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The many-body decomposition of the interaction energy fqy Bed Li, (N=2 to 4) clusters is calculated
in two approximations: the self-consistent-field method and tli#ewPlesset perturbation theory up to the
fourth order. This allows us to estimate the electron-correlation contributions to the many-body forces. The
explicit expressions for these contributions in the perturbation theory formalism are obtained. We present a
comparative analysis of the role of electron correlations in thg &ed Liy cluster formations and in the
many-body interactions in these clusters. As follows from our results, the contribution of electron correlation
to many-body interactions is essential for both thg Bad Liy clusters, especially for the latter ones, where
nonadditivities are surprisingly large.

PACS numbds): 31.25-v

I. INTRODUCTION En(N) (m=2) denotes the sum ah-body interaction ener-
gies in anN-atom system, as will be defined in the following
Small metal clusters are a fruitful field to study the depen-section.
dence of calculated physical properties on the accuracy of However, we know of many empirical and semiempirical
the calculation method applied. In this paper we study theair potentials that describe quite satisfactorily the properties
dependence of cluster stability and many-body forces obf liquids and solids; see chapter 5 in RES]. The point is
small metal clusters when allowing for the inclusion of elec-that the parameters in these potentials are not the parameters
tron correlation. _ _ of a true two-body interaction; their values depend upon
The first study of many-body effects in atomic systemspgperties of a medium. So these effective two-body poten-
was performed by Ledin [1] in 1948. Since then, many a5 include nonadditive interactions through their param-
investigations of the role of many-body interactions in Clus'eters. However, in some cases, in order to obtain a good

taer:g ?(;fzr?r?czght?]s::itr? have been published; see Re8. agreement with experimental or theoretical data, the effective
The beryllium clustérs were the first metal system inpotentials must be constructed with three-b@@y 11] and
y y even four-body[12] terms. The knowledge of the analytical

which the role of many-body forces was investigafée 6. ¢ body int " . ful t
The calculations were based on the self-consistent-fiel&orm of many-body Interaction energy IS very usetuf for con-

(SCH method. It was shown that while Band Be clusters structing 5“9“ effective potentialg. ,
are not bound at the SCF level, Bie a stable cluster with a 1€ Physical nature afn-body interactions and the con-
tetrahedral geometrj5]. For the stability of the latter the CEPt of nonadditivity are discussed in Ref$3-13. Here
attractive three-body forces are decisive, since the two- any® Want to stress that the representation of the interaction
four-body forces are repulsive. energy as the finite suid) is exact and can be performed for
The many-body decomposition of the interaction energya\rbitrary.config'urations and distances betwleen. atoms. But
in lithium clusters was studied for 4[7] and later on for Lj, the relative weights of the many-body contributions in Eg.
(N=2 to 9 [8] in the framework of the configuration- (1) are method depen_den_t._ln order to find the dependence
interaction (Cl) method. According to the results obtained, UPON €lectron correlation, it is necessary to make a compara-
for some conformations of lithium clusters not only the tvVe calculation at two levels: with the SCF approach and
three-body, but even the four-body interaction energies ar@f"th one of the methods allowing for the eI_ectron correla-
greater than the two-body onég] (as previously found for tion. We took up the Mber-Plesset perturbatlon-the_o_ry ap-
beryllium clusterg4,5)). pr_oach_ ano_l compared the many-l_)ody decompositions ob-
Thus, in these investigated metal systems the convergend@ined in this approach for Reand Ly (N=2 to 4 clusters

of the many-body decomposition of the interaction energy ofVith the corresponding SCF calculation. _
an N-atom cluster There are a lot of precise calculations of small beryllium

and lithium clusters incorporating the correlation effects
Ein(N)=E(N) —E1(N)=Ex(N) + E3(N) + -+ + En(N), [16—26. But in all these works only the total interaction
@ energy was investigated. In the present study, which has the
accuracy of the best calculatioltsee Tables | and )| we
obtained them-body decomposition oE;,; and studied the
influence of electron correlation on it.
N Although the importance of electron correlation for the
_ stability of beryllium clusters is well knowh17] and it is
Ey(N)=2, Ea, 2 owp: _
a=1 customary to suppose that the same situation takes place in

is poor. In Eq.(1), E(N) is the total energy anf,(N) is the
energy of the noninteracting-atom system,
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TABLE |. Comparison of our calculation of Rewith literature data.

