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The high-frequency Floquet theory~HFFT! of laser-atom interactions solves the space-translated version of
the Schro¨dinger equation by an iterative procedure, leading to corrections of increasing order in the inverse
photon energy. The lowest-order approximation~high-frequency limit! has been often evaluated before, but its
accuracy at finite frequencies has not been established. To explore this issue we have computed the corrections
yielded by the first-order iteration to the energy levels, and the ionization rates of a one-dimensional atomic
model with a Gauss attractive potential. We have then compared, at frequencies above the field-free ionization
potential uW0u, the HFFT results with those of a full Floquet calculation. We show that the agreement is
substantially improved by the inclusion of the HFFT corrective terms. The agreement is good at all intensities
for photon energies larger than several timesuW0u. Even when the photon energy is marginally larger than
uW0u the discrepancies vanish at sufficiently high intensities.

PACS number~s!: 32.80.Rm, 42.50.Hz

I. INTRODUCTION

The high-frequency Floquet theory~HFFT! of laser-atom
interactions is a version of the Floquet approach specifically
adapted to treat the high-frequencyv case. In addition, the
theory is convenient to handle the case of high intensities, of
the order of the atomic unit or higher. Originally developed
in the contest of laser-modified scattering~by Gavrila and
Kaminski @1#!, it was thereafter extended to ionization~by
Gavrila @2#; see also@3#!.

As opposed to the standard Floquet approach, based on
the Schro¨dinger equation for the laboratory frame@4#, the
HFFT proceeds from the equivalent ‘‘space-translated’’ ver-
sion of the Schro¨dinger equation@5#, pertaining to the oscil-
lating ‘‘Kramers frame.’’ A corresponding Floquet system of
equations is derived for this frame that yields the complex
quasienergies of the atomic statesE5W2 i (G/2). As usual,
W is interpreted as the energy level of the state andG as its
total ionization rate. The HFFT solves the Floquet system by
successive iterations, leading to results of increasing order in
(1/v). Generala priori arguments indicate that this iteration
procedure should converge at high enoughv @6#. The lowest
approximation~the high-frequency limit! of the theory con-
tributes toW only. The first iteration gives a complex cor-
rection DE(1), containing a contributionDW to W, and
yields the first nonvanishing contribution toG.

The high-frequency limit of the HFFT has predicted an
exotic structure for atoms and molecules in superintense
fields, e.g., for the hydrogen atom@7#, the hydrogen negative
ion @8#, the hydrogen molecular ion@9#. Ionization rates for
the hydrogen atom have been evaluated based on the formula
for G given by the first iteration; this has led to the discovery
of ‘‘adiabatic stabilization’’@10#. On the other hand, although
the formal expression forDW was derived long ago~see Ref.
@2# and Ref. @3#, Sec. IV!, because of its complexity, no
attempt has been made to evaluate it so far. Moreover, the
previous results being valid at high frequencies, it was not
clear what errors were involved when applying them at the

lower, currently available experimental frequencies.
Results from the full Floquet theory have confirmed the

HFFT predictions for the energy levels and ionization rates.
This was first the case with Floquet calculations done for
one-dimensional~1D!, short-range potential models: Bhatt,
Piraux, and Burnett@11# have used a polarization potential,
while Bardsley, Szo¨ke, and Comella@12#, and more recently
Yao and Chu@13#, have used Gaussian potentials. Satisfac-
tory confirmation has come also from three-dimensional
~3D! calculations on hydrogen by Do¨rr, Potvliege, Proulx,
and Shakeshaft@14a#; Dörr. Burke, Joachain, Noble, Purvis,
and Terao-Dunseath@14b#; and Dimou and Faisal@15#. Al-
though, in both 1D and 3D cases, the frequencies considered
were not really high, the agreement was encouraging for the
level shifts, but it was only qualitative for the ionization
rates. In the latter case the comparison was handicapped by
the fact that the Born approximation had been made for the
final electron in the HFFT calculation ofG, which is a severe
limitation at lower electron~photon! energies@16#. Conse-
quently, it was not clear whether the discrepancy forG was
due to the contribution of neglected higher orders in the
HFFT or to the Born approximation.

It is therefore of substantial interest to evaluate accurately
the first-order correctionDE(1) yielded by the HFFT for re-
alistic 3D cases. This would give better quantitative results in
the high-frequency, high-intensity regime, where Floquet cal-
culations based on expansions in spherical harmonics en-
counter convergence problems. Moreover, it should shed
light on the convergence of the iteration scheme of the
HFFT.

