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Scaling laws in velocity-selective coherent-population-trapping laser cooling
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One-dimensional laser cooling based on velocity-selective coherent population tr@gSiGgT) has been
investigated numerically through the solution of the optical Bloch equations and through a Monte Carlo
analysis. The -1 and 2-2 transitions have been examined as a function of the atomic recoil frequency, the
spontaneous-emission decay rate, and the Rabi frequency of the cooling laser. It has been found that for a large
set of those parameters, the VSCPT cooling process may be described through scaling-law relations. The
scaling laws are not valid at long atom-laser interaction times or large Rabi frequencies, where the atomic
Doppler shift plays a significant role in the atomic motion evolution. Similar results for two atomic transitions
suggest the validity of the scaling law for any one-dimensional VSCPT process.

PACS numbe(s): 32.80.Pj

I. INTRODUCTION using an additional sub-Doppler cooling mechanism. The
combination of VSCPT and polarization-gradient laser cool-
Velocity-selective coherent population trappigSCPT) ing has been explored by several authdrs-18,5.
allows laser cooling below the atomic recoil limit. VSCPT is  The atomic preparation in a trapped atomic superposition
based on the preparation of the atoms in a trapped coherergquires the modification of the atomic momentum through a
superposition of states with different internal variables andarge number of absorption or emission photon processes.
atomic momentum. VSCPT on tlle=1—J=1 atomic tran- For heavier atoms, the modification in the atomic velocity
sition has been applied for one-dimensional laser cooling oproduced by the photon momentum is smaller and very long
“He [1-4] and 8Rb atoms[5] and for two- and three- interaction times are needed in order to produce the required
dimensional cooling of'He [6]. For extensions to atomic cooling. The VSCPT theoretical analyses require numerical
transitions with high3 number, the difference in the kinetic integration following the time evolution of the internal and
energy of the states composing the coherent superpositiaxternal atomic variables. Different approaches such as solu-
should be compensated; otherwise the atomic superpositidions of the optical Bloch equation®BES9, the quantum
is not stable and only a very limited VSCPT cooling can beMonte Carlo(QMC) approach, and the band theory approach
realized[7]. The kinetic-energy compensation can be pro-have been used for the investigation of the VSCPT cooling
duced either by an atomic energy level shift due to an approcess. However, theoretical analyses are also faced with
plied static electric field8] or by producing an atomic ac the problems of very long integration times and time-
Stark shift[9,10,13. Bichromatic VSCPT, produced by two consuming numerical integrations.
laser fields at different frequencies, has been introduced as an In this paper, the simplest VSCPT configuration of coun-
alternative method to compensate for that kinetic-energy difterpropagatings",0~ laser fields is examined theoretically
ference[11]. for scaling laws. We have explored the role of the different
The Levy flight processes determine the atomic momenatom and laser parameters on the VSCPT process. We have
tum distribution in a regime in which the interaction betweendefined the VSCPT efficiency through the fraction of atoms
the atom and the laser radiation is very long; for example, irprepared in the trapped coherent superposition of states and
helium a long-time interaction occurs over 100 000 spontawe have determined the combination of the atom and laser
neous emission$13,14. Those processes, having a very parameters connecting the VSCPT efficiencies in different
small but still significant probability of affecting the long- atomic systems. An indication of the proper parameters to be
time atomic evolution, allow escape of the atoms from theused for the scaling law has been derived from an analysis of
trapped coherent superposition and limit the efficiency of thehe eigenvalues for the ground-state Hamiltonian obtained
laser-cooling process. This decrease in efficiency may behrough an adiabatic elimination of the excited state. The
compensated for by introducing boundaries limiting thescaling-law parameters have been confirmed by numerical
maximum values of the atomic momentum, for instance, bysimulations based either on OBEs or on the QMC approach.
Section Il contains the definition of the atomic Hamil-
tonian and of the atomic basis used for the analysis. Section
*Present address: Clarendon Laboratory, Oxford University, Oxill introduces the effective ground-state Hamiltonian derived

ford OX1 3PU, United Kingdom. from the excited-state adiabatic elimination and its eigenval-
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and kinetic energy will be expressed in terms of the recoil
frequencywg;

hk?

LTV 4

For the electronic energy the origin will be assumed at the
energy of the|Fg,mg=O> level. The excited states will be
assumed to be always degenerate and to have eriesgy
The ground states will be assumed to be either degenerate, at

O zero energy, or split in energy because of an ac Stark light
shift produced by an additionat-polarized laser beam on

- another Fg—F.=F, transition [9,10. That light shift,

ﬁ‘”ler?g\ for the|Fg ,m,) state, being produced by-polarized

light, depends on thm,| value only and is equal to zero for

Fg—z 2 ot 0 +1 by the|F,,0) state. Thus the electronic Hamiltonian is written as
Fe
FIG. 1. Schematic representation of thg=1—-F,=1 and Hee=hwq 2 |Fe,me><|:e,me|
Fy=2—F,=2 transitions considered in the present work for Me=—F¢
VSCPT under excitation by counterpropagating traveling-wave Fq
and o~ light beams. Only the relevant laser-driven transitions are LS
reported. + 21 ﬁw|mg\(|Fg ymg><Fg 1mg|
Sec. VI we discuss the application of the scaling laws and +|Fg,—mg)<Fg,—mg|). ®)

their relation to other laser-cooling techniques. . i
The atom-laser interaction depends on the Clebsch-