ro —ESCRN) —ESCRreon() —Eim(N) Method of electron
Bey (a.u) (a.u) (a.u) (kcal/mol) correlation account
Be, [16] 4.72 2.12 ICF2H
[17] 4.75 1.86 Full CICAS SCH
[20] 29.137 64 29.301 25 2.86 MP2-R12
This 491 29.134 85 29.229 29 1.81 MB&11+G(3df )]
work
[33] 4.63 2.36-0.08 Experiment
Bey” [17] 4.20 17.9 Full CICAS SCH
[19] 4.20 43.891 968 224 MR CI
[18] 4.23 43.714 40 43.873 64 21.6 MR@-311+G*)
[20] 4.20 43.718 25 43.998 97 31%5 MP2-R12
This 4.23 43.714 94 43.881 26 25.8 MB4311+G(3df )]
work
Be4C [17] 3.92 64.8 CEPA-1
[19] 3.90 58.595 343 73.3 MR CI
[18] 3.94 58.353 58 58.585 27 83.4 MP@-311+G*)
[20] 3.93 58.359 46 58.774 47 11024 MP2-R12
This 3.93 58.354 69 58.600 40 92.0 MB&11+G(3df )]
work

3 stimated value.
PEquilateral triangle Dsy,).

‘Tetrahedron Ty).
the case of lithium clusters, the correlation contributions to 1l. COMPUTING METHOD AND BASIC FORMULAS
many-body forces in these clusters have not been studied. FOR m-BODY INTERACTION ENERGIES
Water clusters are the only investigated system in this re- All calculati ied . on
spect. According to calculations of Habigt al. [27], it is calculations were carried out using UGAUSSIAN-92

enough to perform calculations at the SCF level for findingPro9ram(31] on a CRAY-YMP4/464. We performed an all-
nonadditive contributions to the interaction energy of water€lectron SCF calculation using the triply split valence basis
clusters. This statement was confirmed in recent studie8€t[6-311+G(3df )], having one diffusep function, three
[28'2g As follows from our results presented in this paperSd funCtlonS, and one f7 function. The electron correlation
(see Tables IV and ) in the case of metal clusters the situ- calculations are performed by means of thellelePlesset
ation is quite opposite. For beryllium and, especially, forperturbation theory up to the fourth ordéMP4) in the
lithium clusters the many-body interactions cannot be studfrozen-core approximation.
ied without taking into account the electron correlation. The geometries were optimized at the MP4 leffet the

In the recent interesting paper by Jellinekal. [30], the  Be, cluster, the equilibrium geometry was taken from Ref.
molecular dynamics study of the clusterli$ performed at [18]). The final calculated energies were corrected for the
the SCF level. The authods80] discuss the possibility of basis set superposition errdBSSE with the counterpoise
taking into account the electron correlationdh initio mo-  method(see Ref[32] and references thergirBecause of the
lecular dynamics simulations in future studies. According tolarge basis set used, the BSSE corrections are small.
our results, the contribution of the electron correlation to the As we mentioned in the Introduction, the relative weights
total interaction energy of lithium clusters at equilibrium dis- of the many-body contributions in E¢Ll) are method depen-
tances is extremely large; for Lthe magnitude of the elec- dent. In order to obtain reliable results, we must be sure of
tron correlation contribution is more than twice as large aghe precision of the method used. The results of our geom-
the SCF binding energfsee Table Ill. It cannot be excluded etry and energy calculations of Band Liy clusters are pre-
that the same situation takes place at some other points of tleented in Tables | and Il together with literature data. The
potential surface. In the last case, it is necessary to carry oaomparison of our results with previously published ones
the molecular dynamics study of lithium clusters on the levelindicates a quite satisfactory agreement.
that incorporates the correlation effects. For Be, and Bg all calculations predict almost the same

