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First iteration within the high-frequency Floquet theory of laser-atom interactions

M. Marinescdt and M. Gavrild?
Ynstitute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics,
Cambridge, Massachusetts 02138
2FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands
(Received 10 April 1995

The high-frequency Floquet theofFFT) of laser-atom interactions solves the space-translated version of
the Schrdinger equation by an iterative procedure, leading to corrections of increasing order in the inverse
photon energy. The lowest-order approximatibigh-frequency limit has been often evaluated before, but its
accuracy at finite frequencies has not been established. To explore this issue we have computed the corrections
yielded by the first-order iteration to the energy levels, and the ionization rates of a one-dimensional atomic
model with a Gauss attractive potential. We have then compared, at frequencies above the field-free ionization
potential |W,|, the HFFT results with those of a full Floquet calculation. We show that the agreement is
substantially improved by the inclusion of the HFFT corrective terms. The agreement is good at all intensities
for photon energies larger than several tinigg|. Even when the photon energy is marginally larger than
|Wy| the discrepancies vanish at sufficiently high intensities.

PACS numbe(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION lower, currently available experimental frequencies.
Results from the full Floquet theory have confirmed the
The high-frequency Floquet theotAFFT) of laser-atom HFFT predictions for the energy levels and ionization rates.
interactions is a version of the Floquet approach specificallyfhis was first the case with Floquet calculations done for
adapted to treat the high-frequeneycase. In addition, the ©One-dimensional1D), short-range potential models: Bhatt,
theory is convenient to handle the case of high intensities, ofiraux, and Burnetf11] have used a polarization potential,
the order of the atomic unit or higher. Originally developedhile Bardsley, Szke, and Comell412], and more recently
in the contest of laser-modified scatterifyy Gavrila and Y20 @nd Chu13], have used Gaussian potentials. Satisfac-

- ; P tory confirmation has come also from three-dimensional
Kaminski[1]), it was thereafter extended to ionizatidmoy i . .
Gavrila[2]: see alsd3]). (3D) calculations on hydrogen by Do Potvliege, Proulx,

As opposed to the standard Floguet approach, based and Shakeshaftl4a]; Dorr. Burke, Joachain, Noble, Purvis,

Q . ; ) )
the Schrdinger equation for the laboratory frané], the 2hd Terao-Dunseaffi4b]; and Dimou and Faisgll5]. Al

though, in both 1D and 3D cases, the frequencies considered

HFFT proceeds from the equivalent “space-translated” Veriyere not really high, the agreement was encouraging for the

sion of the Schrdinger equationi5], pertaining to the oscil- jeyel shifts, but it was only qualitative for the ionization
lating “Kramers frame.” A corresponding Floguet system Of yates. |n the latter case the comparison was handicapped by
equations is derived for this frame that yields the complexhe fact that the Born approximation had been made for the
quasienergies of the atomic states W—i(I'/2). As usual, final electron in the HFFT calculation &f, which is a severe
W is interpreted as the energy level of the state Hras its  |imitation at lower electronphoton energies[16]. Conse-
total ionization rate. The HFFT solves the Floquet system byjuently, it was not clear whether the discrepancylfowas
successive iterations, leading to results of increasing order idlue to the contribution of neglected higher orders in the
(1/w). Generala priori arguments indicate that this iteration HFFT or to the Born approximation.
procedure should converge at high enougf6]. The lowest It is therefore of substantial interest to evaluate accurately
approximation(the high-frequency limjtof the theory con- the first-order correctiod EV) yielded by the HFFT for re-
tributes toW only. The first iteration gives a complex cor- alistic 3D cases. This would give better quantitative results in
rection AE™), containing a contributio”AW to W, and  the high-frequency, high-intensity regime, where Floquet cal-
yields the first nonvanishing contribution ta culations based on expansions in spherical harmonics en-
The high-frequency limit of the HFFT has predicted ancounter convergence problems. Moreover, it should shed
exotic structure for atoms and molecules in superintenséight on the convergence of the iteration scheme of the
fields, e.g., for the hydrogen atdi], the hydrogen negative HFFT.
ion [8], the hydrogen molecular idf®]. lonization rates for In order to assess the feasibility of this program, we are
the hydrogen atom have been evaluated based on the formuaploring here the case of a 1D model atom. Such models
for I' given by the first iteration; this has led to the discoveryhave yielded valuable information on the physics of laser-
of “adiabatic stabilization710]. On the other hand, although atom interactions and on the directions to pursue in full-
the formal expression fakW was derived long agsee Ref.  fledged 3D computations. The field-free potential of our
[2] and Ref.[3], Sec. IV}, because of its complexity, no model has been chosen to be of the attractive Gauss form, a
attempt has been made to evaluate it so far. Moreover, therototype of a smooth short-range potential and, to some
previous results being valid at high frequencies, it was noextent, representative of a negative idiv]. The same po-
clear what errors were involved when applying them at theential has been used by Yao and Chu in their Floquet studies
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[13] and also by Fearnside, Potvliege, and Shakeshatft in theionization, e.g., see Ref3], Sec. Ill. For a short-range po-
study of shadow statgdl8]. The advantage of such a 1D tential and parityP, thee are characterized by the resonance
model is that not only can the corrected high-frequency ap¢Sieger} boundary conditions
proximation of the HFFT be calculated with relative ease, )
but even the full Floquet calculation needed for comparison p fnexpik,x)  for x—o
is within reasonable limits of difficulty. For comparing the bn(X)— (—1)P*"f exp(—ikyx) for x——oo, ©®
two calculations we shall consider only energieslarger
than the unperturbed binding energy of the initial statewherek,==*=[2(E+ nw)]¥2 andE is the complex quasien-
(single-photon ionization is possibleThe alternative case, ergy to be determined. The signs of the square roots should
when several photons are needed for ionization, cannot bee chosen such that
handled by the HFFT in its present form and leads to differ-
ent physics. Rek,>0, Imk,<0 for open channels;

