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Influence of atomic coherence induced by laser-assisted near-resonant collisions on the far-wing
absorption profile
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Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
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An analysis of near-resonant collisions between dissimilar atoms in the presence of a radiation field reveals
their effect on the far wings of the absorption profile. Extending a model due to Cavalieri, Arimondo, and
Matera, we take into account the collisional shifts of atomic levels, as well as the collisional coupling between
atoms and the coupling with the radiation field. A general formula for the absorption profile is derived and
expressed in terms of the universal line-shape function of the unified Franck-Condon treatment of pressure
broadening. We show that in some cases collision-induced coherence can give rise to a strongly depressed red
wing that exhibits transparency for some values of the laser detuning.

PACS numbds): 34.50.Rk

[. INTRODUCTION interaction, and indeed only its off-diagonal elements, re-
sponsible for the collisional coupling between the excited
Atomic coherences that are created when an atom iatomsA* and B*. No effort was made in their paper to
driven by a radiation field to a coherent superposition ofconsider the effects adiagonal elementsf the interatomic
states are the subject of an extensive series of experimengabtential, which represent the potential curves of the adia-
studies performed by laser-spectroscopy methods. Althougbatic molecular states of the+B system. This means that
in many cases the coherences are damped by collisions, thefee collisional shifts(in particular, those due to the van der
are processes such as pressure-induced extra resonances\Weals interaction of the atomic levels ar@ot included in
curring in four-wave mixing1] and in fluorescence emission their treatment. However, it is precisely these collisional
[2,3] in which the collisional interaction plays a critical role shifts of atomic levels that are the most important cause of
in the creation of the atomic coherences. the pressure broadening in spectral lines. Because the authors
Cavalieriet al. [4] have recently performed a theoretical of Ref.[4] have ignored such shifts, we find, in contrast to a
study of near-resonant collisions of two dissimilar atofns statement made by them, that their derivation of an absorp-
andB in the presence of a laser field and have shown that théon profile with a double slope similar to that experimentally
absorption profile in the line wings can be significantly af- observed by Niemax for the Eu-Sr systd®], cannotbe
fected by the collision-induced coherence between excitedegarded as evidence for the transition from a van der Waals
levels of these atoms. In their approach, the colliding atomso resonant interaction. Such an interpretation was originally
A and B are coupled to a radiation field with photons of proposed by Niemax on the basis of the quasistatic theory.
frequencyw, . The absorption process in this system can In the present paper, we extend the model of Cavalieri

follow either of two paths: et al. [4] to derive a general formula for the absorption pro-
file in the case of near-resonant collisions between dissimilar
A*+B+(n—1fw, (D atoms. The main modifications made to their model comprise
ALB4 /! the inclusion of collisional shifts of the atomic levels due to
nﬁwL T

adiabatic potentials and the application of cubic expansions
A+B*+(n—1Dhow, . of the corresponding phase functions in place of the qua-
dratic ones used in Ref4]. One goal of this paper is to show

The excitation of atond can take place either directly by the that the Niemax interpretation, which relates the double-
absorption of a photon or indirectly by a collisional-energy slope behavior of the absorption profile of the line wings to
transfer following photon absorption by atof As shown  the transition from a van der Waals to resonant interaction,
by Cavalieri et al. [4], quantum interference between the can, in fact, be corroborated in the framework of the model
transition amplitudes for these two paths can produce a sulproposed by Cavalieret al. [4] provided the collisional
stantial modification of the far-wing absorption profile. shifts of atomic levels are taken into account.

To calculate these amplitudes, Cavalietial. follow a
methodology developed by Berman and coworKéisand
apply the dressed-state technique, which has been used much Il. PHYSICAL MODEL

in the literature to describe laser-assisted collisip®g]. The starting point in our derivation is the same as in the

e e - gPpToACN of CavalieRt . 4] We consider  near resonan
P P PO'%ollision of two dissimilar atom# andB in the presence of

a laser radiation field
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The wave function ¥ (t)) of the dressedA+ B) quasi-

A—I - FC molecule can be expanded,

o) 2wt -|ﬂ*) """"‘Ilzi | P (t))=aolOn)+as|in—1)+a,/2n—1). (6)
The Schrdinger equation then gives the coupled differential
equations