In order to assess the feasibility of this program, we are
exploring here the case of a 1D model atom. Such models
have yielded valuable information on the physics of laser-
atom interactions and on the directions to pursue in full-
fledged 3D computations. The field-free potential of our
model has been chosen to be of the attractive Gauss form, a
prototype of a smooth short-range potential and, to some
extent, representative of a negative ion@17#. The same po-
tential has been used by Yao and Chu in their Floquet studies
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@13# and also by Fearnside, Potvliege, and Shakeshaft in their
study of shadow states@18#. The advantage of such a 1D
model is that not only can the corrected high-frequency ap-
proximation of the HFFT be calculated with relative ease,
but even the full Floquet calculation needed for comparison
is within reasonable limits of difficulty. For comparing the
two calculations we shall consider only energiesv larger
than the unperturbed binding energy of the initial state
~single-photon ionization is possible!. The alternative case,
when several photons are needed for ionization, cannot be
handled by the HFFT in its present form and leads to differ-
ent physics.

In Sec. II we recall the basics of the HFFT and present
some developments relevant to our study. In Sec. III we de-
scribe the numerical methods used for computingDW and
present an algorithm for 1D full Floquet calculations. The
results for the energy levels and the ionization rates are given
and discussed in Sec. IV. We conclude that the corrections
obtained from the first iteration of the HFFT improve sub-
stantially the lowest-order approximation of the theory~high-
frequency limit!.

II. HIGH-FREQUENCY FLOQUET THEORY
DEVELOPMENTS

The HFFT proceeds from the ‘‘space-translated’’ form of
the Schro¨dinger equation, which reads, in the 1D case~a.u.
are used throughout! @3#

@ 1
2P

21V„x1a~ t !…#C5 i
]C

]t
. ~1!

V(x) is the potential of the unperturbed model-atom prob-
lem. For a monochromatic fielda(t) can be chosen as

a~ t !5a0cosvt, a05I 1/2v22. ~2!

The Floquet ansatz is used to find solutions describing
steady multiphoton ionization from a state of quasienergy
E:

c~x,t !5e2 iEt(
n

fn~x!e2 invt. ~3!

Insertion into Eq.~1! yields the system of coupled equations
for the Floquet componentsfn :

@ 1
2P

21V02~E1nv!#fn52 (
m

mÞn

Vn2mfm , ~4!

where Vn(a0 ;x) are the Fourier components of
V„x1a(t)…. Since V(x) is real and assumed to be even
@V(x)5V(2x)#, we have

Vn~2x!5~21!nVn~x!, V2n~x!5Vn~x!. ~5!

These conditions lead to the possibility of finding solutions
with ~generalized! parity P50 ~even! or 1 ~odd!, defined by
fn(2x)5(21)P1nfn(x) for all n.

We are interested in determining resonance state solutions
of the Floquet system describing constant rate multiphoton

ionization, e.g., see Ref.@3#, Sec. III. For a short-range po-
tential and parityP, thee are characterized by the resonance
~Siegert! boundary conditions

fn
P~x!→H f nexp~ iknx! for x→`

~21!P1nf nexp~2 iknx! for x→2`,
~6!

wherekn56@2(E1nv)#1/2 andE is the complex quasien-
ergy to be determined. The signs of the square roots should
be chosen such that

Rekn.0, Imkn,0 for open channels;

Rekn,0, Imkn.0 for closed channels. ~7!

HFFT represents a procedure of successive approxima-
tions within the full Floquet theory embodied by Eqs.~4!–
~7!, valid at high frequencies. It is achieved by carrying out
successive iterations on the system Eq.~4!, each iteration
introducing corrections of higher order in 1/v; see Ref.@3#,
Sec. IV. Tolowest (zeroth) orderin 1/v ~the high-frequency
limit v→`) and at fixeda0 @19#, only the componentf0 of
Eq. ~3! survives.E andf0 reduce approximately to an ei-
genvalueW0 and an eigenfunctionu0 of the Schro¨dinger
equation

~H2W0!u050, H[ 1
2P

21V0~a0 ;x!, ~8!

which replaces Eq.~4! in this limit. As W0(a0) is real, the
states of the high-frequency limit are stable~nonionizing!.
Moreover,W0(a0) is independent ofv at alla0 ~intensities!.
The 3D version of this equation was solved for a number of
physical systems@7–9#.

