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In this paper we consider the adiabatic transfer in three-level systems using the counterintuitive pulse
sequence, the stimulated Raman pro¢&34RAP). We consider explicitly the nonadiabatic corrections to the
ideal case. The problem simplifies when we use certain pulse types extending to infinity, ramp pulses. In this
case we find models which are analytically solvable. In the smooth pulse case, we find simple exponential
corrections to adiabatic behavior. For a resonant intermediate level, the problem is equivalent to a two-level
problem, where adiabatic corrections have been investigated extensively. We utilize these results to interpret
the behavior of the three-level system exposed to the counterintuitive pulse case. When the pulse separation is
in a certain range, exponential adiabatic behavior is found, and the numerical data can be explained by the
analytic theory taken from the two-level work. We cannot explain all results analytically, but the computations
suggest that this description of the three-level system gives a good understanding of the STIRAP.

PACS numbd(s): 32.80.Bx

I. INTRODUCTION tal realizations have been achieved13—-15. The adiabatic
process is further discussed by Danileiko, Romanenko, and
The three-level problem has played a central role in the¥atsenko[16], the possible extension to continuous sets of
development of laser spectroscopy and quantum optics. Usetermediate levels is criticized by Nakajines al. [17], and
of coherent tunable light sources has made it possible tsuperadiabatic transformations are applied to the system by
utilize this configuration to achieve many goals in high-Elk [18].
precision spectroscopy and the investigations of laser- Many of the theoretical investigations have used the ideal
induced coherence. With the development of well-controllecadiabatic limit for the theoretical treatment and investigated
light pulses, new coherent transient and population transfethe imperfect situation numerically. Here we want to look at
phenomena have become available. the nonadiabatic corrections and try to find analytic expres-
Among the three-level phenomena, the appearance afions for these corrections close to the adiabatic limit. Such
adiabatic population transfer offered a new and unexpecteihvestigations have been carried out over many decades for
effect. In the transient but adiabatic limit, population can bethe corresponding two-level situation; for a recent review,
transferred from an initial level to a final one without any consult[19]. Here we try to combine known adiabatic meth-
losses to the virtual intermediate level, which never acquiresds with detailed numerical investigations to gain insight
an appreciable occupation. The process is superior to anito the adiabatic asymptotics of three-level systems.
other scheme; the use of two consecutiv@ulses serve the We start by formulating the problem in the adiabatic ba-
same purpose, but the result is sensitive to the exact pulsgs, and we describe the properties of this system in Sec.
areas and decay and perturbations of the intermediate leval,A. When the intermediate process is exactly at resonance,
through which the whole population has to pass. In thé.e., the detuning is zero, the problem simplifies. In our treat-
stimulated Raman proce$STIRAP) the two initially unoc-  ment we utilize this property to simplify both analytical and
cupied levels are coupled first, and the initially occupiednumerical processes. As the value of the detuning is irrel-
level is emptied only by a later pulse. Thisunterintuitive  evant in the ideal adiabatic limit, we feel that valuable results
pulse sequence contrasts strongly with the ordinary consecgan be obtained even in this case. Naturally, it would be
tive coherent transfer. However, the STIRAP works perfectlyextremely interesting to gain insight into the dependence of
in the adiabatic limit, its efficiency is totally unaffected by the nonadiabatic corrections on the value of the detuning.
perturbations of the virtual intermediate state, and it lacksor large detunings, we expect the process to become more
sensitivity to the intermediate detuning and the pulse amplicoherent, and it is actually possible that increasing the detun-
tudes. The initial and final levels have to be in resonance ting will make the population transfer more efficient. This,
satisfy energy conservation in the transfer. This is the onlyhowever, will be considered in future work.
strict condition to be put on an experimental setup; other With a resonant intermediate state, the three-level prob-
parameters may vary over considerable ranges in the samplem can be mapped uniquely onto an associated two-level
The adiabatic three-level situation was investigated earlyroblem. This was pointed out by Carroll and Hioe[#i,
by Hioe and collaboratorfl,2]. Later, in a series of papers, even if the procedure rests on a well-known group theoretic
Carroll and Hioe[3—-6] exploited many of the properties of relation[20]. This relationship is described in Sec. Il B. We
such systems. Only around 1990 did Bergmann and his colise this correspondence to relate our three-level problems to
laborators take a serious look at the possibility of utilizingresults derived earlier for two-level systems.
the process in realistic physical systefiis-12|. Experimen- In Sec. lll, we use the property that pulses that couple
unpopulated levels can be modified at will to simplify the
adiabatic transfer situation. In Sec. Il A, we illustrate the use
*Also at Academy of Finland. of such ramp pulses by devising a nonanalytic but trivially
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solvable model. As this contains discontinuities in the deriva-
tives, the nonadiabatic contributions are dominated by these
points, as explained by Berry in a different contgxt]. As a
realistic model this cannot serve, but it does illustrate the
general ideas of the ramp pulses. A similar two-level model
was introduced early by Ramsay and Schwinger; see the dis-
cussion in[22].