@Dy (243
ia=h " 'Ha (7)
for the time derivatives, where

o) |B) |0} ao

A B AB
a=| ai |, (8)
FIG. 1. Schematic energy-level diagram for the near-resonant a
collisions of two dissimilar atoméa andB, showing the basis states o ] . o
and frequencies for the model of Cavalietial. [4]. and the Hamiltoniar (in the rotating-wave approximatiopn
is
where the amplitude?, is assumed to be constant during
collision. The atoms are taken to be two-level systems, as A+Voo Qa QOp
shown in Fig. 1, where the same notation is used as in Ref. 7 1H= Qn Vi Vi, _ (9)
[4]. We let|a) and|B) be the ground states ahd*) and Q N Sy
|B*) the excited states of aton#s and B, respectively. As B 12 ~201TVz
shown in Fig. 1,A=w_—wgy denotes the detuning of the Here

laser frequency w, from the unperturbed frequency
wo=[E(a*)—E(a)]/% of the|a)—|a*) transition in atom
A. The energy defect between the excited leyel$) and
|B*) is characterized by the parameter

Vo=~ Y a,B|V|a,B)=r"*0|V|0) (10)

represents the adiabatic potential describing the interaction
*y_ * betweenA andB when both atoms are in their ground states
E(a™)—E(B")
25:7, 3 aandg,

—_z—1 —z—1
whereE(a*) andE(B*) are the energies of the correspond- Vi=h"Xa* B|V]a*, B)=f"K1|V[1) 1D

ing levels of A andB, respectively. . . . . - . .
In the absence of the radiation field, the compound systen'is the adiabatic Eote_ntlal describing the interaction of afom
Sexcned to statex™ with the ground-state atofd, and

A+ B is described in the basis of the relevant product states:

0)=|a, B)=| )| B), Vo=t a,B*|V]e,B*)=t"Y2|V[2) (12

11)=|a*,B8)=|a*)| ) (4) describes the interaction of atoBhexcited to statgg* with
' ’ the ground-state atom A. In Re#], these adiabatic poten-

12)=|a, B*)=|a)| B*) tials were neglected and set to ze¥Q,=V,=V,»,=0. The

collisional coupling between the excited states is described
with energiesEy=0, E;=fiw,, and E,=#A(wo—25), re- by the off-diagonal element
spectively. The collisional interaction between atofmand

B is described by an operat®f(R), whereR denotes the Vip=f~ Ya*,BIV]e,B*)=h"X1|V[2), (13
interatomic distance. The strength of the atom-radiation-field = )
interaction is given by which in R_ef. [4] was assumed to be in the form of the
resonance interaction
0a=-220 0=-22, ) c,
V12:$v (14

whereu, andug are the dipole transition moments of atoms

A andB, respectively. with C5 a real constant. As in Ref4], we assume the colli-
To describe the evolution of the quasimolecular statesional interaction between the ground stdte and either of

modified by coupling to the radiation field, we follow Ref. the excited states is negligibl§y;~Vy,~0 .

[4] and apply a standard dressed-state picture. Using the As the next step, a unitary transformation

same notation as in Reff4], we introduce the field-dressed

atomic state$0,n), |1,n—1), and|2,n—1). The energies of b=Ta (15)

these states arg,,=%A, E;,_;=0, andE,,_,=—2%7,

respectively. is performed, with
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1 0 0 ib=%"1H'b. (26)
T={0 C0_39 sing | (16) Our aim is to calculate the absorption profile assuming
0 —sind coy that both atoms are initially in their ground states. The initial

, ) conditions needed for Eq26) are therefore
The coupled equationd) are then transformed into

bo(—*)=ag(—»)=1,

ib=A"Y(H'+TT 1b, (17)
where by(—»)=a,(—=)=0, (27)
bo by(—)=ay(—=)=0.
b=| by |, (18  Assuming that the atoms move along classical straight-line
b, trajectories, the interatomic distance at time is
R(t)=(p?+v%t?) Y2 wherep is the impact parameter and
and v the relative velocity.
, 1 We now consider two cases of absorption in tiet(B)
H'=THT - (19 quasimolecule. In the first case we consider positive laser
Let detuningsA >0, which correspond to frequencies in the blue
wing of the a— a* transition in atomA. The absorption
1 cross sectiorr(A) there can be generally written as
N Ta(A)=2m f |ba(=)[2pdp (29)
If the condition 0
Voo with n=1. The second case corresponds to negative laser
tan20= - (21 detuningsA< —23, i.e., to the red wing of th@— 8* tran-

