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Faddeev calculations of muonic-atom collisions: Scattering and fusion in flight
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The Faddeev approach is used to stadyave scattering and fusion in flight for the muonic-atomic systems
p+pu, d+du, t+tu, d+tu, andt+dw in a broad energy range below the=2 threshold of the target
muonic atom. Clear manifestations of near-threshold virtual states ip-thgu andt+tu systems are seen,
e.g., in large amplifications of the fusion-in-flight reaction rates near zero energy. Peaks and (esgama
tially exact zeros for the symmetric systenis the fusion-in-flight rates are also seen at finite energies. In the
case ofd+tu, the fusion-in-flight rate(at liquid-hydrogen densijyreaches a value of 3.4010° s~ for
collisions at 76.3 eV, which may be compared with the rate .1& s~ at thermal energies.

PACS numbeg(s): 11.80.Jy, 36.10.Dr, 25.30.Mr, 34.70e

I. INTRODUCTION an overall spline expansion of the Faddeev components in all
variables. Convergence of the spline expansion is straightfor-
This paper deals with the-wave scattering in the sym- ward to achieve and its accuracy is easy to control.

metric muonic-atomic systems The method does not involve any intermediate approxi-
mations; thus it may lack some qualitative insight lent by the
atau(n=1),a=p,d,ort, (1) adiabatic approximation. But from a computational point of

view, this actually can be regarded as an advantage, for the
method can be applied with equal ease to the systems ame-
d+tu(n=1), t+du(n=1). 2) nable to the adiabatic expansion methedch asd+tu) as
well as to those beyond iisuch ase™+H [12]). Thus the
Much interest in the muonic-atom collisions is due to theFaddeev approach allows one to treat uniformly a broad va-
roles they play in the muon-catalyzed-fusion cydés-3].  riety of Coulomb systems that otherwise have to be studied
Also, theoretical interest stems from the facts that muoniaising quite different techniquegvariational, adiabatic,
systems(i) bridge the huge energy gap between the nucleagoupled channels, ejcApplication of the Faddeev approach
and atomic domains angi) interpolate between two kine- to the muonic-atomic systems is another important illustra-
matic limits of a three-body Coulomb system: atomic sys-tion of this fact.
tems such ag™ +H, consisting of one heavy and two light ~ Most calculations of muonic atom scattering have been
particles, and molecular systems such @é’ Hnvolving one done in the context of muon-catalyzed fusion, where colli-
light and two heavy particles. sion energies up to a few eV are of main concern. At such
Most previous scattering calculations for muonic atomslow energies, purely three-body aspects of the problem are
have been done via the Born-Oppenheimer adiabatic repréomewhat shadowed by effects due to the hyperfine interac-
sentatior{4—8], which for normal atoms often allows one to tion between nuclei and mudespecially in thep+ pu scat-
treat essentials by taking into account only a few adiabati¢ering. In the present work, we treat scattering up to 1 keV.
channels. However, for collisions of muonic atoms some-That is too high to be of practical importance for muon-
times hundreds of adiabatic basis functions are needed atalyzed fusion; however, accurate description of the
order to achieve accuracies of a few perdéné). muonic-atomic collisions is of general interest for few-body
In this paper we exploit a completely different approachphysics and can also be used in other aspects of muon phys-
to muonic-atom scattering problems. It is based on the modics. The Faddeev approach provides an effective tool for the
fied Faddeev equatior[®] in the total-angular-momentum entire energy range.
representatiof10]. This approach has been developed re- Besides usual cross section calculations, we also study the
cently[11] and turns out to be a very powerful tool for solv- fusion-in-flight reactions in the muonic-atomic systefs
ing three-body Coulomb scattering problems. A key featurednd(2). At low energies the description of such reactions by
is that it provides a simple and natural way to incorporated simple tunneling factor is essentially irrelevant.
proper asymptotic conditions for scattering wave functions.
The numerical solution is obtained directly by making use of

and in the asymmetric system

Il. FADDEEV EQUATIONS

Our approach is based on the Faddeev decomposition of

“Permanent address: Department of Mathematical and Computdhe wave function into three components related to the three

tional Physics, Institute for Physics, University of St. Petersburg, Stkinematic channels of a three-body system. The Faddeev
Petersburg 198904, Russia. method[13], originally developed for short-range interac-
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tions [14], was later modified by Merkurief8] in order to TABLE I. Numerical values of the kinematic parametdis
incorporate long-range Coulomb potentials. The resultingn.a.u) for Egs. (3)—(9). The other six sets of the coefficients
modified Faddgev equations are, of course, equivalent to the s, 4} are obtained by permutationsg,=C,z, Sga= —Sas-
underlying Schrdinger equation but facilitate setting up the
asymptotic boundary conditions for scattering problems. The (123 (ppu) (ddu) (ttw) (dtw)
reason is that each Faddeev component is described in terms

of its own set of Jacobi vectors, related to the corresponding ™ 1.3407 1.3760 1.3883 1.3883
asymptotic channel, while in the Scliiager wave function 2 1.3407 1.3760 1.3883 1.3760
all the channels are mixed up. T3 2.9800 4.2133 5.1561 4.6139
To describe the Faddeev equations, we first introduce
some standard notatiof8—11]. Labelsa=1,2,3 index the M1 3.0584 4.2706 5.2034 4.6478
particles of the muonic-atomic systems, witk= 3 being the M2 3.0584 4.2706 5.2034 4.6895
index of the muon. Alsoq labels pairs of particles with M3 1.3760 1.3947 1.4011 1.3985
membersB+# « (e.g., pair 1 consists of particles 2 anda®d
the corresponding asymptotic channels. Fotu)=(123), C12 —0.8988  —-0.9467 —-0.9638  —0.9552
then channels 1 and 2 ackt+tu andt+du, respectively. S12 —0.4384  -0.3222 -0.2668  —0.2961
We make use of muonic-atomic uniten.a.u), A=e=m, Ci3 —0.2250 —0.1633 —0.1346 —0.1205
=1, so that the unit of length is the muonic Bohr radius s;3 0.9744 0.9866 0.9909 0.9927
a,=h?e’m,=2.56<10 " cm. C;3  —0.2250 —0.1633 —0.1346 —0.1788
Three-body kinematics in each chanmels most conve- So3 -0.9744  —-0.9866  —0.9909  —0.9839
niently described using the corresponding set of the mass-
scaled Jacobi vectofx, ,y,} defined by a —1.3407 ~1.3760 —1.3883 —1.3883
d. —1.3407 —1.3760 —1.3883 —1.3760
Xa=Tall g7 1) (33 s 2.9800 42133 5.1561 46139
and
Mol ot Mor which can be parametrized by any three coordinates that fix
ya:,ua( Mo— M), (3b)  the particle configuration in a plane. For scattering problems
mg+m, the most convenient choice for the local coordinates is the

where @By)= cyclic (123), m, andr, are the particle lengths of the Jacobi vectors and angle between them

masses and position vectors, X, =Xy, (78
Ty= Zw, (4a) ya: |yuz|! (7b)
v mg+m,

(XC{ 1ya)
0 ,=arcco . (70

Ma “ [XallYel

Moo= Zma 1- V s (4b) allYa

The s-wave Hamiltonian is given by
and 3

M=m;+m,+m;, (40) H:Ho+a§=:l Va(Xa), ®

so that72/2 is the reduced mass of pair and u2/2 is the whereV,, is the Coulomb potential for the pair=(2,7y),
reduced mass of the particte and the paire. The Jacobi

vectors of different channels are related by orthogonal trans- (o]
formations Va(Xa) = X, (93
X5=CpgaXa+ SpaYa (53 Uo=24Zy T, (9b)
Y= ~SgaXat Cpa¥a (5b)  and zg are particle charges; herg, are the mass-scaled
) o charges corresponding to E@). The kinetic-energy opera-
with the mass-dependent coefficients tor Hy is a three-dimensional partial differential operator
12 [10]
Cpa=— T Ma ; (6 2. 2 2. 2
(M - mlB)(M - ma) H(): —Xg axaxaaxa_ Ya ‘9yaya‘9ya
Spa=(—1)F *sgna—B)(1-c5,) "2 (6b) —[X 2+, 1es0,d4 SN0,y , (10

