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An analysis of near-resonant collisions between dissimilar atoms in the presence of a radiation field reveals
their effect on the far wings of the absorption profile. Extending a model due to Cavalieri, Arimondo, and
Matera, we take into account the collisional shifts of atomic levels, as well as the collisional coupling between
atoms and the coupling with the radiation field. A general formula for the absorption profile is derived and
expressed in terms of the universal line-shape function of the unified Franck-Condon treatment of pressure
broadening. We show that in some cases collision-induced coherence can give rise to a strongly depressed red
wing that exhibits transparency for some values of the laser detuning.

PACS number~s!: 34.50.Rk

I. INTRODUCTION

Atomic coherences that are created when an atom is
driven by a radiation field to a coherent superposition of
states are the subject of an extensive series of experimental
studies performed by laser-spectroscopy methods. Although
in many cases the coherences are damped by collisions, there
are processes such as pressure-induced extra resonances oc-
curring in four-wave mixing@1# and in fluorescence emission
@2,3# in which the collisional interaction plays a critical role
in the creation of the atomic coherences.

Cavalieriet al. @4# have recently performed a theoretical
study of near-resonant collisions of two dissimilar atomsA
andB in the presence of a laser field and have shown that the
absorption profile in the line wings can be significantly af-
fected by the collision-induced coherence between excited
levels of these atoms. In their approach, the colliding atoms
A andB are coupled to a radiation field withn photons of
frequencyvL . The absorption process in this system can
follow either of two paths:

A*1B1~n21!\vL ,
↗

A1B1n\vL ↑
↘

A1B*1~n21!\vL .

~1!

The excitation of atomA can take place either directly by the
absorption of a photon or indirectly by a collisional-energy
transfer following photon absorption by atomB. As shown
by Cavalieri et al. @4#, quantum interference between the
transition amplitudes for these two paths can produce a sub-
stantial modification of the far-wing absorption profile.

To calculate these amplitudes, Cavalieriet al. follow a
methodology developed by Berman and coworkers@5# and
apply the dressed-state technique, which has been used much
in the literature to describe laser-assisted collisions@6,7#.
However, the only collisional interaction included in their
derivation of the absorption cross section is the dipole-dipole

interaction, and indeed only its off-diagonal elements, re-
sponsible for the collisional coupling between the excited
atomsA* and B* . No effort was made in their paper to
consider the effects ofdiagonal elementsof the interatomic
potential, which represent the potential curves of the adia-
batic molecular states of theA1B system. This means that
the collisional shifts~in particular, those due to the van der
Waals interaction! of the atomic levels arenot included in
their treatment. However, it is precisely these collisional
shifts of atomic levels that are the most important cause of
the pressure broadening in spectral lines. Because the authors
of Ref. @4# have ignored such shifts, we find, in contrast to a
statement made by them, that their derivation of an absorp-
tion profile with a double slope similar to that experimentally
observed by Niemax for the Eu-Sr system@8#, cannot be
regarded as evidence for the transition from a van der Waals
to resonant interaction. Such an interpretation was originally
proposed by Niemax on the basis of the quasistatic theory.

In the present paper, we extend the model of Cavalieri
et al. @4# to derive a general formula for the absorption pro-
file in the case of near-resonant collisions between dissimilar
atoms. The main modifications made to their model comprise
the inclusion of collisional shifts of the atomic levels due to
adiabatic potentials and the application of cubic expansions
of the corresponding phase functions in place of the qua-
dratic ones used in Ref.@4#. One goal of this paper is to show
that the Niemax interpretation, which relates the double-
slope behavior of the absorption profile of the line wings to
the transition from a van der Waals to resonant interaction,
can, in fact, be corroborated in the framework of the model
proposed by Cavalieriet al. @4# provided the collisional
shifts of atomic levels are taken into account.