When we make an analytic ramp pulse in Sec. Il B, it
turns out that this is associated with an exactly solvable two-
level problem. This provides us with the solution to a non-  FIG. 1. The three-level system coupled by the time-dependent
trivial case of the STIRAP process. In the adiabatic limit, thisPU/Se amplitude$), and(,. The population is initially on level 1.
displays an exponential dependence on the adiabaticity p "he counterintuitive sequence ponssth coming on before the
rameter. Such behavior is well known from the theory ofpmseﬂl' The detuning of the intermediate levelAs
two-level transitiongsee[19]) and suggests the use of the
corresponding analytic machinery. We adopt the results o
the theoretical treatment of Davis and Pechuk28| and
investigate its applicability to the STIRAP situation. To this
end we consider the case of separated pulses applied to the
system in the counterintuitive sequence. In Sec. IV A we A. Three-level system

formulate some general results and introduce the analytic We consider a three-level system where the levels are
approximations from the adiabatic theory of two-level SYScoupled in the sequence-12—3, and no direct coupling

tems. This is donad hog without any attempt to justify the  peryeen levels 1 and 3 is introduced. Levels 1 and 3 are
results; here we only want to investigate whether they argssymed to be in resonance, but within the rotating-wave

tion introduced by Pechukas himsg#4] seems to carry no  amountA; see Fig. 1.

3

onclude the paper by stressing the need for further works on
his aspect of the problem.

Il. ADIABATIC BASES

implications for the STIRAP situation. The Hamiltonian for the system is now of the form
In Sec. IV B, we look at the case of Gaussian pulses,

which is nearly exclusively used in the earlier theoretical 0 Myt O

investigations. When the pulses are well separated but still H=| Q1) A Qy1) |, (2.2

overlapping considerably, we do indeed find an exponential
region that can be fitted with the Davis-Pechukas formula.

For pulses sitting too much on top of each other, the cohere%h . ; .
: ) .o ere the coupling Rabi amplitudé€k, , are taken to depend
evolution dominates, and this will end the range of the ex- ping P 2 P

X ; . o on time. The state vector is written as
ponential behavior for large adiabaticity parameters. When

the pulses are too far separated, no adiabatic transfer takes |T)=cy|1)+c|2)+cs)3). 2.2
place, as is easily understood. This shows that the pulse over-

lap is a suitable measure of the adiabaticity of the system. Ifyith this notation we assume the initial condition
certain cases, the nonadiabatic corrections show an exponeg(t,)=1, and the other two equal zero. The question is how

tial dependence on this parameter, but for too large valueg,ch population can be transferred to the coefficienat

the behavior breaks down. _large times. The initial conditions are, in analytic calcula-
To investigate the universality of the results we obtained;ons set aty=—o.

using Gaussian pulses, we apply the same considerations t0 \ne introduce a unitary transformatith of the state(2.2)
the hyperbolic secant pulse shape in Sec. IV C. The numeri-

cal work becomes harder and pulse tails decay more slowly, |W)y=U|D) (2.3
but the same conclusions can be reached. In Sec. IV D, we

summarize these conclusions and discover a simple analytig,ch that it diagonalizes the Hamiltonian

description of the crossover between exponential and coher-

0 Oyt O

ent behavior in the STIRAP process. This result is entirely UTHU=D, (2.9
based on our numerical work, and no theoretical explanation
has been found. whereD is the diagonal form of the Hamiltonian.

The results are discussed and summarized in Sec. V. We \writing the unitary transformation in the form
find that the two-level cases associated with the STIRAP
process belong to a class not previously considered. The cor- sing sin@ cos¥ cosp sind
responding X 2 Hamiltonian vanishes at both« in time, .
and hence the energy levels become degenerate both in the U= cosp 0 —sine |, 29
initial and in the final situations. The nonadiabatic transfer sing coY —sind cosp co
between the levels takes place when the adiabatic energies
are separated. Such systems show the same behavior as @ find that the new basis vectofi, ), |ap), |a_)} for
three-level cases, and some of the unexpected features foutite state/®) correspond to the eigenvalués,, 0, w_},
in this work may well be of interest also for two levels. We respectively, where
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The explicit time dependence of the Hamiltonian intro-
duces a correction to the diagonal operdfb#d). The state in
Eq. (2.3 obeys the transformed Scldiager equation

0 _( - )
Ia|q)>— D—-iU EU |(I)> (2.11

With the unitary matrix2.5), we obtain the adiabatic form of
the Hamiltonian

FIG. 2. The pulse sequence in the case of separated fgatdi&b 9
lines). Each pulse has a duratiof 2nd an amplitudé. The peaks H.,=|D—iU T_U>
of the pulses are separated by. Because initially{2, and finally ot
Q4 couple ideally unpopulated levels, the adiabatic process is not S .-
1 couple 1deally unpopu v abatic p ! Qqcotp 4 sing i@

changed if the pulses are extended to infinite times in the manner - )
indicated by the dotted lines; these are the ramp pulses. =| —if sing 0 —ifcosp|, (2.12

W, =Qcotp= 3 (A+JAZ+402),
w_=—Qptanp= % (A—JAZ+402),

—ig i0cosp —Qotane
(2.6)  where we have

-0_ Q]_Qz_Qle

and > :
QO
Q3=0%(1)+Q3(1). (2.7) _ . _ (2.13
The di lizati ires that the angles in @) sat fafl + 00, Al
e diagonalization requires that the angles in sat- o= = .
isfy the ?elations | ) 0o(A%+4Qg)  (A%+4Qg)
Q4(1) At resonance) =0; we find from Eq(2.8) that the angle
tang= 0,0 o= /4. According to Eq(2.13 it stays constant. However,
2 the same happens(i, in Eq.(2.7) does not depend on time.
(2.9
20,(1) ' This can be achieved retaining the adiabatic population
tan2p= N transfer because of the argument illustrated in Fig. 2. In this

case we can use the detunidgto fix the angle at an arbi-
ary value; see Eq2.8). The choiceA =0 is still convenient
ecause then cgs=sine.
If the two pulses are roughly of equal magnitude,
|ag) = cos|1) —sing|3). (2.9 Q1~Q,, we can see that the nonadiabatic coupknig Eq.
(2.13 is independent of the pulse amplitude and inversely
If we assume the counterintuitive pulse sequence used in thgroportional to the time scal€ of the variation of the pulse