sition in atomB, where the absorption cross section has the
is fulfilled, then the transformed Hamiltonidd’ has the same form(28) but with n=2. Equation(28) permits calcu-

form lations of the cross sections for a fixed relative velogitylo
compare with data from cell experiments, the equations
A+Vo Q1 O should be averaged over a Maxwellian distribution of veloci-
5-1H = QO A, O], (22) ties. The thermally averaged cross sections, which we denote
Q 0 Q1(A) andQ,(A), are defined by
2 —

where Qn(A)zi(vcrn(A)), n=1,2, (29
v

Q1=Qc00+Qgsing, Q,=0gc0H— SN
(23)  wherev is the mean relative velocity for a given temperature
T, and the symbo{ ) denotes an average over relative ve-
and e
locitiesv.

1
No==0+S(Vi+ Vo) =(D2+VYE (29 lll. PERTURBATION TREATMENT

. , To calculate the absorption cross sectiangA), Egs.
As in Ref.[4], the parameterX .. and _ can be interpreted (56 mys first be solved with the initial conditiori@?). If
as eigenvalues corresponding to thg adiabatic collisiong},e 35sume the laser field to be weak, the equations can be
dress statept+,n—1) and|—,n—1) defined by solved by perturbation theorySee the end of Sec. IV for a
(25) fuller discussion of the condition on the laser fi¢ldhe

+,n—1)= —1)+si - , : :
|+.n—1)=cosgf|1n—1)+sing|2n—1), first-order solutions for the dressed-state amplituigse)

|—,n—1)=—sing|1n—1)+coss|2n—1). andb, () following the collision can be written in the form
In the limit Vog=V1,=V5,=0, we obtainD=4 and Eqgs. by(0)| = Jw dtQ, (Hexd —i ()], (30)
(21)—(24) become identical to Eq$13)—(15) of Ref. [4]. —o

We assume that the energy defeét Between the excited
levels is large enough to make the collision adiabatic in thavhere(); and(}, are given in Eqs(23), and ¢ fuffills con-
absence of the laser field. This assumption is justified ifdition (21). The phase functiong,(t) and ¢(t) are given
28>1/7,, where 7. is the duration time of the collision. by
Using arguments given in Rdf4], one can show that when :
the (.:O||_ISI(3I2a.| interaction can be taken to be gdlabatlc, the ¢1(t):f [A+Veot') =\, (t)]dt (31)
matrix TT™~ in Eq. (17) can be neglected, leaving —o
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and

t
#a0= [ [A+Vet)-n @l @

Here we concentrate our attention on the behavior of

|bi(0)| and |by()| at large laser detuningg|, i.e., for
frequencies in the far wings of either the—a* or the
B— B* transition in atomA or B, respectively. At large
|A], the integrand in Eq(30) contributes significantly to

|b;(=0)| and|b,()| only in regions of stationary phase, i.e.,

near points¢g where

$n(te)=0. (33

According to Eqgs.(31) and (32), these stationary-phase

points are solutions of

A=\ (tg) —Vodts). (34)

In the case of straight-line trajectories, there are generally
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whereRs=R(ts) and

) dF,(R) , d?F,(R)
Fn<Rs>E( iR ) , Fn<RS>E(d—,;2
Rg Rg
(43
Here
F1(R)=V11+ Vap— 2Vgo+ 2(D?+ V2,12 (44)
and
F2(R)=V11+ Vap— 2Vgo— 2(D%+ V2,2 (45)
In Egs.(41) and(42),
Re)= dr —hk R 46
Up( S)= a . _; p( S)1 ( )

S

two stationary phase points for each given impact parameter

p:

1
t(sl)=;(R§—p2)1/2 (35)

and
(36)

corresponding to the same interatomic separafan To
evaluate the integra{30), we use anextendedstationary
phase method, in which the phase functief\sand ¢, are
approximated by cubic expansions arougd

1. 1.
Pn(D)= $n(ts) 5 bnlts) (t—ts)+ abn(ts)(t—ts)