II. PHYSICAL MODEL

The starting point in our derivation is the same as in the
approach of Cavalieriet al. @4#. We consider a near-resonant
collision of two dissimilar atomsA andB in the presence of
a laser radiation field

E5E0cosvLt, ~2!
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where the amplitudeE0 is assumed to be constant during
collision. The atoms are taken to be two-level systems, as
shown in Fig. 1, where the same notation is used as in Ref.
@4#. We let ua& and ub& be the ground states andua* & and
ub* & the excited states of atomsA andB, respectively. As
shown in Fig. 1,D5vL2v0 denotes the detuning of the
laser frequency vL from the unperturbed frequency
v05@E(a* )2E(a)#/\ of the ua&→ua* & transition in atom
A. The energy defect between the excited levelsua* & and
ub* & is characterized by the parameter

2d5
E~a* !2E~b* !

\
, ~3!

whereE(a* ) andE(b* ) are the energies of the correspond-
ing levels ofA andB, respectively.

In the absence of the radiation field, the compound system
A1B is described in the basis of the relevant product states:

u0&5ua,b&[ua&ub&,

u1&5ua* ,b&[ua* &ub&, ~4!

u2&5ua,b* &[ua&ub* &,

with energiesE050, E15\v0 , and E25\(v022d), re-
spectively. The collisional interaction between atomsA and
B is described by an operatorV(R), whereR denotes the
interatomic distance. The strength of the atom-radiation-field
interaction is given by

VA52
mAE0

2\
, VB52

mBE0

2\
, ~5!

wheremA andmB are the dipole transition moments of atoms
A andB, respectively.

To describe the evolution of the quasimolecular states
modified by coupling to the radiation field, we follow Ref.
@4# and apply a standard dressed-state picture. Using the
same notation as in Ref.@4#, we introduce the field-dressed
atomic statesu0,n&, u1,n21&, andu2,n21&. The energies of
these states areE0,n5\D, E1,n2150, andE2,n21522\d,
respectively.

The wave functionuC(t)& of the dressed (A1B) quasi-
molecule can be expanded,

uC~ t !&5a0u0,n&1a1u1,n21&1a2u2,n21&. ~6!

The Schro¨dinger equation then gives the coupled differential
equations

i ȧ5\21Ha ~7!

for the time derivatives, where

a5S a0a1
a2
D , ~8!

and the HamiltonianH ~in the rotating-wave approximation!
is

\21H5S D1V00 VA VB

VA V11 V12

VB V12* 22d1V22

D . ~9!

Here

V005\21^a,buVua,b&[\21^0uVu0& ~10!

represents the adiabatic potential describing the interaction
betweenA andB when both atoms are in their ground states
a andb ,

V115\21^a* ,buVua* ,b&[\21^1uVu1& ~11!

is the adiabatic potential describing the interaction of atomA
excited to statea* with the ground-state atomB, and

V225\21^a,b* uVua,b* &[\21^2uVu2& ~12!

describes the interaction of atomB excited to stateb* with
the ground-state atom A. In Ref.@4#, these adiabatic poten-
tials were neglected and set to zero:V005V115V2250. The
collisional coupling between the excited states is described
by the off-diagonal element

V125\21^a* ,buVua,b* &[\21^1uVu2&, ~13!

which in Ref. @4# was assumed to be in the form of the
resonance interaction

V125
C3

R3 , ~14!

with C3 a real constant. As in Ref.@4#, we assume the colli-
sional interaction between the ground stateu0& and either of
the excited states is negligible:V01'V02'0 .

As the next step, a unitary transformation

b5Ta ~15!

is performed, with

FIG. 1. Schematic energy-level diagram for the near-resonant
collisions of two dissimilar atomsA andB, showing the basis states
and frequencies for the model of Cavalieriet al. @4#.
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T5S 1 0 0

0 cosu sinu

0 2sinu cosu
D . ~16!

The coupled equations~7! are then transformed into

i ḃ5\21~H81ṪT21!b, ~17!

where

b5S b0b1
b2
D , ~18!

and

H85THT21. ~19!