The state corresponding to the zero eigenvalue is of th
form

STIRAP experiments we have shape. This is a universal feature of all systems under con-
sideration. We will look at a series of models for the STIRAP
Q4D situation, which are chosen to illuminate the various features
tl””f Q,(1) =0, 6-0, of the physics of the process.
(2.10 .
0,1 T B. Associated two-level problem
tETwﬂl(t) =0, 0_>§' In the resonant caséy =0, we find that the parameters

from EqQ.(2.2) can be chosen such that andc; are real and
With these results, we can see that the st&é) is |1) C, purely imaginary. _With normalization, this Ieayes two free
initially and goes to—|3) finally. If the time-dependent Parameters only. This suggests that the dynamics takes place
change is introduced slowly enough, the population remaind @ space of lower dimensions than three; two turns out to
in the statda,) and is adiabatically transferred totally to the P& @ good choice. In that case we start from four real param-
state|3); this is the STIRAP. We notice that the process doe£ters, but the overall phase and the normallgatlon reduce the
not depend on the behavior of km,.Q,(t) and degrees of freedom to the same number as in the three-level
lim,_._..Q,(t), as these functions couple ideally empty lev- ¢aS€. We look closer at this relationship.
els. In particular, the functions may go to constant values; Ve start by considering the conventional two-level prob-

see the behavior in Fig. 2. Pulses where lim..Q,(t) and €M

lim,_, _.Q,(t) are constant values are callsnp pulsesn B .
this paper. In the adiabatic limit, they act exactly like the ii dy _ E Qo '\/57 dy _ (2.14
ordinary separated pulseshich go to zero at= * . at|dy| 2] \/Ey Qg d,
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Here we assume that, in the general case, bigtandy may  level system(2.18. Such a one-to-one relation between the
depend on time. Problems of this type have been discussed @olutions holds only for restricted sets of initial conditions.
guantum mechanics for a long tinj&9]. Here we use this In this special case, the number of independent components
problem as a point of reference for our work on the threedin the problem(2.18 is small enough to be represented by
level case. In addition to the equation of moti¢hl14) we  the two-level system. Using the definitiq2.16), we can
assume the initial condition characteristic of many populaverify the conservation of probability in the form

tion transfer problems,

[r |2 Ir 2+ [rol?=(]dy]|?+[do]?)2. (2.21
di(te)=1,
(2.15  Thus we find that if the two-level state is normalized, so is
da(to) =0. the three-level state.
Using the relation$2.3) and(2.5) to express the original
In most casesy= —c. state vectofW¥) in terms of the components of the two-level

Starting with the state vector if2.14), we now define system, we find
new variables ’

cy=sind(dy d,+d;d5)+cosi(|d;|*~|d|?),

M= \/Edidz,
r_=\2d,d3, (2.16 Co=(d1d,—d;d3), (2.22
ro=|dy?—|d,|% C3=cosH(d} d,+dyd}) —sing(|d|2—|d,|?).

The initial conditions (2.15 translate directly into the Following from the discussion of Eq$2.9) and(2.10, we
equivalent set see that the final population on leyé&l) becomes, according

to Eq.(2.22,
r+(to)=r_(to)=0,
(2.17 |ca(o0)[2=[dy()|? = [da()[?]?=[2]dy(=)[?— 1]*.
ro(to)=1. (2.23
Using Eq.(2.14) to calculate the equation of motion for the
componentgr,, rq, r_}, we find lll. RAMP PULSES
. A. Nonanalytic model
g Qo iy 0 ri . . _ e
9 ) ) In this section, we first introduce a rather artificial model,
e ro|=|—iy O —iy||To|. (218  which displays the main features of the situation but allows
r_ 0 iy —QqllLr_ simple analytic evaluation of all quantities. It is not supposed
to correspond to any realistic physical experiment.
If we set We define the two coupling amplitudes in the following
. way:
. (2.19 ( T
7 \/E 0; ts-— E
Eq. (2.18 is exactly of the form Eq(2.12, when we set alt 1 T T
¢=ml4. However, the resulf2.18 is equivalent to Eq. Qq(t)= 1 Asin§ ?+§ ; —Est<§ (3.2
(2.14 for arbitrary time dependence of the parameters. We
have carried out the correspondence in the adiabatic basis, T
where it turns out to be convenient to work. However, the L A, §$t'
form (2.14 together with the definitiong2.7) and (2.13
show (2.14 to be the adiabatic representation of the bare A T
two-level system, A, ts-— >
H 11Q; O m(t 1 T T
247310, —0,|° (2.20 Q,(t)=4 Aco > ?+§ ; §<t<§ (3.2
This relationship was pointed out by Carroll and H[&é. It 0 Ist
is a straightforward application of the well-known &Y . 2

representation of the rotation group; see R2@]. With only

three real parameters characterizing the state, the unitaffhese pulses are continuous but have jumps in their deriva-

transformations of quantum theory are equivalent withtives. The behavior is shown in Fig. 3, and it is easily seen

simple rotations. For convenience, we choose the phases that for all timesthe amplitude stays constaf),=A. We

Eq. (2.16 different from the standard convention. choose o= (m/4)(A=0). The nonadiabatic coupling is
When we have solved the two-level systdthl4), we  zero except inside the interval (T/2)<t<T/2, where it be-

immediately have the solution of the corresponding threecomes the constant
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0.75}
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0.25F

0.00}

0.016F

T 0.012}

FIG. 3. When the ramp pulses are constructed from trigonomet- 0.008

ric sections fitted to constant lines, we obtain the pulse behavior
shown in this figure. We notice that both the first and the second 0.0041
derivatives are discontinuous.

