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One-dimensional laser cooling based on velocity-selective coherent population trapping~VSCPT! has been
investigated numerically through the solution of the optical Bloch equations and through a Monte Carlo
analysis. The 1→1 and 2→2 transitions have been examined as a function of the atomic recoil frequency, the
spontaneous-emission decay rate, and the Rabi frequency of the cooling laser. It has been found that for a large
set of those parameters, the VSCPT cooling process may be described through scaling-law relations. The
scaling laws are not valid at long atom-laser interaction times or large Rabi frequencies, where the atomic
Doppler shift plays a significant role in the atomic motion evolution. Similar results for two atomic transitions
suggest the validity of the scaling law for any one-dimensional VSCPT process.

PACS number~s!: 32.80.Pj

I. INTRODUCTION

Velocity-selective coherent population trapping~VSCPT!
allows laser cooling below the atomic recoil limit. VSCPT is
based on the preparation of the atoms in a trapped coherent
superposition of states with different internal variables and
atomic momentum. VSCPT on theJ51→J51 atomic tran-
sition has been applied for one-dimensional laser cooling of
4He @1–4# and 87Rb atoms @5# and for two- and three-
dimensional cooling of4He @6#. For extensions to atomic
transitions with high-J number, the difference in the kinetic
energy of the states composing the coherent superposition
should be compensated; otherwise the atomic superposition
is not stable and only a very limited VSCPT cooling can be
realized @7#. The kinetic-energy compensation can be pro-
duced either by an atomic energy level shift due to an ap-
plied static electric field@8# or by producing an atomic ac
Stark shift@9,10,12#. Bichromatic VSCPT, produced by two
laser fields at different frequencies, has been introduced as an
alternative method to compensate for that kinetic-energy dif-
ference@11#.

The Levy flight processes determine the atomic momen-
tum distribution in a regime in which the interaction between
the atom and the laser radiation is very long; for example, in
helium a long-time interaction occurs over 100 000 sponta-
neous emissions@13,14#. Those processes, having a very
small but still significant probability of affecting the long-
time atomic evolution, allow escape of the atoms from the
trapped coherent superposition and limit the efficiency of the
laser-cooling process. This decrease in efficiency may be
compensated for by introducing boundaries limiting the
maximum values of the atomic momentum, for instance, by

using an additional sub-Doppler cooling mechanism. The
combination of VSCPT and polarization-gradient laser cool-
ing has been explored by several authors@15–18,5#.

The atomic preparation in a trapped atomic superposition
requires the modification of the atomic momentum through a
large number of absorption or emission photon processes.
For heavier atoms, the modification in the atomic velocity
produced by the photon momentum is smaller and very long
interaction times are needed in order to produce the required
cooling. The VSCPT theoretical analyses require numerical
integration following the time evolution of the internal and
external atomic variables. Different approaches such as solu-
tions of the optical Bloch equations~OBEs!, the quantum
Monte Carlo~QMC! approach, and the band theory approach
have been used for the investigation of the VSCPT cooling
process. However, theoretical analyses are also faced with
the problems of very long integration times and time-
consuming numerical integrations.

In this paper, the simplest VSCPT configuration of coun-
terpropagatings1,s2 laser fields is examined theoretically
for scaling laws. We have explored the role of the different
atom and laser parameters on the VSCPT process. We have
defined the VSCPT efficiency through the fraction of atoms
prepared in the trapped coherent superposition of states and
we have determined the combination of the atom and laser
parameters connecting the VSCPT efficiencies in different
atomic systems. An indication of the proper parameters to be
used for the scaling law has been derived from an analysis of
the eigenvalues for the ground-state Hamiltonian obtained
through an adiabatic elimination of the excited state. The
scaling-law parameters have been confirmed by numerical
simulations based either on OBEs or on the QMC approach.

Section II contains the definition of the atomic Hamil-
tonian and of the atomic basis used for the analysis. Section
III introduces the effective ground-state Hamiltonian derived
from the excited-state adiabatic elimination and its eigenval-
ues. The imaginary parts of those eigenvalues, i.e., the loss
rates out of and into the trapped superposition, determine the
time scale of the VSCPT process. Sections IV and V present
results for the 1→1 and 2→2 transitions, respectively. In
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Sec. VI we discuss the application of the scaling laws and
their relation to other laser-cooling techniques.

II. THEORETICAL DESCRIPTION

The one-dimensional VSCPT laser cooling investigated
here is based on the laser excitation of atoms either on the
Fg51→Fe51 orFg52→Fe52 transition, in which, in the
absence of nuclear spin, as in4He, the total angular momen-
tum F coincides with the electronic angular momentumJ.
The laser radiation is composed by two beams, one polarized
s1 and one polarizeds2, that counterpropagate along theẑ
axis. For simplicity, the two laser beams are assumed to have
the same intensity and the total laser electric field is given by

E~z,t !5 1
2 @ ê1Ee

i ~kz2vLt !1c.c.#1 1
2 @ ê2Ee

i ~2kz2vLt !1c.c.#,
~1!

where ê1 and ê2 represent the unit vectors for thes1 and
s2 waves, respectively. The wave-driven atomic transitions
that are relevant for the VSCPT evolution are indicated in
Fig. 1.