Hereafter we shall only consider the state of total angulawhich is invariant in the channel index. Table | gives all
momentum zerog wave. Then the three-body configuration mass-dependent parameters related to the scaled Jacobi vec-
space is a three-dimensional manifditinternal space’, tors (3) for the muonic-atomic systen{d) and(2).
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We now proceed to describe tlsewave Faddeev equa- - -
tions related to the Schdinger operator8). The general (Hast V' —E)¢,= =V, Z« Yg,a,=12,3 (195
form of the equations for arbitrary total angular momentum pra

is derived in Ref[10]. for the Faddeev components, . It is easily seen that the
The asymptotic dynamics of a three-body Coulomb sysg,m of all three Faddeev equations yields the Sdinger
tem involves two different types of asymptotic channels aCpquation for the total wave function

cording to formation of bound states in different paissch
asd+tu andt+duw). Each channel is most conveniently 3

described through its own set of Jacobi coordinates V= 2 Uy (16)
{Xa+Ya»r0a}, Wherea is the index of the bound pair. The a=1
total wave function includes all open channels. This rather
complicates setting up the asymptotic conditions for scatter-

ing states. for one has t different local m in differen f the particles(with «=1,2) have bound states. Thus the
g states, for one has to use ditierent local maps ere epulsive Coulomb potentidl; can be completely included
regions of configuration space in order to properly deal with.

. L in the operator H,s (this corresponds to choosing
a variety of open channels. The basic idea of the Faddee_azo,%zo)_ This reduces Eq¢15) to a set of two coupled

approach is to eliminate this problem by separating the a ! .
ymptotic channels from each other. To this end, the wavé?quatlonS for the two Faddeev componepis:

function is divided into a sum of the Faddeev components () _
Thereby each component involves asymptotic channels d eH°+V“(Xa)+V3(X3a)+VB (XgarYpa) ~El¥a(Xa,Yar 0a)

to bound states of only one pair and therefore can be com- = —fo)(xa,ya) P5(Xga Y ga+0pa), (17)
pletely described by one set of Jacobi coordinates.

A rigorous way to implement this idea when the long- wherea,8=1,2 anda# 3. Each component depends on its
range Coulomb interaction is involved was invented in Ref.own set of the Jacobi coordinates;, ,Y s, , 05, Stand for the
[9]. It consists of decomposing the Coulomb potenti@s  coordinatess,ys, 0, expressed througk, .y, .6, accord-
into the two partsV,=V®+V{) by making use of cutoff ing to the transformatioxs):
functions¢,

For the muonic-atomic systeni$) and(2) only two pairs

2 2 2,2
X,Ba: [Cﬁaxa+ Sﬁaya+ Zcﬁasﬁaxayacoya] 1/27 (18@

VO (X Ya) = Va(Xa) {alXa Y o) (119
yﬂa: [Séaxi+ Céayi_ ZCBaSﬁaxayacosaa] 1/21 (18b)

V(al)(xa1ya):Va(Xa)[l_§a(Xavya)]- (11b)
XBayBaCO§ﬂa: (Céa_ Sf;a)xayaCO$a_ CBaSBa(Xi_ yi) .
The cutoff functions are such that® coincides with the (180

Coulomb potentiaV, in the asymptotic regio,, corre-  again, the sum of the two Faddeev equatiéh® yields the
sponding to the formation of a bound state in the pair Schralinger equation with the Hamiltonia(@®) for the wave
function ¥ =, + ¢,. Vanishing of the coupling potential
vV away from the regiod}, provides asymptotic decou-

. . . pling of the Faddeev components.

when particles of the pair are close and the spectator is far When two particles of a system are identical, the Faddeev

awa;1y. The :f.onSt?.nB“’.t:ﬁ charactetrlzti the effective d§|ze of equations(17) can be further simplified. For the symmetric
such a confniguration with respect to the corrésponding Coofg, o nic atomic systemgl), particles 1 and Znucle) are
dinate. In the complement d2,, where there are asymp-

totic ch Is due to bound states of oth s th " t.i entical and there are two possible parity stgites* 1 with
O(;)C channels due to bound states ot other pairs, the potenti spect to interchange of the nuck}, ¥ =p¥; depending
V,’ should vanish sufficiently fast. Such behavior can be,

, X . , n the spin state of the pair (1,2p,=(—1)%2 For a fixed
a_lch|eved, for instance, by making use of the following f_unc'parity state, the Faddeev components of K@) are related
tional form of the cutoff proposed in Ref15] and used in

_ by P,opi=p i, (thereby the cutoff functions must be the

Ref. [11]: same. Then Eqs.(18) imply a functional relation between
1 (Xo/84)"
Ty b+

Qa:{xa 1ya:Xa/aa<(ya/ba)1lva-Va>2}1 (12)

the components

-1
La(Xg1Ya)=2 ] o (13

1//1(X,y,0)=p1,//2(x,y,77— 0)1 (19)

where the paramete®, ,b, are the same as ifl2). Next ~ Which reduces Eqg17) to one equation for the component
one defines the asymptotic Hamiltonian 1

[Ho+V1(Xy) + Va(Xap) + V5 (Xa1,Y21) — E11(X1,Y1, 601)
= —SOV(ls)(Xl Y1) 1(Xo1,Y21, T — 629). (20

The Faddeev equations are now derived by following a genThe componenis; does not have any symmetry with respect
eral procedurg9,10] treating the potential‘s(ff) as perturba- to the interchange of the nuclei. Proper symmetry of the
tions of the operator ... This leads to the modified Faddeev wave function P1,¥ =p¥) is enforced automatically since
equations V=i +o=(1+pP1) .

Hae=Ho+ >, VI, (14)
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. ASYMPTOTIC BOUNDARY CONDITIONS

For scattering problems the Faddeev equations are ass
ciated with appropriate asymptotic conditions. In the case o

scattering in the symmetric systeras-au below the first

excitation threshold of the muonic atom, there is only one 5
open channel in each pair=1,2. The corresponding [

asymptotic conditions for Eq20) are

1 .
(1W(X1 Y1—%°,01) ~ ——@1(Xg)[SiN(P1y1)

P1Y1
+tans,cogp1y1) ], (213
h1(X3—,Y1,0,)~0, (21b

where ¢, is the muonic-atom ground-state wave function,
o, is the phase shift, ang; is the momentum conjugate to
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All such cross sections can be evaluated in terms of the
fixed-parity phase shiftss. of the asymptotic conditions
fz'l). Corresponding formulas are given in the Appendix. The
resulting expressions for the cross secti@®® are

ma 3 for ptpu, t+tu
Op=——-SIP(6,—6_)X

ki L for d+du,

(273
3 for p+pu, t+tu

012/021_{2 for d+du, 279

011= Oyt~ 012, (279

022=Otot— 021, (270

the coordinate/; . These asymptotic conditions apply to both Where o, is the total cross section given 1§94).

parity statesp=*+1 (with different values of the phase

shift).

The s-wave scattering cross sections for parity stateymptotic channels

@==*1 are given by

4ma’
g+= 2 MSinzé-_t— Il (22)
ki
where
Ki=m1p1=+2m; ,4 E—€), (23

5. are the corresponding phase shifts, &pds the momen-
tum in the incoming channel‘,nl,23=,u§/2 is the reduced

mass of the nucleus and the muonic atom agdis the

atomic ground-state energy. The total cross section is give

by the weighted average

1 3
70,1t 70_
Otot™

2 1
30,+30_

for p+pu, t+tu
(24)
for d+du.

Cross section&2) correspond to fixed spig,=s; + S, of
the two nuclei in aa+au systemp=(—1)%2 The transi-
tions between different spin states of the muonic atym
are also of interest. In the standard notatiffis 8|, the cor-
responding spin channels are

_ 0 for a=port
l=a+au(T])with sz3=[ L for a=d, (259

_ 1 for a=port
2=a-+au(17)with 323=[ S for a=d, (25b

where s,s=s,+ 53 is the spin of the muonic atoraw. The

For scattering in the asymmetric systenritu at energies
between thedu(n=1) andtu(n=2) thresholds, four as-
are open: the elastic channels
d+tu(n=1)—d+tu(n=1) and t+du(n=1)—t
+du(n=1) as well as the inelastic chann¢lsdu(n=1)
—d+tu(n=1). In this case, it is convenient to make use of
the reactance matrix formalism. One finds two different so-
lutions to Egs.(17) (44”,44”), which are labeled by the
index y (=1,2) of the bound pair in the initial state,

1
P Xy Yo, 01)~ v @4(X)[ 8,,SIN(PLY.)

+VpP,/pKyycogp,ya) ], (28

Where ¢, is the muonic atomic wave function of the pair
a. Thereby all the components vanishxas—«. The coef-
ficientsK,, are the reactance matrix elements.

