS 4d21

A~4d11!224T2
D , ~C2!

wherePn(x) is the Legendre polynomial. More general ex-
pressions in terms of the multidimensional Hermite polyno-
mials, which hold for multimode systems with nonzero first-
order average values, can be found in@78#.
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