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The many-body decomposition of the interaction energy for BeN and LiN ~N52 to 4! clusters is calculated
in two approximations: the self-consistent-field method and the Mo” ller-Plesset perturbation theory up to the
fourth order. This allows us to estimate the electron-correlation contributions to the many-body forces. The
explicit expressions for these contributions in the perturbation theory formalism are obtained. We present a
comparative analysis of the role of electron correlations in the BeN and LiN cluster formations and in the
many-body interactions in these clusters. As follows from our results, the contribution of electron correlation
to many-body interactions is essential for both the BeN and LiN clusters, especially for the latter ones, where
nonadditivities are surprisingly large.

PACS number~s!: 31.25.2v

I. INTRODUCTION

Small metal clusters are a fruitful field to study the depen-
dence of calculated physical properties on the accuracy of
the calculation method applied. In this paper we study the
dependence of cluster stability and many-body forces of
small metal clusters when allowing for the inclusion of elec-
tron correlation.

The first study of many-body effects in atomic systems
was performed by Lo¨wdin @1# in 1948. Since then, many
investigations of the role of many-body interactions in clus-
ters and the solid state have been published; see Refs.@2,3#,
and references therein.

The beryllium clusters were the first metal system in
which the role of many-body forces was investigated@4–6#.
The calculations were based on the self-consistent-field
~SCF! method. It was shown that while Be2 and Be3 clusters
are not bound at the SCF level, Be4 is a stable cluster with a
tetrahedral geometry@5#. For the stability of the latter the
attractive three-body forces are decisive, since the two- and
four-body forces are repulsive.

The many-body decomposition of the interaction energy
in lithium clusters was studied for Li3 @7# and later on for LiN
~N52 to 9! @8# in the framework of the configuration-
interaction~CI! method. According to the results obtained,
for some conformations of lithium clusters not only the
three-body, but even the four-body interaction energies are
greater than the two-body ones@8# ~as previously found for
beryllium clusters@4,5#!.

Thus, in these investigated metal systems the convergence
of the many-body decomposition of the interaction energy of
anN-atom cluster

Eint~N![E~N!2E1~N!5E2~N!1E3~N!1•••1EN~N!,
~1!

is poor. In Eq.~1!, E(N) is the total energy andE1(N) is the
energy of the noninteractingN-atom system,

E1~N!5 (
a51

N

Ea , ~2!

Em(N) ~m>2! denotes the sum ofm-body interaction ener-
gies in anN-atom system, as will be defined in the following
section.

However, we know of many empirical and semiempirical
pair potentials that describe quite satisfactorily the properties
of liquids and solids; see chapter 5 in Ref.@3#. The point is
that the parameters in these potentials are not the parameters
of a true two-body interaction; their values depend upon
properties of a medium. So these effective two-body poten-
tials include nonadditive interactions through their param-
eters. However, in some cases, in order to obtain a good
agreement with experimental or theoretical data, the effective
potentials must be constructed with three-body@9–11# and
even four-body@12# terms. The knowledge of the analytical
form of many-body interaction energy is very useful for con-
structing such effective potentials.

The physical nature ofm-body interactions and the con-
cept of nonadditivity are discussed in Refs.@13–15#. Here
we want to stress that the representation of the interaction
energy as the finite sum~1! is exact and can be performed for
arbitrary configurations and distances between atoms. But
the relative weights of the many-body contributions in Eq.
~1! are method dependent. In order to find the dependence
upon electron correlation, it is necessary to make a compara-
tive calculation at two levels: with the SCF approach and
with one of the methods allowing for the electron correla-
tion. We took up the Mo” ller-Plesset perturbation-theory ap-
proach and compared the many-body decompositions ob-
tained in this approach for BeN and LiN ~N52 to 4! clusters
with the corresponding SCF calculation.

There are a lot of precise calculations of small beryllium
and lithium clusters incorporating the correlation effects
@16–26#. But in all these works only the total interaction
energy was investigated. In the present study, which has the
accuracy of the best calculations~see Tables I and II!, we
obtained them-body decomposition ofEint and studied the
influence of electron correlation on it.