Gordan coefficients for the individual Zeeman transitions
Il. THEORETICAL DESCRIPTION driven by the applied laser fields. Following the approaches

The one-dimensional VSCPT laser cooling investigatec®f Ref.[19], the Rabi frequency will be defined on the basis
here is based on the laser excitation of atoms either on th@f the reduced dipole momeqE yd|[F.), with the Wigner-
Fg=1—F,=1 orFy=2—F,=2 transition, in which, in the Eckart theorem for the dipole-moment matrix elements taken
absence of nuclear spin, as‘ifle, the total angular momen- as
tum F coincides with the electronic angular momentdm (FoldIF
The laser radiation is composed by two beams, one polarized _A\"g e aq
o and one polarized, tk?at coun)t/erpropagate anng the (Fg.mg|di[Fe,me)= (2Fg+1)1? (Fe,me; 1i|Fg,mg),
axis. For simplicity, the two laser beams are assumed to have (6)

the same intensity and the total laser electric field is given by = ] -
with i=0,=1. Thus the Rabi frequenc§ for the transition

E(zt)=1[e, Zelkzo 1 c o]+ i[e #el ket c], Fy—F. associated with th& electric field of both ther "
(1) ando waves is defined as

wheree, ande_ represent the unit vectors for the” and _ <Fg||d||Fe> & @

o~ waves, respectively. The wave-driven atomic transitions T (2Fg+ 1)V

that are relevant for the VSCPT evolution are indicated in

Fig. 1. Through the use of this definition, the atom-laser interaction
Both the internal and external atomic degrees of freedontamiltonian is written

must be quantized to study subrecoil laser cooling. Thus we

use the statelp;F,m)=|p)®|F,m), where|p) is the eigen- h Q)

state with eigenvalu@ of the atomic linear-momentum op- Var=—- pEn‘; [<Fe,mg+l;1,Jng,mg>|p+1;Fe,mg+l>
eratorP along thez propagation direction of the laser beams. e
The atomic HamiltoniarH includes the kinetic and elec- X(p;Fg,Mg|+(Fe,mg—1;1,—1|Fy,mg)
gzlnzlc energieH,;, andH, and the atom-laser interaction X |p—1iF .My 1)(piFg.mylTe L+ Hec. ®
HeHo 4 HotV @) Equation (8) shows that only a closed set of states is
kin T *lele T Yal - coupled through the processes of absorption and stimulated
. L . emission. In Refs[2, 7], that closed set of states has been
For an atom with mas/ the kinetic part is defined as the family7(q), whereq denotes the atomic
- momentum of thegF,,m,=0) state belonging to the closed
Hyn= P 3) set. Relevant families for the two atomic transitions here

considered are
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lg—7k;Fg=1,—-1), |q;F.=1,0, |[q+AkFy=1,1);

~ 1
(99 Hes=V

P f o —Eot Eg+i1/2]

F>e\~/al . (10)

a-2fikiFg=2,-2), |q-hkiFe=2,-1), [qFg=20,  gpe P, is the projector on the excited states and

lg+7k;Fe=2,1), |q+2hk;Fy=2,2). (9b) 7, = ePeoty_ o iPeort, (11)

Figure 1 reports only the laser-induced transitions between

the states of the relevant families. In the denominator of E|10) the energie€, andE, of
The final process to be included in the master equation fofhe excited and ground states will include also the kinetic-

the atomic evolution is the spontaneous emission of the exenergy part. Thus the present derivation of the loss rates is

cited states with ratE. The basic roles of spontaneous emis-more precise than the one reported in Réf, because, as in

sion are to produce a damping of the populations and coheRef. [22], the Doppler shift contributiopk/M to the laser

ences involving the excited state and to introduce an atomiéletuning is included in the denominator of the resolvent ex-

redistribution among the familig®]. In spontaneous emis- Pression. The following effective Hamiltoniaid is now

sion an atom, for instance, in the excited stateacting on the ground state:

|q;Fe=2m,=0), emits a fluorescence photon arbitrarily di-

rected in space, so that the atomic momentyralong the Het=Hyin+ Helet Hies (12

guantization axis changes by any value betwegik and

k. As a consequence, the ground states reached by the gecause photon absorption from the ground state is
spontaneous-emission process belong to famifiég’) with  aquivalent to a loss rate, the Hamiltonibiy, acting on the
q'#9. The term in the master equation describing redistri-goynd state is complex. The real and imaginary parts of its
bution among families has been reported in R8f.for the  gjgenvalues are the eigenenergies and loss rates for the
case of the=y=1—F.=1 transition and the general expres- gqround eigenstates, respectively, as examined in Reds7,
sion for the repopulation of the ground state has been rez3) piagonalization of the Hamiltoniahl s on the ground
port_ed in Ref.[_?]. Those relat|0ns_ will be used in our NU- states belonging to the family’(q) allows us to derive the
merical analysis. It should be noticed also that, as in thosgysg rate for the eigenstates.
references, the assumption of a uniform repopulation of the A vscpT perfect-trap ground state has zero loss rate and
ground states by spontaneous emission will be introduced iy staple against both the atom-laser interaction and the ki-
our numerical calculations. _ _ netic energy coupling to other states. Ground states with a
The atomic evolution of the population occupation for the|ggg rate not exactly zero, but small, could also be used to
atomic states has been determined through a numerical solpsglize VSCPT laser cooling, even if with a smaller effi-
tion of the OBE or through the QMC analysis introduced by cjency. Those states with nonzero loss rates have been ini-
Mdimer, Castin, and Dalibarf20]. Because the OBE solu- ja|ly considered in Ref[7] and denoted as leaky states in
tion requires a very large basis for the atomic momentum irRef. [10]. An atomic configuration in which the leakiness of
order to cope with the atomic diffusion toward large values ihe states is compensated for by a modification of the atomic

we have used as much as possible the QMC approach. Fppmiltonian, for instance, through the light shifigy of Eq.
theFy=1—F.=1 transition, where an adiabatic elimination (2), is denoted nonleaky.

of the excited state could be applied, we used the quantum-

jump variation of the QMC approach introduced by Wu,

Holland, and Foo{12]. That quantum-jump variation pro- IV. Fg=1—F¢=1 TRANSITION
duces a considerable gain in computational time with respect
to the QMC method of Ref[20]. In the case of the _ _ _ _
Fy=2—F,=2 transition, the quantum-jump model pro- The ground-state eigenvalues are obtained by diagonaliz-
posed by Wu, Holland, and Foft2] is not applicable for the ing the effective HamiltoniarH ¢ of Eq. (12) on the two
interaction times and the Rabi frequencies considered in ou#round states of the family(q) of Eqg. (9a). By eliminating
analysis because it relies on approximate eigenvalues arf®mmon kinetic-energy terms through a phase change for the

A. Eigenvalues

eigenvectors not valid for our cases. states, the 2 matrix of the effective Hamiltonian is
kq ‘R R_
I1l. GROUND-STATE LOSS RATES Heff(q) -4 M + N @ R , (13)

A convenient approach to analyzing the VSCPT features R; M
is the resolvent theory based on the adiabatic elimination of
the excited state and the determination of the eigenvalues Where theR.. level-shift Operators defined in the resolvent
a Hamiltonian acting on only the ground states. In the case aheory of Ref.[21] are
a smal Rabi frequency Q<|[I/2+4§|,  where
0. =w_—wytwg is the laser detuning, the action of the 1
atom-laser interactioW,, on the ground states may be de- R.==—
scribed through an effective Hamiltonidt s derived at the -4
lowest order in a perturbation approach of the resolvent
theory[21]: For 6 =0 theE_ (q) andE_(q) eigenvalues are

Q3?2

SLEKGIM+IT/2° 4
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Ei(q) IV ( q \? q\?
7 =— 1+(q/pe)2 1+\1—- m 1+2 p—e
q 4 ahk q ZH)M}
+| = 14+ — , 15
(pe 2pe Pe (153
E(q I’ ( q \? q)z
oo 1+(q/pe)2[1_ 1_(m el
4 hk 2 1/2
+ a +a +(i) “) } (15b)
Pe 2pe Pe

Here we have introduce€l) the pumping ratd™ at reso-
nanced, =0,

QZ

sz,

(16)

(i) an adimensional parameter proportional to the ratio
between the pumping rai& and the recoil frequencyyg,

QZ

azm, 17

and (iii) the momenturmp, for which the atomic Doppler
shift is equal to the natural linewidth

kpe T
™2 (18

As shown in Ref.[13] the parametep, defines also the
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FIG. 2. Plot of the loss rat&€\c(p)/T"’ vs p/#k for the 1-1
transition:(a) and(c) a=1 and(b) and(d) a=9. The loss rates in
(@ and (c) have been obtained by diagonalizing the effective
Hamiltonian acting on the ground states, thosglkinand (d) by
diagonalizing the total Hamiltonian. Dots refer to helium, dashed
lines to sodium, and solid lines to cesium.

B 1
|(//NC(q)>: E (|q_ﬁk;Fg:1a_ 1>_|q+ﬁkqu:111>)
(22b)
Equation(20b) shows that statg/c(q=0)) is a perfect-

trap ground state with zero loss rate. The loss rates of Egs.
(2039 and(20b) depend on the parametdrsand« and these

range of the Doppler force acting in the VSCPT scheme. OuParameters describe completely the VSCPT evolution, inde-
pumping ratd™ is two times smaller than the one defined in Pendently of the considered atom. For a given atom, i.e., for

Refs.[22] and[16] because it is defined for the ScHinger

a given recoil frequencwg, I'' and « are not independent,

states and not for the density matrix elements as in thosRut connected by Eq19). Equations20a and(20b) are not

references. The following relation betweEhand « exists:

I'=4awg. (19

At |q|<p, andg?<afikp,, the imaginary parts of Egs.