The plan of this paper is as follows: In Sec. Il we de- equilibrium distances. The total energies are very close at the
scribe the computing method and present the basic formulaSCF level, where the precision depends upon the size of the
for the m-body interaction energies. The correlation correc-basis set used. Note the closeness of our SCF results to those
tions to them-body energies are expressed in Sec. Il in theof Klopper and Almld [20], who used a very large basis
perturbation-theory formalism. In Sec. IV we analyze theset: 1612p8d4f primitive functions. The predicted inter-
numerical results obtained for the many-body decompositiomction energies calculated at electron correlation level are
and the correlation corrections in the case of beryllium andnore divergent because of the different precision of the
lithium clusters. methods used to account for the electron correlation.
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TABLE 1l. Comparison of our calculation of kjiwith literature data.

ri.fo —ESCAN)  —ESCRreom) —EM(N) Method of electron
Liy (a.u) (a.u) (a.u) (kcal/mol) correlation account
Li, [24] 5.08 20.45 cl
[25] 5.05 22.70 oMC
[23] 17.32 Cl-Dav
[21] 5.27 14.864 52 14.893 24 20.63 CEPA
This  5.15 14.870 28 14.899 16 22.02 MBB11+G(3df )]
work
[34] 5.05 24.66:0.3 Experiment
Lig? [23] 5.46, 7.50 24.15 Cl-Dav
[22]  5.22, 6.56 36.89 Pseud®FT
5.50, 6.69 37.29 C Hegy
[26]
This  5.14, 6.47 22.315 07 22.344 52 30.38 623811+ G(3df )]
work
Li,  [23] 5.14, 6.47 51.08 Cl-Dav
[21] 5.97, 10.28 29.745 64 29.810 89 CEPA
[26]  5.95, 5.00 59.76 ChHegy
Thisk 5.74, 5.00 29.759 27 29.829 83 63.8 NIB811+G(3df )]
wor

dsosceles triangle.
bRhombic geometry.

For Liy clusters according to Table Il, there is a greatAs for the energy of two-body interactions, similar defini-
dispersion of the calculated equilibrium distances, contraryions hold for the total energis(N) of the three-body in-
to the beryllium case. Our total energies at the SCF level areeractionse
the lowest of those presented in Table Il. From this follows

the good quality of the basis set used. The interaction energy N}

obtained in our calculation for Lis very close to the experi- Es(N)= X &apc. (6)
mental value. The interaction energy foxlaind the total and asb=e

interaction energies obtained for the, ldluster are in good

agreement with previous calculations. Data presented in eapc=E(abc)—Ey(abc)—Ex(abo), @)

Tables | and Il show that there is a convergence in the total , .

energy prediction and to some extent in the interaction enf!$- UP t0 En(N). The sum in Eq.(6) is taken over all,

ergy. On the whole, we can conclude that the computind®N=N!/(N—3)!3!, combinations of three atoms in the

method used in our study can be applied with confidence t&!USter ofN atoms. _ _

the calculation of the energy decompositid. The total energy ofn?body interactions can be ex_pressed
In many-body decompositiofl), E,(N) is the total en- thrqugh the total_engrgles of 2-,3-,..., amd—1)-body inter-

ergy of the pair interactions,,, the so-called pairwise ad- actions(for a derivation see Ref14))

ditive energy

{N} m—-1
- En(N)= > E(ab.m)— > a&EN), (8
a<b<---<m k=1
Ex(N)=2, eap, 3
a<b where
eap=E(ab)—Ej(ab)=E(ab)—(E;+Ey). 4 . (N—K)!

AmNT (N—m) [ (m—K)!* ©)
The sum in Eq.(3) is taken over allCZ=N(N—1)/2 pair
interaction energies,;, of the isolated atoms; E(ab) isthe  Form=N all af=1, in full accordance with the decompo-
total energy of the isolated systea. All other terms in Eq.  sition (1). The use of Eqs(8) and (9) make it possible to
(1) represent the nonadditive part of theatom interaction  perform the calculation of the energy wibody interactions
energy by the simple recurrence procedure:

N {N}
EnonaddN) = 23 Em(N). (5) E2<N>=a§b E(ab)—ag\Ei(N), (10

m=
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N} The polarization energygﬂj)I comprises the induction and
Es(N)= > E(abc)—a3yEi(N)—a3yEx(N), (1)  dispersion energies. These energies are nonadditive in all or-
asb=c ders of PT; the only exception i, see Ref[3], chapter 4.
) Tg(LjJS, in (tlf;e den;ez)rgy]c partitiobn onI)r/] twfo termsh are
. 1 2 additive: &g’ andegy,. If we subtract them fronk;,;, the
E4(N)—a<b§c<d E(abcd)—agyEy(N) —aiEa(N) remaining part will contain only nonadditive contributions.
Let us denote theri}o"add

3
—aynEs(N), (12
Em % et Epol excrit Epgl s (17
(13)  Wwhere

The coefficients in Eqg10)—(13) are given by formulg9). ” " ” )

For an estimation of the convergence of the many—bod)Epol exch— nZZ 8<pr(]))l exch EB&”a = nZZ 8&1 _Efjis)p- (18)
decomposition of the interaction energy, the latter is often
expressed as the ratios wkbody to two-body energies, Now we can decompose tine-body interaction energies into

the PT series. For the two-body interaction energy the ex-

Ein(N) =Eo(N)[1+ a5(2N)+---+an(2ZN)], (14 pression follows from Eq(16):

where {N}
Ex(N)= 2 €ab:€ab™ 8gzll)(ab) + S(ei)cl{ab)
(2= =D 15 "
(4% N)= ——.
m E,(N) »
+ 2 Lol exaf@D) Foppi@b)]. (19
lIl. PERTURBATION THEORY AND ELECTRON
CORRELATION CONTRIBUTIONS TO THE MANY-BODY The m-body interaction energy withm=3 is expressed
DECOMPOSITION through the nonadditive terit17). For E5(N) we have[15]
It is useful to decompose the many-body contributions on N}
different physical parts, as is performed in perturbation E.(N)= — Enonadg 4y
theory (PT). At distances where the magnitude of the inter- 3(N) a<2b<c avc:£anc= Et - 1abO)
action between subsystems can be considered small in com- (abg)
parison with the sum of the energies of the noninteracting _ S ronadd o, 20
subsystems, the interaction eneflgy; decomposes in a se- & —int ab). (20

ries over various orders of PT,
For the energy om-body interactions the following recur-
- rence formula is valid15]:
Eint= 8<(all) + Sggzh"_ E [Ség)l exch+ SE)T))I] (16)
n=2 {N} {N}

— nonad _ a2 nonad
The first order of the PT gives the well-known Heitler- Em(N)_a<b;.<m Efe"tab...m) amNa§<:b Epe"tab)

London energy. It is easily calculated if the wave functions
i of the isolated subsystems are knowrmfj) is the classi- K
cal electrostatic energy for the interaction of space- - 23 amnEk(N). (21
distributed charges. Each charge is described by the unper-

turbed wave function, which means that at this |[et us turn to the electron correlation energy. According
approximation it is rigid, so the electrostatic enerd is 1o its definition[42], the correlation energy is the difference
always additive. The exchange energll,, is nonadditive petween the precise value of the energy and the Hartree-Fock
for all permutations mixing electrons of three or more atomsyalue. But except for the smallest systems, we cannot obtain
The evaluation of the exchange energy for closed-shelihe exact energy. So the definition of the correlation energy is
many-electron systems has now become a popular topic; se@nventional and depends upon the approximation used. For

Refs.[35-38. o the energy ofm-body interactions, the correlation contribu-
As the exchange energy, the polarization-exchange energypn in our approximation is equal to

€pol exch IS also nonadditive. The standard PT cannot be ap-

plied to the calculation of the, e The reason is that the AES(N) = E,'\T"]P“(N) — E%CF(N). (22)
antisymmetrized functions of zeroth ordekygy5..) are

not eigenfunctions of the unperturbed Hamiltoniely as  The SCF interaction energy can be decomposeddagd]

long as the operatdtl; does not commute with the antisym-

metrizer operatorA. Many successful approaches for the ECr=eM+ e +ESS (23
symmetry adapted perturbation thed8APT) have been de-

veloped; for a detailed discussion see chapter 3 in F&f. On the distances where exchange effects can be neglected,
and more recent Ref§39—41. ESSis the classical induction energy.