0.000F

- . . . X
=—=27. .
b= 7 =\2y (33 t
With this, the adiabatic Hamiltoniaf2.12 becomes the con- FIG. 4. The upper patfa) of the figure shows the population of
stant matrix the three levels coupled with the pulses of Fig. 3. Initially the popu-
lation is on level 1(dashed ling and finally mainly on level 3
A iy 0 (dotted ling. The population on the intermediate level 2 is shown as

. . a solid line. This population is magnified in pdk) of the figure.
Hag=| —1v 0 —lv]. (3.4 The behavior is strongly oscillatory, and the final population de-
0 iy —A pends on the phase of the oscillations when the pulse ends. Time is
given in parts ofT/2.
This problem can directly be solved over the range

- <t<T/2; i i ing i
(T72)=t=T/2; outside this range the coupling is zero andbut no fundamental change is seen. The asymptotic correc-

no further transfer of population takes place. i to adiabaticit sl ina f the di Gnuity |
From dimensional arguments, we conclude that the solyons o adiabalicity are still coming from the discontinuity in

; o - the pulse shapes.
tion can only depend on the combinati&, and we define . .
the parametew, by setting In Fig. 4 we show the populations on the three levels as

functions of time. We can see that the population on the
- intermediate level2) oscillates; toward the end of the inter-

sinhy = AT (3.5 action period its value depends on the phase. In the ideal
case,n— 0, the population on the intermediate level does not

In the adiabatic limitAT—, the parameter, goes to zero Occur. The functions oscillate during the interaction period

as AT) L. with the eigenvalues of the Hamiltoni&.4), which is char-
The solution at=T/2 is acteristic of all models of this type.
The model presented here is unrealistic, but it has the
ci=tanhy sin(AT coshy), advantage that it does allow a full solution for all times. It

also displays some of the features of the general case. The
i extension of the interaction functions is not expected to in-
C2= ™ “Coshy sir? , (3-8 troduce any essential features, as we discussed in Sec. II. The
nonadiabatic corrections go to zero in the adiabatic limit,
sinff7[1—cog AT coshy)] albeit with a power-law behavior. The oscillatory phenomena
3=( - ) have, in the adiabatic limit, a periodic dependence on the
dimensionless paramet&T,; this makes the results of the

After this time, the relative magnitudes of the populationsintermediate level sensitive to the value AT, which de-
are not changed. In the adiabatic limit—0, the total popu- fines the phase of the osc_:lllatlon Whe_n the interaction ends
lation has been transferred to lev@), and the deviations (S€€ Fig. 4 For models with smooth interactions, this fea-
from this ideal result behave ag. This polynomial depen- ure is expected to vanish.

dence of the corrections to adiabaticity derives from our

nonanalytic derivative in the coupling strengths, E(s1) _

and (3.2). The result is similar to that found by Berfg1] B. Exponential model

and in the Ramsay-Schwinger mod&2]. In the models In this section we want to replace the simple nonanalytic
(3.1) and(3.2), the first derivative is discontinuous, hence the pulse shape&3.1) and(3.2) by smoothly varying shapes. To
asymptotic dependenc& 2. By a suitable choice of the interpret the results with the concepts introduced in the pre-
pulse shapes, one can make the discontinuity appear in\aous model, we try to choose functions as similar as pos-
higher derivative. Then the negative powerofincreases, sible to those in that section. We set

2i tanhy

AT
(?) coshy

coslty
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QZ Q1 1.00

a

0.75¢ )

0.50} {
A

0.251
0.00}

2T ' 0012} b)
FIG. 5. The smooth exponential pulses imitating the features of 0.009}
the discontinuous behavior in Fig. 3. o006}
5 A? 0.003}

Q)= =,
l+e 0.000}
5 (3.7) 10 05 00 05 10

Q4(t)= 1re T

FIG. 6. The time evolution of the level populations induced by
the pulses in Fig. 5. The representation is like that in Fig. 4. @art
shows level {dashegl level 3(dotted, and level Zsolid). The last
result is shown amplified in patb). The adiabaticity parameter is
AT=3.3. The intermediate-level population is small and shows no
oscillations. The time scale is chosen in a convenient way in this
picture and the following ones.

the time behavior of these couplings is shown in Fig. 5. With
these functions, we easily see that the amplitude in(£q)
becomes constan),=A; and for zero detuning, the Hamil-
tonian acquires for all times the for3.4), with the nona-
diabatic coupling being

0 1
Y= == 55T anaki ot (3.9
V2 2%°T costit/2T) This type of formula agrees with the results from the adia-

o o batic theory of two-level systenid9]. Thus we may look for
this is no longer a constant in time but turns on and off,5 theoretical approach that will reveal the relation.