At large a0 the eigenstates of Eq.~8! undergo ‘‘di-
chotomy’’ ~similarly to the 3D atomic states in a field of
linear polarization; see Ref.@7# and Ref.@3#, Sec. V!. The
meaning of this is that, at given largea0 , the wave functions
of the lower-lying states in the energy spectrum split into two
nonoverlapping parts, concentrated around the points
x56a0 . As a consequence, an even-odd~gerade-ungerade!
degeneracy sets in: the lowest-lying even and odd pair of
energies coalesce, followed by the next higher-lying pair, etc.

The first iteration of the HFFT yields thefirst-order cor-
rectionsin 1/v to the previous result. The correction toW0 is
complex and given by@see Ref.@2#, Eqs.~38!–~40! and, for
more details, Ref.@3#, Eqs.~101!–~105!#

DE~1!5 (
mÞ0

^u0uVmG~W~m!1 i e!Vmuu0&, ~9!

whereG(E) is the Green’s operator associated to the Hamil-
tonian Eq.~8!; we have denotedW(m)[W01mv. All ener-
giesW(m)1 i e lie on the physical sheet of the Green’s opera-
tor G(E), either on the negative real axis, ifW(m),0, or
infinitesimally above the positive-energy continuum cut, if
W(m).0.

DE(1) can be decomposed as

DE~1!5DW2 i ~G/2!, ~10!

DW5 (
mÞ0

^u0uVmP @~W~m!2H !21#Vmuu0&, ~11!
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G52p (
mÞ0

^u0uVmd~W~m!2H !Vmuu0&, ~12!

whereP andd are the principal part and delta operators.G
can also be written as@20~a!#

G52p (
m.0

(
P

z^ukm
P uVmuu0& z2. ~13!

The summation overm should now be performed over all
open channelsm.0. The summation overP extends over
the two continuum wave functionsukm

P , with definite parity

P, belonging to the twofold degenerate energy subspace
W(m); they are assumed to be normalized in the energy scale
@20~b!#.

A priori arguments indicate that the HFFT iteration pro-
cedure in general, and the equations above in particular,
should be valid if the following high-frequency condition is
satisfied~see Ref.@3#, Sec. IV D!:

v@uW̄0~a0!u, ~14!

where uW̄0(a0)u is an average excitation energy from the
ground state. In general this will be of the order of magni-
tude of the binding energy of the ground statein the field
~i.e., at the value of the field at which the ionization takes
place!. We emphasize that there are no restrictions ona0 , as
long as condition Eq.~14! is satisfied@21#. It is not clear,
however, how large the errors involved actually are at values
of v satisfying only approximately the condition. Neverthe-
less, as the energies of all bound states of Eq.~8! vanish in
the limit of largea0 , it is obvious that the largera0 , the
better the HFFT will apply at any frequency.

The high-frequency condition Eq.~14! is confirmed by
the fact that, when satisfied, the correctionDE(1), Eqs.~9!–
~13!, is small. ForG, Eq. ~13!, this is due to the increasingly
rapid oscillations ofukm

P askm andv tend to`. ForDW, we

shall prove it by extracting the dominant behavior in
(1/v).

By inserting in Eq. ~11! the completeness equation
Ssuus&^usu5I , we may write

DW5 (
m.0

PSs

2~W02Ws!

~W02Ws!22m2v2

3^u0uVmuus&^usuVmuu0&. ~15!

Based on Eq.~14!, this can be approximated by

DW>
2

v2 (
m.0

1

m2Ss~Ws2W0!^u0uVmuus&^usuVmuu0&,

~16!

provided that the sumSs converges. By taking into account
that uus& and uu0& are eigenstates ofH, symmetrizing the
result, and reusing the completeness equation, we get

DW>
1

v2 (
m.0

1

m2 ^u0u†Vm ,@H,Vm#‡uu0&. ~17!

With Px[2 i ]/]x, we have

@H,Vm#52$PxVm%Px2
1
2 $Px

2Vm%, ~18!

where a curly bracket indicates that thePx operator it con-
tains acts only on the function inside it. This leads to

†Vm ,@H,Vm#‡52@Vm ,$PxVm%Px#52$PxVm%2. ~19!

Finally,

DW>
1

v2 (
m.0

1

m2 K u0UF]Vm

]x G2Uu0L . ~20!