m—1
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TABLE IIl. The contributionse {7} is the energy in thath order -
of the Mdler-Plesset perturbation theoryAEE"=g {2+ (3} 10 Li, —
+e{f), EMPM=ESC"+AEP". to the binding energyE,=—Eiy 5L Be, === 4
in Bey and Liy clusters, in kcal/mol. ~ 0 )
©
N 5 o b b s & £ of
(o]
5 Be, -57 6.4 07 04 7.5 1.8 £0r
Li, 39 130 35 16 18.1 22.0 Ll 45 -
_20 -
3 Be; -0.6 28.1 —-26 09 26.4 25.8 sl |
Lis 119 123 39 22 18.4 304
-30 | | | | | 1
2 3 4 5 6 7 8 9
4 Be, 419 596 —13.3 3.8 50.1 92.0 r{au.)

Lig 195 324 81 38 44.3 63.8

FIG. 1. MP4 potential curves for beryllium and lithium dimers.

For AE*(N), we obtain from Eqgs(19), (22), and(23)  appearing in the intermolecular Mer-Plesset perturbation
the following expression: theory approach were studied recerjéhp] in the noble gas
N} (He, Ne, and Ay trimers.

AEPLT(N)= >

4
>, [eby excf@ab)+eln(ab)]

IV. NUMERICAL RESULTS AND DISCUSSION

a<b | n=2
In Table IlI the contribution to the binding energy in Be
—E3S(ab)|. (24)  and Li clusters, calculated at different orders of thélldie
Plesset perturbation theory, are presented. It is well known
. o [4,5] that in the SCF approximation the Belusters are
If we use the notation&l8) and keep in mind that stable only forN=4. According to Table IlI, the corrections
to the SCF energy are of great importance for beryllium clus-
Epoi=Epel "% £, (25  ters, to the point of making the unstable,Bad Bg clusters
become stable; see also Relf7]. What was not so evident is
Eq. (24) can be written in a more compact form: the great importance of the correlation corrections to the
binding energy of lithium clusters. The relative magnitude of
N} these corrections is especially large fop Bnd Li, clusters:
AE%O”(N)ng [Epol exc@b) +Epo(@b) —Ege(ab)]. the ratioAES""/E;CF equals 4.6 for Lj and 2.3 for Lj. The

(26) ~ convergence of the MP series is rather good, although for
Be; and Bg clusters we have an alternating series. Note that

The contributions of the induction energy to the difference! (e Af; clusters, according to Clairski, Szcesniak, and
inside the brackets of E426) are almost canceled. To some CYPUISKi[43], the e and sy contributions have also dif-
degree the same happens to the exchange energy. At the laf§&ent signs. The binding in the lithium dimer is much tighter

distances, the exchange terms can be totally neglected afid@n in the beryllium one; see Fig. 1. As follows from Table

the main contribution ta\ES°™ will be given by the disper- 11, for trimers the difference is not so large and the situation
sion energy. is reversed for tetramers: the binding energy at the MP4

The expression for the correlation contribution to the en_Ie.vel for the Bgq clusters is 1.5 times larger than that for the
ergy of three-body interactions can be represented as fokla-

lows: The results of the comparative study of the many-body
decomposition for Bg and Liy clusters are presented in
{N} Tables IV and V. The poor convergence of the many-body
AESL(N)= E [Epol exd{abc)JrEgg[‘ad‘ﬂabc) decomposition of the interaction energy obtained for, Be
a<b<c clusters at the SCF levé#t—6] becomes even poorer at the
(N} MP4 level. The extremely large magnitude of the ratio
_ -SCF, N EonaddEagq fOr Bes is due to the almost zero value B5(3)
Edef (abc)]=(N z)gb [Epol exci@b) (the equilibrium distance in the Bériangle is located in the

vicinity of the intersection of the Bepotential curve and the
+Epor*lab) — Egg(ab)]. (27)  abscissa ax)s For Bg, we also have a divergent series. Ac-
cording to Eq.(14) and the data presented in Table IV,
Similar expressions can be obtained for the correlation con-
tribution to them-body energy fom=>3. At large distances, EMPY(Bey) =E,(4)[1—6.69+1.03]. (28)
the exchange terms can be neglected and, as in the case of
AES", the expression foAES® will contain only the dis- A poor convergence is observed in the Eluster:
persion terms, in which the leading term is the Axilrod-Teller MP4, -
Il order dispersion energy. The three-body dispersion terms Eint (Lis)=Ex(4)[1-1.09+0.71]. (29
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TABLE IV. Influence of the calculation method on tihe-body energy decomposition, in a.u.