exact: they represent an approximation to the eigenvalues of
Egs.(159 and(15b) that is valid in the limitp,—, i.e., in

the case in which the Doppler shift has no influence on the
VSCPT evolution. Results for the loss rdig(q), in units

of I'', as a function of the label of the family are reported

(1589 and (15b), i.e., the ground-state loss rates, are forin Figs. 4a) and 2b) for the cases ofr=1 and 9. The data in

|g|<7ika,
q 27172
rc(q)zr'[1+ 1‘(%) ] (209
q 271/2
and for|g|=%ka,
Ine(@)=Tc(q)=T". (21

The labelsC and NC, coupled and noncoupled, refer to the
two following linear superposition of ground states within

the.7(q) family:

1
| e(a)= v (la—fkFg=1-1)+[q+hk Fg=11)),
(229

these figures refer t@) helium atoms in the triplet meta-
stable state excited by 1080-nm radiation, as in the experi-
ments of Refs[1, 3, 4, §, (ii) sodium atoms excited by the
resonant 589-nm radiation, afiil ) cesium atoms irradiated
by resonant 852-nm radiation on an imaginary
Fy=1—F¢=1 transition. Thex values have been chosen in
order to produce an efficient VSCPT cooling within a rea-
sonable interaction time, as discussed in Sec. IV B. The pa-
rametera=1 corresponds to the following Rabi frequencies:
for helium, Q=0.44"; for sodium,Q=0.14"; and for ce-
sium, )=0.059".

The plots of Fig. 2 show that, for a givenvalue and with
the scaling law applied tby, the loss rates have the same
functional dependence aq In particular the region around
g=0, or more precisely the Raman hole floy|<afik, is
equal for all the atoms. As discussed in Ha6], the Raman
hole region determines the atoms trapped by VSCPT cooling,
as well as the efficiency of the process. A difference between
the loss rates arises at largenomentum values, fagq~ p,,
where the atomic Doppler shift becomes relevant for the
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atomic evolution. From the atomic transition parameters we
calculate

pie~9.4hkMe,  pYa~1006kNa,  pSS~570hkSS. (23)

On the plots of Fig. 2 the decrease in thige(q) loss rate
may be observed for helium &|~pHe.

In order to test the validity limits of the resolvent ap-
proach, the loss rates have been derived also from the diago-
nalization of the Hamiltoniai of Eq. (2) within the family
7(q) and the results are reported in Figgc)2and 2d). It 0.0
appears that for sodium and cesium, the loss rates are nearly
equal in the resolvent approach and in the approach based on
the full Hamiltonian. For helium, as a consequence of the , er
large recoil frequencwy, a givena value corresponds to a f
large Rabi frequency and the validity of the resolvent ap- ’ Na
proach is scarse even far=1. 03 —\

I
0 100 200 300 400

B. Trapped fraction 024 e |
e

Through numerical solution of either OBE or QMC evo- 0.1 m@de & (b)
lution we have calculated the efficiency of the VSCPT cool-
ing process as a function of the atom and laser parameters 0.0 T I —
and of the interaction tim® between the atom and laser. 0 1000 2000 3000
With increasing interaction time, the atoms are concentrated ,
into the|“\c(q)) states of Eq(22b) with g~0. A measure- er
ment of the atomic momentum on those states will provide a
momentump around £k with a spreadép decreasing as FIG. 3. QMC results for the fraction of trapped atoms vs the
0 Y2 see Ref[2]. The efficiency of the VSCPT process is interaction time®I"” for a 1—1 transition, using the parameters of
measured by the fraction of atoms that are trapped in statd¥lium, sodium, and cesium atoms,(at @=1 and(b) @=9. The
|“nc(@~0)) and have atomic momentump~ *=#k. The  Vvertical error bar defines the typical QMC indetermination. Note
definition of the trapping efficiency is quite arbitrary. Fol- that the trapped fraction does not depend on the atomic parameters.
lowing Ref.[13], we will consider the trapped fractiohas
composed by the fraction of atoms in state§,c(q)) with  trapping process, a numerical solution based on OBEs or the
|q|<#k/10. QMC results forf versus the interaction tim@  QMC approach may be performed on an atomic system hav-
are reported in Fig. 3 fom=1 and 9. The initial atomic ing a shorter interaction timéor instance, heliurmand the
momentum distribution was assumed to be Gaussian with eesult properly scaled to the required atom.
standard deviatiordp,=7#k, even if such a narrow initial We have noticed some deviations from the scaling law,
distribution cannot be realized through a laser-cooling proimainly at largea values. Those differences are a conse-
cess. The dependence of the trapped fraction on the initimjuence of the Doppler shift modification in the functional
momentum standard deviation is discussed next. dependence for the loss ratigg-(q) versusg. Figure 2a) at