Let

D5d1
1

2
~V112V22!. ~20!

If the condition

tan2u5
V12

D
~21!

is fulfilled, then the transformed HamiltonianH8 has the
form

\21H85S D1V00 V1 V2

V1 l1 0

V2 0 l2

D , ~22!

where

V15VAcosu1VBsinu, V25VBcosu2VAsinu
~23!

and

l652d1
1

2
~V111V22!6~D21V12

2 !1/2. ~24!

As in Ref. @4#, the parametersl1 andl2 can be interpreted
as eigenvalues corresponding to the adiabatic collisional
dress statesu1,n21& and u2,n21& defined by

u1,n21&5cosuu1,n21&1sinuu2,n21&, ~25!

u2,n21&52sinuu1,n21&1cosuu2,n21&.

In the limit V005V115V2250, we obtainD5d and Eqs.
~21!–~24! become identical to Eqs.~13!–~15! of Ref. @4#.

We assume that the energy defect 2d between the excited
levels is large enough to make the collision adiabatic in the
absence of the laser field. This assumption is justified if
2d@1/tc , where tc is the duration time of the collision.
Using arguments given in Ref.@4#, one can show that when
the collisional interaction can be taken to be adiabatic, the
matrix ṪT21 in Eq. ~17! can be neglected, leaving

i ḃ5\21H8b. ~26!

Our aim is to calculate the absorption profile assuming
that both atoms are initially in their ground states. The initial
conditions needed for Eq.~26! are therefore

b0~2`!5a0~2`!51 ,

b1~2`!5a1~2`!50 , ~27!

b2~2`!5a2~2`!50 .

Assuming that the atoms move along classical straight-line
trajectories, the interatomic distance at timet is
R(t)5(r21v2t2)1/2, wherer is the impact parameter and
v the relative velocity.

We now consider two cases of absorption in the (A1B)
quasimolecule. In the first case we consider positive laser
detuningsD.0, which correspond to frequencies in the blue
wing of the a→a* transition in atomA. The absorption
cross sections1(D) there can be generally written as

sn~D!52pE
0

`

ubn~`!u2rdr ~28!

with n51. The second case corresponds to negative laser
detuningsD,22d, i.e., to the red wing of theb→b* tran-
sition in atomB, where the absorption cross section has the
same form~28! but with n52. Equation~28! permits calcu-
lations of the cross sections for a fixed relative velocityv. To
compare with data from cell experiments, the equations
should be averaged over a Maxwellian distribution of veloci-
ties. The thermally averaged cross sections, which we denote
Q1(D) andQ2(D), are defined by

Qn~D!5
1

v̄
^vsn~D!&, n51,2, ~29!

wherev̄ is the mean relative velocity for a given temperature
T, and the symbol̂ & denotes an average over relative ve-
locities v.

III. PERTURBATION TREATMENT

To calculate the absorption cross sectionssn(D), Eqs.
~26! must first be solved with the initial conditions~27!. If
we assume the laser field to be weak, the equations can be
solved by perturbation theory.~See the end of Sec. IV for a
fuller discussion of the condition on the laser field.! The
first-order solutions for the dressed-state amplitudesb1(`)
andb2(`) following the collision can be written in the form

ubn~`!u5U E
2`

`

dtVn~ t !exp@2 ifn~ t !#U, ~30!

whereV1 andV2 are given in Eqs.~23!, andu fulfills con-
dition ~21!. The phase functionsf1(t) andf2(t) are given
by

f1~ t !5E
2`

t

@D1V00~ t8!2l1~ t8!#dt8 ~31!
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and

f2~ t !5E
2`

t

@D1V00~ t8!2l2~ t8!#dt8. ~32!