Although the importance of electron correlation for the
stability of beryllium clusters is well known@17# and it is
customary to suppose that the same situation takes place in
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the case of lithium clusters, the correlation contributions to
many-body forces in these clusters have not been studied.
Water clusters are the only investigated system in this re-
spect. According to calculations of Habitzet al. @27#, it is
enough to perform calculations at the SCF level for finding
nonadditive contributions to the interaction energy of water
clusters. This statement was confirmed in recent studies
@28,29#. As follows from our results presented in this paper
~see Tables IV and V!, in the case of metal clusters the situ-
ation is quite opposite. For beryllium and, especially, for
lithium clusters the many-body interactions cannot be stud-
ied without taking into account the electron correlation.

In the recent interesting paper by Jellineket al. @30#, the
molecular dynamics study of the cluster Li8 is performed at
the SCF level. The authors@30# discuss the possibility of
taking into account the electron correlation inab initio mo-
lecular dynamics simulations in future studies. According to
our results, the contribution of the electron correlation to the
total interaction energy of lithium clusters at equilibrium dis-
tances is extremely large; for Li4 the magnitude of the elec-
tron correlation contribution is more than twice as large as
the SCF binding energy~see Table III!. It cannot be excluded
that the same situation takes place at some other points of the
potential surface. In the last case, it is necessary to carry out
the molecular dynamics study of lithium clusters on the level
that incorporates the correlation effects.

The plan of this paper is as follows: In Sec. II we de-
scribe the computing method and present the basic formulas
for them-body interaction energies. The correlation correc-
tions to them-body energies are expressed in Sec. III in the
perturbation-theory formalism. In Sec. IV we analyze the
numerical results obtained for the many-body decomposition
and the correlation corrections in the case of beryllium and
lithium clusters.

II. COMPUTING METHOD AND BASIC FORMULAS
FOR m-BODY INTERACTION ENERGIES

All calculations were carried out using theGAUSSIAN-92
program@31# on a CRAY-YMP4/464. We performed an all-
electron SCF calculation using the triply split valence basis
set @6-3111G(3d f )#, having one diffusep function, three
5d functions, and one 7f function. The electron correlation
calculations are performed by means of the Mo” ller-Plesset
perturbation theory up to the fourth order~MP4! in the
frozen-core approximation.

The geometries were optimized at the MP4 level~for the
Be4 cluster, the equilibrium geometry was taken from Ref.
@18#!. The final calculated energies were corrected for the
basis set superposition error~BSSE! with the counterpoise
method~see Ref.@32# and references therein!. Because of the
large basis set used, the BSSE corrections are small.

As we mentioned in the Introduction, the relative weights
of the many-body contributions in Eq.~1! are method depen-
dent. In order to obtain reliable results, we must be sure of
the precision of the method used. The results of our geom-
etry and energy calculations of BeN and LiN clusters are pre-
sented in Tables I and II together with literature data. The
comparison of our results with previously published ones
indicates a quite satisfactory agreement.

For Be3 and Be4 all calculations predict almost the same
equilibrium distances. The total energies are very close at the
SCF level, where the precision depends upon the size of the
basis set used. Note the closeness of our SCF results to those
of Klopper and Almlöf @20#, who used a very large basis
set: 16s12p8d4 f primitive functions. The predicted inter-
action energies calculated at electron correlation level are
more divergent because of the different precision of the
methods used to account for the electron correlation.

TABLE I. Comparison of our calculation of BeN with literature data.

BeN

r 0
~a.u.!

2ESCF(N)
~a.u.!

2ESCF1corr(N)
~a.u.!

2Eint(N)
~kcal/mol!

Method of electron
correlation account

Be2 @16# 4.72 2.12 ICF2H
@17# 4.75 1.86 Full CI~CAS SCF!
@20# 29.137 64 29.301 25 2.36a MP2-R12
This 4.91 29.134 85 29.229 29 1.81 MP4@6-3111G(3d f )#
work
@33# 4.63 2.3660.08 Experiment

Be3
b @17# 4.20 17.9 Full CI~CAS SCF!

