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In this paper we consider the adiabatic transfer in three-level systems using the counterintuitive pulse
sequence, the stimulated Raman process~STIRAP!. We consider explicitly the nonadiabatic corrections to the
ideal case. The problem simplifies when we use certain pulse types extending to infinity, ramp pulses. In this
case we find models which are analytically solvable. In the smooth pulse case, we find simple exponential
corrections to adiabatic behavior. For a resonant intermediate level, the problem is equivalent to a two-level
problem, where adiabatic corrections have been investigated extensively. We utilize these results to interpret
the behavior of the three-level system exposed to the counterintuitive pulse case. When the pulse separation is
in a certain range, exponential adiabatic behavior is found, and the numerical data can be explained by the
analytic theory taken from the two-level work. We cannot explain all results analytically, but the computations
suggest that this description of the three-level system gives a good understanding of the STIRAP.

PACS number~s!: 32.80.Bx

I. INTRODUCTION

The three-level problem has played a central role in the
development of laser spectroscopy and quantum optics. Use
of coherent tunable light sources has made it possible to
utilize this configuration to achieve many goals in high-
precision spectroscopy and the investigations of laser-
induced coherence. With the development of well-controlled
light pulses, new coherent transient and population transfer
phenomena have become available.

Among the three-level phenomena, the appearance of
adiabatic population transfer offered a new and unexpected
effect. In the transient but adiabatic limit, population can be
transferred from an initial level to a final one without any
losses to the virtual intermediate level, which never acquires
an appreciable occupation. The process is superior to any
other scheme; the use of two consecutivep pulses serve the
same purpose, but the result is sensitive to the exact pulse
areas and decay and perturbations of the intermediate level,
through which the whole population has to pass. In the
stimulated Raman process~STIRAP! the two initially unoc-
cupied levels are coupled first, and the initially occupied
level is emptied only by a later pulse. Thiscounterintuitive
pulse sequence contrasts strongly with the ordinary consecu-
tive coherent transfer. However, the STIRAP works perfectly
in the adiabatic limit, its efficiency is totally unaffected by
perturbations of the virtual intermediate state, and it lacks
sensitivity to the intermediate detuning and the pulse ampli-
tudes. The initial and final levels have to be in resonance to
satisfy energy conservation in the transfer. This is the only
strict condition to be put on an experimental setup; other
parameters may vary over considerable ranges in the sample.

The adiabatic three-level situation was investigated early
by Hioe and collaborators@1,2#. Later, in a series of papers,
Carroll and Hioe@3–6# exploited many of the properties of
such systems. Only around 1990 did Bergmann and his col-
laborators take a serious look at the possibility of utilizing
the process in realistic physical systems@7–12#. Experimen-

tal realizations have been achieved in@13–15#. The adiabatic
process is further discussed by Danileiko, Romanenko, and
Yatsenko@16#, the possible extension to continuous sets of
intermediate levels is criticized by Nakajimaet al. @17#, and
superadiabatic transformations are applied to the system by
Elk @18#.

Many of the theoretical investigations have used the ideal
adiabatic limit for the theoretical treatment and investigated
the imperfect situation numerically. Here we want to look at
the nonadiabatic corrections and try to find analytic expres-
sions for these corrections close to the adiabatic limit. Such
investigations have been carried out over many decades for
the corresponding two-level situation; for a recent review,
consult@19#. Here we try to combine known adiabatic meth-
ods with detailed numerical investigations to gain insight
into the adiabatic asymptotics of three-level systems.

We start by formulating the problem in the adiabatic ba-
sis, and we describe the properties of this system in Sec.
II A. When the intermediate process is exactly at resonance,
i.e., the detuning is zero, the problem simplifies. In our treat-
ment we utilize this property to simplify both analytical and
numerical processes. As the value of the detuning is irrel-
evant in the ideal adiabatic limit, we feel that valuable results
can be obtained even in this case. Naturally, it would be
extremely interesting to gain insight into the dependence of
the nonadiabatic corrections on the value of the detuning.
For large detunings, we expect the process to become more
coherent, and it is actually possible that increasing the detun-
ing will make the population transfer more efficient. This,
however, will be considered in future work.

With a resonant intermediate state, the three-level prob-
lem can be mapped uniquely onto an associated two-level
problem. This was pointed out by Carroll and Hioe in@6#,
even if the procedure rests on a well-known group theoretic
relation @20#. This relationship is described in Sec. II B. We
use this correspondence to relate our three-level problems to
results derived earlier for two-level systems.

In Sec. III, we use the property that pulses that couple
unpopulated levels can be modified at will to simplify the
adiabatic transfer situation. In Sec. III A, we illustrate the use
of such ramp pulses by devising a nonanalytic but trivially*Also at Academy of Finland.
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solvable model. As this contains discontinuities in the deriva-
tives, the nonadiabatic contributions are dominated by these
points, as explained by Berry in a different context@21#. As a
realistic model this cannot serve, but it does illustrate the
general ideas of the ramp pulses. A similar two-level model
was introduced early by Ramsay and Schwinger; see the dis-
cussion in@22#.