For a generic atomic state vector expressed as a linear=9 shows that because of that modification, the helium loss
combination of the eigenstates with eigenvaléiegq) and rate presents a sharp maximum. Thus we have investigated
E_(q), the slow time evolution occurs on the time scale ofwhether a better agreement of the results for different atoms
the smaller term betwee#/E , (q) and#/E_(q). Equations could be obtained by scaling the interaction time with the
(159 and(15b) show that, apart from the noncoupled statesmaximum value ofl'yc(q), instead ofl’. The indetermina-
within the Raman hole, the time evolution takes place on théion in our QMC results, reported as a vertical bar in Fig. 3,
(I'")~* time scale. Thus for the trapped fraction of Fig. 3, thehas not allowed us to reach a definitive conclusion on the
interaction time® has been measured (R’) ! units. It may  validity of such refined time scaling.
be noticed that by choosing for different atoms a different The Doppler shift, breaking down tH&,c(q) scaling law
Rabi frequency in order to realize the samevalue and by at large values of], modifies the atomic evolution at large
measuring the time on thEé’ scale, the same functional de- values of the interaction tim@®. This phenomenon has been
pendence off versus® is obtained at whichever atomic investigated by Bardoat al.[13] within the Levy flight sta-
parameter. In terms of real-time units, the full time scale oftistical approach. For a long interaction time, the atoms hav-
Fig. 3 varies from &10°T"" ! for helium to 3x10°T ! for  ing a small rate for escape from the noncoupled state
cesium: in a heavy atom a longer interaction time is required“\c(q~0)) acquire a finite probability of momentum diffu-
for realizing the same trapped fraction. In effect, at a fised sion toward large momentum values. Thus they are lost for
value, Eq.(19) shows that thd”~! pumping time scale, or the trapping process because they present a large Doppler
the number of scattered spontaneous-emission photons, $hift and cannot be excited any longer by the laser radiation.
proportional towx . For a heavy atom with largeg?!, the  As a consequence, &—x, the fractionf reduces to zero. In
required pumping timd"’ ! is longer. In order to use the the long-time evolution where the Doppler shift is important,
scaling law to estimate the efficiency of a generic VSCPTthe scaling law for the fractiof is not valid. The range of
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FIG. 4. QMC results for the fraction of trapped atoms vs the
interaction time®=I"" at «=1 for the 1-1 transition in helium and
sodium. The vertical error bar defines the typical QMC indetermi-
nation. At interaction time® =@ the efficiency of the VSCPT 0.01 0.1 1 10

process depends on the atomic species. al 1 a2 2/4

O.C L | T T T T rre T T rrerrng LA ELE R R R | 1

validity of the scaling law for the loss ratyc(q), deter- FIG. 5. OBE results for the fraction of trapped helium atoms at
mined bype, allows us to derive the time limitation to the ; fixed interaction time vs the parametey ., for the 11 transi-
scaling law for the trapped fraction. In the case of an atomigion and fora, ,/4 for the 2-2 transition. For the 41 transition
momentum initial distribution having widthp,<pe, We in-  the interaction time iS9wz=66 and for the 22 transition the

troduce the following interaction tim@, associated t®., interaction time isDwz=100. As explained in the text, the scalings
as in Ref.[13]: of time anda have been determined by the loss-rate limiting values
) and the Raman hole width for the two transitions.
Pe
! = —
"o, ( ﬁk) . (24 L
fo=—. (26)
O, defines a Doppler time scale: for an interaction time 1+
T3

0<0, the Doppler shift is small and the laser frequency
remains within the natural linewidth of the atomic absorption
line. At times >0, the diffusion of the atoms in the mo- However, at time®=0,, the trapped fraction decreases, as
mentum space could bring them to large values of atomigor helium in Fig. 4, and the maximum reachable trapped
momentum in which the Doppler shift is relevant and thefraction is about 0.5,—0.7,. We may suppose that at inter-
laser excitation does not occur. Thus the scaling law for thexction times such thad> 0, for all the compared atoms, a
trapped fraction ceases its validity &~©,. It should be scaling law of the trapped fraction is valid again, but we
pointed out that the definition of E¢R4) is meaningful only  have not tested this hypothesis.
if afik<p,, so that the absorption line is not saturation The dependence df on « at a fixed interaction time is
broadened. By using thp, values from Eq.(23) for the  reported in Fig. 5. The data of Fig. 5 have been obtained for
different atoms, we derive the following interaction times: helium, but because of the scaling law for the trapped frac-
tion, they can be applied to any atom. Thevalues have
been chosen in order to produce a maximbfior an inter-
I'0g°~100, I'OF~10, I''OF~3x10". (25  action time in helium as typical of the experiments in Refs.
[1, 3, 4. The data, obtained through OBEs with a limited
basis of the atomic momentum, correspond to trapped frac-
For a VSCPT comparison between different atoms, the scations lower than those obtained through the QMC analysis.
ing law may be applied for times up to tit&, value of the  However, the main aim of Fig. 5 is the comparison with the
lighter atom used as a reference. Thus, for a determination (ﬁg:2_>|:e:2 results obtained through OBE integration.
the cesium trapping efficiency at very long interaction times,The interaction time was fixed 8lwg=66, corresponding to
a calculation on sodium provides a better approximation tham®I’ =260 for a=1. On increasingy, the trapped fraction at
one on helium. a fixed interaction time passes through a maximum. An ini-
Figure 4 reports QMC results for the trapped fraction as ajal increase ofx produces an accumulation of the atoms in
function®, ate=1 and at® values longer than those of Fig. the noncoupled state. However, the increaser afecreases
3. Helium and sodium atoms are considered. At tifd&& 0., as it appears from Ed24) by using Eq.(19). Such a
<<®§a, the trapped fraction for helium decreases,decrease o®, will produce the relatior®~0,, which is
whereas the sodium trapped fraction continues to increase. batisfied at a value oft near the maximum of Fig. 5. At
Refs.[13, 24 it was shown that, neglecting Doppler shift, larger« values the VSCPT evolution is within the regime
the trapped fraction increases toward the limiting vaiye where the Doppler shift decreases the trapping efficiency.
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helium with =1 and initial standard deviation$p,= 1%k,