For the nonsingular potential we are considering, the expec-
tation values contained here are finite and Eq.~20! displays
indeed the dominant order ofDW with respect to (1/v) @22#.
Thus, whatever the stateu0 , DW→0 as v→`, and
DW.0.

III. ATOMIC MODEL AND COMPUTATION

The field-free Gauss potential we have considered is
@13,18#

VG~x!520.270 35 exp@2~x/2!2#. ~21!

This potential has only one bound state, of energy
W0(0)520.1327. Its parameters were chosen so as to de-
scribe the behavior of the extra electron in the~field-free!
Cl2 ion @17#.

We have carried out two computations, one to determine
the corrected HFFT quasienergies, the other to determine
their exact Floquet counterparts. In both cases the Numerov
algorithm was applied. As parity is conserved@see Eq.~5!# it
is sufficient to consider the intervalx>0 if the adequate
parity condition is imposed at the origin.

The determination of the corrected HFFT quasienergies,
based on Eqs.~10!–~13!, requires the evaluation of bound
and continuum eigenstates of Eq.~8!, as well as of the asso-
ciated Green’s function. Bound-state eigenfunctions were de-
termined by the following procedure. The bounded exponen-
tial solution existing in the asymptotic regionx.0 for a trial
value of the parameterE was propagated inward. The nec-
essary and sufficient condition that this solutionu be an
eigenfunction is that it have parity. By denoting its values at
pointsx56h of the grid, whereh is the step, byu61 , the
parity condition was imposed by requiring that

l ~E!50 where l ~E![u212~21!Pu11 ~P50,1!.
~22!

E was varied until Eq.~22! was satisfied.
For continuum statesuk

P(x), the integration is started in
the vicinity of the origin with the proper parity condition
satisfied:u215(21)Pu11 . The phase shiftdk

P and the nor-
malization constant are then determined by matching asymp-
totically to the analytical form

uk
P~x! →

x→1`

~pk!21/2cosS kx1dk
P2P

p

2 D . ~23!

uk
P(x) is normalized in the energy scale, as required by

Eq. ~13! @20~b!#. The computation ofG is straightforward.
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We evaluate the level shiftDW by applying the Dalgarno-
Lewis method@23#. By introducing the notation

uxkm
&5P @~W~m!2H !21#Vmuu0&, ~24!

Eq. ~11! can be written

DW5 (
mÞ0

^u0uVmuxkm
&. ~25!

The functionxkm
satisfies the inhomogeneous equation

F12 d2

dx2
2~V02W~m!!Gxkm

512Vmu0 ~26!

and boundary conditions following from Eq.~24!. The op-
eratorP @(W2H)21# contained in Eq.~24! is the standing-
wave Green’s operator

G̃~W![ 1
2 @G~W1 i e!1G~W2 i e!#5P @~W2H !21#.

~27!

The associated Green’s function can be expressed in terms of
the exact continuum solutionsuk

P(x) of Eq. ~8! for energy
W.0 as

G̃~x,x8;W!5ptan~dk
02dk

1!

3[uk
0~x!uk

0~x8! 2uk
1~x!uk

1~x8!]

2
p

cos~dk
02dk

1!

3@uk
0~x.!uk

1~x,!2uk
1~x.!uk

0~x,!#. ~28!

The asymptotic behavior ofxkm
then follows from Eqs.~24!

and~28!. Concerning its behavior at the origin, we note that
whenG̃(W) is applied to a function of given parity it yields
a function of the same parity. AsVmu0 has definite parity
@bothu0 andVm have definite parities; see Eq.~5!#, this will
hold also forxkm

and should be implemented atx50.
In the computation of Eq.~25! the sum was truncated by

umu<6. The accuracy of this truncation depends ona0; the
relative error onDW is less than 1026 at a0510, and less
than 1023 at a0530.

For thedetermination of the full Floquet quasienergies,
we need to solve the~truncated! system of coupled second-
order differential equations Eq.~4!, which can be cast into
the form

F I d2dx2
2Q~x!GF~x!50. ~29!

HereF(x) is a column withN components and

Q~x!52@V~x!2EI #, ~30!

whereV(x) is theN3N matrix

Vnm5Vn2m~x!2nvdnm . ~31!