smoothly imitating the behavior of the coupling in the pre- e proceed to consider the equivalent two-level model

ceding section. The only dimensionless parameter determinyccording to Sec. Il B. The exponential model parameters of

ing the behavior is the produétT, as before. the three-level system correspond exactly with those of Eq.
The variation of the populations with time in the exponen-(2 14, and with the functional dependen¢&8 we recog-

tially coupled case is shown in Fig. 6. There appears a tramjze in Eq.(2.14) the well-known Rosen-Zener Hamiltonian
sient population on leveR), but this displays no oscillations

and disappears smoothly. The populations on the lg\gls

and|3) are exchanged in the expected adiabatic manner. The e e e
figure is close to adiabatidd=100 andT=1/30; less than a) VS

0.6% of the population visits the intermediate state. If we 0.75¢

choose parameters further from the adiabatic linAit 30 o.s0l

andT=1/30, we find the result in Fig. 7. Here nearly 10% of ’

the population visits the intermediate state, and the remain- 0.25}

ing population of level2) is of the order of 1%. With the 000 J\ )

present coupling functions, i.€; not turning off at infinity,
the fraction of population left in statd¢) and|2) remains
coupled by a constant and executes Rabi oscillations, which 020} b)
are clearly seen in Fig. 7. The population on le\@} is
decoupled and stays constant.

To see the emergence of the adiabatic limit, we plot in o.10}
Fig. 8 the nonadiabatic deviation from the ideal transfer, viz.,

0.15}

0.05}
APz=1—|c3(»)|?, (3.9 0.00}

as a function of the adiabaticity paramefef. We see that
the semilogarithmic scales chosen suggest that there is an t
exponential disappearance of the nonadiabaticity in the ideal
limit; in fact, the tail of the curve in Fig. 8 can be fitted to the  FIG. 7. The same as in Fig. 6 but with the adiabaticity parameter
expression AT=1. The adiabatic behavior is less ideal, and the population
remaining on the coupled levels 1 and 2 performs Rabi oscillations
AP;=1-7.992 ex|y— 6.281AT). (3.10 because the coupling, extends to infinity.
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IV. SEPARATED PULSES

AP, 10°
3 F } A. General considerations

10-3{ } We are now ready to consider pulses of finite duration, but
] 1 we continue the resonant case= 0. Such pulses have earlier

10-6: } been used in both theoretical and experimental investiga-
] 1 tions; they vanish at both initial and final times. We thus

10—9{ : introduce a general pulse-shape functfgw) such that

0 100 200 lim f(x)=0 4.1

AT X— *+ oo

FIG. 8. The deviation from ideal behavior as a function of the and
adiabaticity parametekT. The semilogarithmic plot shows that an
adiabatic exponential region exists. This is verified from the ana- f(0)=1. (4.2)

lytic theory in the text. .
If we now write

—a _ | b t—7
cosh{wt/7) Q) =Af| —],
Hrz=| b ;31D 4.3
! coshat/7) a t+r
cosh{wt/7) = -
Q,(1) Af( T )
with the initial conditions(2.19), the solution ig19] we realize the counterintuitive pulse sequence for positive
] 7; see Fig. 2. For negative values of ordinary coherent
|dy(o0)[2= si’b7 (3.12 pulse evolution is expected. Because the population prob-
2 cosFar’ ' abilities on the different levels are dimensionless numbers,

they can depend only on the two dimensionless parameters
After having identified the parameters in the Hamiltonian
(3.11), we find the solution of the three-level probldth23 E=AT,
to be (4.4

{=7T.
|cs(0)|?=tanH(7AT). (3.13

For the ramp pulses we had only one paraméteand the
This is an exact solution for our three-level problem with theadiabatic limit consists of this going to infinity; hence we
exponential pulse shapes defined in E87). In the adia- call it the adiabaticity parameter. Here we have another es-

batic limit AT— o, this formula becomes sential parameter, too, and the genuine adiabatic limit arises
when we letT go to infinity but keep T/7) constant. In this
|(;3(oo)|2~1—8 exp —27AT), (3.19 case, all time variations scale in the same way and only one

adiabatic parameter remains.

in excellent agreement with the numerical result in Eq. Inthe case wherr is kept constant, we encounter a dif-

(3.10. The success of this type of asymptotic emergence oferent phenomenon. Wheh increases, the pulse delay be-

the adiabatic limit suggests that we also try the same type gfomes less and less significant, and finally we expect the

analysis in other cases below. pulses to fall nearly on top of one another. To decide what to
In this section we have introduced a smooth ramp puls@xpect in this limit, we set=0 in Egs.(4.3). Then the time

that simulates the features of the nonanalytic trigonometri€lependence factors out of ScHiger's equation; and ex-

model of Sec. Il A. The model chosen shows many idealpressed in terms of the time variable defined through the

features: It contains no oscillatory behavior, it has a well-relation

developed exponential asymptotic limit, and in addition its

associated two-level model gives an exact analytic solution do= f(i)dt 4.5

for all parameter values. There is only one significant dimen- T/ '

sionless quantity in the modeAT, but this is characteristic

of all ramp pulses with the same time scale and the samthe Hamiltonian becomes constant and can be solved trivi-

amplitude for the two pulses. We have investigated otheglly. Then the solution is found to display simple coherent

simple ramp pulses of this type; the behavior does not diffepscillations in terms of the redefined time varialdleand no

significantly from that found in the present model. We do notasymptotic behavior is expected. For pulse functié(s),

expect the introduction of separate time scales and/or amplthe variabled is a monotonous function df and hence the

tudes for the two pulses to cause significant changes in thisansformation(4.5) is only a reparametrizing of the time

behavior of the solution. However, turning to the case ofaxis.