@19# 4.20 43.891 968 22.4 MR CI
@18# 4.23 43.714 40 43.873 64 21.6 MP4~6-3111G* !
@20# 4.20 43.718 25 43.998 97 31.75a MP2-R12
This 4.23 43.714 94 43.881 26 25.8 MP4@623111G(3d f )#
work

Be4
c @17# 3.92 64.8 CEPA-1

@19# 3.90 58.595 343 73.3 MR CI
@18# 3.94 58.353 58 58.585 27 83.4 MP4~6-3111G* !
@20# 3.93 58.359 46 58.774 47 110.94a MP2-R12
This 3.93 58.354 69 58.600 40 92.0 MP4@6-3111G(3d f )#
work

aEstimated value.
bEquilateral triangle (D3h).
cTetrahedron (Td).
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For LiN clusters according to Table II, there is a great
dispersion of the calculated equilibrium distances, contrary
to the beryllium case. Our total energies at the SCF level are
the lowest of those presented in Table II. From this follows
the good quality of the basis set used. The interaction energy
obtained in our calculation for Li2 is very close to the experi-
mental value. The interaction energy for Li3 and the total and
interaction energies obtained for the Li4 cluster are in good
agreement with previous calculations. Data presented in
Tables I and II show that there is a convergence in the total
energy prediction and to some extent in the interaction en-
ergy. On the whole, we can conclude that the computing
method used in our study can be applied with confidence to
the calculation of the energy decomposition~1!.

In many-body decomposition~1!, E2(N) is the total en-
ergy of the pair interactions«ab , the so-called pairwise ad-
ditive energy

E2~N!5 (
a,b

$N%

«ab , ~3!

«ab5E~ab!2E1~ab!5E~ab!2~Ea1Eb!. ~4!

The sum in Eq.~3! is taken over allCN
25N(N21)/2 pair

interaction energies«ab of the isolated atoms;E(ab) is the
total energy of the isolated systemab. All other terms in Eq.
~1! represent the nonadditive part of theN-atom interaction
energy

Enonadd~N!5 (
m53

N

Em~N!. ~5!

As for the energy of two-body interactions, similar defini-
tions hold for the total energyE3(N) of the three-body in-
teractions«abc

E3~N!5 (
a,b,c

$N%

«abc , ~6!

«abc5E~abc!2E1~abc!2E2~abc!, ~7!

etc. up toEN(N). The sum in Eq.~6! is taken over all,
CN

35N!/(N23)!3!, combinations of three atoms in the
cluster ofN atoms.

The total energy ofm-body interactions can be expressed
through the total energies of 2-,3-,..., and~m21!-body inter-
actions~for a derivation see Ref.@14#!

Em~N!5 (
a,b,•••,m

$N%

E~ab...m!2 (
k51

m21

amN
k Ek~N!, ~8!

where

amN
k 5

~N2k!!

~N2m!! ~m2k!!
. ~9!

Form5N all aNN
k 51, in full accordance with the decompo-

sition ~1!. The use of Eqs.~8! and ~9! make it possible to
perform the calculation of the energy ofm-body interactions
by the simple recurrence procedure:

E2~N!5 (
a,b

$N%

E~ab!2a2N
1 E1~N!, ~10!

TABLE II. Comparison of our calculation of LiN with literature data.

LiN

r 1 ,r 2
~a.u.!

2ESCF(N)
~a.u.!

2ESCF1corr(N)
~a.u.!

2Eint(N)
~kcal/mol!

Method of electron
correlation account

Li2 @24# 5.08 20.45 CI
@25# 5.05 22.70 OMC
@23# 17.32 CI-Dav
@21# 5.27 14.864 52 14.893 24 20.63 CEPA
This 5.15 14.870 28 14.899 16 22.02 MP4@6-3111G(3d f )#
work
@34# 5.05 24.6660.3 Experiment

Li3
a @23# 5.46, 7.50 24.15 CI-Dav

@22# 5.22, 6.56 36.89 Pseudo1DFT
5.50, 6.69 37.29 CI1Heff

@26#
This 5.14, 6.47 22.315 07 22.344 52 30.38 MP4@6-3111G(3d f )#
work

Li4
b @23# 5.14, 6.47 51.08 CI-Dav

@21# 5.97, 10.28 29.745 64 29.810 89 CEPA
@26# 5.95, 5.00 59.76 CI1Heff

This 5.74, 5.00 29.759 27 29.829 83 63.8 MP4@6-3111G(3d f )#
work

aIsosceles triangle.
bRhombic geometry.
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E3~N!5 (
a,b,c

$N%

E~abc!2a3N
1 E1~N!2a3N

2 E2~N!, ~11!

E4~N!5 (
a,b,c,d

$N%

E~abcd!2a4N
1 E1~N!2a4N

2 E2~N!

2a4N
3 E3~N!, ~12!