The solution has a complex character because of the reso-
nance boundary conditions Eq.~6! imposed. The integration

was started in the asymptotic regionx.0, with a set ofN
linearly independent columnsF(x) satisfying the boundary
conditions Eqs.~6! and ~7! for a trial value ofE. The col-
umn solutions were propagated inward with the Numerov
algorithm. When grouping the columns into anN3N matrix
C, at thenth step the linear system of complex equations
has to be solved:

~ I2Tn21!Cn215~2I110Tn!Cn2~ I2Tn11!Cn11 ,
~32!

whereTn5(h2/12)Qn andCn denotes the value ofC at step
n. The resonance eigensolutionFE(x) of Eq. ~29! is a linear
combination of the columns contained in the matrixC, i.e.,

FE~x!5C~x!R, ~33!

whereR is a column of constants@24#. However, in order
thatFE(x) be an eigensolution it is necessary and sufficient
that it have well-defined parity~as defined in Sec. II!. The
parity condition can be expressed by the requirement of the
vanishing of the columnL(E), defined by

L~E![F212PF15~C212PC1!R50; ~34!

hereP is the parity matrix, having only diagonal elements
consisting alternatively of61, with the parity of the field-
free state in then50 channel. Equation~34! represents a
homogeneous system of linear equations, the compatibility
of which yields the condition thatE be a quasienergy:

l ~E![det~C212PC1!50. ~35!

Starting from an initial choice, new values ofE were se-
lected by a fast optimization library routine until Eq.~35!
was satisfied.

Because of the special nature of the resonance boundary
conditions Eq.~6!, by which some of the Floquet compo-
nents are increasing exponentially at largex, whereas others
decrease exponentially, during the propagation of the solu-
tion matrix C, its columns tend to become linearly depen-
dent, leading to strong numerical instabilities. In order to
avoid them, following Friedman, Jamieson, and Preston@25#,
we have applied toC from time to time a Gram2Schmidt
orthogonalization procedure, so that the linear independence
of its columns remains preserved@26#. Moreover, we have
used a Johnson-type@27# rescaling for each column ofC
separately. This consists of dividing all elements of the col-
umn by the absolute value of its largest component, when
larger than some prescribed value~e.g., 105), in order to
keep all components within a reasonable range of magnitude.
With these refinements our integration method is very stable
even at large values ofa0 and with a relatively large number
of channels. Its only restriction appears to be the computa-
tion time, which increases witha0 @because the starting
value ofx has to be larger thana0 , to accommodate for the
size of the lobe of (FE)0 located around1a0 , and a larger
number of iterations is required#. We have carried out the
computations fora0 up to 30 ~see Sec. IV! and in some
cases up to 40~not shown!.
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As for our HFFT calculation, we have routinely limited
the number of channels tounu<6, i.e., 13 channels in all. To
assess the accuracy of this truncation we have studied the
convergence of the values ofE as the number of channels
was increased to 19~at this point the calculation becomes
rather time consuming!. The additional channels included
were all open, as the change inE when adding closed chan-
nels is quite small in comparison to adding open ones. From
this comparison we infer that the relative accuracy of our
truncation is better than 1026 for bothW andG ata051 and
all v considered. Ata0510 the errors onW are at the level
of 1% or smaller, decreasing withv, as expected. The error
on G is at the level of several percent (G is in general much
smaller thanW). The errors are slightly higher ata0520. As
a different check on our calculation, we have obtained essen-
tially identical numerical replicas~within accuracies like the
ones just mentioned! of ourW0(a0) curves, shifted by1v
or 2v @28#.

Finally, we mention that the computation time required to
evaluate the HFFT result, Eqs.~8! and ~10!2~12!, at given
a0 is about 10 times shorter than that of the corresponding
full Floquet result, Eq.~4!. In the HFFT case most of the
time is spent for the calculation of theVn , whereas in the
full Floquet case this represents a small fraction of the time
required by the solution of the differential equations.

IV. RESULTS AND DISCUSSION

In order to compare the quasienergies given by the cor-
rected HFFT and the full Floquet theory, we have chosen
only photon energies larger than the binding energy of the
ground state of the field-free potentialv.uW0u. The values
arev50.14, 0.236~photon energy of the ArF laser!, and 0.5.
Note that the first valuev50.14 is extremely unfavorable
for the application of the HFFT according to the high-
frequency condition Eq.~14!, as it leads, in the absence of
the field, to a ratioR of photon energy to binding energy
equal to only 1.05. For the other two cases considered, the
ratio R is, respectively, 1.78 and 3.8.