As can be seen from Eq28), different reaction channels
correspond to different Faddeev components and are asymp-
totically decoupled. This is a crucial point for computational
efficiency of the Faddeev approach.

Note that the muonic atomic wave functions in E(&l)
and(28) are normalized by

| Teutxariax-1. 29
0

This differs from standard normalization since the Jacobi co-
ordinates involve the mass-dependent factoref Eq. (3a).
This fact is taken into account in the asymptotic conditions
(21) or (28) where the momenta, are related to the mo-
mentak, of the spectator with respect to the bound pair,
according to Eq(3b), by

cross section for a transitidn-j between these channels at Tpe total three-body energy is

fixed total spinS=s,+s,+; is designatedr{> . The spin-

weighted effective cross sections are given by
2S+1

o (S)
7ij § (25,5+ 1)(25,+1) 711 - (26

kazlu‘apa . (308)
q2
Ez—zaeri, (30b)

where theq, are the mass-scaled chardéb).
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The cross sections for the transitiops-« between the Upon evaluating these relations in terms of the variahle

channels are given in terms of tike matrix by one gets boundary conditions to be imposedrat1
o ) (Va=Y5").-
0. = ma, K ) (31) To reduce the resulting inhomogeneous equations to an
ve k?/ 1-iK v ' algebraic problem, we make use of spline expansions in all
variables
wherea,, is the muonic Bohr radius. Subscripjsx desig- :
nate the initial and final states, respectively: 1 for NG NG NG
d+tu(n=1) and 2 fort+du(n=1). Doty lo,0)=2 2 2 finisi(to)sm(ra)sn(ba),
I=1 m=1n=1
(36)

IV. NUMERICAL PROCEDURE

Our method of solving the Faddeev equations, originallyVheres; are the quintic Hermite polynomial splines defined
developed in Ref[11], involves the following major steps. as follows. Let an interval of a variablebe divided intoK

First, we separate off the incoming waves by representing theUPintervals defined by the natural knagsx,, . .. k. The
Faddeev components as total cardinal basis of the quintic splines consists K33
piecewise polynomials of  fifth degree ¢,
1 (i=0,1,... K;0=0,1,2), which are nonzero on two adja-
Ya(Xa Yo 0a) = FalXe Vo) + mq)a(xa Yar0a), cent subintervalpx;_1,x; JU[X; ,Xi+1]. This set of functions

(32 is fixed by the continuity condition on their first and second
derivatives and by the normalization at the natural knots,
wheref, are the incident waves-sin(p,y,) for the corre-
sponding asymptotic condition€1) and (28). Then Egs. B Pigr =040 for o,0'=0,1,2. (37)
(17) and(20) go over into inhomogeneous equations for the o ) ]
functions ®,,, which now contain only outgoing waves The explicit formulas for the spline functions are

"‘COS@aya). 2 —
Then we make use of nonlinear mappings of the coordi- 6t°+3t+1 for 0=0
nates{x,,Y,.} into new variablegt,,r,} €[0,1]X[0,1], One(X)=(1—1)3(x—x,)7%x{ 3t+1 for o=1
1 1/2 for 0=2,
Xo== 3= In(1-t,), (333 (39
: wherexe[X,_1,Xn+1] and
y(m> Mo
Yoa=ho| 1+ f: ) -1} (33b) (Xn—l_xn)_l for Xp—1=x<Xx,
@ t=(X=Xp) X (39

(Xne1—Xp) ™1 fOr Xp=X=<Xni1.

Uniform grids int, andr, generate nonuniform grids in

X, andy, with point densities governed by the parameters of Upon substituting the spline expansi@®) into the Fad-

the mapping$33). The parameteyflm) determines the maxi- deev equations we make use of a collocation procedure with

mum value ofy,, where the corresponding asymptotic con-thre_ze Gaussian quadrature points per su_binterval of each

dition is imposedy ™=y (r,=1). The logarithmic map- variablet,, r,, and 6,. If there areK subintervals of a

ping t,—X, is suitable to describe the bound states ofvariable, the basis of quintic splines consists 83 func-

muonic atoms, whereas the exponential mappipgy, isa  tons, but the collocation procedure yields onl( ®qua-

reasonable choice to treat scattering dynamics ajong tions. The three extra splines on the first and last subintervals
Next the Faddeev equatioiis?) or (20) for the compo- aré excluded by the boundary conditiaf®) and(35). The

nents®,, from (32 are written in terms of the variables resulting algebraic equation for the coefficief{i§, is solved

{ty.ru.0,}. At the boundaries,=0,1 (x,=0%), r,=0 by direct matrix inversion.

(y,=0), and 6,=0,7, vanishing boundary conditions are

imposed[11], V. RESULTS AND DISCUSSION

Doy =Dl —o=3dF Dl ;=0 for n=<1, Our calculations were performed on grids of typi-
« « « e (349 cal dimensions N{ X N X NG = (12— 18) % (39— 60)
X (12— 18). The corresponding accuracy is estimated to be
dg Poly —0.=0. (34b) of order 1%. The values of the particle masses we used are
“ ¢ m,=1836.151%,, my=3670.48Mm,, m;=5496.918n,,
At the asymptotic boundaries,=1 (y,=y'™) we impose andm,=206.769n,.
the asymptotic condition§21) and (28). Accordingly, the
functions® , are proportional to cop(y,). Thus A. Cross sections

(353 Tables 1I-1V give our results for scattering in the sym-
metric systems below the=2 threshold of the correspond-

ing muonic atom. In terms of the momentukn of the inci-

dent nucleus with respect to the tardeee Eq.(30)], the

O’)yaq)a|ya~>w~ - patar( paya)q)a ’

a§a¢a|ya%~ —p3d,. (35b
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TABLE II. Phase shifts(in radiang and cross sectiongin units of 7a’=0.206<10 % cm?) for
p+ pu scattering as functions of the momentlm(in units ofa, hE, (eV)=601.532k§.

ky O o g+ o Ttot 021 011 022

0.01 3.4287 3.1018 3207.6 63.31 849.4 257.8 76.05 591.6
0.03 3.7642 3.0150 1511.4 70.85 431.0 128.8 44.46 302.2
0.05 3.8638 2.9233 699.2 75.04 231.1 65.26 35.28 165.8
0.10 3.7891 2.6766 1455 80.43 96.71 20.11 36.39 76.60
0.20 3.3838 2.1708 5.753 68.12 52.53 5.484 36.08 47.04
0.30 2.9540 1.7076 1.546 43.62 33.10 2.496 25.61 30.60
0.40 2.5598 1.2974 7.549 23.18 19.27 1.419 15.02 17.85
0.50 2.2109 0.9380 10.29 10.40 10.38 0.914 7.634 9.462
0.60 1.9051 0.6165 9.915 3.714 5.265 0.641 3.343 4.624
0.65 1.7807 0.4653 9.056 1.906 3.694 0.554 2.032 3.140
0.70 1.6346 0.3390 8.130 0.903 2.710 0.473 1.292 2.237
0.80 1.4000 0.0924 6.069 0.053 1.557 0.364 0.465 1.193
0.90 1.1920 —0.1245 4.263 0.076 1.123 0.289 0.256 0.834
1.00 1.0080 —0.3172 2.861 0.389 1.007 0.235 0.302 0.772
1.10 0.8435 —0.4870 1.845 0.724 1.004 0.195 0.419 0.809
1.20 0.6940 —0.6360 1.136 0.980 1.019 0.164 0.528 0.855
1.30 0.5615 —0.7710 0.671 1.149 1.030 0.140 0.611 0.890
1.40 0.4407 —0.8900 0.371 1.232 1.017 0.120 0.656 0.897
1.60 0.2334 —1.0860 0.084 1.223 0.938 0.092 0.663 0.847

thresholds are ak1=1.776a;1 for p+pu, k1=2.545;1 where Ry=13.605 698 eV andgk, is the reduced mass de-
for d+du, and k1=3.12851;l for t+tw. For momentum fined in Eq.(4) (see Table | for numerical values
ky (in units ofa;l) given by (30) the corresponding kinetic In Tables 1I-IV we present phase shiifls of scattering
energy is in states of fixed parityp=*=1 with respect to the inter-
change of identical nucleiy. are the corresponding cross
E, (eV)=2 Ry—“p2=2 Ry—* 4722, 40 sectiong22) and o is the spin-weighted total cross section
1 (V) ym—epl ym_eMl 40 (24). The cross sections;; are the spin-weighted effective
TABLE IIl. Phase shifts(in radiang and cross section§n units of ﬂai=0.20@< 1072% cn) for
d+du scattering as functions of the momentlmn(in units ofa;l). E, (eV):308.50‘k§.