(a) Bey
N E(N) Eint(N) EZ(N) E3(N) EA(N) Enonadd Enonadd
Eada
5 SCF 29.134 86 0.009 05 0.009 05
MP4 —29.229 29 —0.002 89 —0.002 89
3 SCF —43.714 94 0.000 94 0.057 06 —0.056 12 —0.056 12 0.98
MP4 —43.881 26 —0.04115 —0.000 75 —0.040 40 —0.040 40 53.87
4 SCF —58.354 69 —0.066 81 0.172 44 —0.327 56 0.088 31 —0.239 25 1.39
MP4 —58.600 40 —0.146 72 0.031 50 —0.210 80 0.032 58 —0.178 22 5.66
(b) Liy
N E(N) Eint(N) E2(N) Es(N) E4(N) Enonadd Enonadd
Eada
5 SCF —14.870 28 —0.006 21 —0.006 21
MP4 —14.899 16 —0.03509 —0.03509
—0.014 92 3.67
3 SCF —22.31507 —0.018 98 —0.004 06 —0.014 92
MP4 —22.344 52 —0.048 42 —0.088 46 0.040 04 0.040 04 0.45
4 SCF —29.759 27 —0.03111 0.017 25 —0.039 86 —0.008 50 —0.048 36 2.80
MP4 —29.829 83 —0.101 66 —0.163 42 0.178 82 —0.117 06 0.061 76 0.38

A detailed analysis of expansidd4) shows that for Bg¢  quence Lj, Li;, and Li, in order to reduce the three-body
and Bg, the three-body forces are not only a factor of stabi-repulsion: the latter diminishes more sharply with increasing
lization, but the dominant factor of the expansion. So thethe interatomic distance, than the two-body attraction. But
conclusion that the three-body forces stabilize; Bad Bg  the most striking result is the important role of the four-body
clusters at the SCF levg#i—6] is retained also at the MP4 attraction energy. For Lithe two-body attraction is smaller
level. We can see in Table IV that the two-body contributionthan the three-body repulsion. So the attractive four-body
is very small for all Bg clusters. This is a consequence of aforces are decisive for the formation of stable lithium tetram-
very shallow two-body potential, as presented in Fig. 1. Theers. Here we see that the many-body expansion requires also
four-body term is almost an order of magnitude smaller tharthe four-body term, in the case of Lin a crucial manner.
the total energy of three-body interactions. But if we divide Now let us consider the influence of the electron correla-
the latter by the number of three-body terffisr a tetramer tion on each term of the energy decompositi@h For the
there are four different tripletshe difference between three- additive E,(N) energy, allowing for the electron correlation
and four-body terms will not be so large. The total interac-results in great changes for both beryllium and lithium
tion energy of the stable tetramer comes from a three-bodyglusters. E,(N) even changes sign for Band Bg, as well
attraction and two- and four-body repulsions which togetheias for Li,. The correlation contributions to the many-body
amount to 30% of the three-body attraction energy. The facénergies are not so pronounced in beryllium clusters, but are
that the Bg and Bg clusters are stabilized by the three-body very essential in lithium clusters. This is evident from Table
interactions and the flatness of the two-body potential exV, where we present the correlation contributions to the en-
plains the decrement in the interatomic distances as the sizrgies ofm-body interactions defined by E{R2), the rela-
of the cluster increases: the attractive three-body forces beive contribution of electron correlation to thma-body en-
come larger with decreasing Be-Be distance while the twoergy is denoted byy,,(N):
body forces undergo small changes until the Be-Be distance
becomes smaller thanag. AEST(N)

For lithium clusters the pattern is completely different. Ym(N)= —scp .