separated pulses, in the next section, we find a different type From the argument above, we expect that by let#ih

of behavior. go to infinity without changingr, we eventually reach a
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r . — 2
Lol . ) f(X)=exp(—Xx°). 4.9
075k a) ] For this pulse, the variables in the adiabatic representation
' F N are given by the adiabatic energy
0.50} ) at
r
025} Q3(t)= 2A2ex;{ - ?(t2+ ) cosl‘( ?) (4.10
0.00f and the nonadiabatic coupling
0% b) ] bm T (4.12)
5 atr
0.04} 1 T<cos Tz
0.02f y As in the adiabatic two-level cases, the zeroes of the energy
are found to be singularities in the coupling. This is known to
0.00F - - . ) L prevent a straightforward use of a stationary phase approxi-
20 1.0 00 1.0 2.0 mation to evaluate the transition probabilities.
t In Fig. 9 we show the numerically evaluated populations

on the three levels with the Gaussian coupling functions.
FIG. 9. The population behavior under the influence of twoHere we have the adiabaticity parameferAT= 10, but the
separated Gaussian pulses. The representation is like that in Figspallse separation is only=0.35T. This is small enough to
and 6. The population is transferred from the initial le(@dshedd  induce considerable coherent evolution, as discussed above,
to the final level(dotted, with some population occurring on the and the situation is found to give only incomplete population
intermediate leve(solid). This is shown magnified in patb). The  transfer to level 3; a large fraction of the population remains
parametersA=20 and T=0.5, and the pulse separation is on level 2. In Fig. 10, the adiabaticity parameter is still only
7=0.35T. The behavior is not adiabatic. The pulses are too closeg=AT=12.5, but now the pulse spacing has been increased
the population transfer is incomplete and oscillations are predomitg ~—=(0.6T. This slight change has improved the adiabaticity
nant. of the population transfer considerably; only the small inter-

mediate population on level 2 displays clear oscillations.

region where coherent oscillations dominate the behaviokyith an accuracy better than one per mille, we find the final
This will be investigated in the following for specific mod- population all on level 3 as desired; except for the oscilla-

els. ) tions, the behavior greatly resembles that shown in Fig. 6.
The three-level system was shown in Sec. IIB to be

equivalent to a two-level one. In these cases, the adiabatic

limit has been found to be dominated by the behavior of the 100f oo - T
adiabatic eigenvalue in the complex plane. The parameter a) N
(2.7) is defined to be nonnegative for all real times, but it 0.75F
may have complex zeroas given by 050}
Q(te)=0. (4.6) 025}
As shown by Davis and PechukEz3], the zero nearest the 0.00}
real axis determines the adiabatic limit. We define the com- .
i 0.020}
plex guantity b)
te 0.015}
A(to)=] Q(t)dt. 4.
(t= [ g0 (.7 ootol
With the initial condition(2.15, we expect to find the adia- 0.005f ”N\" _
batic limiting behavior 0000} - : . . .
|d1(oc)|2 o« exp[—2 ImA(tC)] (48) 50 25 00 2.5 5.0

Without critically analyzing the validity of this asymptotic
result, we test its applicability to the separated pulse problem FIG. 10. The same as in Fig. 9, but now the pulse separation is
in our systems. increased ta=0.6T. The parameters ard=10 andT=1.25. The
degree of adiabaticity is no better than that of Fig. 9, but the in-
creased pulse separation makes the behavior much closer to ideal.
Only little population visits transiently the intermediate level, and
The STIRAP has been investigated theoretically mainlyhardly any remains. The populations still display oscillations like
with Gaussian pulse shapes. We thus consider the case wheidse in Fig. 4 even if the general behavior is similar to that in
the function in Eqs(4.3) is given by Fig. 6.

B. Exponential pulses
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TABLE |. Parameters for Gaussian pulses.

10° .
AP; 1 . .
N ] 27 B (numerig B (analytig
107y 1 T
[ |
10f \ L 2.0 0.3220 0.3238
] 1 22 0.2365 0.2370
10°} ey L 2.4 0.1709 0.1717
! AR SR 2.6 0.1226 0.1230
-12F N L L .« Sy
10 e 3.0 0.0601 0.0605
AT

tial region cannot be found because the total transfer of
FIG. 11. Plots the deviation from ideal adiabaticity in the man- popu|ati0n becomes exceeding|y small.

ner of Fig. 8, when we use Gaussian pulse shapes. The exponential
region is seen to end for some value AT, after which rapid
oscillations are seen; they are not resolved in this figure. The picture
is obtained forr=T; for larger delays, the linear region becomes In the previous section we considered some features of
more extended, going down to 1¥ around the values=1.2T.  the separated pulse system with Gaussian shapes. To decide
The values in Table | are obtained from fits of lines to plots like if the features observed are generic or characteristic of the
these. Gaussian only, we look at another popular pulse shape. We
choose the hyperbolic secant pulse function

We find that the pulse separation in Fig. 10 gives good adia-
baticity, in agreement with the results reported eaflie]. f(x) =seclix) (4.19

To investigate the appearance of an asymptotic region we . .
plot, for the pulse separation=T, the deviation from adia- nstead of(4.9). The adiabatic energy then becomes

C. Secant pulses

batic transfeAP5, Eq.(3.9), as a function of the adiabatic- t— 7 t+ 7
ity parameteg=AT in Fig. 11. For numerical simplicity we Q3(t1)=A? secﬁ(? +sech -
have approached the adiabatic limit by lettiAggrow. The
plot is chosen semilogarithmic to reveal an asymptotic re- t—r t+ 7
gion of the form =2Azsecﬁ(?) sech -
AP3(§)=1—ae P (4.12 t T t T
X cosﬁ(_l_)cosﬁ T +S|nhz(_|_>smhz(_|_”.