When we make an analytic ramp pulse in Sec. III B, it
turns out that this is associated with an exactly solvable two-
level problem. This provides us with the solution to a non-
trivial case of the STIRAP process. In the adiabatic limit, this
displays an exponential dependence on the adiabaticity pa-
rameter. Such behavior is well known from the theory of
two-level transitions~see@19#! and suggests the use of the
corresponding analytic machinery. We adopt the results of
the theoretical treatment of Davis and Pechukas@23# and
investigate its applicability to the STIRAP situation. To this
end we consider the case of separated pulses applied to the
system in the counterintuitive sequence. In Sec. IV A we
formulate some general results and introduce the analytic
approximations from the adiabatic theory of two-level sys-
tems. This is donead hoc, without any attempt to justify the
results; here we only want to investigate whether they are
relevant at all. The generalization to a three-level configura-
tion introduced by Pechukas himself@24# seems to carry no
implications for the STIRAP situation.

In Sec. IV B, we look at the case of Gaussian pulses,
which is nearly exclusively used in the earlier theoretical
investigations. When the pulses are well separated but still
overlapping considerably, we do indeed find an exponential
region that can be fitted with the Davis-Pechukas formula.
For pulses sitting too much on top of each other, the coherent
evolution dominates, and this will end the range of the ex-
ponential behavior for large adiabaticity parameters. When
the pulses are too far separated, no adiabatic transfer takes
place, as is easily understood. This shows that the pulse over-
lap is a suitable measure of the adiabaticity of the system. In
certain cases, the nonadiabatic corrections show an exponen-
tial dependence on this parameter, but for too large values
the behavior breaks down.

To investigate the universality of the results we obtained
using Gaussian pulses, we apply the same considerations to
the hyperbolic secant pulse shape in Sec. IV C. The numeri-
cal work becomes harder and pulse tails decay more slowly,
but the same conclusions can be reached. In Sec. IV D, we
summarize these conclusions and discover a simple analytic
description of the crossover between exponential and coher-
ent behavior in the STIRAP process. This result is entirely
based on our numerical work, and no theoretical explanation
has been found.

The results are discussed and summarized in Sec. V. We
find that the two-level cases associated with the STIRAP
process belong to a class not previously considered. The cor-
responding 232 Hamiltonian vanishes at both6` in time,
and hence the energy levels become degenerate both in the
initial and in the final situations. The nonadiabatic transfer
between the levels takes place when the adiabatic energies
are separated. Such systems show the same behavior as our
three-level cases, and some of the unexpected features found
in this work may well be of interest also for two levels. We

conclude the paper by stressing the need for further works on
this aspect of the problem.

II. ADIABATIC BASES

A. Three-level system

We consider a three-level system where the levels are
coupled in the sequence 1→2→3, and no direct coupling
between levels 1 and 3 is introduced. Levels 1 and 3 are
assumed to be in resonance, but within the rotating-wave
approximation the intermediate level may be detuned by the
amountD; see Fig. 1.

The Hamiltonian for the system is now of the form

H5F 0 V1~ t ! 0

V1~ t ! D V2~ t !

0 V2~ t ! 0
G , ~2.1!

where the coupling Rabi amplitudesV1,2 are taken to depend
on time. The state vector is written as

uC&5c1u1&1cu2&1c3u3&. ~2.2!

With this notation we assume the initial condition
c1(t0)51, and the other two equal zero. The question is how
much population can be transferred to the coefficientc3 at
large times. The initial conditions are, in analytic calcula-
tions, set att052`.

We introduce a unitary transformationU of the state~2.2!

uC&5UuF& ~2.3!

such that it diagonalizes the Hamiltonian

U†HU5D, ~2.4!

whereD is the diagonal form of the Hamiltonian.
Writing the unitary transformation in the form

U5F sinw sinu cosu cosw sinu

cosw 0 2sinw

sinw cosu 2sinu cosw cosu
G , ~2.5!

we find that the new basis vectors$ua1&, ua0&, ua2&% for
the stateuF& correspond to the eigenvalues$w1, 0, w2%,
respectively, where

FIG. 1. The three-level system coupled by the time-dependent
pulse amplitudesV1 andV2 . The population is initially on level 1.
The counterintuitive sequence consists inV2 coming on before the
pulseV1 . The detuning of the intermediate level isD.
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w15V0cotw5 1
2 ~D1AD214V0

2!,

~2.6!
w252V0tanw5 1

2 ~D2AD214V0
2!,

and

V0
25V1

2~ t !1V2
2~ t !. ~2.7!

The diagonalization requires that the angles in Eq.~2.5! sat-
isfy the relations

tanu5
V1~ t !

V2~ t !
,

~2.8!

tan2w5
2V0~ t !

D
.

The state corresponding to the zero eigenvalue is of the
form

ua0&5cosuu1&2sinuu3&. ~2.9!

If we assume the counterintuitive pulse sequence used in the
STIRAP experiments we have

lim
t→2`

V1~ t !

V2~ t !
50, u→0,

~2.10!

lim
t→1`

V2~ t !

V1~ t !
50, u→

p

2
.

With these results, we can see that the state~2.9! is u1&
initially and goes to2u3& finally. If the time-dependent
change is introduced slowly enough, the population remains
in the stateua0& and is adiabatically transferred totally to the
stateu3&; this is the STIRAP. We notice that the process does
not depend on the behavior of limt→1`V1(t) and
limt→2`V2(t), as these functions couple ideally empty lev-
els. In particular, the functions may go to constant values;
see the behavior in Fig. 2. Pulses where limt→1`V1(t) and
limt→2`V2(t) are constant values are calledramp pulsesin
this paper. In the adiabatic limit, they act exactly like the
ordinaryseparated pulses, which go to zero att56`.