EN~N!5E~ab...N!2E1~N!2E2~N!2•••2EN21~N!.
~13!

The coefficients in Eqs.~10!–~13! are given by formula~9!.
For an estimation of the convergence of the many-body

decomposition of the interaction energy, the latter is often
expressed as the ratios ofm-body to two-body energies,

Eint~N!5E2~N!@11a3~2,N!1•••1aN~2,N!#, ~14!

where

am~2,N!5
Em~N!

E2~N!
. ~15!

III. PERTURBATION THEORY AND ELECTRON
CORRELATION CONTRIBUTIONS TO THE MANY-BODY

DECOMPOSITION

It is useful to decompose the many-body contributions on
different physical parts, as is performed in perturbation
theory ~PT!. At distances where the magnitude of the inter-
action between subsystems can be considered small in com-
parison with the sum of the energies of the noninteracting
subsystems, the interaction energyEint decomposes in a se-
ries over various orders of PT,

Eint5«el
~1!1«exch

~1! 1 (
n52

`

@«pol exch
~n! 1«pol

~n!#. ~16!

The first order of the PT gives the well-known Heitler-
London energy. It is easily calculated if the wave functions
c0 of the isolated subsystems are known.«el

~1! is the classi-
cal electrostatic energy for the interaction of space-
distributed charges. Each charge is described by the unper-
turbed wave function, which means that at this
approximation it is rigid, so the electrostatic energy«el

~1! is
always additive. The exchange energy«exch

~1! is nonadditive
for all permutations mixing electrons of three or more atoms.
The evaluation of the exchange energy for closed-shell
many-electron systems has now become a popular topic; see
Refs.@35–38#.

As the exchange energy, the polarization-exchange energy
«pol exch is also nonadditive. The standard PT cannot be ap-
plied to the calculation of the«pol exch. The reason is that the
antisymmetrized functions of zeroth order~Ac 0

Ac 0
B...! are

not eigenfunctions of the unperturbed HamiltonianH0 as
long as the operatorH0 does not commute with the antisym-
metrizer operatorÂ. Many successful approaches for the
symmetry adapted perturbation theory~SAPT! have been de-
veloped; for a detailed discussion see chapter 3 in Ref.@3#
and more recent Refs.@39–41#.

The polarization energy«pol
(n) comprises the induction and

dispersion energies. These energies are nonadditive in all or-
ders of PT; the only exception is«disp

~2! , see Ref.@3#, chapter 4.
Thus, in the energy partition only two terms are
additive: «el

~1! and«disp
~2! . If we subtract them fromEint, the

remaining part will contain only nonadditive contributions.
Let us denote themE int

nonadd,

Eint
nonadd5«exch

~1! 1Epol exch1Epol
nonadd, ~17!

where

Epol exch5 (
n52

`

«pol exch
~n! Epol

nonadd5S (
n52

`

«pol
~n!D 2«disp

~2! . ~18!

Now we can decompose them-body interaction energies into
the PT series. For the two-body interaction energy the ex-
pression follows from Eq.~16!:

E2~N!5 (
a,b

$N%

«ab ;«ab5«el
~1!~ab!1«exch

~1! ~ab!

1 (
n52

`

@«pol exch
~n! ~ab!1«pol

~n!~ab!#. ~19!

The m-body interaction energy withm>3 is expressed
through the nonadditive term~17!. ForE3(N) we have@15#

E3~N!5 (
a,b,c

$N%

«abc ,«abc5Eint
nonadd~abc!

2 (
a,b

$abc%

Eint
nonadd~ab!. ~20!

For the energy ofm-body interactions the following recur-
rence formula is valid@15#:

Em~N!5 (
a,b,•••,m

$N%

Eint
nonadd~ab...m!2amN

2 (
a,b

$N%

Eint
nonadd~ab!

