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The Faddeev approach is used to studys-wave scattering and fusion in flight for the muonic-atomic systems
p1pm, d1dm, t1tm, d1tm, and t1dm in a broad energy range below then52 threshold of the target
muonic atom. Clear manifestations of near-threshold virtual states in thep1pm and t1tm systems are seen,
e.g., in large amplifications of the fusion-in-flight reaction rates near zero energy. Peaks and minima~essen-
tially exact zeros for the symmetric systems! in the fusion-in-flight rates are also seen at finite energies. In the
case ofd1tm, the fusion-in-flight rate~at liquid-hydrogen density! reaches a value of 3.403106 s21 for
collisions at 76.3 eV, which may be compared with the rate 1.143105 s21 at thermal energies.

PACS number~s!: 11.80.Jy, 36.10.Dr, 25.30.Mr, 34.70.1e

I. INTRODUCTION

This paper deals with thes-wave scattering in the sym-
metric muonic-atomic systems

a1am~n51!,a5p,d,or t, ~1!

and in the asymmetric system

d1tm~n51!, t1dm~n51!. ~2!

Much interest in the muonic-atom collisions is due to the
roles they play in the muon-catalyzed-fusion cycles@1–3#.
Also, theoretical interest stems from the facts that muonic
systems~i! bridge the huge energy gap between the nuclear
and atomic domains and~ii ! interpolate between two kine-
matic limits of a three-body Coulomb system: atomic sys-
tems such ase21H, consisting of one heavy and two light
particles, and molecular systems such as H2

1
, involving one

light and two heavy particles.
Most previous scattering calculations for muonic atoms

have been done via the Born-Oppenheimer adiabatic repre-
sentation@4–8#, which for normal atoms often allows one to
treat essentials by taking into account only a few adiabatic
channels. However, for collisions of muonic atoms some-
times hundreds of adiabatic basis functions are needed in
order to achieve accuracies of a few percent@5,6#.

In this paper we exploit a completely different approach
to muonic-atom scattering problems. It is based on the modi-
fied Faddeev equations@9# in the total-angular-momentum
representation@10#. This approach has been developed re-
cently @11# and turns out to be a very powerful tool for solv-
ing three-body Coulomb scattering problems. A key feature
is that it provides a simple and natural way to incorporate
proper asymptotic conditions for scattering wave functions.
The numerical solution is obtained directly by making use of

an overall spline expansion of the Faddeev components in all
variables. Convergence of the spline expansion is straightfor-
ward to achieve and its accuracy is easy to control.

The method does not involve any intermediate approxi-
mations; thus it may lack some qualitative insight lent by the
adiabatic approximation. But from a computational point of
view, this actually can be regarded as an advantage, for the
method can be applied with equal ease to the systems ame-
nable to the adiabatic expansion method~such asd1tm) as
well as to those beyond it~such ase61H @12#!. Thus the
Faddeev approach allows one to treat uniformly a broad va-
riety of Coulomb systems that otherwise have to be studied
using quite different techniques~variational, adiabatic,
coupled channels, etc.!. Application of the Faddeev approach
to the muonic-atomic systems is another important illustra-
tion of this fact.

Most calculations of muonic atom scattering have been
done in the context of muon-catalyzed fusion, where colli-
sion energies up to a few eV are of main concern. At such
low energies, purely three-body aspects of the problem are
somewhat shadowed by effects due to the hyperfine interac-
tion between nuclei and muon~especially in thep1pm scat-
tering!. In the present work, we treat scattering up to 1 keV.
That is too high to be of practical importance for muon-
catalyzed fusion; however, accurate description of the
muonic-atomic collisions is of general interest for few-body
physics and can also be used in other aspects of muon phys-
ics. The Faddeev approach provides an effective tool for the
entire energy range.

Besides usual cross section calculations, we also study the
fusion-in-flight reactions in the muonic-atomic systems~1!
and~2!. At low energies the description of such reactions by
a simple tunneling factor is essentially irrelevant.

II. FADDEEV EQUATIONS

Our approach is based on the Faddeev decomposition of
the wave function into three components related to the three
kinematic channels of a three-body system. The Faddeev
method @13#, originally developed for short-range interac-
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tions @14#, was later modified by Merkuriev@9# in order to
incorporate long-range Coulomb potentials. The resulting
modified Faddeev equations are, of course, equivalent to the
underlying Schro¨dinger equation but facilitate setting up the
asymptotic boundary conditions for scattering problems. The
reason is that each Faddeev component is described in terms
of its own set of Jacobi vectors, related to the corresponding
asymptotic channel, while in the Schro¨dinger wave function
all the channels are mixed up.

To describe the Faddeev equations, we first introduce
some standard notations@9–11#. Labelsa51,2,3 index the
particles of the muonic-atomic systems, witha53 being the
index of the muon. Also,a labels pairs of particles with
membersbÞa ~e.g., pair 1 consists of particles 2 and 3! and
the corresponding asymptotic channels. For (dtm)5(123),
then channels 1 and 2 ared1tm and t1dm, respectively.
We make use of muonic-atomic units~m.a.u.!, \5e5mm
51, so that the unit of length is the muonic Bohr radius
am5\2/e2mm52.56310211 cm.

Three-body kinematics in each channela is most conve-
niently described using the corresponding set of the mass-
scaled Jacobi vectors$xa ,ya% defined by

xa5ta~rb2rg! ~3a!

and

ya5maS ra2
mbrb1mgrg

mb1mg
D , ~3b!

where (abg)5 cyclic (123), ma and ra are the particle
masses and position vectors,

ta5A2
mbmg

mb1mg
, ~4a!

ma5A2maS 12
ma

M D , ~4b!

and

M5m11m21m3 , ~4c!

so thatta
2/2 is the reduced mass of paira andma

2/2 is the
reduced mass of the particlea and the paira. The Jacobi
vectors of different channels are related by orthogonal trans-
formations

xb5cbaxa1sbaya , ~5a!

yb52sbaxa1cbaya ~5b!

with the mass-dependent coefficients

cba52F mbma

~M2mb!~M2ma!G
1/2

, ~6a!

sba5~21!b2asgn~a2b!~12cba
2 !1/2. ~6b!

Hereafter we shall only consider the state of total angular
momentum zero (s wave!. Then the three-body configuration
space is a three-dimensional manifold~‘‘internal space’’!,

which can be parametrized by any three coordinates that fix
the particle configuration in a plane. For scattering problems
the most convenient choice for the local coordinates is the
lengths of the Jacobi vectors and angle between them

xa5uxau, ~7a!

ya5uyau, ~7b!

ua5arccosS ~xa ,ya!

uxauuyau D . ~7c!

The s-wave Hamiltonian is given by

H5H01 (
a51

3

Va~xa!, ~8!

whereVa is the Coulomb potential for the paira5(b,g),

Va~xa!5
qa

xa
, ~9a!

qa5zbzgta , ~9b!

and zb are particle charges; hereqa are the mass-scaled
charges corresponding to Eq.~3!. The kinetic-energy opera-
tor H0 is a three-dimensional partial differential operator
@10#

H052xa
22]xa

xa
2]xa

2ya
22]ya

ya
2]ya

2@xa
221ya

22#cscua]ua
sinua]ua

, ~10!

which is invariant in the channel indexa. Table I gives all
mass-dependent parameters related to the scaled Jacobi vec-
tors ~3! for the muonic-atomic systems~1! and ~2!.

TABLE I. Numerical values of the kinematic parameters~in
m.a.u.! for Eqs. ~3!–~9!. The other six sets of the coefficients
$cab ,sab% are obtained by permutations:cba5cab , sba52sab .

~123! (ppm) (ddm) (ttm) (dtm)

t1 1.3407 1.3760 1.3883 1.3883
t2 1.3407 1.3760 1.3883 1.3760
t3 2.9800 4.2133 5.1561 4.6139

m1 3.0584 4.2706 5.2034 4.6478
m2 3.0584 4.2706 5.2034 4.6895
m3 1.3760 1.3947 1.4011 1.3985

c12 20.8988 20.9467 20.9638 20.9552
s12 20.4384 20.3222 20.2668 20.2961
c13 20.2250 20.1633 20.1346 20.1205
s13 0.9744 0.9866 0.9909 0.9927
c23 20.2250 20.1633 20.1346 20.1788
s23 20.9744 20.9866 20.9909 20.9839

q1 21.3407 21.3760 21.3883 21.3883
q2 21.3407 21.3760 21.3883 21.3760
q3 2.9800 4.2133 5.1561 4.6139
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We now proceed to describe thes-wave Faddeev equa-
tions related to the Schro¨dinger operator~8!. The general
form of the equations for arbitrary total angular momentum
is derived in Ref.@10#.