The explicit time dependence of the Hamiltonian intro-
duces a correction to the diagonal operator~2.4!. The state in
Eq. ~2.3! obeys the transformed Schro¨dinger equation

i
]

]t
uF&5SD2 iU †

]

]t
U D uF&. ~2.11!

With the unitary matrix~2.5!, we obtain the adiabatic form of
the Hamiltonian

Had[SD2 iU †
]

]t
U D

5F V0cotw i u̇ sinw i ẇ

2 i u̇ sinw 0 2 i u̇ cosw

2 i ẇ i u̇ cosw 2V0tanw
G , ~2.12!

where we have

u̇5
V̇1V22V̇2V1

V0
2 ,

~2.13!

ẇ5D
V̇1V11V̇2V2

V0~D214V0
2!

5
DV̇0

~D214V0
2!
.

At resonance,D50; we find from Eq.~2.8! that the angle
w5p/4. According to Eq.~2.13! it stays constant. However,
the same happens ifV0 in Eq. ~2.7! does not depend on time.
This can be achieved retaining the adiabatic population
transfer because of the argument illustrated in Fig. 2. In this
case we can use the detuningD to fix the angle at an arbi-
trary value; see Eq.~2.8!. The choiceD50 is still convenient
because then cosw5sinw.

If the two pulses are roughly of equal magnitude,
V1;V2 , we can see that the nonadiabatic couplingu̇ in Eq.
~2.13! is independent of the pulse amplitude and inversely
proportional to the time scaleT of the variation of the pulse
shape. This is a universal feature of all systems under con-
sideration. We will look at a series of models for the STIRAP
situation, which are chosen to illuminate the various features
of the physics of the process.

B. Associated two-level problem

In the resonant case,D50, we find that the parameters
from Eq.~2.2! can be chosen such thatc1 andc3 are real and
c2 purely imaginary. With normalization, this leaves two free
parameters only. This suggests that the dynamics takes place
in a space of lower dimensions than three; two turns out to
be a good choice. In that case we start from four real param-
eters, but the overall phase and the normalization reduce the
degrees of freedom to the same number as in the three-level
case. We look closer at this relationship.

We start by considering the conventional two-level prob-
lem

i
]

]t Fd1d2G5
1

2 F 2V0 2 iA2g

iA2g V0
GFd1d2G . ~2.14!

FIG. 2. The pulse sequence in the case of separated pulses~solid
lines!. Each pulse has a duration 2T and an amplitudeA. The peaks
of the pulses are separated by 2t. Because initiallyV2 and finally
V1 couple ideally unpopulated levels, the adiabatic process is not
changed if the pulses are extended to infinite times in the manner
indicated by the dotted lines; these are the ramp pulses.
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Here we assume that, in the general case, bothV0 andg may
depend on time. Problems of this type have been discussed in
quantum mechanics for a long time@19#. Here we use this
problem as a point of reference for our work on the three-
level case. In addition to the equation of motion~2.14! we
assume the initial condition characteristic of many popula-
tion transfer problems,

d1~ t0!51,
~2.15!

d2~ t0!50.

In most casest052`.
Starting with the state vector in~2.14!, we now define

new variables

r15A2d1* d2 ,

r25A2d1d2* , ~2.16!

r 05ud1u22ud2u2.

The initial conditions ~2.15! translate directly into the
equivalent set

r1~ t0!5r2~ t0!50,
~2.17!

r 0~ t0!51.

Using Eq.~2.14! to calculate the equation of motion for the
components$r1 , r 0 , r2%, we find

i
]

]t F r1

r 0

r2

G5F V0 ig 0

2 ig 0 2 ig

0 ig 2V0

GF r1

r 0

r2

G . ~2.18!

If we set

g5
u̇

A2
, ~2.19!

Eq. ~2.18! is exactly of the form Eq.~2.12!, when we set
w5p/4. However, the result~2.18! is equivalent to Eq.
~2.14! for arbitrary time dependence of the parameters. We
have carried out the correspondence in the adiabatic basis,
where it turns out to be convenient to work. However, the
form ~2.14! together with the definitions~2.7! and ~2.13!
show ~2.14! to be the adiabatic representation of the bare
two-level system,

H2d5
1

2 FV2 V1

V1 2V2
G . ~2.20!

This relationship was pointed out by Carroll and Hioe@6#. It
is a straightforward application of the well-known SU~2!
representation of the rotation group; see Ref.@20#. With only
three real parameters characterizing the state, the unitary
transformations of quantum theory are equivalent with
simple rotations. For convenience, we choose the phases in
Eq. ~2.16! different from the standard convention.

When we have solved the two-level system~2.14!, we
immediately have the solution of the corresponding three-

level system~2.18!. Such a one-to-one relation between the
solutions holds only for restricted sets of initial conditions.
In this special case, the number of independent components
in the problem~2.18! is small enough to be represented by
the two-level system. Using the definition~2.16!, we can
verify the conservation of probability in the form

ur1u21ur2u21ur 0u25~ ud1u21ud2u2!2. ~2.21!

Thus we find that if the two-level state is normalized, so is
the three-level state.

Using the relations~2.3! and ~2.5! to express the original
state vectoruC& in terms of the components of the two-level
system, we find

c15sinu~d1* d21d1d2* !1cosu~ ud1u22ud2u2!,

c25~d1* d22d1d2* !, ~2.22!

c35cosu~d1* d21d1d2* !2sinu~ ud1u22ud2u2!.