Both the internal and external atomic degrees of freedom
must be quantized to study subrecoil laser cooling. Thus we
use the statesup;F,m&5up& ^ uF,m&, whereup& is the eigen-
state with eigenvaluep of the atomic linear-momentum op-
eratorP̂ along theẑ propagation direction of the laser beams.
The atomic HamiltonianH includes the kinetic and elec-
tronic energiesHkin andHele and the atom-laser interaction
Val :

H5Hkin1Hele1Val . ~2!

For an atom with massM the kinetic part is

Hkin5
P̂2

2M
~3!

and kinetic energy will be expressed in terms of the recoil
frequencyvR ;

vR5
\k2

2M
. ~4!

For the electronic energy the origin will be assumed at the
energy of theuFg ,mg50& level. The excited states will be
assumed to be always degenerate and to have energy\v0.
The ground states will be assumed to be either degenerate, at
zero energy, or split in energy because of an ac Stark light
shift produced by an additionalp-polarized laser beam on
another Fg→Fe5Fg transition @9,10#. That light shift,
\v umgu

LS for the uFg ,mg& state, being produced byp-polarized
light, depends on theumgu value only and is equal to zero for
the uFg ,0& state. Thus the electronic Hamiltonian is written as

Hele5\v0 (
me52Fe

Fe

uFe ,me&^Fe ,meu

1 (
mg51

Fg

\v umgu
LS ~ uFg ,mg&^Fg ,mgu

1uFg ,2mg&^Fg ,2mgu!. ~5!

The atom-laser interaction depends on the Clebsch-
Gordan coefficients for the individual Zeeman transitions
driven by the applied laser fields. Following the approaches
of Ref. @19#, the Rabi frequency will be defined on the basis
of the reduced dipole moment^FgidiFe&, with the Wigner-
Eckart theorem for the dipole-moment matrix elements taken
as

^Fg ,mgudi uFe ,me&5
^FgidiFe&
~2Fg11!1/2

^Fe ,me ;1,i uFg ,mg&,

~6!

with i50,61. Thus the Rabi frequencyV for the transition
Fg→Fe associated with theE electric field of both thes1

ands2 waves is defined as

V52
^FgidiFe& E

~2Fg11!1/2\
. ~7!

Through the use of this definition, the atom-laser interaction
Hamiltonian is written

Val5
\V

2 (
p,mg

@^Fe ,mg11;1,1uFg ,mg&up11;Fe ,mg11&

3^p;Fg ,mgu1^Fe ,mg21;1,21uFg ,mg&

3up21;Fe ,mg21&^p;Fg ,mgu#e2 ivLt1H.c. ~8!

Equation ~8! shows that only a closed set of states is
coupled through the processes of absorption and stimulated
emission. In Refs.@2, 7#, that closed set of states has been
defined as the familyF (q), where q denotes the atomic
momentum of theuFe ,me50& state belonging to the closed
set. Relevant families for the two atomic transitions here
considered are

FIG. 1. Schematic representation of theFg51→Fe51 and
Fg52→Fe52 transitions considered in the present work for
VSCPT under excitation by counterpropagating traveling-waves1

ands2 light beams. Only the relevant laser-driven transitions are
reported.
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uq2\k;Fg51,21&, uq;Fe51,0&, uq1\k;Fg51,1&;
~9a!

uq22\k;Fg52,22&, uq2\k;Fe52,21&, uq;Fg52,0&,

uq1\k;Fe52,1&, uq12\k;Fg52,2&. ~9b!

Figure 1 reports only the laser-induced transitions between
the states of the relevant families.

The final process to be included in the master equation for
the atomic evolution is the spontaneous emission of the ex-
cited states with rateG. The basic roles of spontaneous emis-
sion are to produce a damping of the populations and coher-
ences involving the excited state and to introduce an atomic
redistribution among the families@2#. In spontaneous emis-
sion an atom, for instance, in the excited state
uq;Fe52,me50&, emits a fluorescence photon arbitrarily di-
rected in space, so that the atomic momentumq along the
quantization axis changes by any value between2\k and
\k. As a consequence, the ground states reached by the
spontaneous-emission process belong to familiesF ~q8! with
q8Þq. The term in the master equation describing redistri-
bution among families has been reported in Ref.@2# for the
case of theFg51→Fe51 transition and the general expres-
sion for the repopulation of the ground state has been re-
ported in Ref.@7#. Those relations will be used in our nu-
merical analysis. It should be noticed also that, as in those
references, the assumption of a uniform repopulation of the
ground states by spontaneous emission will be introduced in
our numerical calculations.

The atomic evolution of the population occupation for the
atomic states has been determined through a numerical solu-
tion of the OBE or through the QMC analysis introduced by
Mo” lmer, Castin, and Dalibard@20#. Because the OBE solu-
tion requires a very large basis for the atomic momentum in
order to cope with the atomic diffusion toward large values,
we have used as much as possible the QMC approach. For
theFg51→Fe51 transition, where an adiabatic elimination
of the excited state could be applied, we used the quantum-
jump variation of the QMC approach introduced by Wu,
Holland, and Foot@12#. That quantum-jump variation pro-
duces a considerable gain in computational time with respect
to the QMC method of Ref.@20#. In the case of the
Fg52→Fe52 transition, the quantum-jump model pro-
posed by Wu, Holland, and Foot@12# is not applicable for the
interaction times and the Rabi frequencies considered in our
analysis because it relies on approximate eigenvalues and
eigenvectors not valid for our cases.