The asymptotic dynamics of a three-body Coulomb sys-
tem involves two different types of asymptotic channels ac-
cording to formation of bound states in different pairs~such
as d1tm and t1dm). Each channel is most conveniently
described through its own set of Jacobi coordinates
$xa ,ya ,ua%, wherea is the index of the bound pair. The
total wave function includes all open channels. This rather
complicates setting up the asymptotic conditions for scatter-
ing states, for one has to use different local maps in different
regions of configuration space in order to properly deal with
a variety of open channels. The basic idea of the Faddeev
approach is to eliminate this problem by separating the as-
ymptotic channels from each other. To this end, the wave
function is divided into a sum of the Faddeev components.
Thereby each component involves asymptotic channels due
to bound states of only one pair and therefore can be com-
pletely described by one set of Jacobi coordinates.

A rigorous way to implement this idea when the long-
range Coulomb interaction is involved was invented in Ref.
@9#. It consists of decomposing the Coulomb potentials~9!
into the two partsVa5Va

(s)1Va
( l ) by making use of cutoff

functionsza

Va
~s!~xa ,ya!5Va~xa!za~xa ,ya!, ~11a!

Va
~ l !~xa ,ya!5Va~xa!@12za~xa ,ya!#. ~11b!

The cutoff functions are such thatVa
(s) coincides with the

Coulomb potentialVa in the asymptotic regionVa corre-
sponding to the formation of a bound state in the paira,

Va5$xa ,ya :xa /aa,~ya /ba!1/na,na.2%, ~12!

when particles of the paira are close and the spectator is far
away. The constantsaa ,ba characterize the effective size of
such a configuration with respect to the corresponding coor-
dinate. In the complement ofVa , where there are asymp-
totic channels due to bound states of other pairs, the potential
Va
(s) should vanish sufficiently fast. Such behavior can be

achieved, for instance, by making use of the following func-
tional form of the cutoff proposed in Ref.@15# and used in
Ref. @11#:

za~xa ,ya!52H 11expF ~xa /aa!na

~ya /ba!11G J 21

, ~13!

where the parametersaa ,ba are the same as in~12!. Next
one defines the asymptotic Hamiltonian

Has5H01(
a

Va
~ l ! . ~14!

The Faddeev equations are now derived by following a gen-
eral procedure@9,10# treating the potentialsVa

(s) as perturba-
tions of the operatorHas. This leads to the modified Faddeev
equations

~Has1Va
~s!2E!ca52Va

~s! (
bÞa

cb ,a,b51,2,3 ~15!

for the Faddeev componentsca . It is easily seen that the
sum of all three Faddeev equations yields the Schro¨dinger
equation for the total wave function

C5 (
a51

3

ca . ~16!

For the muonic-atomic systems~1! and~2! only two pairs
of the particles~with a51,2) have bound states. Thus the
repulsive Coulomb potentialV3 can be completely included
in the operator Has ~this corresponds to choosing
z3[0,c3[0). This reduces Eqs.~15! to a set of two coupled
equations for the two Faddeev componentsc1,2:

@H01Va~xa!1V3~x3a!1Vb
~ l !~xba,yba!2E#ca~xa,ya,ua!

52Va
~s!~xa ,ya!cb~xba ,yba ,uba!, ~17!

wherea,b51,2 andaÞb. Each component depends on its
own set of the Jacobi coordinates;xba ,yba ,uba stand for the
coordinatesxb ,yb ,ub expressed throughxa ,ya ,ua accord-
ing to the transformation~5!:

xba5@cba
2 xa

21sba
2 ya

212cbasbaxayacosua#1/2, ~18a!

yba5@sba
2 xa

21cba
2 ya

222cbasbaxayacosua#1/2, ~18b!

xbaybacosuba5~cba
2 2sba

2 !xayacosua2cbasba~xa
22ya

2 !.
~18c!

Again, the sum of the two Faddeev equations~17! yields the
Schrödinger equation with the Hamiltonian~8! for the wave
function C5c11c2 . Vanishing of the coupling potential
Va
(s) away from the regionVa provides asymptotic decou-

pling of the Faddeev components.
When two particles of a system are identical, the Faddeev

equations~17! can be further simplified. For the symmetric
muonic atomic systems~1!, particles 1 and 2~nuclei! are
identical and there are two possible parity states`561 with
respect to interchange of the nucleiP21C5`C; depending
on the spin state of the pair (1,2),̀5(21)s12. For a fixed
parity state, the Faddeev components of Eqs.~17! are related
by P21c15`c2 ~thereby the cutoff functions must be the
same!. Then Eqs.~18! imply a functional relation between
the components

c1~x,y,u!5`c2~x,y,p2u!, ~19!

which reduces Eqs.~17! to one equation for the component
c1:

@H01V1~x1!1V3~x31!1V2
~ l !~x21,y21!2E#c1~x1 ,y1 ,u1!

52`V1
~s!~x1 ,y1!c1~x21,y21,p2u21!. ~20!

The componentc1 does not have any symmetry with respect
to the interchange of the nuclei. Proper symmetry of the
wave function (P12C5`C) is enforced automatically since
C5c11c25(11`P12)c1 .
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III. ASYMPTOTIC BOUNDARY CONDITIONS

For scattering problems the Faddeev equations are asso-
ciated with appropriate asymptotic conditions. In the case of
scattering in the symmetric systemsa1am below the first
excitation threshold of the muonic atom, there is only one
open channel in each paira51,2. The corresponding
asymptotic conditions for Eq.~20! are

c1
~` !~x1 ,y1→`,u1!;

1

p1y1
w1~x1!@sin~p1y1!

1tand`cos~p1y1!#, ~21a!

c1~x1→`,y1 ,u1!;0, ~21b!

wherew1 is the muonic-atom ground-state wave function,
d` is the phase shift, andp1 is the momentum conjugate to
the coordinatey1 . These asymptotic conditions apply to both
parity states`561 ~with different values of the phase
shift!.

The s-wave scattering cross sections for parity states
`561 are given by

s65
4pam

2

k1
2 sin2d6 , ~22!

where

k15m1p15A2m1,23~E2e0!, ~23!

d6 are the corresponding phase shifts, andk1 is the momen-
tum in the incoming channel;m1,235m1

2/2 is the reduced
mass of the nucleus and the muonic atom ande0 is the
atomic ground-state energy. The total cross section is given
by the weighted average

s tot5H 1
4 s11 3

4 s2 for p1pm, t1tm

2
3 s11 1

3 s2 for d1dm.
~24!

Cross sections~22! correspond to fixed spins125s11s2 of
the two nuclei in aa1am system`5(21)s12. The transi-
tions between different spin states of the muonic atomam
are also of interest. In the standard notations@5–8#, the cor-
responding spin channels are

1[a1am~↑↓ !with s235H 0 for a5por t

1
2 for a5d,

~25a!

2[a1am~↑↑ !with s235H 1 for a5por t

3
2 for a5d,

~25b!

wheres235s21s3 is the spin of the muonic atomam. The
cross section for a transitioni→ j between these channels at
fixed total spinS5s11s21s3 is designateds i j

(S) . The spin-
weighted effective cross sections are given by

s i j5(
S

2S11

~2s2311!~2s111!
s i j

~S! . ~26!