As we can see from the plot, the exponential behavior is
followed up toé~50 over a decay by seven orders of mag- (4.19
nitude. After this point, the coherent oscillations start to

dominate and the asymptotic behavior breaks down. Thi;h'a nonadiabatic coupling is

agrees with our conclusions above; too much overlap be- 2
tween the pulses makes the coherent oscillation dominate. sinI-(—)
: : : : . . T
For pulse separations near the optimal adiabatic behawior, 9=
>T; the exponential region extends over an even much T R t—7 + cosR? t+7
larger range of the parametArT. cos T cos T
In the region where the exponential behavior is found, we
may try to determine the exponent from the theory in Sec. sin Z_T
IV A. The zero of the function(4.10 closest to the real axis T 41
is T r(2t> r{zf) : (4.19
cosh —|cosh —
T2 T T
te=i——. (4.13 . . '
87 As in the previous case, we find that the zeroe§)gft) are

poles of the coupling. Both the coupling.11) and (4.16
When this is inserted into Eq4.8), we obtain a theoretical vanish exponentially fot>T. Thus some similarity in their
estimate for the expone. This may be compared with the behaviors is expected. Numerical investigations show that
one obtained from the numerical fit to the expressri2. the population behaves much in the manner shown in Fig. 10
This is again carried out in such a manner th&l is kept  for the Gaussian case. The tails of the secant pulses do, how-
constant, and the adiabatic limit is reached by increasing thever, fall off more slowly, and consequently larger pulse

amplitudeA. The results are shown in Table I. separations are needed to avoid excessive coherent evolu-
Table | confirms our conclusion that adiabatic transfertion.
dominates the behavior for the pulse separatioiT. In this In Fig. 12, we show the behavior of the deviation from

region unquestionable exponential dependence on the adiadiabaticity AP; as a function ofAT, as in Fig. 11. The
baticity parameter is found. For closer pulses, too much copulse separation is here=3.5T, and still an adiabatic expo-
herent evolution occurs; for larger separation, the exponemential region is barely visible. The numerical work to deter-
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10° .45
APy I ] In(AT)
I g 1 4.0F
10°F % 1
F '-.. 1 3.5F
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10-6 ] . "d'._. ’ 1 3.0F
[ ) 1
. 1 . 1 2.5F
1075 200 200 600 07 08 09 10
AT /T

FIG. 12. A plot like that in Fig. 11 but with hyperbolic secant  FIG. 13. In plots like Fig. 11, we determine the critical value of
pulse shapes. The pulse separation has to be larged,5T, and  the adiabaticity parameteAT)y; for which the linear behavior

the linear region is less extended. Fits of lines to the linear part§reaks up into oscillations. This is plotted as a function of the pulse
give the parameters in Table Il. separation parameterr(T) for Gaussian pulses. The plot shows

that an exponential dependence is obvious.

mine the parameters of the fit to the for@#.12 is much

more difficult than for the Gaussian case, but the parametdp® Pulse overlap leading to enhanced coherent evolution.
8 can be extracted. Again, we can compare this to the analhis stops the exponential decay and lets the oscillation be-

lytic approximation from Eq(4.8). havior dominate. _ ,
Closest to the real axis, we find the zero of the adiabatic !N this paper we have applied the Davis-Pechukas result
energyQ,(t) in Eq. (4.15 to be _(4.8) tot_ally uncritically. In its Qerlvann, however, a time
integration path from- to +« is deformed to the complex
- zero of the adiabatic energy. The contribution from this zero
t.=iT arctay|icot)-<—”_ (4.1 then dominates the behavior in the adiabatic regime. The
T procedure assumes that no trouble is caused by the behavior

of the functions at infinity. In the present cases this is not
This can be used in E@4.7) to obtain the analytic approxi- true. In both models investigated, the Gaussian case and the
mation tog. This is compared with the numerically obtained hyperbolic secant, Eq$4.10 and(4.15), the adiabatic ener-
value in Table II. gies show complicated behavior neati. Both can take
Table Il shows that for the secant pulses also, we do findrbitrarily large values here, and this behavior may invalidate
a region where the asymptotic pole approximation gives ahe asymptotic analysis. If we modify the pulses to make the
good representation of the data. However, the required pulsgdiabatic energy well behaved at infinity, the oscillatory re-
separation is considerably larger than in the Gaussian casgime for large¢ seems to be eliminated. We offer no theo-
This we ascribe to the slower decay rate of the secant pulsegetical explanation for this observation.
Nevertheless, the general pattern of the behavior is the same. The value of the parametér= AT, at which the exponen-
After the exponential region, from some valueAot onward  tial decrease ceases, is expected to depend on the pulse
the simple behavior breaks up into oscillations; comparejelay-to-duration ratia’= 7/T. This can be extracted from
Figs. 11 and 12. The oscillations take place over the range ghe data in Figs. 11 and 12. The linear fit to the decay part is
AT~1, and hence the pattern is not resolved in the figuresextended until it meets a line through, e.g., the peaks of the
oscillating part. This crossing is chosen as the critical value
D. Conclusions for the adiabaticity parametét, . This is then plotted semi-