3nk, and 1@&Kk. At the short interaction times shown in Fig.
044 6, the VSCPT trapping efficiency depends 6p, and de-
creases if a wider initial atomic distribution is used. On the
contrary, in the regime dominated by the Doppler shift, at
0>0,, the trapped fraction becomes independent of the ini-
tial width of the atomic momentum distribution, as verified
in Ref.[14]. The data of Fig. 6 have been plotted by using a
scaling law that we have derived for the dependence of the
v Sp.=3hk trapped fraction on the width of the initial atomic distribu-
s Po tion. For a large initial width, a long time is required for the

¥ O dpo=10hk atoms to diffuse to th@~ * %k values of the trapped state.

I Thus we searched for a scaling of the interaction times that
;' would bring together the results obtained at different initial
[m}

L]

0.3

0.2 -

0.1

widths. A scaling of the interaction time with the inverse of

the initial standard deviation, i.e®5p0=®/(5p0/ﬁk), pro-

duces a collapse of the different trapped-fraction depen-

dences into a single curve, as in Fig. 6. An atomic evolution

. with a constant momentum diffusion would suggest a scaling

®8p0r of the time with (8py) 2, but the scaling applied in Fig. 6
produces a better result.

0.0 T T T T
0 100 200 300 400

FIG. 6. QMC results for the fraction of trapped helium atoms vs
the interaction time@)épol“’ at o=1 for different initial standard
deviations of the atomic momentum distribution, i.6py= 1%k, A. Eigenvalues

3k, and 1Gk. For this transition the eigenvalues are obtained by diago-
nalizing the effective Hamiltoniam .z of Eq. (12) on the
Figure 6 reports results for the dependence of the trappef@mily .7(q) of Eqg. (9b). By eliminating once again a com-
fraction on the initial width of the atomic momentum distri- mon kinetic-energy term for the three ground states of that
bution. The data were obtained from the QMC approach fofamily, the 3x3 matrix of the effective Hamiltonian is

V. Fg=2—F,=2 TRANSITION

k 0
LS
He(Q) =1 R Wo kq (27)
021 R32 4(1)R+ w;_zsl_2m+R33

with the level-shift operator®;; of the resolvent theory re- trapping statg[10]. VSCPT results are here presented for
ported in the Appendix. The diagonal terms contain the lightoth a leaky configuration, i.e., with§®=wj=0, and a
shift of Eqg. (5) produced by an additionat-polarized laser nonleaky configuration, with Eq29) satisfied.
beam, in order to compensate for the energy mismatch in the For the 2-2 transition we do not have the analytical ex-
leaky case. In effect, the noncoupled state is given by thgressions of the eigenvalues. However, we expect the loss
linear superposition ratel'yc(q) of the|”\c(q)) state to present @ dependence
similar to that of Eq(21). Figure 7a) reports results for the
loss ratel'yc(g) as obtained from the diagonalization of the
Hx of Eq. (27) for a=2. The case of a nonleaky configura-
tion is reported, so that &t=0, the loss rate is exactly zero
+v3]2,2,9+1k)). (28)  and a stable trapped state is formed. The loss rates of Fig. 7
are obtained by using the atomic parameters of helium, so-
dium, and cesium. Only sodium corresponds to a real case,
whereas the other ones are imaginary cases. The loss rates
for the three atoms are different only fge=p, because of
the Doppler shift. In the absence of any Doppler shift, the

wgs_w‘LZS‘: 4wy, (29)  function T'yc(q) would reach a maximum valuel'’23 at

|g| —oe, with the pumping ratd™’ defined in Eq.(16). The

the ground states composihg’yc(q=0)) acquire the same region aroundj=0 contains the Raman hole that determines
total energy. Thus a nonleaky regime is realized with a stabléhe efficiency of the VSCPT process. ét- 27k the function

1
| ne(@) = 7 (vV3]2,—2;q—2hk) +v2|2,0,0)

Without light shifts the kinetic-energy difference between the
ground states composing’\c(q=0)) is equal to 4 and
only a leaky trapped state is formgd]. If the additionals
laser produces light shifts with
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FIG. 7. (&) Loss ratel'yc(q)/T’ plotted vsqg/fik for a 2—2

transition ata,_,,=2 as derived from the effective Hamiltonian. FIG. 8. OBE results for the fraction of trapped atoms vs inter-
Dots refer to helium, the dashed line to sodium, and the solid line tqction time®T"’ at =2 for the 22 transition, using parameters of
cesium(b). Plot of I'\¢'/T';__; vs q/#k for comparing the -1 and  pelium, sodium, rubidium, and cesium atoms. The data with a larger
22 transitions in cesium. The solid line is for-dl, with I'; ., trapped fraction correspond to the nonleaky configuration, the oth-
=I'" at a;_,=0.5. The dotted line is for 22, with I';_,  ers to the leaky configuration. As for the case of thelltransition,
=(2I'"13) anda,_,=2. the trapped fraction does not depend on the atomic parameters.