Ky Oy o- g4 o Otot 021 011 022

0.01 6.2284 6.2480 119.9 49.50 96.46 0.960 95.82 96.1
0.03 6.1105 6.1668 131.2 59.93 107.5 0.880 106.9 107.2
0.05 5.9793 6.0742 143.3 68.87 118.5 0.898 117.9 118.2
0.10 5.6328 5.7922 146.7 88.92 127.4 0.630 127.0 127.3
0.20 4.9747 5.2232 93.28 76.10 87.55 0.378 87.30 87.42
0.30 4.3964 4.6926 40.15 44.43 41.58 0.238 41.42 41.50
0.40 3.8954 4.2176 11.71 19.36 14.26 0.157 14.16 14.21
0.50 3.4604 3.7926 1572 5.876 3.006 0.106 2.936 2971
0.55 3.2632 3.5993 0.195 2.582 0.990 0.090 0.930 0.960
0.60 3.0785 3.4086 0.044 0.774 0.287 0.073 0.239 0.263
0.65 2.8979 3.2303 0.551 0.074 0.392 0.063 0.350 0.371
0.70 2.7416 3.0551 1.238 0.061 0.846 0.049 0.813 0.829
0.80 2.4297 2.7401 2.667 0.955 2.096 0.036 2.072 2.084
0.90 2.1666 2.4519 3.383 1.999 2.922 0.024 2.906 2.914
1.00 1.9026 2.1996 3.576 2.616 3.256 0.021 3.241 3.249
1.10 1.6916 1.9716 3.258 2.803 3.106 0.016 3.096 3.101
1.20 1.4784 1.7416 2.754 2.698 2.735 0.012 2.727 2731
1.30 1.3000 1.5500 2.198 2.366 2.254 0.009 2.248 2.251
1.50 0.9350 1.1950 1.151 1.538 1.280 0.007 1.275 1.278
1.60 0.7750 1.0400 0.765 1.162 0.897 0.007 0.893 0.895
1.70 0.6700 0.9000 0.534 0.849 0.639 0.005 0.636 0.637
2.00 0.2700 0.5400 0.071 0.264 0.136 0.004 0.133 0.134
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TABLE IV. Phase shifts(in radiang and cross sectionéin units of a’=0.206<10 2° cm?) for
t+tu scattering as functions of the momentlm(in units of a;l). E, (eV):207.808kf.

ky O o T+ g Ttot 021 J11 022

0.01 6.3675 6.2518 283.7 39.39 100.5 33.32 0.511 67.15
0.03 6.4844 6.1748 177.5 52.01 83.39 25.79 6.030 57.60
0.05 6.5116 6.0692 82.04 72.15 74.62 18.33 19.64 56.30
0.10 6.3995 5.7832 5.387 91.94 70.30 8.353 45.24 61.95
0.20 5.9506 5.1702 10.66 80.47 63.01 3.094 53.73 59.92
0.30 5.4441 4.5986 24.60 43.87 39.06 1.555 34.39 37.50
0.40 4.9530 4.0806 23.58 16.28 18.11 0.917 15.36 17.19
0.50 4.4934 3.6111 15.25 3.275 6.268 0.596 4.479 5.671
0.55 4.2740 3.4066 10.84 0.907 3.391 0.481 1.948 2.910
0.60 4.0692 3.1961 7.114 0.033 1.803 0.408 0.580 1.396
0.65 3.8671 2.9943 4.168 0.204 1.195 0.347 0.153 0.848
0.70 3.6866 2.7901 2.194 0.968 1.274 0.311 0.340 0.963
0.80 3.3345 2.4376 0.230 2.619 2.021 0.239 1.306 1.783
0.90 3.0126 2.1006 0.082 3.677 2.778 0.193 2.199 2.585
1.00 2.7113 1.7921 0.696 3.807 3.030 0.158 2.555 2.871
1.10 2.4406 1.5110 1.375 3.294 2.814 0.133 2416 2.682
1.20 2.1886 1.2500 1.846 2.502 2.338 0.113 1.999 2.225
1.30 1.9566 1.0090 2.032 1.695 1.779 0.098 1.487 1.682
1.40 1.7406 0.7855 1.983 1.021 1.261 0.085 1.006 1.176
1.50 1.5355 0.5783 1.776 0.531 0.842 0.074 0.619 0.768
1.60 1.3517 0.3850 1.489 0.220 0.538 0.066 0.339 0.471
1.70 1.1790 0.2078 1.182 0.059 0.340 0.059 0.163 0.281
1.80 1.0120 0.0419 0.888 0.002 0.224 0.053 0.066 0.171
1.90 0.8600 —0.1085 0.636 0.013 0.169 0.047 0.028 0.122

cross section§26) of transitionsi —j between different spin The p+pu virtual state is due to the mass ratig, /m,
states(25) of the muonic atom. They are given in terms of being just above the critical value at which a second even-
the phase shifts by Eq&27). All the phase shifts are fixed in  parity bound state would appear. A tiny decreasengim,

the zero-energy limit by the Levinson formulé. = 7N, would move the virtual state into the discrete spectrum.
whereN is the number of three-body bound states of total
angular momentum zerd{=1 for p+pu and N=2 for

d+du andt+tu. 4

1. pt+pu 3
Among the three symmetric muonic systems, phiepu

scattering possesses the most striking qualitative features.
This system possesses a virtual s{dé] of even parity on
the negative axis of the second sheet of energy that is very
close to thek;=0 threshold. The virtual state causes a
bumplike behavior of the even-parity phase shift near the
threshold, which is shown in Fig. 1. If it were exactly at o+ —— ———-——
threshold, the phase shi&, would go to 37/2 in the limit
k,;—0. Accordingly, an extrapolation of, (k;) from a re-
gion of not too small momenta; >0.1 tok; =0 would give
a value rather close to@2. But at small energies the
threshold behavior of the phase shift abruptly changes to the
usual linear formé,=nN—a k;+---, wherea, is the
corresponding scattering length. This behavior implies that
the virtual state is very close to, but not exactly at, the o os o TTs T 20
threshold. It manifests itself in a large derivative of the phase ky (units of a‘l)
shift at k;=0, which causes a large negative value of the Kk
even-parity p+pu scattering length. In Ref[11] the
p+pu scattering lengths were found to lag =—29.4a,, FIG. 1. Phase shift§in radiang for p+pu scattering in states
anda_=3.4%,, . with fixed parity o = =1 with respect to the proton interchange.
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FIG. 2. Fixed-parity cross sectiori@2) and the spin-weighted FIG. 3. Cross sections for transitions between different spin
totgl cross section(24) for p+pu scattering (in units of  states(26) of the pu atom in thep+pu scattering(in units of
ma’,=0.206<10 %% cm?). ma2=0.206<10"%° cm?). oy for p+pu(Tl)—p+pu(Tl);

. for p+ + ; for p+ —
Thereby the scattering lengéh, would go through—« and SfrZSM(TT)-p PultD=prpu(ll): o2 prpu(TD=p

then become positive, while the maximum &f in Fig. 1
‘(’j"OUId movfe ;}0 the origin at';'d th‘;n hdisappeeltr Wlith furthﬁr An interesting feature of thel+du system is that in a
ecrease of the mass ratio beyond the critical value. Such | -1 .
the situation fod+dw, which has two bound states of even Broad energy rangeq >0.1%,, " there is o_nIy a small
parity and a positiveﬂécattering length (~10%) difference between the phase shifts of different
Another feature of interest in Fig. 1 is that in both parity pavities, as seen from Fig. 4 and from the cross sections

states the phase shift goes through a multiple @t nonzero o In Fig. 5. Only below the first maxima of the cross sec-
energy: 8, =7 at k120-24ﬁi;1 (E,~364 eV} while tions (aroundk;=0.12 for both paritiesis the difference

. Y apparent. Becaus&, is close tod_, the cross sections for
6-=0 at the rather higher enerdy;=0.843,,~ (E1=427 4 1o elastic collision§25) oy, ando,,, shown in Fig. 6,
eV). At these energies corresponding fixed-parity cross secsre aimost the samivithin 1%) over the whole region be-
tions o, have exact zeros.