III. GROUND-STATE LOSS RATES

A convenient approach to analyzing the VSCPT features
is the resolvent theory based on the adiabatic elimination of
the excited state and the determination of the eigenvalues of
a Hamiltonian acting on only the ground states. In the case of
a small Rabi frequency V!uG/21dLu, where
dL5vL2v01vR is the laser detuning, the action of the
atom-laser interactionVal on the ground states may be de-
scribed through an effective HamiltonianH res derived at the
lowest order in a perturbation approach of the resolvent
theory @21#:

H res5ṼalPe

1

\@vL2Ee1Eg1 iG/2#
PeṼal . ~10!

HerePe is the projector on the excited states and

Ṽal5eiPevLtVale
2 iPevLt. ~11!

In the denominator of Eq.~10! the energiesEe andEg of
the excited and ground states will include also the kinetic-
energy part. Thus the present derivation of the loss rates is
more precise than the one reported in Ref.@7#, because, as in
Ref. @22#, the Doppler shift contributionpk/M to the laser
detuning is included in the denominator of the resolvent ex-
pression. The following effective HamiltonianHeff is now
acting on the ground state:

Heff5Hkin1Hele1H res. ~12!

Because photon absorption from the ground state is
equivalent to a loss rate, the HamiltonianHeff acting on the
ground state is complex. The real and imaginary parts of its
eigenvalues are the eigenenergies and loss rates for the
ground eigenstates, respectively, as examined in Refs.@22, 7,
23#. Diagonalization of the HamiltonianH res on the ground
states belonging to the familyF (q) allows us to derive the
loss rate for the eigenstates.

A VSCPT perfect-trap ground state has zero loss rate and
is stable against both the atom-laser interaction and the ki-
netic energy coupling to other states. Ground states with a
loss rate not exactly zero, but small, could also be used to
realize VSCPT laser cooling, even if with a smaller effi-
ciency. Those states with nonzero loss rates have been ini-
tially considered in Ref.@7# and denoted as leaky states in
Ref. @10#. An atomic configuration in which the leakiness of
the states is compensated for by a modification of the atomic
Hamiltonian, for instance, through the light shiftsv umu

LS of Eq.
~2!, is denoted nonleaky.

IV. Fg51˜Fe51 TRANSITION

A. Eigenvalues

The ground-state eigenvalues are obtained by diagonaliz-
ing the effective HamiltonianHeff of Eq. ~12! on the two
ground states of the familyF (q) of Eq. ~9a!. By eliminating
common kinetic-energy terms through a phase change for the
states, the 232 matrix of the effective Hamiltonian is

Heff~q!5\S 2
kq

M
1R1

R1

R2

1
kq

M
1R2

D , ~13!

where theR6 level-shift operators defined in the resolvent
theory of Ref.@21# are

R65
1

4

V2/2

dL6kq/M1 iG/2
. ~14!

For dL50 theE1(q) andE2(q) eigenvalues are
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E1~q!

\
52 i

G8

11~q/pe!
2 F11X12S q

a\kD
2H 112S qpeD

2

1S qpeD
4

1
a\k

2pe
F11S qpeD

2G J C1/2G, ~15a!

E2~q!

\
52 i

G8

11~q/pe!
2 F12X12S q

a\kD
2H 112S qpeD

2

1S qpeD
4

1
a\k

2pe
F11S qpeD

2G J C1/2G . ~15b!

Here we have introduced~i! the pumping rateG8 at reso-
nancedL50,

G85
V2

2G
, ~16!

~ii ! an adimensional parametera proportional to the ratio
between the pumping rateG8 and the recoil frequencyvR ,

a5
V2

8GvR
, ~17!

and ~iii ! the momentumpe for which the atomic Doppler
shift is equal to the natural linewidth

kpe
M

5
G

2
. ~18!

As shown in Ref.@13# the parameterpe defines also the
range of the Doppler force acting in the VSCPT scheme. Our
pumping rateG8 is two times smaller than the one defined in
Refs.@22# and@16# because it is defined for the Schro¨dinger
states and not for the density matrix elements as in those
references. The following relation betweenG8 anda exists:

G854avR . ~19!

At uqu!pe andq
2!a\kpe , the imaginary parts of Eqs.

~15a! and ~15b!, i.e., the ground-state loss rates, are for
uqu<\ka,

GC~q!5G8H 11F12S q

\ka D 2G1/2J , ~20a!

GNC~q!5G8H 12F12S q

\ka D 2G1/2J , ~20b!

and for uqu>\ka,

GNC~q!5GC~q!5G8. ~21!

The labelsC and NC, coupled and noncoupled, refer to the
two following linear superposition of ground states within
theF (q) family:

uS C~q!&5
1

&

~ uq2\k;Fg51,21&1uq1\k;Fg51,1&),

~22a!

uS NC~q!&5
1

&

~ uq2\k;Fg51,21&2uq1\k;Fg51,1&).

~22b!