All such cross sections can be evaluated in terms of the
fixed-parity phase shiftsd6 of the asymptotic conditions
~21!. Corresponding formulas are given in the Appendix. The
resulting expressions for the cross sections~26! are

s215
pam

2

k1
2 sin2~d12d2!3H 1

4 for p1pm, t1tm

1
12 for d1dm,

~27a!

s12/s215H 3 for p1pm, t1tm

2 for d1dm,
~27b!

s115s tot2s12, ~27c!

s225s tot2s21, ~27d!

wheres tot is the total cross section given by~24!.
For scattering in the asymmetric systemd1tm at energies

between thedm(n51) and tm(n52) thresholds, four as-
ymptotic channels are open: the elastic channels
d1tm(n51)→d1tm(n51) and t1dm(n51)→t
1dm(n51) as well as the inelastic channelst1dm(n51)
↔d1tm(n51). In this case, it is convenient to make use of
the reactance matrix formalism. One finds two different so-
lutions to Eqs.~17! (c1

(g) ,c2
(g)), which are labeled by the

indexg ~51,2! of the bound pair in the initial state,

ca
~g!~xa ,ya→`,u1!;

1

ya
wa~xa!@dgasin~paya!

1Apg /paKagcos~paya!#, ~28!

wherewa is the muonic atomic wave function of the pair
a. Thereby all the components vanish asxa→`. The coef-
ficientsKag are the reactance matrix elements.

As can be seen from Eq.~28!, different reaction channels
correspond to different Faddeev components and are asymp-
totically decoupled. This is a crucial point for computational
efficiency of the Faddeev approach.

Note that the muonic atomic wave functions in Eqs.~21!
and ~28! are normalized by

E
0

`

@wa~xa!#2xa
2dxa51. ~29!

This differs from standard normalization since the Jacobi co-
ordinates involve the mass-dependent factorsta of Eq. ~3a!.
This fact is taken into account in the asymptotic conditions
~21! or ~28! where the momentapa are related to the mo-
mentaka of the spectator with respect to the bound pair,
according to Eq.~3b!, by

ka5mapa . ~30a!

The total three-body energy is

E52
qa
2

4
1pa

2 , ~30b!

where theqa are the mass-scaled charges~9b!.
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The cross sections for the transitionsg→a between the
channels are given in terms of theK matrix by

sga5
4pam

2

kg
2 US K

12 iK D
ga
U2, ~31!

wheream is the muonic Bohr radius. Subscriptsg,a desig-
nate the initial and final states, respectively: 1 for
d1tm(n51) and 2 fort1dm(n51).

IV. NUMERICAL PROCEDURE

Our method of solving the Faddeev equations, originally
developed in Ref.@11#, involves the following major steps.
First, we separate off the incoming waves by representing the
Faddeev components as

ca~xa ,ya ,ua!5 f a~xa ,ya!1
1

xaya
Fa~xa ,ya ,ua!,

~32!

where f a are the incident waves;sin(paya) for the corre-
sponding asymptotic conditions~21! and ~28!. Then Eqs.
~17! and ~20! go over into inhomogeneous equations for the
functions Fa , which now contain only outgoing waves
;cos(paya).

Then we make use of nonlinear mappings of the coordi-
nates$xa ,ya% into new variables$ta ,r a%P@0,1#3@0,1#,

xa52
1

la
ln~12ta!, ~33a!

ya5haF S 11
ya

~m!

ha
D ra

21G . ~33b!

Uniform grids in ta and r a generate nonuniform grids in
xa andya with point densities governed by the parameters of
the mappings~33!. The parameterya

(m) determines the maxi-
mum value ofya , where the corresponding asymptotic con-
dition is imposedya

(m)5ya(r a51). The logarithmic map-
ping ta→xa is suitable to describe the bound states of
muonic atoms, whereas the exponential mappingr a→ya is a
reasonable choice to treat scattering dynamics alongya .

Next the Faddeev equations~17! or ~20! for the compo-
nentsFa from ~32! are written in terms of the variables
$ta ,r a ,ua%. At the boundariesta50,1 (xa50,̀ ), r a50
(ya50), andua50,p, vanishing boundary conditions are
imposed@11#,

Fau ta505Faura505] ta
n Fau ta5150 for n<1,

~34a!

]ua
Fauua50,p50. ~34b!

At the asymptotic boundariesr a51 (ya5ya
(m)) we impose

the asymptotic conditions~21! and ~28!. Accordingly, the
functionsFa are proportional to cos(paya). Thus

]ya
Fauya→`;2patan~paya!Fa , ~35a!

]ya

2 Fauya→`;2pa
2Fa . ~35b!

Upon evaluating these relations in terms of the variabler a ,
one gets boundary conditions to be imposed atr a51
(ya5ya

(m)).
To reduce the resulting inhomogeneous equations to an

algebraic problem, we make use of spline expansions in all
variables

Fa~ ta ,r a ,ua!5 (
l51

Nx
~a!

(
m51

Ny
~a!

(
n51

Nu
~a!

f lmn
~a! sl~ ta!sm~r a!sn~ua!,

~36!

wheresi are the quintic Hermite polynomial splines defined
as follows. Let an interval of a variablex be divided intoK
subintervals defined by the natural knotsx0 ,x1 , . . . ,xK . The
total cardinal basis of the quintic splines consists of 3K13
piecewise polynomials of fifth degree w is
( i50,1, . . . ,K;s50,1,2), which are nonzero on two adja-
cent subintervals@xi21 ,xi #ø@xi ,xi11#. This set of functions
is fixed by the continuity condition on their first and second
derivatives and by the normalization at the natural knots,

]x
sw is85dss8 for s,s850,1,2. ~37!

The explicit formulas for the spline functions are

wns~x!5~12t !3~x2xn!
s3H 6t213t11 for s50

3t11 for s51

1/2 for s52,
~38!

wherexP@xn21 ,xn11# and

t5~x2xn!3H ~xn212xn!
21 for xn21<x<xn

~xn112xn!
21 for xn<x<xn11 .

~39!

Upon substituting the spline expansion~36! into the Fad-
deev equations we make use of a collocation procedure with
three Gaussian quadrature points per subinterval of each
variable ta , r a , and ua . If there areK subintervals of a
variable, the basis of quintic splines consists of 3K13 func-
tions, but the collocation procedure yields only 3K equa-
tions. The three extra splines on the first and last subintervals
are excluded by the boundary conditions~34! and ~35!. The
resulting algebraic equation for the coefficientsf lmn

(a) is solved
by direct matrix inversion.

V. RESULTS AND DISCUSSION

Our calculations were performed on grids of typi-
cal dimensions Nx

(a)3Ny
(a)3Nu

(a)5(12218)3(39260)
3(12218). The corresponding accuracy is estimated to be
of order 1%. The values of the particle masses we used are
mp51836.1515me , md53670.481me , mt55496.918me ,
andmm5206.769me .

A. Cross sections

Tables II–IV give our results for scattering in the sym-
metric systems below then52 threshold of the correspond-
ing muonic atom. In terms of the momentumk1 of the inci-
dent nucleus with respect to the target@see Eq.~30!#, the
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thresholds are atk151.776am
21 for p1pm, k152.545am

21

for d1dm, and k153.128am
21 for t1tm. For momentum

k1 ~in units ofam
21) given by~30! the corresponding kinetic

energy is

E1 ~eV!52 Ry
mm

me
p1
252 Ry

mm

me
m1

22k1
2 , ~40!

where Ry513.605 698 eV andm1 is the reduced mass de-
fined in Eq.~4! ~see Table I for numerical values!.