The combination of the virtual state and the exact zeros
yields an interesting structure of the fixed-parity cross sec-
tions o.. shown in Fig. 2:0, has a huge maximum at the
origin (due to the virtual stajerapidly decreases to zero at
k1:0.2461;1, and then goes up to a second very broad
maximum atk,~0.56a,* .

Upon taking the spin average, the points where the fixed-
parity cross sections vanish do not show up in the total cross
sectiono o;, Which has much more regular structuFag. 2)
with a high peak at the threshold due to the virtual state with
p=+1.

Cross sections for the transitions between two spin states
of the pu atom are shown in Fig. 3. All these cross sections 2
also have profound peaks at the threshold due to the even-
parity virtual state.

TN T T Y S T T T I Y T T T VA T Y Y T T T OO0 SO Y A A B |

2. d+dp
In d+du scattering there is no virtual state near thresh- 0 R R LR AR SN
old, as can be seen from the smooth low-energy behavior of ‘ T ’1 )
the phase shifts in Fig. 4. The zero-energy limit in the ky (units of a,*)

d+du scattering has been investigated in Réfl], where
the following scattering lengths for this system were ob- FIG. 4. Phase shiftéin radiang for d+du scattering in states
tained:a, =4.81a,,a_ =290, . with fixed parityp =+ 1 with respect to the deuteron interchange.
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FIG. 6. Cross sections for transitions between different spin
states (26) of the du atom in d+du scattering (in units of
7a’,=0.206< 107 2% cm?). oy, for d+du(l])—d+du(T]); o
for d+du(11)—d+du(T]); o for d+du(17)—d+du(11).

FIG. 5. Fixed-parity cross sectiori22) and the spin-weighted
total cross section(24) for d+du scattering (in units of
ma’,=0.206x 10" %% cm?).

) o _shown in Fig. 8. It is quite similar to the behavior of the
low _thed,u(n=2) threshold, while the spin-flip cross section 4+, cross sections on Fig. 2, with a profound peak of
071 I extremely smalnote the scale factor 100 far, in - 5 at the threshold due to the virtual state and further oscil-
Fig. 6)-_ ) latory behavior with two more maxima.

As in the case ofp+pu, the d+du phase Sh'fts_?o Note also the unusual structure of the cross seatigrin
through 7 in both parity statess, = at k1:0-5833u1 Fig. 9 betweerk;=0 andk,;=0.25 and an interesting fact
(E;=105eV)  while o6_=m at k;=0.67", that at low energiek; <0.03a,* the total cross section
(E;=141eV). At these momenta, the corresponding fixedis about equal to the spin-flip cross section,= 30, (see

parity cross sections . have exact zeros, which result in Taple V). Hence the cross sectian;= o\o;— o1, becomes
deep and broad minima of the cross sections and o5,

shown in Fig. 6, arounét; ~0.6a,*.

3. t+tpu

The t+tu system is qualitatively similar t@+pgw. It
also has a low-energy virtual state of even parity, as can be
inferred from Fig. 7. The phase shiff, has the same 5
bumplike behavior near the threshold as the pu phase
shift in Fig. 1. The reason for the virtual state is also the
same: the mass ratim,/m; is just above another critical
value where one mor¢third) bound state of even parity 3
would appear. However, compared wipht- pu, thet+tu
virtual state is not as close to the threshold and the maximum
in the phase shifé, is broader and lower. Accordingly, the
t+tu scattering lengtla . is negative but not as large as that 1
of p+pu. Itis estimated to be about12a,, .

Also, as in thep+ pu scattering, there are points where
the t+tu fixed-parity cross sections vanish. In Fig. 7 the
phase shifté, crosses zr at k1:0.12€ar;l (E;=3.3 eV)
and 7 at k;=0.841a, (E;=147 e\) while 5_ goes R T R T A
through atk;=0.614,," (E;=78 eV). Note that the even ky (units of a21)
parity state ot +tu has two such points, whilp+pux and o #
d+du each have only one.

Interplay of the virtual state and exact zeros yields an FIG. 7. Phase shiftéin radians for t+tu scattering in states
interesting structure of the fixed-parity cross sectiens  with fixed parityp = =1 with respect to the triton interchange.
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FIG. 9. Cross sections for transitions between different spin
states (26) of the tu atom in t+tu scattering (in units of
7a’,=0.206< 1022 cm?). oy for t+tu(T])—t+tu(1]); 0 for
t+tu(TT)—t+tu(T]);om for t+tu(T7)—t+tu(T7).
very small in the zero-energy limit, in sharp contrast to the
low-energy behavior obr,, and also to that of th@+pu  show below, that is because one of the eigenphase shifts of
cross sectionsry; and oq,. The reason is that the zero- the S matrix goes throughr/2(modr) in this region, so that
energy peak obry, is compensated by a resonancelike in-its tangent is singular. This does not show up in the cross
crease of the spin-flip cross sectioasg, and o,; near the  sections, but greatly affects the fusion-in-flight reaction.
threshold, as seen in Fig. 9.

FIG. 8. Fixed-parity cross sectiori22) and the spin-weighted
total cross section(24) for t+tu scattering (in units of
ma’,=0.206< 10" cm?).

4. d+tpu B. Fusion in flight

Tables V and VI show our results for scattering in the A characteristic feature of scattering in the muonic atomic
asymmetric systend+tu below thetu(n=2) threshold. systems is the enhanced fusion-in-flight reactions
Referencd 6] is the most extensive calculation in the adia-
batic representation making use of hundreds of basis func- d+tu
tions. Referencg7] exploits an improved version of a simple t+du
two-state adiabatic approximation. Referefitg] is a recent
calculation by the coupled-rearrangement-channel method
[18]. We have fair overall agreement with all these calcula-2nd
tions.

Very close to thedu(n=1) threshold, atE,<<0.4 eV,
calculations become somewhat delicate, for the effective
sizes of the channeld+tw andt+du are very different.
Kinetic energy in thé+du channel is very small, so thatthe  TABLE V. K-matrix and thes-wave cross sectiongn units of
asymptotic dynamics is governed by the long-range polarizat0~*° cm?) for d+tu—d+tu scattering at kinetic energi& (in
tion potential between and thedu atom. As a result, in this  eV) below thedu threshold.
channel asymptotic behavior of the wave function is :
achieved at very large separation-150a,—200a,) be- K matrix 11
tweent anddu. But in thed+tu channel the energy is not