Following from the discussion of Eqs.~2.9! and ~2.10!, we
see that the final population on levelu3& becomes, according
to Eq. ~2.22!,

uc3~`!u25@ ud1~`!u22ud2~`!u2#25@2ud2~`!u221#2.
~2.23!

III. RAMP PULSES

A. Nonanalytic model

In this section, we first introduce a rather artificial model,
which displays the main features of the situation but allows
simple analytic evaluation of all quantities. It is not supposed
to correspond to any realistic physical experiment.

We define the two coupling amplitudes in the following
way:

V1~ t !55
0; t<2

T

2

A sinFp2 S tT1
1

2D G ; 2
T

2
<t,

T

2

A;
T

2
<t,

~3.1!

V2~ t !55
A; t<2

T

2

A cosFp2 S tT1
1

2D G ; 2
T

2
<t,

T

2

0;
T

2
<t.

~3.2!

These pulses are continuous but have jumps in their deriva-
tives. The behavior is shown in Fig. 3, and it is easily seen
that for all times the amplitude stays constant,V05A. We
choosew5(p/4)(D50). The nonadiabatic couplingu̇ is
zero except inside the interval2(T/2)<t,T/2, where it be-
comes the constant
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u̇5
p

2T
[A2g. ~3.3!

With this, the adiabatic Hamiltonian~2.12! becomes the con-
stant matrix

Had5F A ig 0

2 ig 0 2 ig

0 ig 2A
G . ~3.4!

This problem can directly be solved over the range
2(T/2)<t,T/2; outside this range the coupling is zero and
no further transfer of population takes place.

From dimensional arguments, we conclude that the solu-
tion can only depend on the combinationAT, and we define
the parameterh by setting

sinhh5
p

2AT
. ~3.5!

In the adiabatic limit,AT→`, the parameterh goes to zero
as (AT)21.

The solution att5T/2 is

c15tanhh sin~AT coshh!,

c252
2i tanhh

coshh
sin2F SAT2 D coshhG , ~3.6!

c35S sinh2h@12cos~AT coshh!#

cosh2h
21D .

After this time, the relative magnitudes of the populations
are not changed. In the adiabatic limit,h→0, the total popu-
lation has been transferred to levelu3&, and the deviations
from this ideal result behave ash2. This polynomial depen-
dence of the corrections to adiabaticity derives from our
nonanalytic derivative in the coupling strengths, Eqs.~3.1!
and ~3.2!. The result is similar to that found by Berry@21#
and in the Ramsay-Schwinger model@22#. In the models
~3.1! and~3.2!, the first derivative is discontinuous, hence the
asymptotic dependenceT22. By a suitable choice of the
pulse shapes, one can make the discontinuity appear in a
higher derivative. Then the negative power ofT increases,

but no fundamental change is seen. The asymptotic correc-
tions to adiabaticity are still coming from the discontinuity in
the pulse shapes.

In Fig. 4 we show the populations on the three levels as
functions of time. We can see that the population on the
intermediate levelu2& oscillates; toward the end of the inter-
action period its value depends on the phase. In the ideal
case,h→0, the population on the intermediate level does not
occur. The functions oscillate during the interaction period
with the eigenvalues of the Hamiltonian~3.4!, which is char-
acteristic of all models of this type.

The model presented here is unrealistic, but it has the
advantage that it does allow a full solution for all times. It
also displays some of the features of the general case. The
extension of the interaction functions is not expected to in-
troduce any essential features, as we discussed in Sec. II. The
nonadiabatic corrections go to zero in the adiabatic limit,
albeit with a power-law behavior. The oscillatory phenomena
have, in the adiabatic limit, a periodic dependence on the
dimensionless parameterAT; this makes the results of the
intermediate level sensitive to the value ofAT, which de-
fines the phase of the oscillation when the interaction ends
~see Fig. 4!. For models with smooth interactions, this fea-
ture is expected to vanish.

B. Exponential model

In this section we want to replace the simple nonanalytic
pulse shapes~3.1! and~3.2! by smoothly varying shapes. To
interpret the results with the concepts introduced in the pre-
vious model, we try to choose functions as similar as pos-
sible to those in that section. We set

FIG. 3. When the ramp pulses are constructed from trigonomet-
ric sections fitted to constant lines, we obtain the pulse behavior
shown in this figure. We notice that both the first and the second
derivatives are discontinuous.

FIG. 4. The upper part~a! of the figure shows the population of
the three levels coupled with the pulses of Fig. 3. Initially the popu-
lation is on level 1~dashed line! and finally mainly on level 3
~dotted line!. The population on the intermediate level 2 is shown as
a solid line. This population is magnified in part~b! of the figure.
The behavior is strongly oscillatory, and the final population de-
pends on the phase of the oscillations when the pulse ends. Time is
given in parts ofT/2.
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V1
2~ t !5

A2

11e2t/T ,

~3.7!

V2
2~ t !5

A2

11e1t/T ;

the time behavior of these couplings is shown in Fig. 5. With
these functions, we easily see that the amplitude in Eq.~2.7!
becomes constant,V05A; and for zero detuning, the Hamil-
tonian acquires for all times the form~3.4!, with the nona-
diabatic coupling being

g5
u̇

A2
5

1

25/2T cosh~ t/2T!
; ~3.8!

this is no longer a constant in time but turns on and off,
smoothly imitating the behavior of the coupling in the pre-
ceding section. The only dimensionless parameter determin-
ing the behavior is the productAT, as before.