In Tables II–IV we present phase shiftsd6 of scattering
in states of fixed paritỳ 561 with respect to the inter-
change of identical nuclei;s6 are the corresponding cross
sections~22! ands tot is the spin-weighted total cross section
~24!. The cross sectionss i j are the spin-weighted effective

TABLE II. Phase shifts~in radians! and cross sections~in units of pam
250.206310220 cm2) for

p1pm scattering as functions of the momentumk1 ~in units ofam
21). E1 (eV)5601.538k1

2 .

k1 d1 d2 s1 s2 s tot s21 s11 s22

0.01 3.4287 3.1018 3207.6 63.31 849.4 257.8 76.05 591.6
0.03 3.7642 3.0150 1511.4 70.85 431.0 128.8 44.46 302.2
0.05 3.8638 2.9233 699.2 75.04 231.1 65.26 35.28 165.8
0.10 3.7891 2.6766 145.5 80.43 96.71 20.11 36.39 76.60
0.20 3.3838 2.1708 5.753 68.12 52.53 5.484 36.08 47.04
0.30 2.9540 1.7076 1.546 43.62 33.10 2.496 25.61 30.60
0.40 2.5598 1.2974 7.549 23.18 19.27 1.419 15.02 17.85
0.50 2.2109 0.9380 10.29 10.40 10.38 0.914 7.634 9.462
0.60 1.9051 0.6165 9.915 3.714 5.265 0.641 3.343 4.624
0.65 1.7807 0.4653 9.056 1.906 3.694 0.554 2.032 3.140
0.70 1.6346 0.3390 8.130 0.903 2.710 0.473 1.292 2.237
0.80 1.4000 0.0924 6.069 0.053 1.557 0.364 0.465 1.193
0.90 1.1920 20.1245 4.263 0.076 1.123 0.289 0.256 0.834
1.00 1.0080 20.3172 2.861 0.389 1.007 0.235 0.302 0.772
1.10 0.8435 20.4870 1.845 0.724 1.004 0.195 0.419 0.809
1.20 0.6940 20.6360 1.136 0.980 1.019 0.164 0.528 0.855
1.30 0.5615 20.7710 0.671 1.149 1.030 0.140 0.611 0.890
1.40 0.4407 20.8900 0.371 1.232 1.017 0.120 0.656 0.897
1.60 0.2334 21.0860 0.084 1.223 0.938 0.092 0.663 0.847

TABLE III. Phase shifts~in radians! and cross sections~in units of pam
250.206310220 cm2! for

d1dm scattering as functions of the momentumk1 ~in units ofam
21). E1 (eV)5308.507k1

2 .

k1 d1 d2 s1 s2 s tot s21 s11 s22

0.01 6.2284 6.2480 119.9 49.50 96.46 0.960 95.82 96.1
0.03 6.1105 6.1668 131.2 59.93 107.5 0.880 106.9 107.2
0.05 5.9793 6.0742 143.3 68.87 118.5 0.898 117.9 118.2
0.10 5.6328 5.7922 146.7 88.92 127.4 0.630 127.0 127.3
0.20 4.9747 5.2232 93.28 76.10 87.55 0.378 87.30 87.42
0.30 4.3964 4.6926 40.15 44.43 41.58 0.238 41.42 41.50
0.40 3.8954 4.2176 11.71 19.36 14.26 0.157 14.16 14.21
0.50 3.4604 3.7926 1.572 5.876 3.006 0.106 2.936 2.971
0.55 3.2632 3.5993 0.195 2.582 0.990 0.090 0.930 0.960
0.60 3.0785 3.4086 0.044 0.774 0.287 0.073 0.239 0.263
0.65 2.8979 3.2303 0.551 0.074 0.392 0.063 0.350 0.371
0.70 2.7416 3.0551 1.238 0.061 0.846 0.049 0.813 0.829
0.80 2.4297 2.7401 2.667 0.955 2.096 0.036 2.072 2.084
0.90 2.1666 2.4519 3.383 1.999 2.922 0.024 2.906 2.914
1.00 1.9026 2.1996 3.576 2.616 3.256 0.021 3.241 3.249
1.10 1.6916 1.9716 3.258 2.803 3.106 0.016 3.096 3.101
1.20 1.4784 1.7416 2.754 2.698 2.735 0.012 2.727 2.731
1.30 1.3000 1.5500 2.198 2.366 2.254 0.009 2.248 2.251
1.50 0.9350 1.1950 1.151 1.538 1.280 0.007 1.275 1.278
1.60 0.7750 1.0400 0.765 1.162 0.897 0.007 0.893 0.895
1.70 0.6700 0.9000 0.534 0.849 0.639 0.005 0.636 0.637
2.00 0.2700 0.5400 0.071 0.264 0.136 0.004 0.133 0.134
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cross sections~26! of transitionsi→ j between different spin
states~25! of the muonic atom. They are given in terms of
the phase shifts by Eqs.~27!. All the phase shifts are fixed in
the zero-energy limit by the Levinson formulad65pN,
whereN is the number of three-body bound states of total
angular momentum zero;N51 for p1pm and N52 for
d1dm and t1tm.

1. p1pµ

Among the three symmetric muonic systems, thep1pm
scattering possesses the most striking qualitative features.
This system possesses a virtual state@16# of even parity on
the negative axis of the second sheet of energy that is very
close to thek150 threshold. The virtual state causes a
bumplike behavior of the even-parity phase shiftd1 near the
threshold, which is shown in Fig. 1. If it were exactly at
threshold, the phase shiftd1 would go to 3p/2 in the limit
k1→0. Accordingly, an extrapolation ofd1(k1) from a re-
gion of not too small momentak1.0.1 tok150 would give
a value rather close to 3p/2. But at small energies the
threshold behavior of the phase shift abruptly changes to the
usual linear formd15pN2a1k11•••, wherea1 is the
corresponding scattering length. This behavior implies that
the virtual state is very close to, but not exactly at, the
threshold. It manifests itself in a large derivative of the phase
shift at k150, which causes a large negative value of the
even-parity p1pm scattering length. In Ref.@11# the
p1pm scattering lengths were found to bea15229.4am
anda253.45am .

The p1pm virtual state is due to the mass ratiomm /mp
being just above the critical value at which a second even-
parity bound state would appear. A tiny decrease ofmm /mp
would move the virtual state into the discrete spectrum.

FIG. 1. Phase shifts~in radians! for p1pm scattering in states
with fixed parity`561 with respect to the proton interchange.

TABLE IV. Phase shifts~in radians! and cross sections~in units of pam
250.206310220 cm2) for

t1tm scattering as functions of the momentumk1 ~in units ofam
21). E1 (eV)5207.808k1

2 .

k1 d1 d2 s1 s2 s tot s21 s11 s22

0.01 6.3675 6.2518 283.7 39.39 100.5 33.32 0.511 67.15
0.03 6.4844 6.1748 177.5 52.01 83.39 25.79 6.030 57.60
0.05 6.5116 6.0692 82.04 72.15 74.62 18.33 19.64 56.30
0.10 6.3995 5.7832 5.387 91.94 70.30 8.353 45.24 61.95
0.20 5.9506 5.1702 10.66 80.47 63.01 3.094 53.73 59.92
0.30 5.4441 4.5986 24.60 43.87 39.06 1.555 34.39 37.50
0.40 4.9530 4.0806 23.58 16.28 18.11 0.917 15.36 17.19
0.50 4.4934 3.6111 15.25 3.275 6.268 0.596 4.479 5.671
0.55 4.2740 3.4066 10.84 0.907 3.391 0.481 1.948 2.910
0.60 4.0692 3.1961 7.114 0.033 1.803 0.408 0.580 1.396
0.65 3.8671 2.9943 4.168 0.204 1.195 0.347 0.153 0.848
0.70 3.6866 2.7901 2.194 0.968 1.274 0.311 0.340 0.963
0.80 3.3345 2.4376 0.230 2.619 2.021 0.239 1.306 1.783
0.90 3.0126 2.1006 0.082 3.677 2.778 0.193 2.199 2.585
1.00 2.7113 1.7921 0.696 3.807 3.030 0.158 2.555 2.871
1.10 2.4406 1.5110 1.375 3.294 2.814 0.133 2.416 2.682
1.20 2.1886 1.2500 1.846 2.502 2.338 0.113 1.999 2.225
1.30 1.9566 1.0090 2.032 1.695 1.779 0.098 1.487 1.682
1.40 1.7406 0.7855 1.983 1.021 1.261 0.085 1.006 1.176
1.50 1.5355 0.5783 1.776 0.531 0.842 0.074 0.619 0.768
1.60 1.3517 0.3850 1.489 0.220 0.538 0.066 0.339 0.471
1.70 1.1790 0.2078 1.182 0.059 0.340 0.059 0.163 0.281
1.80 1.0120 0.0419 0.888 0.002 0.224 0.053 0.066 0.171
1.90 0.8600 20.1085 0.636 0.013 0.169 0.047 0.028 0.122
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Thereby the scattering lengtha1 would go through2` and
then become positive, while the maximum ofd1 in Fig. 1
would move to the origin and then disappear with further
decrease of the mass ratio beyond the critical value. Such is
the situation ford1dm, which has two bound states of even
parity and a positive scattering length.