Here we concentrate our attention on the behavior of
ub1(`)u and ub2(`)u at large laser detuningsuDu, i.e., for
frequencies in the far wings of either thea→a* or the
b→b* transition in atomA or B, respectively. At large
uDu, the integrand in Eq.~30! contributes significantly to
ub1(`)u andub2(`)u only in regions of stationary phase, i.e.,
near pointstS where

ḟn~ tS!50 . ~33!

According to Eqs.~31! and ~32!, these stationary-phase
points are solutions of

D5l6~ tS!2V00~ tS!. ~34!

In the case of straight-line trajectories, there are generally
two stationary phase points for each given impact parameter
r:

tS
~1!5

1

v
~RS

22r2!1/2 ~35!

and

tS
~2!52tS

~1! , ~36!

corresponding to the same interatomic separationRS . To
evaluate the integral~30!, we use anextendedstationary
phase method, in which the phase functionsf1 andf2 are
approximated by cubic expansions aroundtS :

fn~ t !'fn~ tS!1
1

2
f̈n~ tS!~ t2tS!

21
1

6
f̂n~ tS!~ t2tS!

3.

~37!

The integrand in Eq.~30! then yields approximately

ubn~`!u258p2
uVn~ tS!u2

uf̈n~ tS!u
yn
1/2Ai2~2yn!, ~38!

where Ai(2y) is the regular homogeneous Airy function

Ai ~2y!5
1

2pE2`

`

ds expF i S 2ys1
1

3
s3D G , ~39!

with

yn5222/3@f̈n~ tS!#
2uf̂n~ tS!u24/3. ~40!

According to Eqs.~31!, ~32!, and~24!,

f̈n~ tS!52
1

2
Fn8~RS!vr~RS! ~41!

and

f̂n~ tS!52
1

2
Fn9~RS!vr

2~RS!, ~42!

whereRS5R(tS) and

Fn8~RS![S dFn~R!

dR D
RS

, Fn9~RS![S d2Fn~R!

dR2 D
RS

.

~43!

Here

F1~R!5V111V2222V0012~D21V12
2 !1/2 ~44!

and

F2~R!5V111V2222V0022~D21V12
2 !1/2. ~45!

In Eqs.~41! and ~42!,

vr~RS![S dRdt D
tS

5
\

m
kr~RS!, ~46!

with

kr~RS!5\21H 2m@Ei2V00~RS!#2S mvr

RS
D 2J 1/2, ~47!

whereEi is the initial energy of the relative motion of the
colliding atoms, andm is their reduced mass.

Using the above expressions, we can write the parameter
yn in Eq. ~40! as

yn5pn~RS!@kr~RS!#
22/3, ~48!

where

pn~RS!5S m

4\ D 2/3@Fn8~RS!#
2uFn9~RS!u24/3. ~49!

Inserting Eq.~48! into ~28! and replacing the integration over
impact parametersr by an integration over the variabley1 or
y2 , one obtains, for the detuning dependence of the absorp-
tion cross sectionss1(D) ands2(D) at fixed relative veloc-
ity v, the result

sn~D!53pU2pVn~RS!RSFn8~RS!

vF9~RS!
U2WS

~n! , ~50!

where

WS
~n!5E

ymin
~n!

`

y22Ai2~2y!dy ~51!

with

ymin
~n! 5pn~RS!S \2

2m D 1/3@Ei2V00~RS!#
21/3. ~52!

The factorsVn are given by~23!
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V1~RS!5VAcosuS1VBsinuS ,
~53!

V2~RS!5VBcosuS2VAsinuS ,

with uS5u(RS) is the value ofu corresponding to the sta-
tionary phase-pointRS . Combining Eqs.~21! and ~34!, one
can show that

sinuS5
1

A2
SMS2DS

MS
D 1/2, ~54!

and

cosuS5
1

A2
SMS1DS

MS
D 1/2, ~55!

whereDS5D(RS) and hence, according to Eq.~20!,

DS5d1
1

2
@V11~RS!2V22~RS!# ~56!

and

MS5$DS
21@V12~RS!#

2%1/2. ~57!