—*Hetn+u” (41

p+pu—dtet +vtu, (429

small and the corresponding asymptotic behavior begins at present L6] present [6]
rather smaller distances-(60a,). Because in the Faddeev 0.1 —0.0875 —0.08560 1.628 1.567
equations the channels are separated in different components 0.5 —0.220 —0.2206 1.975 1.999
of the wave function, we can easily deal with this situation 1.0 -0.335 —0.3363 2.158 2.188
by making use of different grids ig; andy, with different 10.0 —2.153 -2.175 1.763 1.778
asymptotic parameterg!™ . This is an illustration of the  20.0 50.83 45.17 1.072 1.076
computational flexibility of the Faddeev method. 30.0 28.42 28.12 0.636 0.6374
The region of greatest interest is that aroufid=28 eV, 40.0 1.497 1.485 0.371 0.3705

where theK matrix has a singular behavior. As we shall
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TABLE VI. K-matrix and thes-wave cross sectionén units of 10°2° cm?) for t+du and d+tu
scattering at kinetic energi€s, andE; (in eV), respectively, above théu threshold. The cross sections are

denoted o, for d+tu—d+tu,

oy for d+tu—t+dy,

oy for t+du—d+tu,

and o,, for

t+dpu—t+du.
Ez El Reference Kll K21 K22 011 012 021 0922
0.04 48.081 present 1.047 —0.0289 —0.0224 2.333 0.00178 2.097 2.741
[6] 1.080 —0.02921 —0.02348 2.428 0.001775 2.092 3.036
[17] 2.299 2.206 3.721
0.1 48.141 present 1.044 —0.0359 —0.0408 2.322 0.00274 1.296 3.611
[6] 1.077 —0.03632 —0.04356 2.419 0.002745 1.296 4.148
[7] 1.033 —0.0442 —0.0416 2.294 0.00419 1.983 3.805
[17] 2.289 1.374 4.520
0.4 48.441 present 1.030 —0.0489 —0.108 2.276 0.00507 0.603 6.197
[6] 1.064 —0.04978 —0.1145 2.374 0.005128 0.6088 7.020
[27] 2.245 0.6428 7.016
1.0 49.041 present 1.003 —0.0592 —0.208 2.189 0.00730 0.352 8.855
[6] 1.038 —0.0605 —0.2165 2.288 0.007420 0.3567 9.646
[7 0.994 —0.0732 —0.213 2.164 0.0112 0.539 9.312
[17] 2.162 0.3754 9.569
4.0 52.041 present 0.893 —0.0833 —0.562 1.826 0.0120 0.153 12.70
[6] 0.9202 -—-0.08341 —0.5765 1.907 0.01168 0.1491 1331
[17] 1.794 0.1591 13.33
6.0 54.041 present 0.828 —0.0957 —0.772 1.615 0.0134 0.118 13.13
[6] 0.8515 —0.09563 —0.7984 1.686 0.01295 0.1145 13.64
[17] 1.580 0.1226 13.67
10.0 58.041 present 0.707 —-0.122 —1.238 1.240 0.0143 0.0814 12.72
[6] 0.7314 —0.1244 —1.261 1.309 0.01432 0.08155 13.02
[7] 0.692 —0.152 —1.263 1.208 0.0217 0.124 12.87
[17] 1.216 0.08827 13.05
20.0 68.041 present 0.458 —0.320 —3.927 0.590 0.0158 0.0528 9.812
[6] 0.4879 —0.3108 —3.835 0.6537 0.01536 0.05135 9.878
[7] 0.443 —0.390 —3.925 0.580 0.0234 0.0782 9.756
[17] 0.5896 0.05601 9.837
22.0 70.041 present 0.417 -0.405 —5.191 0.506 0.0148 0.0464 9.158
[17] 0.5017 0.05252 9.196
240 72.041 present 0.369 —0.608 —7.863 0.434 0.0148 0.0436 8.563
[17] 0.4239 0.04955 8.579
26.0 74.041 present 0.296 —1.133 —14.89 0.365 0.0144 0.0404 7.993
[17] 0.3552 0.04699  7.990
27.0 75.041 present 0.214 —-2.020 —26.58 0.337 0.0144 0.0393 7.720
[6] 0.2035 —2.325 —29.51 0.3709 0.01539 0.04205 7.789
28.0 76.041 present —0.383 —9.791 —128.3 0.327 0.0144 0.0383 7.452
(6] —0.8140 —15.03 —190.7 0.3397 0.01538 0.04106 7.517
[17] 0.2948 0.04476  7.430

265
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TABLE VI. (Continued.

E2 E]_ Reference Kll K21 K22 011 012 0921 092
30.0 78.041 present 0.435 1.620 21.26 0.241 0.0144 0.0367 6.937
(6] 0.4643 1.581 19.99 0.2835 0.01535 0.03925 6.995
[17] 0.2420 0.04277 6.899
32.0 80.041 present 0.343 0.761 9.818 0.199 0.0146 0.0358 6.447
[17] 0.1960 0.04097 6.399
35.0 83.041 present 0.277 0.437 5.558 0.143 0.0145 0.0337 5.766
(6] 0.3012 0.4462 5.526 0.1706 0.01517 0.03540 5.815
40.0 88.041 present 0.195 0.265 3.142 0.0714 0.0151 0.0326 4.723
(6] 0.2186 0.2736 3.272 0.09137 0.01493 0.03233 4.802
[17] 0.06963 0.03527 4.683
50.0 98.041 present 0.0643 0.170 1.757 0.00590 0.0152 0.0293 3.139
[6] 0.08720 0.1692 1.810 0.01230 0.01448 0.02795 3.216
[7] 0.0605 0.201 1.750 0.00419 0.0213 0.0410 3.111
[17] 0.005685 0.03039 3.092
60.0 108.041 present —0.0489 0.129 1.212 0.00645 0.0132 0.0233 2.064
[17] 0.007099 0.02683 1.979
80.0 128.041 present —0.255 0.106 0.643 0.105 0.0123 0.0193 0.764
[17] 0.1078 0.02210 0.7054
100.0 148.041 present —0.452 0.105 0.325 0.245 0.0118 0.0171 0.203
[7] —0.473 0.127 0.310 0.263 0.0169 0.0246 0.187
[17] 0.2498 0.01907 0.1744
t+p+u” sin(k;R+ &)
d+du— 42b Ve gy (Fg—Tp) o 4
K 3He+n+,uf, ( ) ()Dl( 3 2) klR ( 5)
t+tu—*He+2n+pu . (420

whereR is the distance from the incoming nucleus to the

To a good approximatiorifor comparison, a multichannel center-of-mass of t_he _target muonic atom and the ellipsis
resonating-group treatment of the nuclear degrees of freedofifands for the contribution of other open channels. Note that
in the dtu system was made in Ref19]), the normalized the effective density44) can be interpreted as a Jost function

rate of the fusion in flight is just related to fusion-in-flight reactior0,21].
The nuclear constants in Table VII are determined from
Ni=NgAps, (43) the experimental[22,23 astrophysicalS factors in the
E—O0 limit,

where No=4.25x 10?? atoms/cni is the density of liquid

hydrogen,A is the nuclear constant given in Table VII, and

ps is the probability for the nuclei to coincide. The three- TABLE VII. Nuclear constants for fusion reactions in the
body complication resides in the last factor, which is givenmuonic-atomic systemsA (cm®/s)=1.4038<10"'°S; (MeV b)/M,

by (a.m.u).

) Nuclei Reference Sy (MeV b) M, (am.u) A (cm/s)
= | |[W(rq,rp,r3)|°8(r;—ry)drg, 44

Pt f W (r1ra,rg)|"8(ry—ra)drg “4 [22]  3.36x10°%5+10% 05037 9.3810 “°
_ _ _ ~dd [22] 2x5.30<10 2+10% 1.0068 1.4810 '
whereV is the wave function of the corresponding scatteringy; [23] 0.210+0.018 15078 1.9810°16
process and the; are the position vectors of the particles 4 [22] 2 50x 10" 7+ 10% 06714 52810 2
indexed as in Eqgs(3) with =3 being the index of the pt [22] 2 56x 106+ 20% 0.7551 4.7§10°2
muon. The wave function is normalized to unit incoming j, [22] 11.0+ 20% 12074 1.2810° 4

wave in the corresponding channel, e.g.,
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TABLE VIII. Effective densities and rates of fusion in flight in the symmetric muonic-atomic systems as

functions of the momenturk; (in units ofa,, b,
p+pu d+du t+tu

K1 Ps A (sTh) Py A (s Py A (s
0.01 0.37% 10° 0.151x10°®  0.990x10°%  0.623x10* 0.264x10°%  0.220x 10*
0.03 0.25410° 0.101x10°®  0.962x10°% 0.605<10* 0.208x10°%  0.173x10°
0.05 0.154 10° 0.613x10°Y  0.924x10°° 0.581x10* 0.156x10°%  0.130x 10°
0.10 0.50% 10! 0.202x10°Y  0.903x10°° 0.568<10* 0.831x10°%  0.692x10°
0.20 0.85% 102 0.339x10°*®  0.116x10°2 0.730<10* 0.187x10°%  0.156x10°
0.30 0.43&%10°° 0.174<10°*° 0.814x10°° 0.512x10*> 0.370x10°°  0.308< 107
0.40 0.20%x10°2 0.831x10°'°® 0.309x10°°  0.194x10* 0.117x10°% 0.975x 1C¢°
0.50 0.10510°! 0.418<10°'® 0.364x10°° 0.229x10* 0.447x10°* 0.372x1C°
0.60 0.14%x 10! 0.561x10°'® 0.381x10°° 0.240x10* 0.240x10°*  0.200x 10°
0.80 0.10510°! 0.418<10°'® 0.419x10°° 0.264x10* 0.106x10°*  0.883x 1(?
1.00 0.73x1072  0.290<10° '8  0.543x10°% 0.342x10* 0.180x10°°  0.150x 1(?