2 (
k53

m21

amN
k Ek~N!. ~21!

Let us turn to the electron correlation energy. According
to its definition@42#, the correlation energy is the difference
between the precise value of the energy and the Hartree-Fock
value. But except for the smallest systems, we cannot obtain
the exact energy. So the definition of the correlation energy is
conventional and depends upon the approximation used. For
the energy ofm-body interactions, the correlation contribu-
tion in our approximation is equal to

DEm
corr~N!5Em

MP4~N!2Em
SCF~N!. ~22!

The SCF interaction energy can be decomposed as@43,44#

Eint
SCF5«el

~1!1«exch
~1! 1Edef

SCF. ~23!

On the distances where exchange effects can be neglected,
Edef
SCF is the classical induction energy.
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For DE2
corr(N), we obtain from Eqs.~19!, ~22!, and ~23!

the following expression:

DE2
corr~N!5 (

a,b

$N% F (
n52

4

@«pol exch
~n! ~ab!1«pol

~n!~ab!#

2Edef
SCF~ab!G . ~24!

If we use the notations~18! and keep in mind that

Epol5Epol
nonadd1«disp

~2! , ~25!

Eq. ~24! can be written in a more compact form:

DE2
corr~N!5 (

a,b

$N%

@Epol exch~ab!1Epol~ab!2Edef
SCF~ab!#.

~26!

The contributions of the induction energy to the difference
inside the brackets of Eq.~26! are almost canceled. To some
degree the same happens to the exchange energy. At the large
distances, the exchange terms can be totally neglected and
the main contribution toDE2

corr will be given by the disper-
sion energy.

The expression for the correlation contribution to the en-
ergy of three-body interactions can be represented as fol-
lows:

DE3
corr~N!5 (

a,b,c

$N%

@Epol exch~abc!1Epol
nonadd~abc!

2Edef
SCF~abc!#2~N22! (

a,b

$N%

@Epol exch~ab!

1Epol
nonadd~ab!2Edef

SCF~ab!#. ~27!

Similar expressions can be obtained for the correlation con-
tribution to them-body energy form.3. At large distances,
the exchange terms can be neglected and, as in the case of
DE2

corr, the expression forDE3
corr will contain only the dis-

persion terms, in which the leading term is the Axilrod-Teller
III order dispersion energy. The three-body dispersion terms

appearing in the intermolecular Mo” ller-Plesset perturbation
theory approach were studied recently@45# in the noble gas
~He, Ne, and Ar! trimers.

IV. NUMERICAL RESULTS AND DISCUSSION

In Table III the contribution to the binding energy in BeN
and LiN clusters, calculated at different orders of the Mo” ller-
Plesset perturbation theory, are presented. It is well known
@4,5# that in the SCF approximation the BeN clusters are
stable only forN>4. According to Table III, the corrections
to the SCF energy are of great importance for beryllium clus-
ters, to the point of making the unstable Be2 and Be3 clusters
become stable; see also Ref.@17#. What was not so evident is
the great importance of the correlation corrections to the
binding energy of lithium clusters. The relative magnitude of
these corrections is especially large for Li2 and Li4 clusters:
the ratioDEb

corr/Eb
SCF equals 4.6 for Li2 and 2.3 for Li4. The

convergence of the MP series is rather good, although for
Be3 and Be4 clusters we have an alternating series. Note that
in the Ar3 clusters, according to Chal”asiński, Szcesniak, and
Cybulski @43#, the«MP

~3! and«MP
~4! contributions have also dif-

ferent signs. The binding in the lithium dimer is much tighter
than in the beryllium one; see Fig. 1. As follows from Table
III, for trimers the difference is not so large and the situation
is reversed for tetramers: the binding energy at the MP4
level for the Be4 clusters is 1.5 times larger than that for the
Li4.

The results of the comparative study of the many-body
decomposition for BeN and LiN clusters are presented in
Tables IV and V. The poor convergence of the many-body
decomposition of the interaction energy obtained for BeN
clusters at the SCF level@4–6# becomes even poorer at the
MP4 level. The extremely large magnitude of the ratio
Enonadd/Eadd for Be3 is due to the almost zero value ofE2~3!
~the equilibrium distance in the Be3 triangle is located in the
vicinity of the intersection of the Be2 potential curve and the
abscissa axis!. For Be4, we also have a divergent series. Ac-
cording to Eq.~14! and the data presented in Table IV,

Eint
MP4~Be4!5E2~4!@126.6911.03#. ~28!