To derive the thermally averaged cross sectionsQn , we
insert ~50! into Eq. ~29! and assuming a Maxwellian distri-
bution of initial energiesEi of relative motion, we make use
of a method due to Sando and Wormhoudt@9#. Introducing
the new variablej defined by

ymin
~n! 5zS

~n!j, ~58!

where

zS
~n!5pn~RS!S \2

2mkTD
1/3

, ~59!

we can replace the integration overEi by an integration over
j. In this way, we obtain

Qn~D!5an
L~zS

~n!!

zS
~n! expF2

V00~RS!

kT G , ~60!

wherek is the Boltzmann constant, where

an5
6p

v̄
S m

2pkTD
1/2U2pVn~RS!RSFn8~RS!

Fn9~RS!
U2, ~61!

and

L~zS
~n!!5E

0

`

djj22Ai2~2zS
~n!j !exp~2j23! ~62!

is the universal line-shape function of the unified Franck-
Condon~UFC! theory of pressure broadening@10#.

Note the different behavior of the absorption profile given
by Eq. ~60! in the blue (n51) and red (n52) wings. Ac-
cording to Eq.~53!, it is possible that at some value of the

laser detuningD, absorption in the red wing can be reduced
to zero so that the system becomes transparent. This occurs
for detuningsD for which V250, since then by Eqs.~61!
and ~60! a250 andQ2(RS)50. The condition is thus

VA

VB
5
cosuS
sinuS

5SMS1DS

MS2DS
D 1/2. ~63!

If the adiabatic potentials are neglected
(V005V115V2250), then DS5d and Eq. ~63! becomes
identical to the condition for a transparency point as given by
Cavalieriet al. @4#:

VA

VB
5S D

D12d D 1/25S DB12d

DB
D 1/2. ~64!

Here,DB52D22d denotes the laser detuning with respect
to the unperturbed frequency of theb→b* transition in
atomB (DB.0 for D,22d).

IV. QUASISTATIC LIMIT

The general formula~60! for the absorption profile can be
substantially simplified in the quasistatic limit, which corre-
sponds to collisions of ‘‘slow’’ atoms whose collisional du-
ration timetc is large compared to the frequency resolution
Dv:Dvtc@1. The ‘‘collisional duration time’’tc should be
viewed as the time during which the frequency shift of the
adiabatic transition lies withinDv of the line position. In
practice, ‘‘slow’’ collisions tend to be those for which the
stationary-phase points are located within the vicinity of the
turning points, whereEi'V00(RS). In such cases—as seen
from Eq. ~52!—ymin

(n) [zS
(n)z@1 and the dominant contribution

to the integral in Eq.~62! comes from large values of
zS
(n)z. As shown in Ref.@10#, the universal line-shape func-
tion L(zS

(n)) then has the asymptotic form

L~zS
~n!!;~36pzS

~n!!21/2, uzS
~n!zu@1 . ~65!

After substitution in Eq.~60! this yields

Qn'
u4pRSVn~RS!u2

v̄uFn8~RS!u
expF2

V00~RS!

kT G . ~66!

The stationary-phase pointsRS5R(tS) are the solutions of
Eq. ~34!. In this paper, we consider only those cases in which
the solutionsRS of Eq. ~34! are real.

A. Blue wing: D>0

According to Eq.~34!, for laser detuningsD.0, corre-
sponding to the blue wing of thea→a* transition in atom
A, the equation forRS can be written in the form

D1d5
1

2
F1~RS!5MS1US , ~67!

whereUS5U(RS) with
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U~R!5
1

2
@V11~R!1V22~R!#2V00~R!. ~68!

Using Eqs.~53! and ~67!, we write the absorption cross-
section formula~66! for the blue wing (n51) as

Q1~D!5
4p2RS

2

v̄

@VAAMS1DS1VBAMS2DS#
2

uUS8MS1DS8DS1V128 ~RS!V12~RS!u

3expF2
V00~RS!

kT G . ~69!