Another feature of interest in Fig. 1 is that in both parity
states the phase shift goes through a multiple ofp at nonzero
energy: d15p at k1.0.246am

21 (E1.36.4 eV! while
d250 at the rather higher energyk1.0.843am

21 (E1.427
eV!. At these energies corresponding fixed-parity cross sec-
tionss6 have exact zeros.

The combination of the virtual state and the exact zeros
yields an interesting structure of the fixed-parity cross sec-
tions s6 shown in Fig. 2:s1 has a huge maximum at the
origin ~due to the virtual state!, rapidly decreases to zero at
k1.0.246am

21 , and then goes up to a second very broad
maximum atk1.0.56am

21 .
Upon taking the spin average, the points where the fixed-

parity cross sections vanish do not show up in the total cross
sections tot , which has much more regular structure~Fig. 2!
with a high peak at the threshold due to the virtual state with
`511.

Cross sections for the transitions between two spin states
of thepm atom are shown in Fig. 3. All these cross sections
also have profound peaks at the threshold due to the even-
parity virtual state.

2. d1dµ

In d1dm scattering there is no virtual state near thresh-
old, as can be seen from the smooth low-energy behavior of
the phase shifts in Fig. 4. The zero-energy limit in the
d1dm scattering has been investigated in Ref.@11#, where
the following scattering lengths for this system were ob-
tained:a154.81am ,a252.90am .

An interesting feature of thed1dm system is that in a
broad energy rangek1.0.15am

21 there is only a small
(;10%) difference between the phase shifts of different
parities, as seen from Fig. 4 and from the cross sections
s6 in Fig. 5. Only below the first maxima of the cross sec-
tions ~aroundk1.0.12 for both parities! is the difference
apparent. Becaused1 is close tod2 , the cross sections for
the two elastic collisions~25! s11 ands22, shown in Fig. 6,
are almost the same~within 1%! over the whole region be-

FIG. 2. Fixed-parity cross sections~22! and the spin-weighted
total cross section~24! for p1pm scattering ~in units of
pam

250.206310220 cm2).

FIG. 3. Cross sections for transitions between different spin
states~26! of the pm atom in thep1pm scattering~in units of
pam

250.206310220 cm2). s11 for p1pm(↑↓)→p1pm(↑↓);
s21 for p1pm(↑↑)→p1pm(↑↓); s22 for p1pm(↑↑)→p
1pm(↑↑).

FIG. 4. Phase shifts~in radians! for d1dm scattering in states
with fixed parity`561 with respect to the deuteron interchange.
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low thedm(n52) threshold, while the spin-flip cross section
s21 is extremely small~note the scale factor 100 fors21 in
Fig. 6!.

As in the case ofp1pm, the d1dm phase shifts go
through p in both parity states:d15p at k1.0.583am

21

(E1.105 eV) while d25p at k1.0.675am
21

(E1.141 eV). At these momenta, the corresponding fixed-
parity cross sectionss6 have exact zeros, which result in
deep and broad minima of the cross sectionss11 ands22,
shown in Fig. 6, aroundk1.0.6am

21 .

3. t1tµ

The t1tm system is qualitatively similar top1pm. It
also has a low-energy virtual state of even parity, as can be
inferred from Fig. 7. The phase shiftd1 has the same
bumplike behavior near the threshold as thep1pm phase
shift in Fig. 1. The reason for the virtual state is also the
same: the mass ratiomm /mt is just above another critical
value where one more~third! bound state of even parity
would appear. However, compared withp1pm, the t1tm
virtual state is not as close to the threshold and the maximum
in the phase shiftd1 is broader and lower. Accordingly, the
t1tm scattering lengtha1 is negative but not as large as that
of p1pm. It is estimated to be about212am .

Also, as in thep1pm scattering, there are points where
the t1tm fixed-parity cross sections vanish. In Fig. 7 the
phase shiftd1 crosses 2p at k1.0.126am

21 (E1.3.3 eV!
and p at k1.0.841am

21 (E1.147 eV! while d2 goes
throughp at k1.0.614am

21 (E1.78 eV!. Note that the even
parity state oft1tm has two such points, whilep1pm and
d1dm each have only one.

Interplay of the virtual state and exact zeros yields an
interesting structure of the fixed-parity cross sectionss6

shown in Fig. 8. It is quite similar to the behavior of the
p1pm cross sections on Fig. 2, with a profound peak of
s1 at the threshold due to the virtual state and further oscil-
latory behavior with two more maxima.

Note also the unusual structure of the cross sections22 in
Fig. 9 betweenk150 andk150.25 and an interesting fact
that at low energiesk1,0.03am

21 the total cross sections tot

is about equal to the spin-flip cross sections1253s21 ~see
Table IV!. Hence the cross sections115s tot2s12 becomes

FIG. 5. Fixed-parity cross sections~22! and the spin-weighted
total cross section~24! for d1dm scattering ~in units of
pam

250.206310220 cm2).

FIG. 6. Cross sections for transitions between different spin
states ~26! of the dm atom in d1dm scattering ~in units of
pam

250.206310220 cm2). s11 for d1dm(↑↓)→d1dm(↑↓); s21

for d1dm(↑↑)→d1dm(↑↓); s22 for d1dm(↑↑)→d1dm(↑↑).

FIG. 7. Phase shifts~in radians! for t1tm scattering in states
with fixed parity`561 with respect to the triton interchange.
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very small in the zero-energy limit, in sharp contrast to the
low-energy behavior ofs22 and also to that of thep1pm
cross sectionss11 and s12. The reason is that the zero-
energy peak ofs tot is compensated by a resonancelike in-
crease of the spin-flip cross sectionss12 and s21 near the
threshold, as seen in Fig. 9.

4. d1tµ

Tables V and VI show our results for scattering in the
asymmetric systemd1tm below the tm(n52) threshold.
Reference@6# is the most extensive calculation in the adia-
batic representation making use of hundreds of basis func-
tions. Reference@7# exploits an improved version of a simple
two-state adiabatic approximation. Reference@17# is a recent
calculation by the coupled-rearrangement-channel method
@18#. We have fair overall agreement with all these calcula-
tions.

Very close to thedm(n51) threshold, atE2,0.4 eV,
calculations become somewhat delicate, for the effective
sizes of the channelsd1tm and t1dm are very different.
Kinetic energy in thet1dm channel is very small, so that the
asymptotic dynamics is governed by the long-range polariza-
tion potential betweent and thedm atom. As a result, in this
channel asymptotic behavior of the wave function is
achieved at very large separation (;150am2200am) be-
tweent anddm. But in thed1tm channel the energy is not
small and the corresponding asymptotic behavior begins at
rather smaller distances (;60am). Because in the Faddeev
equations the channels are separated in different components
of the wave function, we can easily deal with this situation
by making use of different grids iny1 andy2 with different
asymptotic parametersya

(m) . This is an illustration of the
computational flexibility of the Faddeev method.

The region of greatest interest is that aroundE2528 eV,
where theK matrix has a singular behavior. As we shall

show below, that is because one of the eigenphase shifts of
theSmatrix goes throughp/2(modp) in this region, so that
its tangent is singular. This does not show up in the cross
sections, but greatly affects the fusion-in-flight reaction.

B. Fusion in flight

A characteristic feature of scattering in the muonic atomic
systems is the enhanced fusion-in-flight reactions

d1tm

t1dmJ→4He1n1m2 ~41!

and

p1pm→d1e11 n̄e1m2, ~42a!

FIG. 8. Fixed-parity cross sections~22! and the spin-weighted
total cross section~24! for t1tm scattering ~in units of
pam

250.206310220 cm2).

FIG. 9. Cross sections for transitions between different spin
states ~26! of the tm atom in t1tm scattering ~in units of
pam

250.206310220 cm2). s11 for t1tm(↑↓)→t1tm(↑↓);s21 for
t1tm(↑↑)→t1tm(↑↓);s22 for t1tm(↑↑)→t1tm(↑↑).

TABLE V. K-matrix and thes-wave cross sections~in units of
10219 cm2) for d1tm→d1tm scattering at kinetic energiesE1 ~in
eV! below thedm threshold.