. . ..., logarithmically against for the Gaussian and secant pulses
For two types of separated pulses that vanish at |nf|n|tyin Figs. 13 and 14, respectively. With good accuracy, the
we have found very similar behavior. When the couplingy . -vior'is found to' fit the equation '

amplitude is increased, an asymptotic exponential regime
first emerges, which for large enough amplitudes breaks up

into a rapidly oscillating pattern. When the pulse separation In(AT) 65
becomes a larger fraction of the pulse width, the exponential '
region becomes more extended. We interpret this to mean 6.0r
that the increased pulse amplitude stresses the importance of 55}
5.0

TABLE Il. Parameters for secant pulses. 45
27 B (numeriQ B (analytig 401 ) . . .
T 3.0 35 4.0 45
7.0 0.0997 0.1024 /T
8.0 0.0608 0.0621
9.0 0.0373 0.0376 FIG. 14. The same plot as in Fig. 13 but for the hyperbolic
10.0 0.0227 0.0228 secant pulse. The data are obtained from plots like that in Fig. 12.

Also here the exponential dependence is well verified.
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TABLE lIl. Parameters in Eq(4.18). separated in time, such regions are found; but in contrast to
: expectations, they end when the adiabaticity parameter
Gaussian pulse Secant pulse grows too large and are replaced by rapidly oscillating solu-

tions. We ascribe this behavior to a takeover by the coherent
oscillations, which derive from the region where the pulses
overlap significantly. When the pulse amplitude is increased,
this overlap grows.
£.= ke, 4.18 We determine the position of the crossover between ex-
¢ ponential and oscillatory behavior numerically and find an
In Table Il we give the parameters obtained numerically forunexpected exponential relation. Thus increasing the pulse
the two pulse shapes investigated. We have no analytic exieparation rapidly pushes the crossover to larger values of
planation for this observed relation. The good fits providecthe adiabaticity parameter and consequently smaller actual
by Figs. 13 and 14 suggest that the behaot8) is generic  values of the nonadiabatic corrections. Too large separations,
for a certain class of pulse shapes, but lacking a theoretic&lowever, will eventually destroy the effect because the
explanation we are unable to suggest how general the resutllses overlap only at negligibly small amplitudes. Hence
is. there is an optimum separation for adiabatic transfer. We
have no analytic theory to explain these features of the be-
V. DISCUSSION havior. . .
For a resonant intermediate level, the three-level problem
In this paper we have considered the nonadiabatic correds equivalent with an associated two-level problem. Much
tions to the well-known adiabatic population transfer con-work has been carried out on adiabatic behavior and nona-
nected with a counterintuitive pulse sequence for a threediabatic corrections in such systems. However, the cases oc-
level system. When the intermediate level is at resonance, weurring with counterintuitive separated pulses are of a type
utilize a representation of the problem in terms of a two-levelnot usually discussed for two levels. As seen from 0,
Hamiltonian. We point out that the conventional configura-the total Hamiltonian disappears at both time limitse. The
tion of separated pulses can be replaced by two ramp pulséwo levels involved are then degenerate, and all nonadiabatic
approaching constant values at infinity. The adiabatic part ofransfer between them takes place with separated adiabatic
the transfer is the same. energies. The difference between the ordinary and the coun-
We illustrate the use of the ramp pulse by two examplesterintuitive sequences derives from whether the levels be-
One is a trivial discontinuous trigonometric model, which iscome coupled before they separate or separate before they
analytically solvable, but because of the discontinuous deeouple. In the case of the two-level situation, this question
rivatives all nonadiabatic corrections occur as simple powerseems not to have been investigated before. Our discussion
of the inverse of the time scale. The model does, howevef the three-level system can be rephrased to deal with the
illustrate the use of ramp pulses. The second example corassociated two-level situation directly. We feel that consider-
sists of smooth exponential pulses. They have been choseile work is still needed to understand this aspect of the
such that the algebraic structure of the problem simplifies irsituation.
the adiabatic basis. In fact, the associated two-level problem In conclusion, the adiabatic behavior of the three-level
becomes solvable, and the asymptotic behavior in the adisystem has been found to exhibit many unexpected and chal-
batic limit can be verified to agree with that which we ex- lenging features. Some of these we have been able to relate
tracted from a numerical treatment. This suggests that thio exact solutions and analytic approximations. The latter
Davis-Pechukas asymptotic analysis can be applied to thieave, however, been introduced hocwithout derivation.
two-level formulation of the three-level problem. Many results are based on numerical evidence only. As this
We then proceed to consider the situation with separatet$ afflicted with accuracy problems and insufficient general-
pulses, which decay to zero ate. We investigate Gaussian ity, we would really like to see more detailed investigations
and hyperbolic secant pulses and look for regions where exaf the analytic behavior of the systems discussed in this pa-
ponential asymptotics occur. For pulses that are sufficientlper. We hope that such work will be possible in the future.

K 0.49 1.57
u 4.93 1.27
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