As previously, the primes denote derivatives with respect to
R. Equation~69! can be further simplified in two limiting
cases:~1! when there are no resonance interactions between
atoms, and~2! when the adiabatic potentials are negligible.

1. No resonance interactions: V1250

In this caseMS5DS and Eq. ~67! for stationary-phase
pointsRS becomes

V11~RS!2V00~RS!5D. ~70!

This equation is identical to the equation for Condon points
in the ordinary adiabatic theory of the absorption line shape
of thea→a* transition in atomA perturbed by atomB in its
ground stateb @10,11#. Equation ~69! can then be trans-
formed into the form

Q1~D!5
8p2VA

2

v̄

RS
2exp@2V00~RS!/kT#

uV118 ~RS!2V008 ~RS!u
. ~71!

This is the usual one-perturber quasistatic distribution.
Assuming a difference potential of the van der Waals

form

V11~R!2V00~R!5C6
~a!R26 ~72!

with C6
(a).0, the absorption cross section~71! for

V00(RS)!kT takes the form of a power-law dependence

Q1~D!5
4p2VA

2 uC6
~a!u1/2

3v̄
uDu23/2. ~73!

In this case, a double logarithmic plot of the absorption cross
section against laser detuningD is given by a straight line
with slope23/2.

2. Negligible adiabatic potentials: V115V225V0050

In this case,US50, DS5d, and the condition~67! for
stationary-phase points takes the form

D1d5$d21@V12~RS!#
2%1/2. ~74!

The absorption cross section~69! can then be written

Q1~D!5
4p2RS

2

v̄

~VAAD12d1VBAD!2

uV128 ~RS!V12~RS!u
. ~75!

Assuming the resonance form~14! for V12(R), we obtain

Q1~D!5
4p2C3

3v̄
~VAAD12d1VBAD!2

D3/2~D12d!3/2
. ~76!

This formula shows exactly the same detuning dependence
as that derived by Cavalieriet al. @4#. The only difference is
the multiplicative factor: in place of the factor 16p in Ref.
@4#, we have the factor 4p2.

If we neglect the coupling of atomB with the radiation
field (VB50), then Eq.~76! becomes

Q1~D!5
4p2C3

3v̄

VA
2

D3/2~D12d!1/2
. ~77!

Obviously, forD@2d , this formula approaches auDu22 be-
havior that is the result of the assumed form (;R23) of the
resonance interaction. However, forD!2d , it reduces to

Q1~D!5
4p2C3

3v̄

VA
2

D3/2~2d!1/2
, ~78!

which has the sameuDu23/2 power-law dependence~73! as
that derived from the quasistatic distribution in the case of
the van der Waals interaction. However, note that the origin
of this dependence is quite different in the two cases, as
indicated by the very different multiplicative coefficients in
the two formulas.

It is true that a double-logarithm plot of the absorption
cross section~77! can be represented by two straight lines of
slopes23/2 for smallerD and to22 for largeD. However,
contrary to the opinion expressed in Ref.@4#, this can hardly
serve as evidence of the transition from van der Waals to
resonant interaction since Eq.~77! was derived assuming that
the van der Waals interactions are negligible.

An interpretation relating the change of slope from
23/2 to22 with the transition from van der Waals to reso-
nant interaction was originally proposed by Niemax@8#, who
studied the absorption of the 459.53 nm line of Eu perturbed
by Sr. The correctness of his interpretation can be justified on
the basis of Eq.~69! as follows: As shown by Niemax, the
interaction Eu(8P9/2)1Sr at large interatomic separationsR
can be well described by a repulsive van der Waals potential
C6
(a)R26 with C6.0 . Thus, neglectingV12 in Eq. ~ 69!, we

obtain the quasistatic dependenceuDu23/2 given in Eq.~73! at
small detunings and hence at largeRS . At small RS , the
collisional couplingV12 may predominate; Eq.~69! then
yields theuDu22 dependence at large detunings if the adia-
batic potentials are neglected.