Equation~20b! shows that stateuS NC~q50!& is a perfect-
trap ground state with zero loss rate. The loss rates of Eqs.
~20a! and~20b! depend on the parametersG8 anda and these
parameters describe completely the VSCPT evolution, inde-
pendently of the considered atom. For a given atom, i.e., for
a given recoil frequencyvR , G8 anda are not independent,
but connected by Eq.~19!. Equations~20a! and~20b! are not
exact: they represent an approximation to the eigenvalues of
Eqs.~15a! and ~15b! that is valid in the limitpe→`, i.e., in
the case in which the Doppler shift has no influence on the
VSCPT evolution. Results for the loss rateGNC(q), in units
of G8, as a function of theq label of the family are reported
in Figs. 2~a! and 2~b! for the cases ofa51 and 9. The data in
these figures refer to~i! helium atoms in the triplet meta-
stable state excited by 1080-nm radiation, as in the experi-
ments of Refs.@1, 3, 4, 6#, ~ii ! sodium atoms excited by the
resonant 589-nm radiation, and~iii ! cesium atoms irradiated
by resonant 852-nm radiation on an imaginary
Fg51→Fe51 transition. Thea values have been chosen in
order to produce an efficient VSCPT cooling within a rea-
sonable interaction time, as discussed in Sec. IV B. The pa-
rametera51 corresponds to the following Rabi frequencies:
for helium, V50.46G; for sodium,V50.14G; and for ce-
sium,V50.055G.

The plots of Fig. 2 show that, for a givena value and with
the scaling law applied toGNC, the loss rates have the same
functional dependence onq. In particular the region around
q50, or more precisely the Raman hole foruqu<a\k, is
equal for all the atoms. As discussed in Ref.@16#, the Raman
hole region determines the atoms trapped by VSCPT cooling,
as well as the efficiency of the process. A difference between
the loss rates arises at large-q momentum values, forq;pe ,
where the atomic Doppler shift becomes relevant for the

FIG. 2. Plot of the loss rateGNC(p)/G8 vs p/\k for the 1→1
transition:~a! and ~c! a51 and~b! and ~d! a59. The loss rates in
~a! and ~c! have been obtained by diagonalizing the effective
Hamiltonian acting on the ground states, those in~b! and ~d! by
diagonalizing the total Hamiltonian. Dots refer to helium, dashed
lines to sodium, and solid lines to cesium.
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atomic evolution. From the atomic transition parameters we
calculate

pe
He'9.4\kHe, pe

Na'100\kNa, pe
Cs'570\kCs. ~23!

On the plots of Fig. 2 the decrease in theGNC(q) loss rate
may be observed for helium atuqu;pe

He.
In order to test the validity limits of the resolvent ap-

proach, the loss rates have been derived also from the diago-
nalization of the HamiltonianH of Eq. ~2! within the family
F (q) and the results are reported in Figs. 2~c! and 2~d!. It
appears that for sodium and cesium, the loss rates are nearly
equal in the resolvent approach and in the approach based on
the full Hamiltonian. For helium, as a consequence of the
large recoil frequencyvR , a givena value corresponds to a
large Rabi frequency and the validity of the resolvent ap-
proach is scarse even fora51.

B. Trapped fraction

Through numerical solution of either OBE or QMC evo-
lution we have calculated the efficiency of the VSCPT cool-
ing process as a function of the atom and laser parameters
and of the interaction timeQ between the atom and laser.
With increasing interaction time, the atoms are concentrated
into the uS NC(q)& states of Eq.~22b! with q;0. A measure-
ment of the atomic momentum on those states will provide a
momentump around6\k with a spreaddp decreasing as
Q21/2; see Ref.@2#. The efficiency of the VSCPT process is
measured by the fraction of atoms that are trapped in states
uS NC~q;0!& and have atomic momentump;6\k. The
definition of the trapping efficiency is quite arbitrary. Fol-
lowing Ref. @13#, we will consider the trapped fractionf as
composed by the fraction of atoms in statesuS NC(q)& with
uqu,\k/10. QMC results forf versus the interaction timeQ
are reported in Fig. 3 fora51 and 9. The initial atomic
momentum distribution was assumed to be Gaussian with a
standard deviationdp05\k, even if such a narrow initial
distribution cannot be realized through a laser-cooling pro-
cess. The dependence of the trapped fraction on the initial
momentum standard deviation is discussed next.

For a generic atomic state vector expressed as a linear
combination of the eigenstates with eigenvaluesE1(q) and
E2(q), the slow time evolution occurs on the time scale of
the smaller term between\/E1(q) and\/E2(q). Equations
~15a! and ~15b! show that, apart from the noncoupled states
within the Raman hole, the time evolution takes place on the
~G8!21 time scale. Thus for the trapped fraction of Fig. 3, the
interaction timeQ has been measured in~G8!21 units. It may
be noticed that by choosing for different atoms a different
Rabi frequencyV in order to realize the samea value and by
measuring the time on theG8 scale, the same functional de-
pendence off versusQ is obtained at whichever atomic
parameter. In terms of real-time units, the full time scale of
Fig. 3 varies from 43103G21 for helium to 33105G21 for
cesium: in a heavy atom a longer interaction time is required
for realizing the same trapped fraction. In effect, at a fixeda
value, Eq.~19! shows that theG821 pumping time scale, or
the number of scattered spontaneous-emission photons, is
proportional tovR

21. For a heavy atom with largevR
21, the

required pumping timeG821 is longer. In order to use the
scaling law to estimate the efficiency of a generic VSCPT

trapping process, a numerical solution based on OBEs or the
QMC approach may be performed on an atomic system hav-
ing a shorter interaction time~for instance, helium! and the
result properly scaled to the required atom.