In Sec. Il we recall the basics of the HFFT and present
some developments relevant to our study. In Sec. Il we de-

scribe the numer_ical methods used for Compuw and HFFT represents a procedure of successive approxima-
present an algorithm for 1D full Floquet calculations. Thetions within the full Floquet theory embodied by Edg)—

result§ for the energy levels and the ionization rates are gﬁve(;]), valid at high frequencies. It is achieved by carrying out
and discussed in Sec. IV. We conclude that the correctiong ,-cessive iterations on the system E4), each iteration

obtained from the first iteration of the HFFT improve sub-iqi 64 cing corrections of higher order ina/see Ref[3],
stantially the lowest-order approximation of the the@righ- Sec. IV. Tolowest (zeroth) ordein 1/w (the high-frequency

frequency limi. limit w—o) and at fixeday [19], only the componeng, of
Eq. (3) survives.E and ¢, reduce approximately to an ei-

Rek,<0, Imk,>0 forclosed channels. (7)

Il. HIGH-FREQUENCY FLOQUET THEORY genvalueW, and an eigenfunctiomi, of the Schrdinger
DEVELOPMENTS equation

The HFFT proceeds from the “space-translated” form of H—Wu.=0 H=2p2+V -~ 8
the Schidinger equation, which reads, in the 1D cdaeu. ( 0)Uo=0, 2 o(@0:X), ®
are used throughouf3] which replaces Eq(4) in this limit. As W(ayg) is real, the
. states of the high-frequency limit are staljfeonionizing.
1p2, i 2 Moreover,Wo_(ao) is mdependent ok at all ¢ (intensities.

[2PTHVOct a()F =i ot @ The 3D version of this equation was solved for a number of

_ _ physical system§7—9|.
V(x) is the potential of the unperturbed model-atom prob- At large «, the eigenstates of Eq8) undergo “di-

lem. For a monochromatic field(t) can be chosen as chotomy” (similarly to the 3D atomic states in a field of
v o linear polarization; see Ref7] and Ref.[3], Sec. V. The
a(t)=apcosmwt,  ap=I1""0"". (2)  meaning of this is that, at given largg, the wave functions