(37)
The integrand in Eq30) then yields approximately
Q(tg)|?
|bn<oo>|2=SWZMy%’ZAﬂ(—yn), (38)

| pn(ts)]

where Ai(—Y) is the regular homogeneous Airy function

- s 3
Al(—y)—ﬁ » sexgi —ys+§s , (39
with
Yn=2" 2 hn(ts)1? du(ts)] 2. (40)
According to Egs(31), (32), and(24),
. 1
On(ts)=— EF{](RS)Up( Rs) (41)
and
1 " 2
$n(ts) == 5Fn(R)uy(Rs), (42)

with

HUp

2) 112
ko(Rg)=f"1 ZM[Ei—Voo(Rs)]—<R—S)] . (47

whereE; is the initial energy of the relative motion of the
colliding atoms, andg is their reduced mass.

Using the above expressions, we can write the parameter
Yn in Eq. (40) as

Yn= pn( RS)[kp( RS)]72/3! (48)

where

n 2/3
pn<Rs>=(E) [FARIFIFHRI 2 (49

Inserting Eq.(48) into (28) and replacing the integration over
impact parameters by an integration over the variabjg or

y,, one obtains, for the detuning dependence of the absorp-
tion cross sections;(A) ando,(A) at fixed relative veloc-

ity v, the result

2mQ(RORSFA(RY)|° )
O'n(A)—?ﬂT UFH(RS) ‘ Ws ’ (50)
where
W= |y ?AiX(—y)dy (51)
with
2\ 1/3
Yy =pn(Rg) ﬂ) [Ei—Voo(Re)] 2 (52

The factors(,, are given by(23)
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Q;(Rg) = Qc08h5+ Qgsindg, laser detuning\, absorption in the red wing can be reduced
(53  tozeroso that the system becomes transparent. This occurs
0,(Rg) =Qgcods— Q 5Sinds, for detuningsA for which Q,=0, since then by Eq961)

and(60) a,=0 andQ,(Rs)=0. The condition is thus
with 6s= 6(Rg) is the value off corresponding to the sta-

tionary phase-poinRs. Combining Egs(21) and(34), one Q, cods [Mg+Dg\ Y2
can show that Qg sinds ( M<—Ds (63
sing =i(MS_DS> v (54) If the adiabatic potentials are  neglected
S 2 Mg ’ (Voo=V11=V,,=0), then D=4 and Eq. (63) becomes
identical to the condition for a transparency point as given by
and Cavalieriet al. [4]:
1 [Mg+Dg\¥? Qp A \Y2 [Ag+26\12
COHs=—=| —7—| 55 . =
S 2 Mg ©9 Qg |A+26 ( Ag 64
whereDs=D(Rs) and hence, according to EQO), Here,Ag=—A— 265 denotes the laser detuning with respect
to the unperturbed frequency of the— 8* transition in
1 atomB (Ag>0 for A<—29).
De= 5+ 5[Vai(Re) ~Vzo R)] (56 (8 )

IV. QUASISTATIC LIMIT
and

The general formul460) for the absorption profile can be
Mg={D2+[ViARg) 1?2 (57)  substantially simplified in the quasistatic limit, which corre-
sponds to collisions of “slow” atoms whose collisional du-
To derive the thermally averaged cross sectiQys we  ration time 7. is large compared to the frequency resolution
insert (50) into Eq. (29) and assuming a Maxwellian distri- Aw:Aw7.>1. The “collisional duration time”r. should be
bution of initial energie<; of relative motion, we make use viewed as the time during which the frequency shift of the
of a method due to Sando and Wormho{@l Introducing  adiabatic transition lies withilw of the line position. In

the new variable defined by practice, “slow” collisions tend to be those for which the
stationary-phase points are located within the vicinity of the
yin =z¢, (58 turning points, wheréE;~V,(Rs). In such cases—as seen
from Eq. (52—y") =Z¢>1 and the dominant contribution
where to the integral in Eq.(62 comes from large values of
p2 zM¢z. As shown in Ref[10], the universal line-shape func-
. (n) .
Z(Sm: pn(Rs) , (59) tion L(zg") then has the asymptotic form
2ukT
we can replace the integration ou&rby an integration over L(z¢")~(36mzg") 12 [28¢|>1. (65)

. In this way, we obtain
After substitution in Eq(60) this yields

L@ Voo Rs)
Qn(A)=a, Z(Sn) [{_ kT

: (60) _|47RQ,(Ry)|? p[_ VodRs) | (66)

" UFi(Ry) kT

wherek is the Boltzmann constant, where

The stationary-phase poins=R(tg) are the solutions of
Eq.(34). In this paper, we consider only those cases in which
the solutionsRg of Eq. (34) are real.