E1

K matrix s11

present @6# present @6#

0.1 20.0875 20.08560 1.628 1.567
0.5 20.220 20.2206 1.975 1.999
1.0 20.335 20.3363 2.158 2.188
10.0 22.153 22.175 1.763 1.778
20.0 50.83 45.17 1.072 1.076
30.0 28.42 28.12 0.636 0.6374
40.0 1.497 1.485 0.371 0.3705
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TABLE VI. K-matrix and thes-wave cross sections~in units of 10220 cm2) for t1dm and d1tm
scattering at kinetic energiesE2 andE1 ~in eV!, respectively, above thedm threshold. The cross sections are
denoted s11 for d1tm→d1tm, s12 for d1tm→t1dm, s21 for t1dm→d1tm, and s22 for
t1dm→t1dm.

E2 E1 Reference K11 K21 K22 s11 s12 s21 s22

0.04 48.081 present 1.047 20.0289 20.0224 2.333 0.00178 2.097 2.741
@6# 1.080 20.02921 20.02348 2.428 0.001775 2.092 3.036
@17# 2.299 2.206 3.721

0.1 48.141 present 1.044 20.0359 20.0408 2.322 0.00274 1.296 3.611
@6# 1.077 20.03632 20.04356 2.419 0.002745 1.296 4.148
@7# 1.033 20.0442 20.0416 2.294 0.00419 1.983 3.805
@17# 2.289 1.374 4.520

0.4 48.441 present 1.030 20.0489 20.108 2.276 0.00507 0.603 6.197
@6# 1.064 20.04978 20.1145 2.374 0.005128 0.6088 7.020
@17# 2.245 0.6428 7.016

1.0 49.041 present 1.003 20.0592 20.208 2.189 0.00730 0.352 8.855
@6# 1.038 20.0605 20.2165 2.288 0.007420 0.3567 9.646
@7# 0.994 20.0732 20.213 2.164 0.0112 0.539 9.312
@17# 2.162 0.3754 9.569

4.0 52.041 present 0.893 20.0833 20.562 1.826 0.0120 0.153 12.70
@6# 0.9202 20.08341 20.5765 1.907 0.01168 0.1491 13.31
@17# 1.794 0.1591 13.33

6.0 54.041 present 0.828 20.0957 20.772 1.615 0.0134 0.118 13.13
@6# 0.8515 20.09563 20.7984 1.686 0.01295 0.1145 13.64
@17# 1.580 0.1226 13.67

10.0 58.041 present 0.707 20.122 21.238 1.240 0.0143 0.0814 12.72
@6# 0.7314 20.1244 21.261 1.309 0.01432 0.08155 13.02
@7# 0.692 20.152 21.263 1.208 0.0217 0.124 12.87
@17# 1.216 0.08827 13.05

20.0 68.041 present 0.458 20.320 23.927 0.590 0.0158 0.0528 9.812
@6# 0.4879 20.3108 23.835 0.6537 0.01536 0.05135 9.878
@7# 0.443 20.390 23.925 0.580 0.0234 0.0782 9.756
@17# 0.5896 0.05601 9.837

22.0 70.041 present 0.417 20.405 25.191 0.506 0.0148 0.0464 9.158
@17# 0.5017 0.05252 9.196

24.0 72.041 present 0.369 20.608 27.863 0.434 0.0148 0.0436 8.563
@17# 0.4239 0.04955 8.579

26.0 74.041 present 0.296 21.133 214.89 0.365 0.0144 0.0404 7.993
@17# 0.3552 0.04699 7.990

27.0 75.041 present 0.214 22.020 226.58 0.337 0.0144 0.0393 7.720
@6# 0.2035 22.325 229.51 0.3709 0.01539 0.04205 7.789

28.0 76.041 present 20.383 29.791 2128.3 0.327 0.0144 0.0383 7.452
@6# 20.8140 215.03 2190.7 0.3397 0.01538 0.04106 7.517
@17# 0.2948 0.04476 7.430
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d1dm→ H t1p1m2

3He1n1m2,
~42b!

t1tm→4He12n1m2. ~42c!

To a good approximation~for comparison, a multichannel
resonating-group treatment of the nuclear degrees of freedom
in the dtm system was made in Ref.@19#!, the normalized
rate of the fusion in flight is just

l f5N0Ar f , ~43!

whereN054.2531022 atoms/cm3 is the density of liquid
hydrogen,A is the nuclear constant given in Table VII, and
r f is the probability for the nuclei to coincide. The three-
body complication resides in the last factor, which is given
by

r f5E uC~r1 ,r2 ,r3!u2d~r12r2!dr3 , ~44!

whereC is the wave function of the corresponding scattering
process and ther i are the position vectors of the particles
indexed as in Eqs.~3! with a53 being the index of the
muon. The wave function is normalized to unit incoming
wave in the corresponding channel, e.g.,

C;w1~r32r2!
sin~k1R1d!

k1R
1•••, ~45!

whereR is the distance from the incoming nucleus to the
center-of-mass of the target muonic atom and the ellipsis
stands for the contribution of other open channels. Note that
the effective density~44! can be interpreted as a Jost function
related to fusion-in-flight reactions@20,21#.

The nuclear constants in Table VII are determined from
the experimental@22,23# astrophysicalS factors in the
E→0 limit,

TABLE VII. Nuclear constants for fusion reactions in the
muonic-atomic systems.A ~cm3/s!51.4038310215S0 ~MeV b!/Mr

~a.m.u.!.

Nuclei Reference S0 ~MeV b! Mr ~a.m.u.! A (cm3/s)

pp @22# 3.36310225610% 0.5037 9.36310240

dd @22# 235.3031022610% 1.0068 1.48310216

tt @23# 0.21060.018 1.5078 1.96310216

pd @22# 2.5031027610% 0.6714 5.23310222

pt @22# 2.5631026620% 0.7551 4.76310221

dt @22# 11.0620% 1.2074 1.28310214

TABLE VI. ~Continued!.

E2 E1 Reference K11 K21 K22 s11 s12 s21 s22

30.0 78.041 present 0.435 1.620 21.26 0.241 0.0144 0.0367 6.937
@6# 0.4643 1.581 19.99 0.2835 0.01535 0.03925 6.995
@17# 0.2420 0.04277 6.899

32.0 80.041 present 0.343 0.761 9.818 0.199 0.0146 0.0358 6.447
@17# 0.1960 0.04097 6.399

35.0 83.041 present 0.277 0.437 5.558 0.143 0.0145 0.0337 5.766
@6# 0.3012 0.4462 5.526 0.1706 0.01517 0.03540 5.815

40.0 88.041 present 0.195 0.265 3.142 0.0714 0.0151 0.0326 4.723
@6# 0.2186 0.2736 3.272 0.09137 0.01493 0.03233 4.802
@17# 0.06963 0.03527 4.683

50.0 98.041 present 0.0643 0.170 1.757 0.00590 0.0152 0.0293 3.139
@6# 0.08720 0.1692 1.810 0.01230 0.01448 0.02795 3.216
@7# 0.0605 0.201 1.750 0.00419 0.0213 0.0410 3.111
@17# 0.005685 0.03039 3.092

60.0 108.041 present 20.0489 0.129 1.212 0.00645 0.0132 0.0233 2.064
@17# 0.007099 0.02683 1.979

80.0 128.041 present 20.255 0.106 0.643 0.105 0.0123 0.0193 0.764
@17# 0.1078 0.02210 0.7054

100.0 148.041 present 20.452 0.105 0.325 0.245 0.0118 0.0171 0.203
@7# 20.473 0.127 0.310 0.263 0.0169 0.0246 0.187
@17# 0.2498 0.01907 0.1744
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A5
\

pe2Mr
S0 , ~46!

whereMr is the reduced mass of the nuclei. For thes-wave
reaction~42b! the rates of the two fusion channels are very
nearly equal due to the proton-neutron ‘‘mirror symmetry.’’
This accounts for the factor 2 for thedd value ofS0 in Table
VII, so that Eq.~43! gives the total fusion-in-flight rate for
the two channels.

If one neglects the Coulomb interaction between the nu-
clei and the muon, then the energy dependence of the effec-
tive density r f(E) is given by the Gamov factorC0

2(h),
whereh is corresponding Coulomb parameter@22#. This ap-
proximation works well at high collision energies~in the keV
range! and is sometimes used to extrapolate to the threshold
limit. However, a numerical study by Melezhik@20# using a
two-state adiabatic approximation revealed qualitative devia-
tion from the Gamov formula in the low-energy domain be-
low 100 eV. Froelichet al., @24# using semiclassical, adia-
batic, and nonadiabatic descriptions, have also discussed
amplifications ofdtm fusion in flight.