We have noticed some deviations from the scaling law,
mainly at large-a values. Those differences are a conse-
quence of the Doppler shift modification in the functional
dependence for the loss ratesGNC(q) versusq. Figure 2~a! at
a59 shows that because of that modification, the helium loss
rate presents a sharp maximum. Thus we have investigated
whether a better agreement of the results for different atoms
could be obtained by scaling the interaction time with the
maximum value ofGNC(q), instead ofG8. The indetermina-
tion in our QMC results, reported as a vertical bar in Fig. 3,
has not allowed us to reach a definitive conclusion on the
validity of such refined time scaling.

The Doppler shift, breaking down theGNC(q) scaling law
at large values ofq, modifies the atomic evolution at large
values of the interaction timeQ. This phenomenon has been
investigated by Bardouet al. @13# within the Levy flight sta-
tistical approach. For a long interaction time, the atoms hav-
ing a small rate for escape from the noncoupled state
uS NC~q;0!& acquire a finite probability of momentum diffu-
sion toward large momentum values. Thus they are lost for
the trapping process because they present a large Doppler
shift and cannot be excited any longer by the laser radiation.
As a consequence, atQ→`, the fractionf reduces to zero. In
the long-time evolution where the Doppler shift is important,
the scaling law for the fractionf is not valid. The range of

FIG. 3. QMC results for the fraction of trapped atoms vs the
interaction timeQG8 for a 1→1 transition, using the parameters of
helium, sodium, and cesium atoms, at~a! a51 and~b! a59. The
vertical error bar defines the typical QMC indetermination. Note
that the trapped fraction does not depend on the atomic parameters.
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validity of the scaling law for the loss rateGNC(q), deter-
mined bype , allows us to derive the time limitation to the
scaling law for the trapped fraction. In the case of an atomic
momentum initial distribution having widthdp0!pe , we in-
troduce the following interaction timeQe associated tope ,
as in Ref.@13#:

G8Qe5S pe\kD
2

. ~24!

Qe defines a Doppler time scale: for an interaction time
Q!Qe the Doppler shift is small and the laser frequency
remains within the natural linewidth of the atomic absorption
line. At timesQ@Qe the diffusion of the atoms in the mo-
mentum space could bring them to large values of atomic
momentum in which the Doppler shift is relevant and the
laser excitation does not occur. Thus the scaling law for the
trapped fraction ceases its validity atQ;Qe . It should be
pointed out that the definition of Eq.~24! is meaningful only
if a\k!pe , so that the absorption line is not saturation
broadened. By using thepe values from Eq.~23! for the
different atoms, we derive the following interaction times:

G8Qe
He'100, G8Qe

Na'10, G8Qe
Cs'33104. ~25!

For a VSCPT comparison between different atoms, the scal-
ing law may be applied for times up to theQe value of the
lighter atom used as a reference. Thus, for a determination of
the cesium trapping efficiency at very long interaction times,
a calculation on sodium provides a better approximation than
one on helium.

Figure 4 reports QMC results for the trapped fraction as a
functionQ, ata51 and atQ values longer than those of Fig.
3. Helium and sodium atoms are considered. At timesQe

He

!Q!Qe
Na, the trapped fraction for helium decreases,

whereas the sodium trapped fraction continues to increase. In
Refs. @13, 24# it was shown that, neglecting Doppler shift,
the trapped fraction increases toward the limiting valuef 0:

f 05
1

11
4

p)a

. ~26!

However, at timesQ>Qe , the trapped fraction decreases, as
for helium in Fig. 4, and the maximum reachable trapped
fraction is about 0.5f 0–0.7f 0 . We may suppose that at inter-
action times such thatQ@Qe for all the compared atoms, a
scaling law of the trapped fraction is valid again, but we
have not tested this hypothesis.

The dependence off on a at a fixed interaction time is
reported in Fig. 5. The data of Fig. 5 have been obtained for
helium, but because of the scaling law for the trapped frac-
tion, they can be applied to any atom. Thea values have
been chosen in order to produce a maximumf for an inter-
action time in helium as typical of the experiments in Refs.
@1, 3, 4#. The data, obtained through OBEs with a limited
basis of the atomic momentum, correspond to trapped frac-
tions lower than those obtained through the QMC analysis.
However, the main aim of Fig. 5 is the comparison with the
Fg52→Fe52 results obtained through OBE integration.
The interaction time was fixed atQvR566, corresponding to
QG85260 fora51. On increasinga, the trapped fraction at
a fixed interaction time passes through a maximum. An ini-
tial increase ofa produces an accumulation of the atoms in
the noncoupled state. However, the increase ofa decreases
Qe , as it appears from Eq.~24! by using Eq.~19!. Such a
decrease ofQe will produce the relationQ;Qe , which is
satisfied at a value ofa near the maximum of Fig. 5. At
larger-a values the VSCPT evolution is within the regime
where the Doppler shift decreases the trapping efficiency.

FIG. 4. QMC results for the fraction of trapped atoms vs the
interaction timeQ5G8 ata51 for the 1→1 transition in helium and
sodium. The vertical error bar defines the typical QMC indetermi-
nation. At interaction timesQ>Qe

He the efficiency of the VSCPT
process depends on the atomic species.