V2 ZWQn(Rs)RsFr;(Rs)‘Z

1
R

an

_677 M
27kT

v

and A. Blue wing: A>0

w According to Eq.(34), for laser detuning\ >0, corre-
L(Z(s“))=j dée A% (— 2P éexp—¢7%) (62 sponding to the blue wing of the— a* transition in atom
0 A, the equation folRg can be written in the form

is the universal line-shape function of the unified Franck- 1

Condon(UFC) theory of pressure broadening0]. A+8==F(Rg)=Mg+Usg, (67)
Note the different behavior of the absorption profile given 2

by Eg. (60) in the blue f=1) and red 6=2) wings. Ac-

cording to Eq.(53), it is possible that at some value of the whereUgs=U(Rg) with
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1 A47°C5 (QpVA+25+QgVA)2
U(R)=3[Vi(RI+VoA R~ VodR).  (68) Qud)= 5"~ ramy a5 (76

Using Egs.(53) and (67), we write the absorption cross-

section formula(66) for the blue wing fi=1) as This formula shows exactly the same detuning dependence

as that derived by Cavalieet al.[4]. The only difference is
the multiplicative factor: in place of the factor #6in Ref.
[4], we have the factor #2.

47°RE [Qp Mg+ Ds+QgyMg—Dg)?

A = —_ ! ’ !

Quld) v |UsMs+DgDs+ViARs)VioRs)| If we neglect the coupling of atorB with the radiation

field (1g=0), then Eq.(76) becomes

Voo(Rs)
xXexpg — . (69

kT 5 )

_ 4 C3 QA
As previously, the primes denote derivatives with respect to Qu(A)= 3v AT(A+26)V% (77

R. Equation(69) can be further simplified in two limiting
cases|(1) when there are no resonance interactions betweeQ@bviously, forA>26 , this formula approaches|a| 2 be-
atoms, and2) when the adiabatic potentials are negligible. havior that is the result of the assumed formR ™~ 3) of the

) ) resonance interaction. However, k<24 , it reduces to
1. No resonance interactions: =0

In this caseMs=Dg and Eq.(67) for stationary-phase A)= 4m°Cyq QZA 78
points Rg becomes Qi(A)= 30 A3/2(25) 172s (78)
V11(Rs) = Voo(Rs) =A. (70)

which has the samgA| %2 power-law dependenc€’3) as

This equation is identical to the equation for Condon pointsthat derived from the quasistatic distribution in the case of
in the ordinary adiabatic theory of the absorption line shapdn€ van der Waals interaction. However, note that the origin
of the a— a* transition in atorA perturbed by atorBinits ~ ©f this dependence is quite different in the two cases, as
ground state@ [10,11. Equation (69) can then be trans- indicated by the very different multiplicative coefficients in

formed into the form the two formulas. _ _
It is true that a double-logarithm plot of the absorption
8 7729/2« Réexp[—voo( Ro)/KT] cross sectiori77) can be represented by two straight lines of
Q(A)=——= - - . (71)  slopes—3/2 for smallerA and to—2 for largeA. However,
v [V11(Rs) = Voo R9)| contrary to the opinion expressed in Rif], this can hardly
. o serve as evidence of the transition from van der Waals to
This is the usual one-perturber quasistatic distribution. resonant interaction since E7) was derived assuming that

Assuming a difference potential of the van der Waalsihe van der Waals interactions are negligible.
form An interpretation relating the change of slope from
—3/2 to — 2 with the transition from van der Waals to reso-
nant interaction was originally proposed by Nienj8 who
studied the absorption of the 459.53 nm line of Eu perturbed
by Sr. The correctness of his interpretation can be justified on
the basis of Eq(69) as follows: As shown by Niemax, the
4202 |CLo|v2 interaction Eu*EPg,_z) +Sr at large ir_1teratomic separatioRs _
Q(A)= #|A| -32 (73)  can be well described by a repulsive van der Waals potential
3 C{R™6 with C¢>0. Thus, neglectiny, in Eq. ( 69), we

. . . 73/2 . .
In this case, a double logarithmic plot of the absorption crosgbtaln the quasistatic dependend¢ “*given in Eq.(73) at

section against laser detunirgis given by a straight line small detunings and hence at largg. At smallRs, the
with slopéq—3/2 9 y 9 collisional couplingV;, may predominate; Eq(69) then

yields the|A| 2 dependence at large detunings if the adia-
batic potentials are neglected.