For the symmetric systems, the scattering wave function
in ~44! with appropriate asymptotic conditions is built up of
the wave functionsC65(16P12)c1

(6) of fixed parity. The
Faddeev componentc1

(6) is fixed by the asymptotic condi-
tions ~21!. Then the wave function in~44! is

C5
1

2
cosd~C11C2!;w1~x1!sin~p1y11d!

1K21cosdw1~x2!cos~p2y2!,

~47!

where

tand5
1

2
~ tand11tand2! ~48a!

and

K215
1

2
~ tand12tand2!. ~48b!

At r15r2 , Eqs. ~5! imply x350, x15s13y3 , x25s23y3 ,
y15c13y3 , and y25c23y3 . From these relations it follows
thatC250 atr15r2 . Hence the nonzero contribution to the
integral ~44! comes only from theC1 component of the
wave function~47!. The effective density can be written in
terms of the corresponding Faddeev component as

r f5S t1
m3

D 3cos2d
3E

0

`

@c1
~1 !~x15us13uy3 ,y15uc13uy3 ,u15p!#2y3

2dy3 ,

~49!

whered is the phase shift~48a! andc1
(1) is the solution to

the Faddeev equation~20! for the `511 state normalized
by the asymptotic conditions~21!. The mass-dependent fac-
tor in front of the integral comes from the relations~3! be-
tween the Jacobi vectors and the physical distances
y15m1R andx15t1ur32r2u.

Table VIII and Fig. 10 present the effective densities and
rates of the fusion-in-flight reactions~42!. For p1pm and
t1tm collisions the effective density near the threshold in-
creases greatly~see Fig. 10!, especially forp1pm scattering.
This is related to the existence of thep1pm and t1tm
virtual states that we discussed above. Thep1pm virtual
state is closer to threshold than that oft1tm; accordingly,
thep1pm effective density increases more sharply than that
of t1tm. The d1dm system does not have such a virtual
state, and near-threshold enhancement of its effective density
is not so dramatic.

Our results forp1pm fusion in flight are in good agree-
ment with those of Ref.@20#, where the problem was studied
via a simple two-state adiabatic approximation. In particular,
in Ref. @20# the p1pm effective density~called there the
‘‘Jost function’’! was found to increase rapidly near the
threshold and to have a minimum aroundE1.70 eV
(k1.0.34am

21), just as in our calculations~see Fig. 10!.

TABLE VIII. Effective densities and rates of fusion in flight in the symmetric muonic-atomic systems as
functions of the momentumk1 ~in units ofam

21).

k1

p1pm d1dm t1tm

r f l f (s
21) r f l f (s

21) r f l f (s
21)

0.01 0.3793100 0.151310216 0.99031023 0.6233104 0.26431023 0.2203104

0.03 0.2543100 0.101310216 0.96231023 0.6053104 0.20831023 0.1733104

0.05 0.1543100 0.613310217 0.92431023 0.5813104 0.15631023 0.1303104

0.10 0.50931021 0.202310217 0.90331023 0.5683104 0.83131024 0.6923103

0.20 0.85331022 0.339310218 0.11631022 0.7303104 0.18731024 0.1563103

0.30 0.43831023 0.174310219 0.81431025 0.5123102 0.37031025 0.3083102

0.40 0.20931022 0.831310219 0.30931023 0.1943104 0.11731023 0.9753103

0.50 0.10531021 0.418310218 0.36431023 0.2293104 0.44731024 0.3723103

0.60 0.14131021 0.561310218 0.38131023 0.2403104 0.24031024 0.2003103

0.80 0.10531021 0.418310218 0.41931023 0.2643104 0.10631024 0.8833102

1.00 0.73031022 0.290310218 0.54331023 0.3423104 0.18031025 0.1503102
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In all three cases shown in Fig. 10 the effective densities
have deep minima accompanied by nearby maxima. In fact,
at the minima the effective densities are exactly zero if theg
andu symmetries are assumed to be exact~i.e., if the hyper-
fine splitting is neglected! @25#. This behavior can be under-
stood in terms of the phase shiftsd6 ; the positions of the
zeros of the effective densities are given by the condition

d2~k1!5
p

2
~mod p!, ~50!

while the maxima correspond to

d1~k1!5
p

2
~mod p!. ~51!

Indeed, when cosd650 we have cosd50 and the asymptotic
form ~47! can be recast as

C;w1~x1!cos~p1y1!1ew1~x2!cos~p2y2! , ~52!

where

e5
tand12tand2

tand11tand2
5H 21 for d25

p

2
~mod p!

11 for d15
p

2
~mod p!.

~53!

Thus, if cosd250 the asymptotic form~52! is antisymmetric
with respect to interchange of the nuclear coordinates. This
implies that C is also antisymmetric, so thatC50 at
r15r2 and the effective density~44! vanishes.

If cosd150, the asymptotic form~52! and therefore the
wave functionC are symmetric with respect to the nuclear
interchange and the effective density has a maximum. In

general (cosd6Þ0), the wave function is a mixture of sym-
metric and antisymmetric components.

Equations~50! and~51! allow us to get accurate positions
of the zeros and maxima of the effective densities by inter-
polating the phase shifts given in Tables II–IV; the results
are presented in Table IX. Note that the first maximum gets
sharper with an increase of the nuclear mass~see Fig. 10!.
Now we shall see that a similar effect exists in thed1tm
fusion-in-flight reaction.

Ford1tm ~denotedg51) andt1dm ~denotedg52) the
effective densities~44! are

r f
~g!5

tg
3

pg
2m3

3~11Kgg
2 !

3E
0

`

@c1
~g!~x15us13uy3 ,y15uc13uy3 ,u15p!

1c2
~g!~x25us23uy3 ,y25uc23uy3 ,u250!#2y3

2dy3 ,

~54!

whereca
(g) are the Faddeev components normalized by the

asymptotic conditions~28! and Kgg are the diagonal ele-
ments of the reactance matrix.

Table X and Fig. 11 present our results for fusion in flight
in d1tm collisions. The effective densityr f

(2) of the reaction
t1dm→4He1n1m2 has smooth behavior while ther f

(1) of
the reactiond1tm→4He1n1m2 has a profound peak. This
is in agreement with Ref.@20#, where the peak was discov-
ered.

The origin of this peak, as for the similar maxima in the
symmetric systems, can be explained approximately in terms
of the eigenphase shiftsd6 of the S matrix. They are ex-
pressed in terms of the reactance matrix by

tand65
1

2
~K111K22!6A1

4
~K112K22!

21K12
2 . ~55!

Their behavior near the peak is shown in Fig. 12. The peak is
due to the fact that the eigenphase shiftd1 goes through
p/2, just as in the symmetric systems. In fact, the peak for

FIG. 10. Effective densities~49! of the fusion-in-flight reactions
~42! in p1pm, d1dm, andt1tm scattering.

TABLE IX. Positions of zeros and maxima, given by Eqs.~50!
and ~51!, of the effective densities of fusion in flight in the sym-
metric muonic-atomic systems.

System

Positions of zeros Positions of maxima

k1 (am
21) E1 ~eV! k1 (am

21) E1 ~eV!

p1pm 0.3335 66.90 0.7272 256.4
d1dm 0.2963 27.09 0.2454 18.58

1.289 512.6 1.157 413.0
t1tm 0.2801 16.30 0.4524 42.53

1.079 241.9 1.483 457.0
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d1tm is very similar to the sharp maximum of the effective
density fort1tm at E1542.5 eV. It is also accompanied by
a minimum inr f at slightly lower collision energy. Also, as
in the t1tm case, there is some amplification of the rate of
the fusion in flight ford1tm system towards thetm thresh-
old.