FIG. 5. OBE results for the fraction of trapped helium atoms at
a fixed interaction time vs the parametera1→1 for the 1→1 transi-
tion and fora2→2/4 for the 2→2 transition. For the 1→1 transition
the interaction time isQvR566 and for the 2→2 transition the
interaction time isQvR5100. As explained in the text, the scalings
of time anda have been determined by the loss-rate limiting values
and the Raman hole width for the two transitions.
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Figure 6 reports results for the dependence of the trapped
fraction on the initial width of the atomic momentum distri-
bution. The data were obtained from the QMC approach for

helium witha51 and initial standard deviationsdp051\k,
3\k, and 10\k. At the short interaction times shown in Fig.
6, the VSCPT trapping efficiency depends ondp0 and de-
creases if a wider initial atomic distribution is used. On the
contrary, in the regime dominated by the Doppler shift, at
Q@Qe , the trapped fraction becomes independent of the ini-
tial width of the atomic momentum distribution, as verified
in Ref. @14#. The data of Fig. 6 have been plotted by using a
scaling law that we have derived for the dependence of the
trapped fraction on the width of the initial atomic distribu-
tion. For a large initial width, a long time is required for the
atoms to diffuse to thep;6\k values of the trapped state.
Thus we searched for a scaling of the interaction times that
would bring together the results obtained at different initial
widths. A scaling of the interaction time with the inverse of
the initial standard deviation, i.e.,Qdp0

5Q/(dp0 /\k), pro-
duces a collapse of the different trapped-fraction depen-
dences into a single curve, as in Fig. 6. An atomic evolution
with a constant momentum diffusion would suggest a scaling
of the time with ~dp0!

22, but the scaling applied in Fig. 6
produces a better result.

V. Fg52˜Fe52 TRANSITION

A. Eigenvalues

For this transition the eigenvalues are obtained by diago-
nalizing the effective HamiltonianHeff of Eq. ~12! on the
family F (q) of Eq. ~9b!. By eliminating once again a com-
mon kinetic-energy term for the three ground states of that
family, the 333 matrix of the effective Hamiltonian is

Heff~q!5\S 4vR1v u2u
LS12

kq

m
1R11

R21

0

R12

v0
LS

R32

0
R23

4vR1v u2u
LS22

kq

m
1R33

D ~27!

with the level-shift operatorsRi j of the resolvent theory re-
ported in the Appendix. The diagonal terms contain the light
shift of Eq. ~5! produced by an additionalp-polarized laser
beam, in order to compensate for the energy mismatch in the
leaky case. In effect, the noncoupled state is given by the
linear superposition

uS NC~q!&5
1

A8
~)u2,22;q22\k&1&u2,0;q&

1)u2,2;q1\k&). ~28!

Without light shifts the kinetic-energy difference between the
ground states composinguS NC~q50!& is equal to 4vR and
only a leaky trapped state is formed@7#. If the additionalp
laser produces light shifts with

v0
LS2v u2u

LS54vR , ~29!

the ground states composinguS NC~q50!& acquire the same
total energy. Thus a nonleaky regime is realized with a stable

trapping state@10#. VSCPT results are here presented for
both a leaky configuration, i.e., withv0

LS5v u2u
LS50, and a

nonleaky configuration, with Eq.~29! satisfied.
For the 2→2 transition we do not have the analytical ex-

pressions of the eigenvalues. However, we expect the loss
rateGNC(q) of the uS NC(q)& state to present aq dependence
similar to that of Eq.~21!. Figure 7~a! reports results for the
loss rateGNC(q) as obtained from the diagonalization of the
Heff of Eq. ~27! for a52. The case of a nonleaky configura-
tion is reported, so that atq50, the loss rate is exactly zero
and a stable trapped state is formed. The loss rates of Fig. 7
are obtained by using the atomic parameters of helium, so-
dium, and cesium. Only sodium corresponds to a real case,
whereas the other ones are imaginary cases. The loss rates
for the three atoms are different only forq>pe because of
the Doppler shift. In the absence of any Doppler shift, the
function GNC(q) would reach a maximum value 2G8/3 at
uqu→`, with the pumping rateG8 defined in Eq.~16!. The
region aroundq50 contains the Raman hole that determines
the efficiency of the VSCPT process. Atq;2\k the function

FIG. 6. QMC results for the fraction of trapped helium atoms vs
the interaction timeQdp0

G8 at a51 for different initial standard
deviations of the atomic momentum distribution, i.e.,dp051\k,
3\k, and 10\k.
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GNC(q) presents a discontinuity in its derivative, because for
eachq value we report theGNC(q) value of the state with the
smallest loss rate. As a function ofq, different linear combi-
nations of states or, more precisely, states associated with a
different energy band@23# may have the smallest loss rate.