B. Red wing: D<22d

Now we consider laser detuningsD,22d, correspond-
ing to the red wing of theb→b* transition in atomB. Ac-
cording to Eq.~34!, the stationary phase pointsRS are in this
case solutions of

D1d5US2MS . ~79!

Using Eqs.~58!–~60!, the absorption cross section~66! for
the red wing (n52) can be expressed as
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Q2~D!5
4p2RS

2

v̄

@VAAMS2DS2VBAMS1DS#
2

uUS8MS2DS8DS2V128 ~RS!V12~RS!u
expF2

V00~RS!

kT G . ~80!

By comparing this equation with Eq.~69!, we note that the
absorption profile in the red wing differs significantly from
that in the blue wing. In particular, the red wing may be
strongly depressed for detunings in the vicinity of transpar-
ency point defined by Eq.~63!. As for the blue wing, we now
discuss two limiting cases in which Eq.~80! can be signifi-
cantly simplified.

1. No resonance interactions: V1250

In this case,MS5DS and Eq.~79! for stationary-phase
points atRS becomes

V22~RS!2V00~RS!52DB , ~81!

which is identical to the equation for Condon points in the
ordinary theory of pressure broadening of an absorption line
b→b* in atomB perturbed by atomA in its ground state
a. Note thatDB.0 for D,22d. Equation~80! can then be
transformed to the form

Q2~D!5
8p2VB

2

v̄

RS
2exp@2V00~RS!/kT#

uV228 ~RS!2V008 ~RS!u
, ~82!

which is identical to that from the quasistatic theory.
In the case of a van der Waals interaction

V22~RS!2V00~RS!5C6
~b!R26 ~83!

with C6
(b),0, Eq.~82! for V00(RS)!kT takes the power-law

dependence

Q2~DB!5
4p2VB

2 uC6
~b!u1/2

3v̄
uDBu23/2, ~84!

which is a typical behavior of red wings for van der Waals
potentials. Note that auDu23/2 dependence in the blue wing
can occur if and only ifC6

(a).0, i.e., if and only if the van
der Waals interaction is more repulsive~or less attractive! in
the excited stateu1& than in the ground stateu0&.

2. Negligible adiabatic potentials: V115V225V0050

The stationary-phase pointsRS are now solutions of the
equation

D1d52$d21@V12~RS!#
2%1/2. ~85!

The absorption cross section~80! then takes the form

Q2~D!5
4p2RS

2

v̄

~VAAD12d2VBAD!2

uV128 ~RS!V12~RS!u
, ~86!

which, if the resonance form~14! for V12(R) is assumed, can
be transformed to

Q2~DB!5
4p2C3

3v̄
~VAADB2VBADB12d!2

DB
3/2~DB12d!3/2

. ~87!

This is exactly the formula derived by Cavalieriet al. @4#,
except that we have the factor 4p2 in place of the factor
16p in Ref. @4#.

When the coupling of atomA with the radiation field is
ignored (VA50), then Eq.~87! becomes

Q2~DB!5
4p2C3

3v̄

VB
2

DB
3/2~DB12d!1/2

. ~88!

Thus, in full analogy to the blue wing, forDB@2d , a power
law uDBu22 holds for the red wing, provided the adiabatic
potentials can be neglected. Similarly, forDB!2d, a
uDBu23/2 behavior, analogous to that given in Eq.~78! for the
blue wing, results from Eq.~88!. We should emphasize once
more that, as in the blue wing in this detuning range, a
uDBu23/2 dependence, if it occurs in the experimental profile,
should rather be related to the van der Waals interaction, as
in Eq. ~84!.

C. Validity of model

The range of validity of the line-shape formulas derived
in our treatment is restricted by our use of perturbation
theory and by the stationary-phase approximation employed
to evaluate the integral in Eq.~30!.