The variation of the populations with time in the exponen-
tially coupled case is shown in Fig. 6. There appears a tran-
sient population on levelu2&, but this displays no oscillations
and disappears smoothly. The populations on the levelsu1&
andu3& are exchanged in the expected adiabatic manner. The
figure is close to adiabatic,A5100 andT51/30; less than
0.6% of the population visits the intermediate state. If we
choose parameters further from the adiabatic limit,A530
andT51/30, we find the result in Fig. 7. Here nearly 10% of
the population visits the intermediate state, and the remain-
ing population of levelu2& is of the order of 1%. With the
present coupling functions, i.e.,V1 not turning off at infinity,
the fraction of population left in statesu1& and u2& remains
coupled by a constant and executes Rabi oscillations, which
are clearly seen in Fig. 7. The population on levelu3& is
decoupled and stays constant.

To see the emergence of the adiabatic limit, we plot in
Fig. 8 the nonadiabatic deviation from the ideal transfer, viz.,

DP3512uc3~`!u2, ~3.9!

as a function of the adiabaticity parameterAT. We see that
the semilogarithmic scales chosen suggest that there is an
exponential disappearance of the nonadiabaticity in the ideal
limit; in fact, the tail of the curve in Fig. 8 can be fitted to the
expression

DP35127.992 exp~26.281AT!. ~3.10!

This type of formula agrees with the results from the adia-
batic theory of two-level systems@19#. Thus we may look for
a theoretical approach that will reveal the relation.

We proceed to consider the equivalent two-level model
according to Sec. II B. The exponential model parameters of
the three-level system correspond exactly with those of Eq.
~2.14!, and with the functional dependence~3.8! we recog-
nize in Eq.~2.14! the well-known Rosen-Zener Hamiltonian

FIG. 5. The smooth exponential pulses imitating the features of
the discontinuous behavior in Fig. 3.

FIG. 6. The time evolution of the level populations induced by
the pulses in Fig. 5. The representation is like that in Fig. 4. Part~a!
shows level 1~dashed!, level 3~dotted!, and level 2~solid!. The last
result is shown amplified in part~b!. The adiabaticity parameter is
AT53.3. The intermediate-level population is small and shows no
oscillations. The time scale is chosen in a convenient way in this
picture and the following ones.

FIG. 7. The same as in Fig. 6 but with the adiabaticity parameter
AT51. The adiabatic behavior is less ideal, and the population
remaining on the coupled levels 1 and 2 performs Rabi oscillations
because the couplingV1 extends to infinity.
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HRZ5F 2a 2 i
b

cosh~pt/t!

i
b

cosh~pt/t!
a G ; ~3.11!

with the initial conditions~2.15!, the solution is@19#

ud2~`!u25
sin2bt

cosh2at
. ~3.12!

After having identified the parameters in the Hamiltonian
~3.11!, we find the solution of the three-level problem~2.23!
to be

uc3~`!u25tanh4~pAT!. ~3.13!

This is an exact solution for our three-level problem with the
exponential pulse shapes defined in Eq.~3.7!. In the adia-
batic limit AT→`, this formula becomes

uc3~`!u2;128 exp~22pAT!, ~3.14!

in excellent agreement with the numerical result in Eq.
~3.10!. The success of this type of asymptotic emergence of
the adiabatic limit suggests that we also try the same type of
analysis in other cases below.

In this section we have introduced a smooth ramp pulse
that simulates the features of the nonanalytic trigonometric
model of Sec. III A. The model chosen shows many ideal
features: It contains no oscillatory behavior, it has a well-
developed exponential asymptotic limit, and in addition its
associated two-level model gives an exact analytic solution
for all parameter values. There is only one significant dimen-
sionless quantity in the model,AT, but this is characteristic
of all ramp pulses with the same time scale and the same
amplitude for the two pulses. We have investigated other
simple ramp pulses of this type; the behavior does not differ
significantly from that found in the present model. We do not
expect the introduction of separate time scales and/or ampli-
tudes for the two pulses to cause significant changes in the
behavior of the solution. However, turning to the case of
separated pulses, in the next section, we find a different type
of behavior.

IV. SEPARATED PULSES

A. General considerations

We are now ready to consider pulses of finite duration, but
we continue the resonant caseD50. Such pulses have earlier
been used in both theoretical and experimental investiga-
tions; they vanish at both initial and final times. We thus
introduce a general pulse-shape functionf (x) such that

lim
x→6`

f ~x!50 ~4.1!

and

f ~0!51. ~4.2!

If we now write

V1~ t !5AfS t2t

T D ,
~4.3!

V2~ t !5AfS t1t

T D ,
we realize the counterintuitive pulse sequence for positive
t; see Fig. 2. For negative values oft, ordinary coherent
pulse evolution is expected. Because the population prob-
abilities on the different levels are dimensionless numbers,
they can depend only on the two dimensionless parameters

j5AT,
~4.4!

z5t/T.

For the ramp pulses we had only one parameterj, and the
adiabatic limit consists of this going to infinity; hence we
call it the adiabaticity parameter. Here we have another es-
sential parameter, too, and the genuine adiabatic limit arises
when we letT go to infinity but keep (T/t) constant. In this
case, all time variations scale in the same way and only one
adiabatic parameter remains.