The two-body interaction energies are large and stabilizing. Em (N)
In Fig. 1 we see that the Li-Li interaction has, similar to Be

a broad well, but deeper and with a steeper repulsive ascerithe absolute and relative magnitudes of correlation energy
The three-body forces play a destabilizing role. As a resultorrections are much larger for lithium clusters than for the
there is an increase of the equilibrium distances in the seberyllium ones.

(30



53 MANY-BODY FORCES AND ELECTRON CORRELATIONN . .. 2499

TABLE V. Role of electron correlation on the-body energy Let us now consider the case of the additive two-body
decompositiof AE"(N) is defined by Eq(22), »,(N) by Eq.  energy in more detail. The analytical expression for the cor-
(30); all energies are in atomic unijts relation correction to it is given in Sec. Il by E¢26). At

large distances, it contains only dispersion tewfs{ab).
(a) Bey The second-order dispersion energy is always negative. At
intermediate distances, the exchange terms, which are usu-
AES™(N) AES(N)  AEZM(N) AEronaadN)  ally positive, must be taken into account. But at the equilib-
N 72(N) 73(N) 74(N) YnonaddN) rium distances for lithium and beryllium clusters, their con-
—0.011 94 tribution are smaller than those of dispersion af5*"(N)
2 1.32 remains negativésee Table V.
Thus, in the case of beryllium clusters, the negative cor-
3 —0.057 81 0.01572 0.01572 relation corrections are added to the positive SCF two-body
1.01 0.28 0.28 energy and reduce, as a result, its value. In the case of
lithium clusters, the negative correlation corrections are
4 —0.14094  0.11676 —0.05573 0.061 03 added to the negativie5°"(Li,) andE5CF(Li,) or to the posi-
0.82 0.36 0.63 0.25 tive but smallE5“f(Li,). This leads to an increase of the
- absolute magnitude of the two-body interaction energy.
(b) Liy The contribution of the correlation to the nonadditive en-
AEST(N) AEST(N)  AEST(N) AEST (N) ergy.is essentia_l for both I?qear}d Liy c_Iu_sters. In particular
N 7o(N) 74(N) 7a(N) Y for Liy clusters its magnitude is surprisingly largeee Tab_le
V). As follows from Eq.(27), see Sec. lll, the correlation
5 —0.028 88 contribution to the energy of three-body interactions contains
4.65 the exchange and dispersion terftise induction terms are
almost all cancelled in the differences inside the brackets of
3 —0.084 40 0.02512 002512  Eq.(27)]. At large distances the leading term in the disper-
20.79 1.68 1.68 sion is the Axilrod-Teller 1ll order energy, which had™°
dependence. But at intermediate distances dispersion terms
4 _1%51-,80 67 2'238 68 _1(2)';08 56 (2)';;0 12 depend upon the wave-function overlap and the electron ex-

change effectg3]. The great contribution of the electron cor-
relation to nonadditive terms indicates that at the equilibrium
distances the exchange forces play an essential role. The ex-
change nonadditivity is very marked in the lithium cluster
"formation, but it is also important in beryllium clusters.

So, contrary to the situation in water clust§2§—29, in

According to Table IV, the changes in the magnitude of
E(N), calculated in the SCF and MP4 approximations
have for Bg and Liy clusters the opposite tendency:

|EMP4(Bey) | <|ESCF(Bey)], (31  beryllium and especially in lithium clusters, nonadditive in-
teractions cannot be studied without taking into account elec-
|EMPA(Liy) | > |ESCH(Liy)| (32)  tron correlation. As we noted in the Introduction, electron

correlation must also be incorporated in a molecular dynam-
for all calculatedN andm. The reason is thatE;>" has the  ics simulation of lithium clusters carried out at thb initio
same sign for Bg and Liy clusters(see Table VY, while  level.
Ech':has different signs for beryllium and lithium dimers and
trimers (in the case ofESCF the sign is the same, but for ACKNOWLEDGMENTS
lithium the absolute values of the three-body energy are very Tne authors are grateful to G. Chairski, B. Jeziorski,
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