I've(q) presents a discontinuity in its derivative, because folium and cesium imaginary atomic transitions. It may be no-
eachq value we report th&':(q) value of the state with the ticed that the scaling law provides a very good description
smallest loss rate. As a function of different linear combi- for the time dependences of both the leaky and nonleaky
nations of states or, more precisely, states associated withcases.
different energy ban@23] may have the smallest loss rate. Figure 5 reports the dependence of the helium trapped
Figure 7b) is the basis of a scaling law to compare thefraction on theax parameter at a fixed interaction tintefor
trapped fraction for the 21 and 2-2 transitions. Those a comparison between the-2 and 1-1 transitions. The
trapped fractions may be compared if the interaction time issomparison between the two transitions is based on the scal-
measured in units of the pumping time and if the Raman holéng laws discussed in Sec. IV for the interaction time and the
area is the same. For comparing thesl and 2-2 transi- «a parameter. The results should be compareddfgraram-
tions, the interaction time should be measured in units ofters scaled by a factor 4 in order to have the same Raman
1T’ and 3/T", respectively, which represent the time scaleshole, i.e., ay_,=4a; ,,. For 2-2, the interaction time is
of the atomic evolutions outside the Raman hole. For commeasured in units of ,_ ,=2T"'/3, whereas for 1-1, it is
paring the Raman holes of the two transitions, we notice thateasured in units df’. Thus the trapped fractions of Fig. 5
a is inversely proportional to the recoil frequenag and, have been determined at tinte=100/wy for the 2—2 tran-
for the 2-2 case, thd "\ (0)) state of Eq.(28) contains a sition and at time®=66/wg for the 1—1 transition. The
kinetic evolution at the dr frequency. Thus, in order to scaling leads to very good agreement between the trapped
obtain the same Raman hole of the-1 transition, thea  fractions on the two transitions. It should be noted that with-
parameter of the 22 transition should be increased by a out applying that scaling, the trapped fractions of the2
factor 4. In Fig. Tb) the loss rated"\&'(q)/T'{_; (i=1,2 and 1-1 transitions would appear uncorrelated. It is surpris-
withT; ;=T andTl'; ,=2I"'/3 are compared as function ing to note that the maximum in the-2 trapped fraction is
of q for oy ;=0.5 anda, ,,=2. Having applied those scal- larger than in the +1 one. However, the plots of the-22
ings, the central part of the Raman hole in the two transitionsoss rate of Fig. 7 present a large “hole” area outside the
presents good agreement. proper Raman hole area that is not present for the Iran-
sition. That area may produce the larger efficiency of the
2—2 VSCPT process. Also Wu, Holland, and F¢@&g], in
their comparison between the VSCPT efficiency on the22
The density-matrix time evolution has been examinedand 1-1 transitions, have shown that for a fixed Rabi fre-
through the OBE numerical solution and all the results hereuency, the 2-:2 VSCPT is more efficient than the-11 one.
presented are based on an initial atomic momentum Gaussidfigure 5 provides a complete description for the VSCPT on
distribution with standard deviatioApy=7Kk. Figure 8 re- the two transitions with a comparison of their efficiencies at
ports results for the dependence of the trapped fradtion  different Rabi frequencies.
the interaction timedI"’ for the case of leaky and nonleaky  In order to provide an additional confirmation of the scal-
transitions alw=2. Parameters for four different atoms haveing law between the two transitions, we have examined the
been used: helium, sodium, rubidium, and cesium, with hewidth of the atomic momentum distribution associated with

B. Trapped fraction
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rate by the laser detuning is taken into account. It may be

%61 o leaky supposed that owing to the quite narrow initial momentum
-7 distribution, the role of the polarization-gradient cooling is
0.5 limited. Thus a more correct comparison should be per-
~ formed with larger initial momentum distributions, as re-
i 0.4 cently reported in Ref.28].
§ 0-37 VI. CONCLUSION
Q) 5.0 The aim of the present work is to determine relations
< connecting the principal features of VSCPT laser cooling on
0.1 different Fy—F, atomic transitions. Those relations have
been derived from a comparison between the VSCPT of the
0.0 | | | 1—-1 and 2-2 transitions for different atomic parameters.
0 1000 2000 3000 Scaling laws have been derived for the dependence of the
oer fraction of trapped atoms on the interaction time and the