The perturbation solution of Eq.~26! is valid provided the
collisional interactionV(R) is much greater than the atom-
field interaction:

uV~R!u@uVA1VBu5
mA1mB

2\
E0 . ~89!

If we neglect the adiabatic potentials and take into account
only the resonance interactionV(R);V125C3R

23, then the
above condition yields

E0!Ecr5
2\

mA1mB
C3R

23. ~90!

To estimateEcr we take the valueC351.3310214 s m3 of
the effective resonance interaction Eu(J59/2) –Sr as given
by Niemax@8# and assume thatmA.mB51.6 a.u., which is
the value ofmB for Sr. For interatomic distancesR51.5
nm where the resonance interaction between Eu and Sr
dominates, one obtains from Eq.~90! E cr533107 V/m.
This value corresponds to a laser light intensity
I cr5e0Ecr

252.53108 W/cm2. Thus condition~90! is well
fulfilled for most experiments on laser-assisted collisions
performed in the weak-field regime corresponding to laser
fields of the order of a few MW/cm2 or less. At these inten-
sities, multiphoton effects are expected to be negligible, es-
pecially in the far wings of the line.
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The second limitation of our final line-shape formulas is
caused by the stationary-phase approximation used to evalu-
ate the integrals~30! for bn(`). This implies that the final
expressions for the line shape can be applied to the detunings
D corresponding to far wings such thatuDutc@1, wheretc is
the collisional duration. Note, however, that in Sec. II we
assumed that the adiabaticity condition 2d @tc

21 is fulfilled.
One can thus conclude that our line-shape formulas are valid
for detunings such thatuDu>2d.

V. SUMMARY

Starting with the model proposed by Cavalieriet al. @4#,
we have derived a more general formula for the absorption
profile in the line wings for the case of near-resonant colli-
sions of two dissimilar atoms in the presence of laser light.
We have shown that the absorption profile that takes into
account both the adiabatic potentials and the collisional cou-
pling between atoms as well as the coupling with the radia-
tion field can be expressed by means of the universal line-
shape function of the UFC treatment of pressure broadening
@10#. Our intention was to provide a firmer justification of the
model proposed in Ref.@4#, which predicts the possible oc-
currence of a strongly depressed red wing. We included col-
lisional shifts of the atomic levels into the model and used an
extended stationary-phase method that enables one to ex-
press the transition probabilities in terms of the Airy func-
tion.

In the limit that the adiabatic potentials can be neglected
and the only collisional interaction retained is the resonant

collisional coupling (;R23) between atoms, our model
agrees exactly with Ref.@4# except for a factorp/4. In the
same limit and foruDu@2d, our conditions~34! for station-
ary phase yield uS→p/4 with the consequence that
cosuS'sinuS'1/A2. In this case, our results agree with the
conclusion of Ref.@4# that the adiabatic collisional dressed
statesu1,n21& and u2,n21&, Eq. ~25!, at the stationary-
phase points, behave as super-radiant and subradiant Dicke
states, respectively.

We should emphasize that our Eqs.~69! and ~80! permit
evaluation of the absorption cross sectionsQ1(D) and
Q2(D) for any form of the potentials. Their range of validity
is restricted primarily by the quasistatic approximation,
which corresponds to collisions of ‘‘slow’’ atoms, when the
universal line-shape function can be approximated by its as-
ymptotic form~65!. We should also emphasize that the Bolt-
zmann factor exp@2V00(RS)/kT# in Eqs.~69! and ~80! may
in some cases have a strong influence on the far-wing profile,
as observed in the well-known experiments by Gallagher and
coworkers@12# for the resonance lines of alkali-metal atoms.
The Boltzmann factor does not appear in expression derived
in Ref. @4#, but it may also play a crucial role in studies of
the temperature dependence of the absorption cross section
in the far wings in the case of near-resonant collisions.
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