Figure 7~b! is the basis of a scaling law to compare the
trapped fraction for the 1→1 and 2→2 transitions. Those
trapped fractions may be compared if the interaction time is
measured in units of the pumping time and if the Raman hole
area is the same. For comparing the 1→1 and 2→2 transi-
tions, the interaction time should be measured in units of
1/G8 and 3/2G8, respectively, which represent the time scales
of the atomic evolutions outside the Raman hole. For com-
paring the Raman holes of the two transitions, we notice that
a is inversely proportional to the recoil frequencyvR and,
for the 2→2 case, theuS NC~0!& state of Eq.~28! contains a
kinetic evolution at the 4vR frequency. Thus, in order to
obtain the same Raman hole of the 1→1 transition, thea
parameter of the 2→2 transition should be increased by a
factor 4. In Fig. 7~b! the loss ratesGNC

i→ i(q)/G i→ i8 ~i51,2!
with G1→18 5G8 andG2→28 52G8/3 are compared as function
of q for a1→150.5 anda2→252. Having applied those scal-
ings, the central part of the Raman hole in the two transitions
presents good agreement.

B. Trapped fraction

The density-matrix time evolution has been examined
through the OBE numerical solution and all the results here
presented are based on an initial atomic momentum Gaussian
distribution with standard deviationdp05\k. Figure 8 re-
ports results for the dependence of the trapped fractionf on
the interaction timeQG8 for the case of leaky and nonleaky
transitions ata52. Parameters for four different atoms have
been used: helium, sodium, rubidium, and cesium, with he-

lium and cesium imaginary atomic transitions. It may be no-
ticed that the scaling law provides a very good description
for the time dependences of both the leaky and nonleaky
cases.

Figure 5 reports the dependence of the helium trapped
fraction on thea parameter at a fixed interaction timeQ for
a comparison between the 2→2 and 1→1 transitions. The
comparison between the two transitions is based on the scal-
ing laws discussed in Sec. IV for the interaction time and the
a parameter. The results should be compared fora param-
eters scaled by a factor 4 in order to have the same Raman
hole, i.e.,a2→254a1→1. For 2→2, the interaction time is
measured in units ofG2→28 52G8/3, whereas for 1→1, it is
measured in units ofG8. Thus the trapped fractions of Fig. 5
have been determined at timeQ5100/vR for the 2→2 tran-
sition and at timeQ566/vR for the 1→1 transition. The
scaling leads to very good agreement between the trapped
fractions on the two transitions. It should be noted that with-
out applying that scaling, the trapped fractions of the 2→2
and 1→1 transitions would appear uncorrelated. It is surpris-
ing to note that the maximum in the 2→2 trapped fraction is
larger than in the 1→1 one. However, the plots of the 2→2
loss rate of Fig. 7 present a large ‘‘hole’’ area outside the
proper Raman hole area that is not present for the 1→1 tran-
sition. That area may produce the larger efficiency of the
2→2 VSCPT process. Also Wu, Holland, and Foot@12#, in
their comparison between the VSCPT efficiency on the 2→2
and 1→1 transitions, have shown that for a fixed Rabi fre-
quency, the 2→2 VSCPT is more efficient than the 1→1 one.
Figure 5 provides a complete description for the VSCPT on
the two transitions with a comparison of their efficiencies at
different Rabi frequencies.

In order to provide an additional confirmation of the scal-
ing law between the two transitions, we have examined the
width of the atomic momentum distribution associated with

FIG. 7. ~a! Loss rateGNC(q)/G8 plotted vsq/\k for a 2→2
transition ata2→252 as derived from the effective Hamiltonian.
Dots refer to helium, the dashed line to sodium, and the solid line to
cesium~b!. Plot ofGNC

j→ j /G j→ j8 vs q/\k for comparing the 1→1 and
2→2 transitions in cesium. The solid line is for 1→1, with G1→18
5G8 at a1→150.5. The dotted line is for 2→2, with G2→28
5(2G8/3) anda2→252.

FIG. 8. OBE results for the fraction of trapped atoms vs inter-
action timeQG8 ata52 for the 2→2 transition, using parameters of
helium, sodium, rubidium, and cesium atoms. The data with a larger
trapped fraction correspond to the nonleaky configuration, the oth-
ers to the leaky configuration. As for the case of the 1→1 transition,
the trapped fraction does not depend on the atomic parameters.
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the VSCPT process, measured atp56\k for the 1→1 tran-
sition and atp50,62\k for the 2→2 transition. For the
1→1 transition, theQ21/2 dependence of the width on the
interaction timeQ has been characterized by Alekseev and
Kyrola @24# and by Mauri and Arimondo@25#. In particular,
Ref. @24# has pointed out that the momentum distribution is
described by a Lorentzian line shape, so that its width is
described through the full width at half maximum
DpFWHM~Q!. For the 2→2 atomic transition with cesium pa-
rameters, ata2→258 we have determinedDpFWHM versusQ,
for the cases of leaky and nonleaky transitions, with results
shown in Fig. 9. We have verified that the momentum distri-
butions are well described by Lorentzian line shapes. For the
leaky case, the momentum width reaches a limiting value
DpFWHM50.45\k, within 20% of the value given by an ana-
lytical relation derived in Ref.@26#. For the nonleaky case
the data are well fitted by the equation
DpFWHM550~QG8!21/2, as shown by the continuous line
drawn through the data. By comparing this relation with the
DpFWHM~Q! dependences reported in Refs.@24# and@25# for
the 1→1 transition, taking into account the scaling law of
G j→ j8 , we find that a similar dependence would be obtained
ata1→152.360.3 for the 1→1 transition, instead ofa2→258.
Thus the scaling ofa by a factor 4 is confirmed also by the
dependence of the momentum distribution width on the in-
teraction time.