In the case whent is kept constant, we encounter a dif-
ferent phenomenon. WhenT increases, the pulse delay be-
comes less and less significant, and finally we expect the
pulses to fall nearly on top of one another. To decide what to
expect in this limit, we sett50 in Eqs.~4.3!. Then the time
dependence factors out of Schro¨dinger’s equation; and ex-
pressed in terms of the time variableq, defined through the
relation

dq5 f S tTDdt, ~4.5!

the Hamiltonian becomes constant and can be solved trivi-
ally. Then the solution is found to display simple coherent
oscillations in terms of the redefined time variableq, and no
asymptotic behavior is expected. For pulse functionsf (x),
the variableq is a monotonous function oft, and hence the
transformation~4.5! is only a reparametrizing of the time
axis.

From the argument above, we expect that by lettingAT
go to infinity without changingt, we eventually reach a

FIG. 8. The deviation from ideal behavior as a function of the
adiabaticity parameterAT. The semilogarithmic plot shows that an
adiabatic exponential region exists. This is verified from the ana-
lytic theory in the text.
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region where coherent oscillations dominate the behavior.
This will be investigated in the following for specific mod-
els.

The three-level system was shown in Sec. II B to be
equivalent to a two-level one. In these cases, the adiabatic
limit has been found to be dominated by the behavior of the
adiabatic eigenvalue in the complex plane. The parameter
~2.7! is defined to be nonnegative for all real times, but it
may have complex zeroestc given by

V0~ tc!50. ~4.6!

As shown by Davis and Pechukas@23#, the zero nearest the
real axis determines the adiabatic limit. We define the com-
plex quantity

D~ tc!5E
0

tc
V0~ t !dt. ~4.7!

With the initial condition~2.15!, we expect to find the adia-
batic limiting behavior

ud1~`!u2 } exp@22 ImD~ tc!#. ~4.8!

Without critically analyzing the validity of this asymptotic
result, we test its applicability to the separated pulse problem
in our systems.

B. Exponential pulses

The STIRAP has been investigated theoretically mainly
with Gaussian pulse shapes. We thus consider the case when
the function in Eqs.~4.3! is given by

f ~x!5exp~2x2!. ~4.9!

For this pulse, the variables in the adiabatic representation
are given by the adiabatic energy

V0
2~ t !52A2expF2

2

T2
~ t21t2!GcoshS 4ttT2 D ~4.10!

and the nonadiabatic coupling

u̇5
2t

T2coshS 4ttT2 D . ~4.11!

As in the adiabatic two-level cases, the zeroes of the energy
are found to be singularities in the coupling. This is known to
prevent a straightforward use of a stationary phase approxi-
mation to evaluate the transition probabilities.

In Fig. 9 we show the numerically evaluated populations
on the three levels with the Gaussian coupling functions.
Here we have the adiabaticity parameterj5AT510, but the
pulse separation is onlyt50.35T. This is small enough to
induce considerable coherent evolution, as discussed above,
and the situation is found to give only incomplete population
transfer to level 3; a large fraction of the population remains
on level 2. In Fig. 10, the adiabaticity parameter is still only
j5AT512.5, but now the pulse spacing has been increased
to t50.6T. This slight change has improved the adiabaticity
of the population transfer considerably; only the small inter-
mediate population on level 2 displays clear oscillations.
With an accuracy better than one per mille, we find the final
population all on level 3 as desired; except for the oscilla-
tions, the behavior greatly resembles that shown in Fig. 6.

FIG. 9. The population behavior under the influence of two
separated Gaussian pulses. The representation is like that in Figs. 4
and 6. The population is transferred from the initial level~dashed!
to the final level~dotted!, with some population occurring on the
intermediate level~solid!. This is shown magnified in part~b!. The
parametersA520 and T50.5, and the pulse separation is
t50.35T. The behavior is not adiabatic. The pulses are too close;
the population transfer is incomplete and oscillations are predomi-
nant.

FIG. 10. The same as in Fig. 9, but now the pulse separation is
increased tot50.6T. The parameters areA510 andT51.25. The
degree of adiabaticity is no better than that of Fig. 9, but the in-
creased pulse separation makes the behavior much closer to ideal.
Only little population visits transiently the intermediate level, and
hardly any remains. The populations still display oscillations like
those in Fig. 4 even if the general behavior is similar to that in
Fig. 6.
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We find that the pulse separation in Fig. 10 gives good adia-
baticity, in agreement with the results reported earlier@13#.

To investigate the appearance of an asymptotic region we
plot, for the pulse separationt5T, the deviation from adia-
batic transferDP3 , Eq. ~3.9!, as a function of the adiabatic-
ity parameterj5AT in Fig. 11. For numerical simplicity we
have approached the adiabatic limit by lettingA grow. The
plot is chosen semilogarithmic to reveal an asymptotic re-
gion of the form

DP3~j!512ae2bj. ~4.12!

As we can see from the plot, the exponential behavior is
followed up toj'50 over a decay by seven orders of mag-
nitude. After this point, the coherent oscillations start to
dominate and the asymptotic behavior breaks down. This
agrees with our conclusions above; too much overlap be-
tween the pulses makes the coherent oscillation dominate.
For pulse separations near the optimal adiabatic behavior,t
.T; the exponential region extends over an even much
larger range of the parameterAT.