. ) ) . of the lower-lying states in the energy spectrum split into two
steady multiphoton ionization from a state of quasienergx(:iao_ As a consequence, an even-dderade-ungerage
E: degeneracy sets in: the lowest-lying even and odd pair of
energies coalesce, followed by the next higher-lying pair, etc.
l//(x,t):efiEtE bo(x)einet, 3) The fjrst iteration of the HFFT vyields th‘dyst-o_rder cor-
n rectionsin 1/w to the previous result. The correction\g, is
complex and given bysee Ref[2], Egs.(38)—(40) and, for
Insertion into Eq(1) yields the system of coupled equations more details, Ref[3], Egs.(101)—(105)]
for the Floquet componentis,, :

o AED = E <u0|VmG(W(m)+i€)Vm|u0>’ 9
m#0

[2P*+Vo—(E+nw)]dn== 2 Vombm, (4
whereG(E) is the Green’s operator associated to the Hamil-
where Vo(ag;x) are the Fourier components of tonian Eq.(8); we have denotet™=Wo+mo. All ener-
V(x+ a(t)). SinceV(x) is real and assumed to be even giesW(™ +j ¢ lie on the physical sheet of the Green’s opera-
[V(X)=V(-X)], we have tor G(E), either on the negative real axis, WW(™<0, or
' infinitesimally above the positive-energy continuum cut, if
Va(=x)=(—1)Vy(x), V_i(0)=Vy(x). (5 WT>0.
AE® can be decomposed as
These conditions lead to the possibility of finding solutions
with (generalizeglparity P=0 (even or 1 (odd), defined by
dn(—X)=(—1)P "¢, (x) for all n.
We are interested in deterr_ni.ning resonance state s_olutions AW= E (Ul Var?[(WM —H) "1V, ug),  (1D)
of the Floquet system describing constant rate multiphoton m#0

AEM=AW-i(T/2), (10)
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- —1rp?
r=2x 20 <UO|Vm5(W(m)—H)Vm|U0>, (12) [H-Vm]_ {vam}Px Z{vam}! (18)
m#

where a curly bracket indicates that tRe operator it con-
whereZ and § are the principal part and delta operatdrs. tains acts only on the function inside it. This leads to

can aiso be written a20(a)] [Vin [H Vil 1= = [Vin APV Pyl = —{PuVd?. (19

=272 > Kuf [Vilup)l (13 Finally,
m>0 P m

NV m)?

X

uo> . (20)

1 1
The summation ovem should now be performed over all AW= —22 —2<u0

. w " m>0 M
open channelsn>0. The summation oveP extends over

the two continuum wave funcuomfm, with definite parity oy the nonsingular potential we are considering, the expec-
P, belonging to the twofold degenerate energy subspacgtion values contained here are finite and &) displays
W(M: they are assumed to be normalized in the energy scaladeed the dominant order &fW with respect to (1b) [22].
[20(b)]. Thus, whatever the state;, AW—0 as w—o, and

A priori arguments indicate that the HFFT iteration pro- AW>0.
cedure in general, and the equations above in patrticular,
should be valid if the following high—frequency condition is I1l. ATOMIC MODEL AND COMPUTATION

satisfied(see Ref[3], Sec. IV D:
The field-free Gauss potential we have considered is

w>|Wo(ao), (14  [1318§

where [Wy(ay)| is an average excitation energy from the Vg(x)=—0.270 35 exp— (x/2)?]. (21)
ground state. In general this will be of the order of magni-_ )

tude of the binding energy of the ground statethe field This potential has only one bound state, of energy
(i.e., at the value of the field at which the ionization takesWo(0)=—0.1327. Its parameters were chosen so as to de-
place. We emphasize that there are no restrictionsrgnas scrlbg the behavior of the extra electron in tffield-free

long as condition Eq(14) is satisfied[21]. It is not clear, Cl~ ion[17]. _ _
however, how large the errors involved actually are at values We have carried out two computations, one to determine
of w satisfying only approximately the condition. Neverthe- the' corrected HFFT quasienergies, the other to determine
less, as the energies of all bound states of (Byvanish in  their exact Floguet counterparts. In both cases the Numerov
the limit of large ag, it is obvious that the larges,, the  algorithm was applied. As parity is conserette Eq(5)] it

better the HFFT will apply at any frequency. is sufficient to consider the intervad=0 if the adequate
The high-frequency condition Eq14) is confirmed by Parity condition is imposed at the origin. _ _
the fact that, when satisfied, the correctidE?), Eqgs.(9)— The determination of the corrected HFFT quasienergies

(13), is small. For', Eq.(13), this is due to the increasingly Pased on Eqs(10—(13), requires the evaluation of bound
rapid oscillations oti ask, andw tend tox. ForAW, we ~ @nd continuum eigenstates of E8), as well as of the asso-
hall it b m . he domi behavior i ciated Green'’s function. Bound-state eigenfunctions were de-
shall ‘prove it by extracting the dominant behavior In e mined by the following procedure. The bounded exponen-