V11(R)—Voo(R)=C{'R~© (72)

with C{®¥>0, the absorption cross sectiofi71) for
Voo Rs) <KT takes the form of a power-law dependence

2. Negligible adiabatic potentials: Y,=V =V 4=0

In this caseUs=0, D=6, and the condition(67) for .
stationary-phase points takes the form B. Red wing: A<—26
Now we consider laser detunings<—26, correspond-
A+5={6"+[V1ARg 1?2 (74 ing to the red wing of thgg— B* transition in atomB. Ac-
cording to Eq«(34), the stationary phase poinf& are in this

The absorption cross sectid@9) can then be written case solutions of

472RE (QpVA+25+QgVA)? A+8=Ug—Msg. (79
QA = T VL RIVRo) (79

Using Egs.(58)—(60), the absorption cross sectid@f6) for
Assuming the resonance forth4) for V,5(R), we obtain the red wing (=2) can be expressed as
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Q,(A) = 47°RE [QpMg—Dg—QgyMg+Dg)? F{ Voo(Rs)} (80)
? 5 UM DEDs—VifRViARo) kT
|
By comparing this equation with E469), we note that the A7°Cqy (QpAg—QgAg+25)2
absorption profile in the red wing differs significantly from Qx(Ag)= 3 (2aV0e~ ovds (87

- 372 3/2
that in the blue wing. In particular, the red wing may be 3v Ag(Agt29)

strongly depressed for detunings in the vicinity of transpar-ruis is exactly the formula derived by Cavaliesi al. [4],

ency point defined by Eq63). As for the blue wing, we now except that we have the factorr4 in place of the factor
discuss two limiting cases in which E@B0) can be signifi- 167 in Ref. [4]

cantly simplified. When the coupling of atord with the radiation field is

1. No resonance interactions: }=0 ignored (2,=0), then Eq.(87) becomes

In this case Ms=Ds and Eq.(79) for stationary-phase _4m’Cy 02
points atRg becomes Qa(Ap) = —3= AT(Ag+20) 72 (88)
VooRg) = Voo(Rg) = — A, (8)  Thus, in full analogy to the blue wing, fatg>25 , a power

law |Ag| 2 holds for the red wing, provided the adiabatic
which is identical to the equation for Condon points in the jjiantials can be neglected. Similarly, fatg<2s5, a

ordinary theory of pressure broadening of an absorption lin Ag| %2 behavior, analogous to that given in Eg8) for the
B— B in atom B perturbed by atonA in its ground state ;e wing, results from Eq(88). We should emphasize once
a. Note thatAg>0 for A<—24. Equation(80) can thenbe 516 that, as in the blue wing in this detuning range, a
transformed to the form |Ag| =32 dependence, if it occurs in the experimental profile,

S should rather be related to the van der Waals interaction, as
87205 Réexd — Voo Rg)/KT] in Eq. (84).
QZ(A) = — ’ —\// 1 (82)
v | V22( RS) VOO( RS) |

C. Validity of model
which is identical to that from the quasistatic theory.

X i The range of validity of the line-shape formulas derived
In the case of a van der Waals interaction

in our treatment is restricted by our use of perturbation
theory and by the stationary-phase approximation employed
to evaluate the integral in E430).