A poor convergence is observed in the Li4 cluster:

Eint
MP4~Li4!5E2~4!@121.0910.71#. ~29!

FIG. 1. MP4 potential curves for beryllium and lithium dimers.

TABLE III. The contributions«MP
(n) is the energy in thenth order

of the Mo” ller-Plesset perturbation theory,DEb
corr5«MP

(2)1«MP
(3)

1«MP
(4) , Eb

MP45Eb
SCF1DEb

corr . to the binding energyEb52Eint
in BeN and LiN clusters, in kcal/mol.

N Eb
SCF «b

(2) «MP
~3! «MP

~4! DEb
corr Eb

MP4

2
Be2
Li2

25.7
3.9

6.4
13.0

0.7
3.5

0.4
1.6

7.5
18.1

1.8
22.0

3
Be3
Li3

20.6
11.9

28.1
12.3

22.6
3.9

0.9
2.2

26.4
18.4

25.8
30.4

4
Be4
Li4

41.9
19.5

59.6
32.4

213.3
8.1

3.8
3.8

50.1
44.3

92.0
63.8
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A detailed analysis of expansion~14! shows that for Be3
and Be4, the three-body forces are not only a factor of stabi-
lization, but the dominant factor of the expansion. So the
conclusion that the three-body forces stabilize Be3 and Be4
clusters at the SCF level@4–6# is retained also at the MP4
level. We can see in Table IV that the two-body contribution
is very small for all BeN clusters. This is a consequence of a
very shallow two-body potential, as presented in Fig. 1. The
four-body term is almost an order of magnitude smaller than
the total energy of three-body interactions. But if we divide
the latter by the number of three-body terms~for a tetramer
there are four different triplets! the difference between three-
and four-body terms will not be so large. The total interac-
tion energy of the stable tetramer comes from a three-body
attraction and two- and four-body repulsions which together
amount to 30% of the three-body attraction energy. The fact
that the Be3 and Be4 clusters are stabilized by the three-body
interactions and the flatness of the two-body potential ex-
plains the decrement in the interatomic distances as the size
of the cluster increases: the attractive three-body forces be-
come larger with decreasing Be-Be distance while the two-
body forces undergo small changes until the Be-Be distance
becomes smaller than 4a0.

For lithium clusters the pattern is completely different.
The two-body interaction energies are large and stabilizing.
In Fig. 1 we see that the Li-Li interaction has, similar to Be
a broad well, but deeper and with a steeper repulsive ascent.
The three-body forces play a destabilizing role. As a result
there is an increase of the equilibrium distances in the se-

quence Li2, Li3, and Li4 in order to reduce the three-body
repulsion: the latter diminishes more sharply with increasing
the interatomic distance, than the two-body attraction. But
the most striking result is the important role of the four-body
attraction energy. For Li4 the two-body attraction is smaller
than the three-body repulsion. So the attractive four-body
forces are decisive for the formation of stable lithium tetram-
ers. Here we see that the many-body expansion requires also
the four-body term, in the case of Li4 in a crucial manner.

Now let us consider the influence of the electron correla-
tion on each term of the energy decomposition~1!. For the
additiveE2(N) energy, allowing for the electron correlation
results in great changes for both beryllium and lithium
clusters. E2(N) even changes sign for Be2 and Be3, as well
as for Li4. The correlation contributions to the many-body
energies are not so pronounced in beryllium clusters, but are
very essential in lithium clusters. This is evident from Table
V, where we present the correlation contributions to the en-
ergies ofm-body interactions defined by Eq.~22!, the rela-
tive contribution of electron correlation to them-body en-
ergy is denoted bygm(N):

gm~N!5
DEm

corr~N!

Em
SCF~N!

. ~30!

The absolute and relative magnitudes of correlation energy
corrections are much larger for lithium clusters than for the
beryllium ones.

TABLE IV. Influence of the calculation method on them-body energy decomposition, in a.u.