(Lw). tial solution existing in the asymptotic regiom>0 for a trial

By Inserting in Eq. (1.1) the completeness equation y4ye of the parametdf was propagated inward. The nec-
Solug){uq|=1, we may write essary and sufficient condition that this solutiobnbe an
2(Wo—W,) eigenfunction is that it have parity. By denoting its values at
AW= D, 7S z pointsx=*h of the grid, whereh is the step, by.,, the

7O _ 2_ 2 2 . - - g
m>0 (Wo=W,)"—mw parity condition was imposed by requiring that

X (Uo|Vin| U ){Uig | Vin] ). (9 I(E)=0 wherel(E)=u_;—(~1)Pu,, (P=0,1).

Based on Eq(14), this can be approximated by (22

2 E was varied until Eq(22) was satisfied.
AW=—5 D" S, (W, — Wo){Uo| V| Uy}{Ug| Vil Ug), For continuum statesf(x), the integration is started in
@"m>0 M 16 the vicinity of the origin with the proper parity condition
(16) satisfied:u_;=(—1)Pu, . The phase shiftSLD and the nor-
provided that the surB, converges. By taking into account ma_llization constant are then determined by matching asymp-
that |u,) and |ug) are eigenstates dfl, symmetrizing the totically to the analytical form
result, and reusing the completeness equation, we get -
1 1 up(x) — (wk)l’zcos( Kx-+ 5E—P§ . (23
MW= 53 o (ol Vi [H Vinlllug).  (17) S
uE(x) is normalized in the energy scale, as required by
With P,=—idldx, we have Eq. (13) [20(b)]. The computation of" is straightforward.
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We evaluate the level shit W by applying the Dalgarno-
Lewis method 23]. By introducing the notation

Xk ) =7 [(W™ —H) " V| ug), (24)
Eqg. (11) can be written
AW= > (Uo|Vimlxi )- (25)
m#0

The function)(km satisfies the inhomogeneous equation

1 d?

TR (Vo= W™) | xi = +2Vilo

5 (26)

and boundary conditions following from E@24). The op-
erator7” [ (W—H) ] contained in Eq.(24) is the standing-
wave Green’s operator

G(W)=1[G(W+ie)+G(W—ie)]=Z[(W—H)1].
27

The associated Green’s function can be expressed in terms
the exact continuum solution.ﬁf(x) of Eq. (8) for energy
W>0 as

G(x,x";W) = rrtan( 50— 5%)
XUp(x)uR(x") —up(x)ui(x")]

™

~ cog 87— 6y)
X[UR(X=)UE(X<) — Ug(X=)ud(x2) ] (29

The asymptotic behavior o then follows from Egs.(24)

and(28). Concerning its behavior at the origin, we note that

whenG(W) is applied to a function of given parity it yields
a function of the same parity. A¥,,u, has definite parity
[bothug andV,, have definite parities; see E¢p)], this will
hold also fory, and should be implemented xt 0.

In the computation of Eq(25) the sum was truncated by
|m|=<6. The accuracy of this truncation dependsay the
relative error onAW is less than 10° at an=10, and less
than 102 at ag=30.

For the determination of the full Floquet quasienergies
we need to solve thé@runcated system of coupled second-
order differential equations Ed4), which can be cast into
the form

|d—;—Q(x) ®(x)=0. (29)
Here®(x) is a column withN components and
Q(x)=2[V(x)—El], (30)
whereV(x) is the NX N matrix
Viom=Va_m(X)—NwSpn. (31
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was started in the asymptotic regiae-0, with a set ofN
linearly independent column®(x) satisfying the boundary
conditions Eqgs.(6) and (7) for a trial value ofE. The col-
umn solutions were propagated inward with the Numerov
algorithm. When grouping the columns into Brx N matrix

V¥, at thenth step the linear system of complex equations
has to be solved:

(I=Th-)Wr =21+ 10T ) W= (I = Tny ) Wi,
(32

whereT ,=(h?/12)Q,, andW¥,, denotes the value oF at step
n. The resonance eigensolutidp(x) of Eq. (29) is a linear
combination of the columns contained in the mati#fx i.e.,
De(X)=W(X)R, (33
whereR is a column of constant®24]. However, in order
that®g(x) be an eigensolution it is necessary and sufficient
that it have well-defined parityas defined in Sec. )ll The
parity condition can be expressed by the requirement of the
%nishing of the columndZ(E), defined by
L E)=d_,—PD®,=(¥_,—P¥,)R=0; (34
hereP is the parity matrix, having only diagonal elements
consisting alternatively of-1, with the parity of the field-
free state in then=0 channel. Equatiori34) represents a
homogeneous system of linear equations, the compatibility
of which yields the condition theE be a quasienergy:
/(E)=de{(¥_,—PW¥,)=0. (35
Starting from an initial choice, new values & were se-
lected by a fast optimization library routine until E(B5)
was satisfied.