_ 8 The perturbation solution of E¢26) is valid provided the
with C¢™ <0, Eq.(82) for Voo Rs) <kT takes the power-law  qjjisional interactionV(R) is much greater than the atom-
dependence field interaction:

VoA Rg) = Voo Rg) =C¥'R™© (83

47TZQE|C53B)|1/2 Mat ug
QZ(AB):3—5|A8|73/21 (84) IV(R)[>|Qa+Qg|= %

Zs. (89)

which is a typical behavior of red wings for van der WaalsIf we neglect the adiabatic potentials and take into account

potentials. Note that #A| %2 dependence in the blue wing only the resonance interactiéf(R) ~ V.= C3R ™3, then the

can occur if and only iiC{”>0, i.e., if and only if the van above condition yields

der Waals interaction is more repulsii@ less attractivein 0%

the excited statgl) than in the ground stat®). Fo< = ———C4R73. (90)
At up

2- Negligible adiapatic potentials: %=V2=Vos=0 To estimate,, we take the valu€;=1.3x10 *s m? of

the effective resonance interaction He{9/2)—Sr as given

by Niemax[8] and assume thai,=ug=1.6 a.u., which is

the value ofug for Sr. For interatomic distanceR=1.5

nm where the resonance interaction between Eu and Sr

dominates, one obtains from EQO0) & ,=3%x10" V/m.

This value corresponds to a laser light intensity

The stationary-phase poinRg are now solutions of the
equation

A+ 8=—{8°+[V1y(Rg) 132 (895

The absorption cross sectid@0) then takes the form

| o= €0%2=2.5x 10 W/cm?2. Thus condition(90) is well
2R2 [ _ 2 cr 0%cr
Q,(A)= 4W_R3(QA A+26-0sA) , (8e)  fulfilled for most experiments on laser-assisted collisions
v [Via(Re) V1Rl performed in the weak-field regime corresponding to laser

fields of the order of a few MW/cror less. At these inten-
which, if the resonance forifl4) for V,,(R) is assumed, can sities, multiphoton effects are expected to be negligible, es-
be transformed to pecially in the far wings of the line.



2546 J. SZUDY AND W. E. BAYLIS 53

The second limitation of our final line-shape formulas iscollisional coupling ¢R™3) between atoms, our model
caused by the stationary-phase approximation used to evalagrees exactly with Ref4] except for a factorr/4. In the
ate the integral$30) for b,(). This implies that the final same limit and fofA|>24, our conditions(34) for station-
expressions for the line shape can be applied to the detuningsy phase vyield 65— w/4 with the consequence that
A corresponding to far wings such tHat| 7.>1, wherer is  cosfe~sinfs~1/\/2. In this case, our results agree with the
the collisional duration. Note, however, that in Sec. Il weconclusion of Ref[4] that the adiabatic collisional dressed
assumed that the adiabaticity conditiod 2 r_ * is fulfilled. states|+,n—1) and|—,n—1), Eqg. (25), at the stationary-
One can thus conclude that our line-shape formulas are valighase points, behave as super-radiant and subradiant Dicke

for detunings such thdiA|=26. states, respectively.
We should emphasize that our E89) and (80) permit
V. SUMMARY evaluation of the absorption cross sectio@g(A) and

. . L Q,(A) for any form of the potentials. Their range of validity
Starting with the model proposed by Cavalietial. [4],  is" estricted primarily by the quasistatic approximation,
we have derived a more general formula for the absorptiogpich corresponds to collisions of “slow” atoms, when the
profile in the line wings for the case of near-resonant CO'"'universaI line-shape function can be approximated by its as-
sions of two dissimilar atoms in the presence of laser light mptotic form (65). We should also emphasize that the Bolt-
We have shown that the absorption profile that takes intd,\-nn factor exp-Vol(R9/KT] in Egs. (69) and (80) may

account both the adiabatic potentials and the collisional couy, some cases have a strong influence on the far-wing profile,

pling between atoms as well as the coupling with the radiazg ghserved in the well-known experiments by Gallagher and

tion field can be expressed by means of the universal linesq,yorkerg 12] for the resonance lines of alkali-metal atoms.

shape function of the UFC treatment of pressure broadeninghe gojtzmann factor does not appear in expression derived
[10]. Our intention was to provide a firmer justification of the ;, ret. [4], but it may also play a crucial role in studies of

model proposed in Ref4], which predicts the possible oc- he temperature dependence of the absorption cross section
currence of a strongly depressed red wing. We included col, e far wings in the case of near-resonant collisions.
lisional shifts of the atomic levels into the model and used an

extended stationary-phase method that enables one to ex-
press the transition probabilities in terms of the Airy func-
tion.

In the limit that the adiabatic potentials can be neglected This work was supported by the Natural Sciences and
and the only collisional interaction retained is the resonanEngineering Research Council of Canada.
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