In the region where the exponential behavior is found, we
may try to determine the exponent from the theory in Sec.
IV A. The zero of the function~4.10! closest to the real axis
is

tc5 i
pT2

8t
. ~4.13!

When this is inserted into Eq.~4.8!, we obtain a theoretical
estimate for the exponentb. This may be compared with the
one obtained from the numerical fit to the expression~4.12!.
This is again carried out in such a manner thatt/T is kept
constant, and the adiabatic limit is reached by increasing the
amplitudeA. The results are shown in Table I.

Table I confirms our conclusion that adiabatic transfer
dominates the behavior for the pulse separationt.T. In this
region unquestionable exponential dependence on the adia-
baticity parameter is found. For closer pulses, too much co-
herent evolution occurs; for larger separation, the exponen-

tial region cannot be found because the total transfer of
population becomes exceedingly small.

C. Secant pulses

In the previous section we considered some features of
the separated pulse system with Gaussian shapes. To decide
if the features observed are generic or characteristic of the
Gaussian only, we look at another popular pulse shape. We
choose the hyperbolic secant pulse function

f ~x!5sech~x! ~4.14!

instead of~4.9!. The adiabatic energy then becomes

V0
2~ t !5A2Fsech2S t2t

T D1sech2S t1t

T D G
52A2sech2S t2t

T D sech2S t1t

T D
3Fcosh2S tTD cosh2S t

TD1sinh2S tTD sinh2S t

TD G .
~4.15!

The nonadiabatic coupling is

u̇5

sinhS 2t

T D
TFcosh2S t2t

T D1cosh2S t1t

T D G

5

sinhS 2t

T D
TF11coshS 2tT D coshS 2t

T D G . ~4.16!

As in the previous case, we find that the zeroes ofV0(t) are
poles of the coupling. Both the coupling~4.11! and ~4.16!
vanish exponentially fort@T. Thus some similarity in their
behaviors is expected. Numerical investigations show that
the population behaves much in the manner shown in Fig. 10
for the Gaussian case. The tails of the secant pulses do, how-
ever, fall off more slowly, and consequently larger pulse
separationst are needed to avoid excessive coherent evolu-
tion.

In Fig. 12, we show the behavior of the deviation from
adiabaticityDP3 as a function ofAT, as in Fig. 11. The
pulse separation is heret53.5T, and still an adiabatic expo-
nential region is barely visible. The numerical work to deter-

FIG. 11. Plots the deviation from ideal adiabaticity in the man-
ner of Fig. 8, when we use Gaussian pulse shapes. The exponential
region is seen to end for some value ofAT, after which rapid
oscillations are seen; they are not resolved in this figure. The picture
is obtained fort5T; for larger delays, the linear region becomes
more extended, going down to 10210 around the valuest51.2T.
The values in Table I are obtained from fits of lines to plots like
these.

TABLE I. Parameters for Gaussian pulses.

2t

T

b ~numeric! b ~analytic!

2.0 0.3220 0.3238
2.2 0.2365 0.2370
2.4 0.1709 0.1717
2.6 0.1226 0.1230
3.0 0.0601 0.0605
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mine the parameters of the fit to the form~4.12! is much
more difficult than for the Gaussian case, but the parameter
b can be extracted. Again, we can compare this to the ana-
lytic approximation from Eq.~4.8!.

Closest to the real axis, we find the zero of the adiabatic
energyV0(t) in Eq. ~4.15! to be

tc5 iT arctanFcothS t

TD G . ~4.17!

This can be used in Eq.~4.7! to obtain the analytic approxi-
mation tob. This is compared with the numerically obtained
value in Table II.

Table II shows that for the secant pulses also, we do find
a region where the asymptotic pole approximation gives a
good representation of the data. However, the required pulse
separation is considerably larger than in the Gaussian case.
This we ascribe to the slower decay rate of the secant pulses.
Nevertheless, the general pattern of the behavior is the same.
After the exponential region, from some value ofAT onward
the simple behavior breaks up into oscillations; compare
Figs. 11 and 12. The oscillations take place over the range of
AT'1, and hence the pattern is not resolved in the figures.

D. Conclusions

For two types of separated pulses that vanish at infinity,
we have found very similar behavior. When the coupling
amplitude is increased, an asymptotic exponential regime
first emerges, which for large enough amplitudes breaks up
into a rapidly oscillating pattern. When the pulse separation
becomes a larger fraction of the pulse width, the exponential
region becomes more extended. We interpret this to mean
that the increased pulse amplitude stresses the importance of

the pulse overlap leading to enhanced coherent evolution.
This stops the exponential decay and lets the oscillation be-
havior dominate.

In this paper we have applied the Davis-Pechukas result
~4.8! totally uncritically. In its derivation, however, a time
integration path from2` to1` is deformed to the complex
zero of the adiabatic energy. The contribution from this zero
then dominates the behavior in the adiabatic regime. The
procedure assumes that no trouble is caused by the behavior
of the functions at infinity. In the present cases this is not
true. In both models investigated, the Gaussian case and the
hyperbolic secant, Eqs.~4.10! and~4.15!, the adiabatic ener-
gies show complicated behavior near6 i`. Both can take
arbitrarily large values here, and this behavior may invalidate
the asymptotic analysis. If we modify the pulses to make the
adiabatic energy well behaved at infinity, the oscillatory re-
gime for largej seems to be eliminated. We offer no theo-
retical explanation for this observation.