Interpolating the eigenphase shiftd1 for d1tm enables
us to estimate accurately the position of the peak to be
E1576.32 eV. The peak rate 3.403106 s21 for fusion in
flight is about 7.5 times faster than the rate of muon decay
0.4553106s21, though still much slower than the slowing-
down rate (;531010 s21 @26#! for the tm atom in a normal
d-t mixture. This fusion rate is twice that given by the cal-
culation of Ref.@20# (;1.73105 s21 before rounding!. Our
value for d1tm fusion in flight in the E1→0 limit,
1.143105 s21, is also about twice as large as that in Ref.
@20# (0.53105 s21) and may also be compared with the
values reported in other calculations, 1.23105 s21 @21# and
2.13105 s21 @27#.

We would like to emphasize that the structure in the
fusion-in-flight rates is not due to asymptotic resonant scat-
tering states at these energies but is rather a symmetry effect,
as is clear from the above analysis. The periodic oscillations
predicted in Ref.@20# are not seen, but their possibility is not

ruled out since they might have recurrence periods exceeding
the maximum collision energy treated in the present calcula-
tions.
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FIG. 12. Eigenphase shifts~55! of theSmatrix for d1tm scat-
tering. The pointd15p/2 is that of the fusion-in-flight peak in Fig.
11. The energyE2 is measured with respect to thedm(n51)
threshold.

TABLE X. Effective densities (r f) and rates (l f) for the fusion-
in-flight reactions d1tm→4He1n1m2 ~index 1! and for
t1dm→4He1n1m2 ~index 2!.

E1

~eV!
r f
(1)

(1024)
l f
(1)

(s21)
E2

~eV!
r f
(2)

(1024)
l f
(2)

(s21)

0.1 2.072 0.1133106

0.5 1.927 0.1053106

1.0 1.831 0.9963105

10.0 1.339 0.7283105

20.0 1.133 0.6163105

30.0 1.023 0.5573105

48.08 0.920 0.5003105 0.04 1.394 0.7583105

48.14 0.943 0.5133105 0.1 1.359 0.7393105

48.44 0.969 0.5273105 0.4 1.272 0.6923105

49.44 0.915 0.4983105 1.0 1.149 0.6253105

52.04 0.877 0.4773105 4.0 0.941 0.5123105

54.04 0.843 0.4593105 6.0 0.893 0.4863105

58.04 0.757 0.4123105 10.0 0.790 0.4303105

68.04 0.527 0.2873105 20.0 0.666 0.3623105
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72.04 0.282 0.1533105 24.0 0.625 0.3403105

74.04 0.056 0.3053104 26.0 0.606 0.3303105

75.04 0.078 0.4243104 27.0 0.599 0.3263105

76.04 21.11 0.1153107 28.0 0.594 0.3233105

76.32 62.59 0.3403107 28.28 0.592 0.3223105

78.04 2.816 0.1533106 30.0 0.580 0.3163105

80.04 1.554 0.8453105 32.0 0.572 0.3113105

83.04 1.139 0.6203105 35.0 0.557 0.3033105

88.04 0.983 0.5353105 40.0 0.548 0.2983105

98.04 0.817 0.4443105 50.0 0.500 0.2723105

108.04 0.712 0.3873105 60.0 0.461 0.2513105

128.04 0.631 0.3433105 80.0 0.414 0.2253105

148.04 0.580 0.3163105 100.0 0.377 0.2053105
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APPENDIX: HYPERFINE TRANSFORMATIONS

In this appendix we describe the relation between two
different representations of theJ50 scattering states of a
symmetric muonic atomic systema1am. The first one is
that where the spins12 of the pair of nuclei is fixed, so that
the states are classified by the parity`5(21)s12 with re-
spect to interchange of the nuclei. If the hyperfine interaction
between nuclei and muon is neglected, the parity is an exact
quantum number and this representation is very convenient,
for it diagonalizes the three-body Hamiltonian~and the Fad-
deev equations!. The second representation classifies the
states by the spins23 of the target muonic atom, so that there
are two spin channels~25!.

In the second representation, transitions between the spin
channels~25! at fixed total three-body spinS are described
by a symmetric reactance matrixK (S)5$Ki j

(S)% i , j51,2. Corre-
spondings-wave cross sections for the transitionsi→ j are
given by

s i j
~S!5

4pam
2

k1
2

d i j DS
21~Ki j

~S!!2

~DS21!21TS
2 , ~A1!

where the momentumk1 is defined in~30!,

DS5detK ~S! ~A2a!

and

TS5trK ~S!. ~A2b!

Some simple spin algebra leads to the following expres-
sions for the reactance matrices in terms of the fixed-parity
phase shiftsd6 :

S K11
~S! K12

~S!

K21
~S! K22

~S!D 5U~S!S K1 0

0 K2
D @U~S!#†, ~A3!

whereK65tand6 . The transformation matrices are~i! for
p1pm and t1tm,

U~1/2!5
1

2 S 1 2A3
A3 1

D , ~A4a!

U~3/2!5S 0 0

0 21D , ~A4b!

and ~ii ! for d1dm,

U~1/2!5
1

A3 S 1 2A2
A2 1

D , ~A5a!

U~3/2!5
1

A6 S A5 21

21 2A5D , ~A5b!

U~5/2!5S 0 0

1 0D . ~A5c!

The aboveU matrices apply to evenJ ~including s waves
calculated in the present work!; theU matrices for oddJ are
the same,exceptwith the matrix columns interchanged.

Therefore, we have forp1pm and t1tm,

K ~1/2!5
1

4 S K113K2 A3~K12K2!

A3~K12K2! 3K11K2
D , ~A6a!

K ~3/2!5S 0 0

0 K2
D , ~A6b!

and ford1dm,

K ~1/2!5
1

3 S K112K2 A2~K12K2!

A2~K12K2! 2K11K2
D , ~A7a!

K ~3/2!5
1

6 S 5K11K2 A5~K22K1!

A5~K22K1! K115K2
D , ~A7b!

K ~5/2!5S 0 0

0 K1
D . ~A7c!

Thereby, Eq.~58! implies

DS5detK ~S!5K1K2 , ~A8a!

TS5trK ~S!5K11K2 , ~A8b!

and the formula~A1! for the cross sections is recast as

s i j
~S!5

4pam
2

k1
2 @d i jsin

2d1sin
2d21~Ki j

~S!!2cos2d1cos
2d2#.

~A9!

Substituting into this equation the above formulas for the
K-matrix elements yields the following expressions for the
cross sections in terms of the fixed parity cross sections
s6 , defined in~22!, and the spin-flip cross sections21 de-
fined by ~27!: ~i! for p1pm and t1tm,

s11
~1/2!5

1

4
s11

3

4
s223s21, ~A10a!

s22
~1/2!5

3

4
s11

1

4
s223s21, ~A10b!

s22
~3/2!5s2 , ~A10c!

s12
~1/2!5s21

~1/2!53s21, ~A10d!

and ~ii ! for d1dm

s11
~1/2!5

1

3
s11

2

3
s22

8

3
s21, ~A11a!

s11
~3/2!5

5

6
s11

1

6
s22

5

3
s21, ~A11b!

s22
~1/2!5

2

3
s11

1

3
s22

8

3
s21, ~A11c!
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s22
~3/2!5

1

6
s11

5

6
s22

5

3
s21, ~A11d!

s22
~5/2!5s1 , ~A11e!

s12
~1/2!5s21

~1/2!5
8

3
s21, ~A11f!

s12
~3/2!5s21

~3/2!5
5

3
s21. ~A11g!

The spin-weighted effective cross sections~26! are ~i! for
p1pm and t1tm,

s115s11
~1/2! , ~A12a!

s225
1

3
s22

~1/2!1
2

3
s22

~3/2! , ~A12b!

s1253s215s12
~1/2! , ~A12c!

and ~ii ! for d1dm,

s115
1

3
s11

~1/2!1
2

3
s11

~3/2! , ~A13a!

s225
1

6
s22

~1/2!1
1

3
s22

~3/2!1
1

2
s22

~5/2! , ~A13b!

s1252s215
1

3
s12

~1/2!1
2

3
s12

~3/2! . ~A13c!

Upon substituting in these equations the above formulas for
s i j
(S) , we arrive at Eqs.~27!.
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@27# D. Harley, B. Müeller, and J. Rafelski, Z. Phys. A336, 303
~1990!.

53 271FADDEEV CALCULATIONS OF MUONIC-ATOM COLLISIONS: . . .