Because of the special nature of the resonance boundary
conditions Eq.(6), by which some of the Floquet compo-
nents are increasing exponentially at laxgevhereas others
decrease exponentially, during the propagation of the solu-
tion matrix W, its columns tend to become linearly depen-
dent, leading to strong numerical instabilities. In order to
avoid them, following Friedman, Jamieson, and Pre5i,
we have applied toFF from time to time a Gram Schmidt
orthogonalization procedure, so that the linear independence
of its columns remains preservé#6]. Moreover, we have
used a Johnson-tyge7] rescaling for each column o¥
separately. This consists of dividing all elements of the col-
umn by the absolute value of its largest component, when
larger than some prescribed valge.g., 16), in order to
keep all components within a reasonable range of magnitude.
With these refinements our integration method is very stable
even at large values af, and with a relatively large number
of channels. Its only restriction appears to be the computa-
tion time, which increases withy, [because the starting
value ofx has to be larger thaa,, to accommodate for the
size of the lobe of ), located around+ «, and a larger
number of iterations is requirédWe have carried out the

The solution has a complex character because of the rescemputations foray, up to 30 (see Sec. IY and in some

nance boundary conditions E¢6) imposed. The integration

cases up to 40not shown.
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As for our HFFT calculation, we have routinely limited 0.00
the number of channels fo|<86, i.e., 13 channels in all. To
assess the accuracy of this truncation we have studied the ~0.02
convergence of the values & as the number of channels .
was increased to 1¢at this point the calculation becomes S _p004t
rather time consuming The additional channels included &
were all open, as the changeBnhwhen adding closed chan- = ~0.06
nels is quite small in comparison to adding open ones. From 2
this comparison we infer that the relative accuracy of our E —0.08
truncation is better than 16 for bothW andI” at «g=1 and < '
all o considered. Axg=10 the errors oW are at the level E 010
of 1% or smaller, decreasing with, as expected. The error 9 '
onT is at the level of several perceri (s in general much 012
smaller thanWW). The errors are slightly higher af,=20. As '
a different check on our calculation, we have obtained essen- - . ‘ . . .
tially identical numerical replicaéwithin accuracies like the —0.14 0 30
ones just mentiongf our Wy( ) curves, shifted by+ w
or —w [28].
Finally, we mention that the computation time required to 0.00
evaluate the HFFT result, Eq$8) and (10)—(12), at given e
ag is about 10 times shorter than that of the corresponding -0.02 .
full Flogquet result, Eq.(4). In the HFFT case most of the _
time is spent for the calculation of thé,, whereas in the 3 —0.04 | _
full Floquet case this represents a small fraction of the time L
required by the solution of the differential equations. = _0.06 .
5
@
IV. RESULTS AND DISCUSSION s —008 1
In order to compare the quasienergies given by the cor- 8 ~0.10
rected HFFT and the full Floquet theory, we have chosen 9
only photon energies larger than the binding energy of the ~0.12
ground state of the field-free potentiab>|W;|. The values '
arew=0.14, 0.236photon energy of the ArF laserand 0.5. —0.14 , . , ) .
Note that the first valuev=0.14 is extremely unfavorable '
for the application of the HFFT according to the high-
frequency condition Eq(14), as it leads, in the absence of
the field, to a ratioR of photon energy to binding energy 0.00
equal to only 1.05. For the other two cases considered, the
ratio R is, respectively, 1.78 and 3.8. -0.02
Our results for the energy leveld and the total ioniza- -
tion ratesI’ are contained in Figs. 1-3. As apparent from § -0.04
Figs. 1 and 8v), although the potential, supports only one ha
bound state at smatt,, “light-induced’ excited states ma- E -0.06 |
terialize at various ¢-dependentvalues ofa. The first two o
of these states have been found before in RES] and a 2 _oo0s
study of the appearance of the first one was made in Ref. °
[18]. The occurrence of light-induced states had, however, % —0.10
been signaled previously, originally for short-range poten- -3
tials [11,12 and then also for physical systems such as H _0.12
[14] and H™ [8].
We have found a third light-induced state &> 25; the -0.14 - - s . s
second and third states are shown dor:0.236 in Fig. 3a). 0 5 10 15 20 25 30
Whereas the ground state is the lowest representative of the a, (a.u.)