A f 46 K ! tand, —tand 48b
= , =—(la —laho_).

At r1=r3, Egs. (5) imply X3=0, X;=S13y3, X2=So33,
y1=C13¥3, andy,=Cyay3. From these relations it follows
that¥_=0 atr;=r,. Hence the nonzero contribution to the
integral (44) comes only from the¥ . component of the
wave function(47). The effective density can be written in
terms of the corresponding Faddeev component as

whereM, is the reduced mass of the nuclei. For Hfieave
reaction(42b) the rates of the two fusion channels are very
nearly equal due to the proton-neutron “mirror symmetry.”
This accounts for the factor 2 for tltkl value ofS; in Table
VII, so that Eq.(43) gives the total fusion-in-flight rate for
the two channels.

If one neglects the Coulomb interaction between the nu-
clei and the muon, then the energy dependence of the effegy=
tive density p;(E) is given by the Gamov factoCS( 7),
where 7 is corresponding Coulomb paramef@e]. This ap-
proximation works well at high collision energiés the keV
range and is sometimes used to extrapolate to the threshold
limit. However, a numerical study by MelezhjR0] using a (49
two-state adiabatic approximation revealed qualitative devia-
tion from the Gamov formula in the low-energy domain be-Where s is the phase shift48a and 4{*) is the solution to
low 100 eV. Froelichet al, [24] using semiclassical, adia- the Faddeev equatiof20) for the p=+1 state normalized
batic, and nonadiabatic descriptions, have also discussd® the asymptotic condition®1). The mass-dependent fac-
amplifications ofdtu fusion in flight. tor in front of the integral comes from the relatio(® be-

For the symmetric systems, the scattering wave functiofiveen the Jacobi vectors and the physical distances
in (44) with appropriate asymptotic conditions is built up of Y1= 1R andx;= T r3—rol.
the wave functionsV .. = (1+Py,) i) of fixed parity. The Table VIII anq Fig. 19 present.the effective densities and
Faddeev component*) is fixed by the asymptotic condi- 'ates of the fusion-in-flight reaction@2). For p+pu and
tions (21). Then the wave function if44) is t+tu collisions the gffectwe der)sny near the threshpld in-
creases greatlisee Fig. 10 especially fop+ pu scattering.
This is related to the existence of thetpu and t+tu
P = 1 cosS(W, +W_ )~ @1(X;)SiN(Pry; + 6) virtual states that we discussed above. Fhepu virtual

2 state is closer to threshold than thatteftw; accordingly,
thep+ pu effective density increases more sharply than that
T K21008901(Xz) COS P2Y2), of t+tu. Thed+du system does not have such a virtual
(47) state, and near-threshold enhancement of its effective density
is not so dramatic.

Our results forp+ pw fusion in flight are in good agree-
ment with those of Ref.20], where the problem was studied
via a simple two-state adiabatic approximation. In particular,
in Ref. [20] the p+pu effective density(called there the
“Jost function”) was found to increase rapidly near the
threshold and to have a minimum arour€i=70 eV
and (k1:0.34a;1), just as in our calculationsee Fig. 1D

3
-
—l) cog s

M3

% Jo [l//(1+)(X1= |S1dY3.Y1=|C1dY3.61= W)]zygd%a

where

1
tand= E(tan&+ +tand_) (483
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- TABLE IX. Positions of zeros and maxima, given by E¢s0)
1.5 4 ) and (51), of the effective densities of fusion in flight in the sym-
1 I metric muonic-atomic systems.
10 /0 — 10,pdp+pu) Positions of zeros Positions of maxima
1L ;! b~ 10, p(d+du)
11 b 107 pelt+tu) System ki (@,)  Ei(eV) Kk (a,h) E; (eV)
1.0 4 |} |
IRk : p+pu 0.3335 66.90 0.7272 256.4
. § d+du 0.2963 27.09 0.2454 18.58
] \‘ 1.289 512.6 1.157 413.0
] { t+tu 0.2801 16.30 0.4524 42.53
05 ] : 1.079 241.9 1.483 457.0
] general (co8.#0), the wave function is a mixture of sym-
] metric and antisymmetric components.
00 ] . Equationg50) and(51) allow us to get accurate positions
0.0 0.2 0.4 0.6 0.8 1.0 of the zeros and maxima of the effective densities by inter-
ki (units of a;l) polating the phase shifts given in Tables II-IV; the results

are presented in Table IX. Note that the first maximum gets
sharper with an increase of the nuclear mase Fig. 1D
FIG. 10. Effective densitie®9) of the fusion-in-flight reactions Now we shall see that a similar effect exists in the tu
(42) in p+pu, d+du, andt+tu scattering. fusion-in-flight reaction.
Ford+tu (denotedy=1) andt+du (denotedy=2) the
In all three cases shown in Fig. 10 the effective densitie®ffective densitieg44) are
have deep minima accompanied by nearby maxima. In fact,
at the minima the effective densities are exactly zero ifghe

andu symmetries are assumed to be exaet, if the hyper- Ti
fine splitting is neglected 25]. This behavior can be under- P@:—z—mz—)
stood in terms of the phase shifs. ; the positions of the Pyks vy

zeros of the effective densities are given by the condition =)
X fo [ (x1=[S1dY3,Y1=C1dlY3, 1= )

T
6_(ky)=—=(mod ), (50
Y2 + 5 (%= 524 Y3.Y2=C2d Y3, 0,= 0) 12y3dys,
while the maxima correspond to (54)
a
8+ (ky)= 7 (mod ). (51 wherey!” are the Faddeev components normalized by the

asymptotic conditiong28) and K., are the diagonal ele-
Indeed, when cas. =0 we have co8=0 and the asymptotic Ments of the reactance matrix. o
form (47) can be recast as Table X and Fig. 11 present our results for fusion in flight
in d+tu collisions. The effective density}?) of the reaction
W~ @1(X1)COP1y1) + €01(X2)COIPoY,), (52 t+du—*He+n+u~ has smooth behavior while thd®) of
the reactiord+tu—*He+n+ .~ has a profound peak. This
is in agreement with Ref20], where the peak was discov-
ered.
1 for 5_=z(mod ) The origin of this peak, as for _the similar r_naxima.in the
2 symmetric systems, can be explained approximately in terms
- of the eigenphase shiftd.. of the S matrix. They are ex-
+1 for 5+=§(mod ). pressed in terms of the reactance matrix by

(53

where

_ tand, —tano_ B
" tans, +tano_

Thus, if co$_=0 the asymptotic fornt52) is antisymmetric :E + \/E _ 2 k2
with respect to interchange of the nuclear coordinates. This and= =5 (Kurt Ko = \7 (K Koo+ Ky (59
implies that ¥ is also antisymmetric, so tha¥=0 at
r.=r, and the effective densit{44) vanishes.