Our results for the energy levelsW and the total ioniza-
tion ratesG are contained in Figs. 1–3. As apparent from
Figs. 1 and 3~a!, although the potentialV0 supports only one
bound state at smalla0 , ‘‘light-induced9 excited states ma-
terialize at various (v-dependent! values ofa0 . The first two
of these states have been found before in Ref.@13# and a
study of the appearance of the first one was made in Ref.
@18#. The occurrence of light-induced states had, however,
been signaled previously, originally for short-range poten-
tials @11,12# and then also for physical systems such as H
@14# and H2 @8#.

We have found a third light-induced state ata0.25; the
second and third states are shown forv50.236 in Fig. 3~a!.
Whereas the ground state is the lowest representative of the
even-parity manifold, the first light-induced state is the low-
est of the odd-parity manifold. The second induced state has
even parity and the third is odd. Note that the lowest even
and odd states coalesce energetically at largea0 . This is a
manifestation of the even-odd degeneracy for the eigensolu-
tions of Eq. ~8!, mentioned in Sec. II, which in turn is a
consequence of the dichotomy of the eigensolutions. Like-
wise, higher induced states will coalesce in pairs~even and

FIG. 1. Energy-levelW dependence ona0 at differentv: ~a!
v50.14 a.u.,~b! v50.236 a.u., and~c! v50.5 a.u. Shown are the
results of three calculations for the ground state and the first light-
induced excited state. Continuous curves: exact Floquet results,
from Eq. ~4!; dotted curves: high-frequency limit results of the
high-frequency Floquet theory~HFFT!, from Eq. ~8!; dashed
curves: first-order corrected HFFT, from Eqs.~8! and ~11!.
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odd!; however, for the two states in Fig. 3~a! this happens at
higher values ofa0 than we have considered.

Figures 1 and 3~a! contain three curves for each of the
levels considered: one represents the level according to the
high-frequency limit equation@Eq. ~8!#, the second includes
the high-frequency correctionDW @Eq. ~11!#, and the third
gives the full Floquet calculation. As apparent, already the
high-frequency limit resultW(a0) @Eq. ~8!#, gives in all
cases the global dependence ona0 of the exact Floquet re-
sult. Inclusion of the correctionDW(a0 ,v) substantially im-
proves the agreement in that now the corrected energy curve
acquires the same undulations as the Floquet result, in some
cases shifted ina0 , but in others coinciding with the Floquet
result.

More specifically, the agreement is enhanced at alla0 by

FIG. 2. Total ionization rateG dependence ona0 for the ground
state and the first light-induced excited state, at the samev as in
Fig. 1. Two curves are shown for each state, the exact Floquet
result from Eq.~8! and the lowest-order HFFT result from
Eq. ~13!. Continuous curve: ground state, exact Floquet; dashed
curve: ground state, HFFT; dotted curve: excited state, exact Flo-
quet; chain curve: excited state, HFFT.

FIG. 3. Results for the energy levels and ionization rates of the
second and third light-induced excited states atv50.236 a.u.~a!
contains three results for the energyW of each state. Continuous
curves: exact Floquet results; dotted curves: high-frequency limit of
the HFFT; dashed curves: first-order corrected HFFT.~b! contains
two ratesG for each state. Continuous curve: second state, exact
Floquet; dashed curve: second state, HFFT; dotted curve: third
state, exact Floquet; chain curve: third state, HFFT.
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increasingv, which confirms the high-frequency character
of the theory. On the other hand, for anyv, at largea0 the
agreement becomes complete, even if there were discrepan-
cies at lowera0 . This is because, as mentioned in Sec. II,
the ratioR of the photon energy to the binding energy of the
ground state becomes larger. Thus, even in our most unfa-
vorable casev50.14, good visual agreement sets in at about
a0525, whereR>8.7. For v50.236 and 0.5 very good
agreement sets in for all states in Figs. 1~b! and 3~a! starting
at abouta0510, whereR is approximately 7.6. For higher
frequencies, such asv50.5, there is excellent agreement
already ata050 @28#.

Moreover, note that whenever the agreement of the cor-
rected HFFT calculation agrees well with the exact Floquet
calculation @i.e., the condition Eq.~14! is well satisfied#,
both lie above the high-frequency limit result given by
Eq. ~8!. This means thatDW.0, as predicted by Eq.~20!.