even-parity manifold, the first light-induced state is the low-

est of the odd-parity manifold. The second induced state has g, 1. Energy-leveW dependence ony at differente: (a)
even parity and the third is odd. Note that the lowest even,—0.14 a.u.(b) =0.236 a.u., andc) »=0.5 a.u. Shown are the
and odd states coalesce energetically at large This is @  results of three calculations for the ground state and the first light-
manifestation of the even-odd degeneracy for the eigensolunduced excited state. Continuous curves: exact Floquet results,
tions of Eg. (8), mentioned in Sec. I, which in turn is a from Eq. (4); dotted curves: high-frequency limit results of the
consequence of the dichotomy of the eigensolutions. Likehigh-frequency Floguet theoryHFFT), from Eg. (8); dashed
wise, higher induced states will coalesce in p&egen and curves: first-order corrected HFFT, from Eq8) and (11).
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FIG. 2. Total ionization raté’ dependence oa,, for the ground
state and the first light-induced excited state, at the sanas in
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FIG. 3. Results for the energy levels and ionization rates of the
second and third light-induced excited statesvat0.236 a.u.(a)
contains three results for the energy of each state. Continuous
curves: exact Floguet results; dotted curves: high-frequency limit of
the HFFT; dashed curves: first-order corrected HRBT.contains
two ratesI” for each state. Continuous curve: second state, exact
Floquet; dashed curve: second state, HFFT; dotted curve: third
state, exact Flogquet; chain curve: third state, HFFT.

odd); however, for the two states in Fig.(&3 this happens at
higher values ofyy than we have considered.

Figures 1 and @&) contain three curves for each of the
levels considered: one represents the level according to the
high-frequency limit equatiohEqg. (8)], the second includes
the high-frequency correctioAW [Eq. (11)], and the third
gives the full Floguet calculation. As apparent, already the
high-frequency limit resultW(a,) [Eq. (8)], gives in all
cases the global dependence @fof the exact Floquet re-
sult. Inclusion of the correctioAW(«aq, ) substantially im-

Fig. 1. Two curves are shown for each state, the exact Floqugdroves the agreement in that now the corrected energy curve
result from Eq.(8) and the lowest-order HFFT result from acquires the same undulations as the Floquet result, in some
Eg. (13). Continuous curve: ground state, exact Floquet; dashedases shifted i, but in others coinciding with the Floquet
curve: ground state, HFFT; dotted curve: excited state, exact Floresult.

quet; chain curve: excited state, HFFT.

More specifically, the agreement is enhanced atvglby
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increasingw, which confirms the high-frequency character 0.04
of the theory. On the other hand, for amy at largeq, the ‘
agreement becomes complete, even if there were discrepan- f
cies at lowerag. This is because, as mentioned in Sec. I,
the ratioR of the photon energy to the binding energy of the
ground state becomes larger. Thus, even in our most unfa-
vorable case»=0.14, good visual agreement sets in at about
ag=25, whereR=8.7. For w=0.236 and 0.5 very good
agreement sets in for all states in Figgb)land 3a) starting

at aboutay= 10, whereR is approximately 7.6. For higher
frequencies, such a®=0.5, there is excellent agreement
already ata=0 [28].

Moreover, note that whenever the agreement of the cor- :_
rected HFFT calculation agrees well with the exact Floquet VIR
calculation[i.e., the condition Eq(14) is well satisfied, 0.00 & 08 R ST
both lie above the high-frequency limit result given by o 5 10 15 20 25 30
Eq. (8). This means thaAW=>0, as predicted by Eq(20). o (a.u.)

Figures 2 and &) contain the results foF. For each of
the two lowest-lying states we give in Fig. 2 two curves: one FIG. 4. Comparison ofl" values for the ground state at
is the HFFT result based on E@l3), the other the exact w=0.236 a.u. according to the Born approximation of the HFFT
Floquet result. Since the HFFT formula used represents thesult (dotted curvg, the unapproximated HFFT resultiashed
lowest-order approximation within the theory fbr it can- curve), and the exact full Floquet resuitontinuous curve
not be expected to fare too well, especially at lowerThe
shape of the curves is, nevertheless, the same for both caIcH—5<a
lations, although sometimes shifted ,. Here too the :
agreement improves with increasiangand ends up by being
complete at large enough, .