We have investigated the dependence of the trapped frac-
tion on the interaction time in the presence of a laser detun-
ing dLÞ0. In effect, for the 2→2 transition for a detuning
different from zero, a polarization-gradient cooling force is
acting on the atoms, as discussed in Refs.@27#, and that force
may increase the trapping efficiency. In our numerical simu-
lations for dp05\k and different laser detunings, we have
not found a significant modification for the trapped-fraction
dependence onQG8, when the modification of the pumping

rate by the laser detuning is taken into account. It may be
supposed that owing to the quite narrow initial momentum
distribution, the role of the polarization-gradient cooling is
limited. Thus a more correct comparison should be per-
formed with larger initial momentum distributions, as re-
cently reported in Ref.@28#.

VI. CONCLUSION

The aim of the present work is to determine relations
connecting the principal features of VSCPT laser cooling on
different Fg→Fe atomic transitions. Those relations have
been derived from a comparison between the VSCPT of the
1→1 and 2→2 transitions for different atomic parameters.
Scaling laws have been derived for the dependence of the
fraction of trapped atoms on the interaction time and the
Rabi frequency. A relevant scaling parametera has been de-
fined as the square of the Rabi frequency divided by the
atomic spontaneous-emission decay and the atomic recoil
frequency. As a consequence of the dependence of the
trapped fraction ona only, to prepare~for instance, in the
VSCPT cooled state! a given fraction of heavy atoms having
a small recoil frequency, a decrease of the Rabi frequency is
required, keepinga constant. Owing to the good validity of
the scaling laws for the two investigated atomic transitions,
we are confident that the scaling laws may be applied to
atomic transitions having a larger atomic momentum, for in-
stance, the realFg54→Fe54 transition of the cesium reso-
nant line. The scaling law predicts that the maximum effi-
ciency in the cesium VSCPT will be reached at Rabi
frequencies much smaller than those used in the helium ex-
periments.

The application of these scaling laws to other laser
schemes involving VSCPT may be considered. We have
verified that the bichromatic VSCPT scheme of Doeryet al.
@11# is completely equivalent to a nonleaky VSCPT scheme
on the 2→2 transition. Thus the same trapped fraction is
realized in the two schemes and, as a consequence, the scal-
ing laws derived for the dependence of the VSCPT trapped
fraction on the interaction time and the Rabi frequency are
valid also for the bichromatic VSCPT scheme.

The application of a standing wave on each optical tran-
sition of the 1→1 scheme produces a VSCPT subrecoil cool-
ing combined with polarization-gradient laser cooling, as
discussed in Refs.@15–18#. Those authors have shown that
for a given interaction time, an increase of the trapped frac-
tion is achieved by alternating periods of pure VSCPT, at
zero detuning, with periods of polarization-gradient cooling,
at a laser detuning different from zero. For the pure VSCPT,
our scaling laws apply. For the polarization-gradient laser
cooling, an investigation of the scaling laws has been per-
formed by Castinet al. @29#. These authors have shown that
polarization-gradient cooling is described by two indepen-
dent parametersdL/G andG8dL/GvR . Thus, in polarization-
gradient cooling, the laser detuning plays an important role
and within the search for scaling laws in the cooling combi-
nation of VSCPT and a polarization gradient, the laser de-
tuning should be considered as a separate parameter, in ad-
dition to a. In fact, the second parameter introduced by
Castinet al. is a combination ofa anddL . The existence of
scaling laws may be examined also for Doppler cooling. The

FIG. 9. FWHM DpFWHM~Q!/\k of the atomic momentum dis-
tribution vs the interaction timeQG8, for the 2→2 transition using
the cesium atomic parameters, atV50.16G corresponding toa58
and the initial Gaussian distribution with standard deviation
dp05\k. Data for the two cases of a leaky~open dots! and a
nonleaky~closed dots! configuration are reported. The dotted line
defines the limiting value ofDpFWHM50.45\k for the leaky case.
The continuous line represents theDpFWHM550~QG8!21/2 fit of the
nonleaky data.
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Doppler cooling process is characterized by a temperature
proportional to the spontaneous-emission rate, with its effi-
ciency given by the atoms that have reached a kinetic-energy
range around that temperature. The interaction time for
reaching that efficiency is scaled once again with the pump-
ing rate, proportional to the number of scattered
spontaneous-emission photons. The dependence on the Rabi
frequency appears in the Doppler cooling equations through
thea parameter when an adiabatic elimination of the excited
state is performed. Thus the same parameters of the VSCPT
scaling laws determine the Doppler cooling efficiency.
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APPENDIX

The expressions of the level-shift operators for the
Fg52→Fe52 transition appearing in Eq.~27! are

R115
1

4

V2/3

d02vR1kq/m1 iG/2
,

R125
1

4

V2/A6
d22vR2kq/m1 iG/2

,

R215
1

4

V2/A6
d02vR1kq/m1 iG/2

,

R225
1

4

V2/2

d22vR2kq/m1 iG/2
1
1

4

V2/2

d22vR1kq/m1 iG/2
,

R235
1

4

V2/A6
d02vR2kq/m1 iG/2

,

R325
1

4

V2/A6
d22vR1kq/m1 iG/2

,

R335
1

4

V2/3

d02vR2kq/m1 iG/2
,

whered25vL2v014vR1v u2u
LS andd05vL2v01v 0

LS.
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