If coss,. =0, the asymptotic form{52) and therefore the Their behavior near the peak is shown in Fig. 12. The peak is
wave function® are symmetric with respect to the nuclear due to the fact that the eigenphase slfift goes through
interchange and the effective density has a maximum. Inr/2, just as in the symmetric systems. In fact, the peak for
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TABLE X. Effective densities ;) and ratesX;) for the fusion-

269

inflight reactions d+tu—*He+n+u~ (index 1 and for E
t+du—*He+n+pu~ (index 2.
E P P B P P |
(ev) (1079 (s ev) (107% (sh ] s @
23 — T 19, P
0.1 2.072 0.11310° ] 10" p¢
05 1927 0.10%1C° 3
1.0 1.831 0.998 10° ]
100  1.339 0.72810° E
20.0 1.133 0.61810° g
30.0 1.023 0.55%1C° =
48.08 0.920 0.5001C° 0.04 1.394 0.7581C° 3
48.14 0943 051810° 0.1  1.359 0.73910° 3 _
48.44 0969 0.52710° 04 1272 0.69%1C° ] Tt
49.44 0915 0.49810° 1.0 1149 0.6251C° ]
52.04 0.877 0.47X1C° 4.0 0.941 0.51%10° E
54.04 0.843 0.45910° 6.0 0.893 0.4881C° oo' R YT T T
58.04 0.757 0.41210° 100 0.790 0.43810° E, (eV)
68.04 0.527 0.28210° 20.0 0.666 0.36210°
;283 gggg gig 18: 54218 gggé 8222 18: FIG. 11. Effectivia dt(alr)lsitie(54) of the4fusion-in-flight( 2r)eactions
7404 0056 030810° 260 0606 0331 O - Herntu (pr) andttdu—Hetntu (pi”). The
energy E; is measured with respect to thig(n=1) threshold.
75.04 0078 042410° 27.0 0599 0.32810° Vertical line atE;=48.042 eV shows thdu(n=1) threshold.
76.04 21.11 0.11810° 28.0 0.594 0.32810°
76.32 6259 034010° 2828 0592 0.32210° ruled out since they might have recurrence periods exceeding
78.04 2816 015810° 300 0580 0.31810°  the maximum collision energy treated in the present calcula-
80.04 1554 0.84810° 320 0572 0.31%10°  {jpns.
83.04 1.139 0.62010° 35.0 0.557 0.30810°
88.04 0.983 0.53810° 40.0 0.548 0.29810°
98.04 0.817 044410° 500 0500 0.2721C° ACKNOWLEDGMENTS
108.04 0712 038710° 600 0461 025%10° We are grateful to V. S. Melezhik and V. V. Korobov for
128.04 0.631 0.34810° 80.0 0414 0.22810° several helpful discussions. This work was made possible by
148.04 0.580 0.31610° 100.0 0.377 0.2081C°

d+tw is very similar to the sharp maximum of the effective
density fort+tu atE;=42.5 eV. It is also accompanied by
a minimum inp; at slightly lower collision energy. Also, as
in thet+tu case, there is some amplification of the rate of
the fusion in flight ford+tu system towards theu thresh-
old.

Interpolating the eigenphase shit for d+tu enables
us to estimate accurately the position of the peak to be
E,=76.32 eV. The peak rate 3.400° s~ for fusion in
flight is about 7.5 times faster than the rate of muon decay
0.455x< 1Ps™ 2, though still much slower than the slowing-
down rate (-5x 10 s ! [26]) for thetu atom in a normal
d-t mixture. This fusion rate is twice that given by the cal-
culation of Ref[20] (~1.7x10° s~ ! before rounding Our
value for d+tu fusion in flight in the E;—0 limit,
1.14x10° s 1, is also about twice as large as that in Ref.
[20] (0.5x10° s 1) and may also be compared with the
values reported in other calculations, £.20° s ! [21] and
2.1x10° s 1 [27].

We would like to emphasize that the structure in the
fusion-in-flight rates is not due to asymptotic resonant scat-

-
TN T T T T Y T T N T Y S T S 0 T W TS N T O |

o

0 LZLL LN L I I L

20 25 30 35 40 45

Ex (eV)

FIG. 12. Eigenphase shift§5) of the S matrix ford+tu scat-

tering states at these energies but is rather a symmetry effeeéring. The points, = 7/2 is that of the fusion-in-flight peak in Fig.
as is clear from the above analysis. The periodic oscillationg1. The energyE, is measured with respect to thiu(n=1)
predicted in Ref[20] are not seen, but their possibility is not threshold.
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APPENDIX: HYPERFINE TRANSFORMATIONS

calculated in the present workhe U matrices for odd are
the sameexceptwith the matrix columns interchanged.
Therefore, we have fop+pu andt+tu,

In this appendix we describe the relation between two 1 Ki+3K_  3(K,—K.)
different representations of th&=0 scattering states of a K(HZ):Z J3(K. —K 3K. +K , (A6a)
symmetric muonic atomic syste@+au. The first one is (Ky=K-) o
that where the spis,, of the pair of nuclei is fixed, so that 0 0
the states are classified by the parity= (—1)%12 with re- K(s/z):( ) (A6b)
spect to interchange of the nuclei. If the hyperfine interaction 0 K-
between nuclei and muon is neglected, the parity is an exact
quantum number and this representation is very convenient, 2nd ford+du,
for it diagonalizes the three-body Hamiltoniéand the Fad-
; . o +2K_ -
deev equations The second representation classifies the K(1/2>:1 Kit+2K V2(K, —K0) . (A73)
states by the spig,; of the target muonic atom, so that there 3| V2(K, —K.) 2K, +K_
are two spin channel®5).
In the second representation, transitions between the spin 32 1/ 5K, +K_ \/E(K,— K.)
channels(25) at fixed total three-body spiB are described K=9=5 . (ATh)
i ) (S VB(K_—K,) K, +5K_
by a symmetric reactance matri¥ ={Kij’}ij=1,2- Corre-
spondings-wave cross sections for the transitions | are 0 0
iven b K52 = ) A7c
given by o K. (ATc)
4Ama® 5D+ (KD)?
(S) — p UTS (A1)  Thereby, Eq(58) implies
g , s [
K (Dsm1)P+TE
_ o Dg=deK S =K, K_, (A8a)
where the momenturk; is defined in(30),
Te=trkK ®=K_, +K_, A8b
Dg=deK® (A23) s - (A8b)
and and the formulgAl) for the cross sections is recast as
(9 o 47 ; s
Ts=trK . (A2b) ol >=I(T[(sij5|n25+5|n25,+(Kgj ))2c0€ 5, cogS_].
1
Some simple spin algebra leads to the following expres- (A9)

sions for the reactance matrices in terms of the fixed-parit

phase shiftss.. :
K(S) K(S)

S S
Ky? K3

11 12| Ky O N
)—U(S)( 0 K>[U(S)] , (A3)

whereK .. =tand. . The transformation matrices afg for

p+pu andt+tu,

w1t —\3
2\Jy3 1 )0
0O O
(302 —
weo=lg 5

and (ii) for d+dpu,

0 0
(52—
U (1 O).

(Ada)

(Adb)

(A5a)

(A5b)

(A5c)

)éubstituting into this equation the above formulas for the
K-matrix elements yields the following expressions for the
cross sections in terms of the fixed parity cross sections
o, defined in(22), and the spin-flip cross sectiar,; de-
fined by (27): (i) for p+pu andt+tu,

1 3
O-(llllz)zzo-++zo',_30'21, (A10a)
3 1
U<212/2):ZU++ ZU__3021, (A10Db)
oP=g_, (A100)
dY2= M35, (A10d)
and (ii) for d+du
1 2 8
0(111/2>:§U++ 30-— 30 (Al1aq)
5 1 5
0(13i/2)26‘7++ 59-— 3921 (Allb)
2 1 8
0(212/2):§U+ +30-~ 300, (Allo)
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1 5 5 =30,=03?, Al12¢
B =G0t 5o~ 300, (A11d EmEomm o (120
6 6 3
0(252,2): - (Alle and (i) for d+du,

(1/2) _ (1/2)_8 f 1 (1/2) 2 (3/2)

012" = 031" =3 021 (A11f) Tu=gon T goh (A13a)
5

o= =20 (A11g 1 1 1

022=€a(212’2)+ 50(235’24 50(252’2) , (A13b)

The spin-weighted effective cross sectiof@§) are (i) for
p+pu andt+tu,

1 2
ou=o0t?, (Al12a) 0127 2‘7'21:§U(112/2) t3 oi3?. (A130)
_ 1 1/2) 2 3 Upon substituting in these equations the above formulas for
022_50(22 * 50(22 K (A12D) o, we arrive at Eqs(27).
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