As has been noted befof&3], this model displays stabi-
lization against ionization, similarly to that found in the 3D plausible that even under these circumstarfaégen no con-
case of the hydrpgen atqlfrlo,3]: I' tends to zero asy stant ionization rate can be definethe lifetime calculated
increases, albeit in an oscillatory manner. The reasons for tha?ccording tor= (1) will be indicative of that obtained
oscillatory behavior here, and its absence in the 3D casg
agrgoilslculéj??r?altnth?jigg. f\é\gﬁgrgﬁg%ﬁ&;ﬂi’:g{sgm states materialize in this model with rather smEll(long
in the case of the “soft’ Coulomb potentiand shall not lifetimes), s'uc'h th.at th.e condition_fqr the validity of thg Flo-

. quet description is fairly well satisfiefB2]. For a physical
pursue _the issue further. _ system in this situation this would imply that the light-

In Fig. 4 we compare atg—o.236 the H'.:FT _result induced state would be apt to leave an observable signature
Eqg. (13) for I', the corresponding Born approximation, and

the exact Floquet resulfThe HFFT Born approximation is In selected experiments.

. L . We finally consider the numerical accuracy of our com-
P
obtained by replacing in Eq(13) ukm(x) by the asymptotic putation, by comparing it to those of Yao and JHi8] and

form Eq. (23) with 5 =0.] As apparent, the Born approxi- Fearnside, Potvliege, and ShakesHa®], at w=0.236, a
mation worsens the agreement of the HFFT result with th&ase considered also by these authors. Our results agree well
exact Floquet result, in particular at largg [30]. We there-  at the graphical level, with those in Figs. 2—4 of Rgf3]

fore expect that future HFFT calculations Bf for atomic  for W andI". Some numerical results were given in Table |
hydrogen, done without the Born approximation, will sub-of Ref. [13] for I" that can be compared to ours. For
stantially improve the agreement with the full Floguet calcu-o,=2.25, 5.25, 7.0, 10.4, and 12.7, we find, respectively,
lations of Refs[14] and[16]. ['=3.5384x 102, 1.3844<10 3, 3.9526< 103,

On the example of this model we now comment on the7.3553<10 4, and 2.015%10 3. The agreement is to
capability of the full stationary Floquet theory to describewithin less than 0.1% for the first value, but only to within
physical situationgi.e., agree with wave-packet dynamics about 2% for the following onef33]. Also, the agreement
It has been emphasized that a necessary condition is that thgth Fig. 1 of Ref.[17], representing the case of small val-
value ofI' be sufficiently smal(see Ref[31] and Ref.[3],  uesay, is good at the graphical level.

Sec. I B) such thatl <W®M, where W™ is the kinetic In conclusion our investigation of the first iteration
energy of the slowest ionized electro (is the minimal  within the high-frequency Floquet theory has shown that the
number of photons required for ionization, in our casecorrection it yields to the energy levels of the lowest-order
N=1). This is required in order that the asymptotic channelapproximation(high-frequency limit substantially improves
momentak,, (n=N) in Eq. (6) be quasireal and hence qua- the agreement with the exact Floquet result at lower frequen-
siobservable. From Figs.(d), 1(c), 2(b), and Zc), it follows cies. This illustrates the potential of the HFFT and is an
that the condition is fairly well satisfied for the ground stateincentive to calculate the correction for the realistic case of
at @=0.236 and 0.5 and foray outside the interval one-electron atoms, where a larger-scale computation is

0.03
o = 0.236 a.u.

0.02 |}

0.01 Hi

lonization rate I" (a.u.)

0<5, whereI' has its largest maximum; however,
even on this interval is smaller thatW?). For w=0.14, on
the other hand]" becomes larger thaw®) around ay=2
[see Figs. (@) and Za)] and therefore Floquet theory be-
comes totally inadequate in this vicinity. Nevertheless, it is

fom wave-packet dynamics. Note that all light-induced
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needed, but nevertheless simpler than a full-fledged Floquehe EC Network “Atoms in Superintense Laser Fields.” We
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tion the Gram-Schmidt stabilization procedure, and I. Sim-
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