~a! BeN

N E(N) Eint(N) E2(N) E3(N) E4(N) Enonadd UEnonaddEadd
U

2
SCF 29.134 86 0.009 05 0.009 05
MP4 229.229 29 20.002 89 20.002 89

3
SCF 243.714 94 0.000 94 0.057 06 20.056 12 20.056 12 0.98
MP4 243.881 26 20.041 15 20.000 75 20.040 40 20.040 40 53.87

4
SCF
MP4

258.354 69
258.600 40

20.066 81
20.146 72

0.172 44
0.031 50

20.327 56
20.210 80

0.088 31
0.032 58

20.239 25
20.178 22

1.39
5.66

~b! LiN

N E(N) Eint(N) E2(N) E3(N) E4(N) Enonadd UEnonaddEadd
U

2
SCF 214.870 28 20.006 21 20.006 21
MP4 214.899 16 20.035 09 20.035 09

20.014 92 3.67

3
SCF 222.315 07 20.018 98 20.004 06 20.014 92
MP4 222.344 52 20.048 42 20.088 46 0.040 04 0.040 04 0.45

4
SCF
MP4

229.759 27
229.829 83

20.031 11
20.101 66

0.017 25
20.163 42

20.039 86
0.178 82

20.008 50
20.117 06

20.048 36
0.061 76

2.80
0.38
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According to Table IV, the changes in the magnitude of
Em(N), calculated in the SCF and MP4 approximations,
have for BeN and LiN clusters the opposite tendency:

uEm
MP4~BeN!u,uEm

SCF~BeN!u, ~31!

uEm
MP4~LiN!u.uEm

SCF~LiN!u ~32!

for all calculatedN andm. The reason is thatDEm
corr has the

same sign for BeN and LiN clusters~see Table V!, while
Em
SCFhas different signs for beryllium and lithium dimers and

trimers ~in the case ofE3
SCF the sign is the same, but for

lithium the absolute values of the three-body energy are very
small!. For tetramers the absolute value ofEm

SCF(Li 4) is ex-
tremely small and the adding ofDEm

corr increases the absolute
value ofEm ~Li4! irrespective of theEm

SCF sign.

Let us now consider the case of the additive two-body
energy in more detail. The analytical expression for the cor-
relation correction to it is given in Sec. III by Eq.~26!. At
large distances, it contains only dispersion terms«disp

~2! (ab).
The second-order dispersion energy is always negative. At
intermediate distances, the exchange terms, which are usu-
ally positive, must be taken into account. But at the equilib-
rium distances for lithium and beryllium clusters, their con-
tribution are smaller than those of dispersion andDE2

corr(N)
remains negative~see Table V!.

Thus, in the case of beryllium clusters, the negative cor-
relation corrections are added to the positive SCF two-body
energy and reduce, as a result, its value. In the case of
lithium clusters, the negative correlation corrections are
added to the negativeE2

SCF~Li2! andE2
SCF~Li3! or to the posi-

tive but smallE2
SCF~Li4!. This leads to an increase of the

absolute magnitude of the two-body interaction energy.
The contribution of the correlation to the nonadditive en-

ergy is essential for both BeN and LiN clusters. In particular
for LiN clusters its magnitude is surprisingly large~see Table
V!. As follows from Eq.~27!, see Sec. III, the correlation
contribution to the energy of three-body interactions contains
the exchange and dispersion terms@the induction terms are
almost all cancelled in the differences inside the brackets of
Eq. ~27!#. At large distances the leading term in the disper-
sion is the Axilrod-Teller III order energy, which hasR29

dependence. But at intermediate distances dispersion terms
depend upon the wave-function overlap and the electron ex-
change effects@3#. The great contribution of the electron cor-
relation to nonadditive terms indicates that at the equilibrium
distances the exchange forces play an essential role. The ex-
change nonadditivity is very marked in the lithium cluster
formation, but it is also important in beryllium clusters.

So, contrary to the situation in water clusters@27–29#, in
beryllium and especially in lithium clusters, nonadditive in-
teractions cannot be studied without taking into account elec-
tron correlation. As we noted in the Introduction, electron
correlation must also be incorporated in a molecular dynam-
ics simulation of lithium clusters carried out at theab initio
level.
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