The value of the parameterj5AT, at which the exponen-
tial decrease ceases, is expected to depend on the pulse
delay-to-duration ratioz5t/T. This can be extracted from
the data in Figs. 11 and 12. The linear fit to the decay part is
extended until it meets a line through, e.g., the peaks of the
oscillating part. This crossing is chosen as the critical value
for the adiabaticity parameterjc . This is then plotted semi-
logarithmically againstz for the Gaussian and secant pulses
in Figs. 13 and 14, respectively. With good accuracy, the
behavior is found to fit the equation

FIG. 12. A plot like that in Fig. 11 but with hyperbolic secant
pulse shapes. The pulse separation has to be larger,t53.5T, and
the linear region is less extended. Fits of lines to the linear parts
give the parameters in Table II.

FIG. 13. In plots like Fig. 11, we determine the critical value of
the adiabaticity parameter (AT)crit for which the linear behavior
breaks up into oscillations. This is plotted as a function of the pulse
separation parameter (t/T) for Gaussian pulses. The plot shows
that an exponential dependence is obvious.

FIG. 14. The same plot as in Fig. 13 but for the hyperbolic
secant pulse. The data are obtained from plots like that in Fig. 12.
Also here the exponential dependence is well verified.

TABLE II. Parameters for secant pulses.

2t

T

b ~numeric! b ~analytic!

7.0 0.0997 0.1024
8.0 0.0608 0.0621
9.0 0.0373 0.0376
10.0 0.0227 0.0228
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jc5kemz. ~4.18!

In Table III we give the parameters obtained numerically for
the two pulse shapes investigated. We have no analytic ex-
planation for this observed relation. The good fits provided
by Figs. 13 and 14 suggest that the behavior~4.18! is generic
for a certain class of pulse shapes, but lacking a theoretical
explanation we are unable to suggest how general the result
is.

V. DISCUSSION

In this paper we have considered the nonadiabatic correc-
tions to the well-known adiabatic population transfer con-
nected with a counterintuitive pulse sequence for a three-
level system. When the intermediate level is at resonance, we
utilize a representation of the problem in terms of a two-level
Hamiltonian. We point out that the conventional configura-
tion of separated pulses can be replaced by two ramp pulses
approaching constant values at infinity. The adiabatic part of
the transfer is the same.

We illustrate the use of the ramp pulse by two examples:
One is a trivial discontinuous trigonometric model, which is
analytically solvable, but because of the discontinuous de-
rivatives all nonadiabatic corrections occur as simple powers
of the inverse of the time scale. The model does, however,
illustrate the use of ramp pulses. The second example con-
sists of smooth exponential pulses. They have been chosen
such that the algebraic structure of the problem simplifies in
the adiabatic basis. In fact, the associated two-level problem
becomes solvable, and the asymptotic behavior in the adia-
batic limit can be verified to agree with that which we ex-
tracted from a numerical treatment. This suggests that the
Davis-Pechukas asymptotic analysis can be applied to the
two-level formulation of the three-level problem.

We then proceed to consider the situation with separated
pulses, which decay to zero at6`. We investigate Gaussian
and hyperbolic secant pulses and look for regions where ex-
ponential asymptotics occur. For pulses that are sufficiently

separated in time, such regions are found; but in contrast to
expectations, they end when the adiabaticity parameter
grows too large and are replaced by rapidly oscillating solu-
tions. We ascribe this behavior to a takeover by the coherent
oscillations, which derive from the region where the pulses
overlap significantly. When the pulse amplitude is increased,
this overlap grows.

We determine the position of the crossover between ex-
ponential and oscillatory behavior numerically and find an
unexpected exponential relation. Thus increasing the pulse
separation rapidly pushes the crossover to larger values of
the adiabaticity parameter and consequently smaller actual
values of the nonadiabatic corrections. Too large separations,
however, will eventually destroy the effect because the
pulses overlap only at negligibly small amplitudes. Hence
there is an optimum separation for adiabatic transfer. We
have no analytic theory to explain these features of the be-
havior.

For a resonant intermediate level, the three-level problem
is equivalent with an associated two-level problem. Much
work has been carried out on adiabatic behavior and nona-
diabatic corrections in such systems. However, the cases oc-
curring with counterintuitive separated pulses are of a type
not usually discussed for two levels. As seen from Eq.~2.20!,
the total Hamiltonian disappears at both time limits6`. The
two levels involved are then degenerate, and all nonadiabatic
transfer between them takes place with separated adiabatic
energies. The difference between the ordinary and the coun-
terintuitive sequences derives from whether the levels be-
come coupled before they separate or separate before they
couple. In the case of the two-level situation, this question
seems not to have been investigated before. Our discussion
of the three-level system can be rephrased to deal with the
associated two-level situation directly. We feel that consider-
able work is still needed to understand this aspect of the
situation.

In conclusion, the adiabatic behavior of the three-level
system has been found to exhibit many unexpected and chal-
lenging features. Some of these we have been able to relate
to exact solutions and analytic approximations. The latter
have, however, been introducedad hocwithout derivation.
Many results are based on numerical evidence only. As this
is afflicted with accuracy problems and insufficient general-
ity, we would really like to see more detailed investigations
of the analytic behavior of the systems discussed in this pa-
per. We hope that such work will be possible in the future.
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