FIG. 9. FWHM Appwum(©)/7k of the atomic momentum dis- Rabi frequency. A relevant scaling parameteas been de-
tribution vs the interaction tim@I", for the 22 transition using fined as the square of the Rabi frequency divided by the
the cesium atomic parameters,@&0.16" corresponding tax=8  atomic spontaneous-emission decay and the atomic recoil
and the initial Gaussian distribution with standard deviationfrequency. As a consequence of the dependence of the
Spo=rik. Data for the two cases of a leakgpen dots and a  trapped fraction orw only, to prepargfor instance, in the
nonleaky (closed doty configuration are reported. The dotted line VSCPT cooled stajea given fraction of heavy atoms having
defines the limiting value oA pgyy=0.45ik for the leaky case. a small recoil frequency, a decrease of the Rabi frequency is
The continuous line represents th@gy=500T") *fitof the  required, keepingr constant. Owing to the good validity of
nonleaky data. the scaling laws for the two investigated atomic transitions,

we are confident that the scaling laws may be applied to
the VSCPT process, measuredpat =7k for the -1 tran-  atomic transitions having a larger atomic momentum, for in-
sition and atp=0,+2#4k for the 2-2 transition. For the stance, the red#,=4—F,=4 transition of the cesium reso-
11 transition, the® Y2 dependence of the width on the nant line. The scaling law predicts that the maximum effi-
interaction time® has been characterized by Alekseev andciency in the cesium VSCPT will be reached at Rabi
Kyrola [24] and by Mauri and Arimond25]. In particular,  frequencies much smaller than those used in the helium ex-
Ref.[24] has pointed out that the momentum distribution isperiments.
described by a Lorentzian line shape, so that its width is The application of these scaling laws to other laser
described through the full width at half maximum schemes involving VSCPT may be considered. We have
Appwhm(®). For the 2-2 atomic transition with cesium pa- verified that the bichromatic VSCPT scheme of Doetyal.
rameters, atr, .,=8 we have determinedpryy versus®,  [11] is completely equivalent to a nonleaky VSCPT scheme
for the cases of leaky and nonleaky transitions, with result®n the 2-2 transition. Thus the same trapped fraction is
shown in Fig. 9. We have verified that the momentum distri-realized in the two schemes and, as a consequence, the scal-
butions are well described by Lorentzian line shapes. For thing laws derived for the dependence of the VSCPT trapped
leaky case, the momentum width reaches a limiting valudraction on the interaction time and the Rabi frequency are
Appwum=0.45ik, within 20% of the value given by an ana- valid also for the bichromatic VSCPT scheme.
lytical relation derived in Ref[26]. For the nonleaky case The application of a standing wave on each optical tran-
the data are well fited by the equation sition of the 1-1 scheme produces a VSCPT subrecoil cool-
Apewum=50@T") Y2 as shown by the continuous line ing combined with polarization-gradient laser cooling, as
drawn through the data. By comparing this relation with thediscussed in Refd.15-18. Those authors have shown that
Aprwhm(0®) dependences reported in Relfa4] and[25] for  for a given interaction time, an increase of the trapped frac-
the 1—1 transition, taking into account the scaling law of tion is achieved by alternating periods of pure VSCPT, at
Fj’ﬂ- , we find that a similar dependence would be obtainedzero detuning, with periods of polarization-gradient cooling,
at oy_,,=2.3%=0.3 for the 1-1 transition, instead of,_.,=8. at a laser detuning different from zero. For the pure VSCPT,
Thus the scaling of by a factor 4 is confirmed also by the our scaling laws apply. For the polarization-gradient laser
dependence of the momentum distribution width on the incooling, an investigation of the scaling laws has been per-
teraction time. formed by Castiret al. [29]. These authors have shown that

We have investigated the dependence of the trapped frapolarization-gradient cooling is described by two indepen-
tion on the interaction time in the presence of a laser detundent parameters /" andI"’ §, /T’ wg . Thus, in polarization-
ing & #0. In effect, for the 2-2 transition for a detuning gradient cooling, the laser detuning plays an important role
different from zero, a polarization-gradient cooling force isand within the search for scaling laws in the cooling combi-
acting on the atoms, as discussed in Rg#g|, and that force nation of VSCPT and a polarization gradient, the laser de-
may increase the trapping efficiency. In our numerical simutuning should be considered as a separate parameter, in ad-
lations for Spy=7ik and different laser detunings, we have dition to «. In fact, the second parameter introduced by
not found a significant modification for the trapped-fraction Castinet al. is a combination otx and &, . The existence of
dependence o®I"', when the modification of the pumping scaling laws may be examined also for Doppler cooling. The
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Doppler cooling process is characterized by a temperature 1 02/3
p_roportiqnal to the spontaneous-emission rate, _vvith_ its effi- anz So— wrt KgIm+iT/2’
ciency given by the atoms that have reached a kinetic-energy

range around that temperature. The interaction time for

reaching that efficiency is scaled once again with the pump- 1 0?6

ing rate, proportional to the number of scattered RlZ:Z 5,— wg—kg/m+il/2’
spontaneous-emission photons. The dependence on the Rabi
frequency appears in the Doppler cooling equations through 5
the o parameter when an adiabatic elimination of the excited R :} Q%6

state is performed. Thus the same parameters of the VSCPT 2174 59— wrt+kg/m+iT/2’
scaling laws determine the Doppler cooling efficiency.

= 1 022 1 022
22 1 S o KQIMTITI2 4 5y— ont kg/m+iT/2"
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APPENDIX Ron=—
374 5o— wr—kg/m+il/2’

The expressions of the level-shift operators for the
Fy=2—F,=2 transition appearing in Eq27) are where 8,=w| — wy+ 4w+ ol and §=ow, — wy+ wg>.
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