Figures 2 and 3~b! contain the results forG. For each of
the two lowest-lying states we give in Fig. 2 two curves: one
is the HFFT result based on Eq.~13!, the other the exact
Floquet result. Since the HFFT formula used represents the
lowest-order approximation within the theory forG, it can-
not be expected to fare too well, especially at lowerv. The
shape of the curves is, nevertheless, the same for both calcu-
lations, although sometimes shifted ina0 . Here too the
agreement improves with increasingv and ends up by being
complete at large enougha0 .

As has been noted before@13#, this model displays stabi-
lization against ionization, similarly to that found in the 3D
case of the hydrogen atom@10,3#: G tends to zero asa0
increases, albeit in an oscillatory manner. The reasons for the
oscillatory behavior here, and its absence in the 3D case,
were discussed in Ref.@13#. We agree with that analysis, but
we conclude that this is a feature of 1D models~it exists also
in the case of the ‘‘soft’’ Coulomb potential! and shall not
pursue the issue further.

In Fig. 4 we compare atv50.236 the HFFT result
Eq. ~13! for G, the corresponding Born approximation, and
the exact Floquet result.@The HFFT Born approximation is
obtained by replacing in Eq.~13! ukm

P (x) by the asymptotic

form Eq. ~23! with dk
P50.# As apparent, the Born approxi-

mation worsens the agreement of the HFFT result with the
exact Floquet result, in particular at largea0 @30#. We there-
fore expect that future HFFT calculations ofG for atomic
hydrogen, done without the Born approximation, will sub-
stantially improve the agreement with the full Floquet calcu-
lations of Refs.@14# and @16#.

On the example of this model we now comment on the
capability of the full stationary Floquet theory to describe
physical situations~i.e., agree with wave-packet dynamics!.
It has been emphasized that a necessary condition is that the
value ofG be sufficiently small~see Ref.@31# and Ref.@3#,
Sec. III B! such thatG!W(N), whereW(N) is the kinetic
energy of the slowest ionized electron (N is the minimal
number of photons required for ionization, in our case
N51). This is required in order that the asymptotic channel
momentakn (n>N) in Eq. ~6! be quasireal and hence qua-
siobservable. From Figs. 1~b!, 1~c!, 2~b!, and 2~c!, it follows
that the condition is fairly well satisfied for the ground state
at v50.236 and 0.5 and fora0 outside the interval

0.5,a0,5, whereG has its largest maximum; however,
even on this intervalG is smaller thanW(1). Forv50.14, on
the other hand,G becomes larger thanW(1) arounda052
@see Figs. 1~a! and 2~a!# and therefore Floquet theory be-
comes totally inadequate in this vicinity. Nevertheless, it is
plausible that even under these circumstances~when no con-
stant ionization rate can be defined!, the lifetime calculated
according tot5(1/G) will be indicative of that obtained
from wave-packet dynamics. Note that all light-induced
states materialize in this model with rather smallG ~long
lifetimes!, such that the condition for the validity of the Flo-
quet description is fairly well satisfied@32#. For a physical
system in this situation this would imply that the light-
induced state would be apt to leave an observable signature
in selected experiments.

We finally consider the numerical accuracy of our com-
putation, by comparing it to those of Yao and Chu@13# and
Fearnside, Potvliege, and Shakeshaft@18#, at v50.236, a
case considered also by these authors. Our results agree well
at the graphical level, with those in Figs. 2–4 of Ref.@13#
for W andG. Some numerical results were given in Table I
of Ref. @13# for G that can be compared to ours. For
a052.25, 5.25, 7.0, 10.4, and 12.7, we find, respectively,
G53.538431022, 1.384431023, 3.952631023,
7.355331024, and 2.015531023. The agreement is to
within less than 0.1% for the first value, but only to within
about 2% for the following ones@33#. Also, the agreement
with Fig. 1 of Ref.@17#, representing the case of small val-
uesa0 , is good at the graphical level.

In conclusion, our investigation of the first iteration
within the high-frequency Floquet theory has shown that the
correction it yields to the energy levels of the lowest-order
approximation~high-frequency limit! substantially improves
the agreement with the exact Floquet result at lower frequen-
cies. This illustrates the potential of the HFFT and is an
incentive to calculate the correction for the realistic case of
one-electron atoms, where a larger-scale computation is

FIG. 4. Comparison ofG values for the ground state at
v50.236 a.u. according to the Born approximation of the HFFT
result ~dotted curve!, the unapproximated HFFT result~dashed
curve!, and the exact full Floquet result~continuous curve!.
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needed, but nevertheless simpler than a full-fledged Floquet
calculation.
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