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Bosons in anisotropic traps: Ground state and vortices
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We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic trap, modeled by an aniso-
tropic harmonic potential. We evaluate the wave function and the energy of the Bose-Einstein condensate as a
function of the particle number, both for positive and negative scattering length. The results for the transverse
and the vertical size of the cloud of atoms, as well as for the kinetic and potential energy per particle, are
compared with the predictions of approximated models. We also compare the aspect ratio of the velocity
distribution with experimental estimates available $éRb. Vortex states are considered and the critical angular
velocity for production of vortices is calculated. We show that the presence of vortices significantly increases
the stability of the condensate in the case of attractive interactions.

PACS numbsg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

l. INTRODUCTION sults for the aspect ratio iffRb, withN of the order of a few
thousands, are in agreement with the experimental findings
Recent experiments support the existence of a Bosedf Ref.[1]. An accurate determination of the particle distri-
Einstein condensate in vapors of alkali atoms, such as ruution in the vapor cloud is also relevant in order to calculate
bidium [1], litium [2] and sodiun{3], confined in magnetic the moment of inertia of the system, which is directly con-
traps and cooled down to temperature of the order of 100 nKnected with the superfluid behavigi0Q].
This important discovery opens new interesting perspectives We find instabilities in the solutions for negative scatter-
in the field of many-body physic€or a comprehensive re- ing length when the number of atoms exceeds certain critical
view on Bose-Einstein condensation see, for instance, Refalues, of the order of 1400 fofLi, in agreement with a
[4]). previous analysif7]. However, we find also that the stability
The vapors of alkali atoms used in the experiments ar@f these systems is significantly increased when vortex states
very dilute, i.e., the average distance among the atoms igre considered. This happens because the vortex flow pushes
much larger than the range of the interaction. So the physicéie atoms away from the center of the trap decreasing the
is expected to be dominated by two-body collisions, wellhighest value of the local density. FéLi we find minima of
accounted for by the knowledge of tleewave scattering the Gross-Pitaevskii functional corresponding to vortex
length. This also implies that the Gross-Pitaevskii thgéily — states with quantum of circulation higher than 1 and having
for weakly interacting bosons finds in these systems an ided{l of the order of 10 000.
field of application. This theory has been already used to The paper is organized as follows. In Sec. Il we present
describe bosons confined in isotropic tr§®s-8]. The aniso- the formalism of the Gross-Pitaevskii theory for anisotropic
tropic case has been recently discussed by Baym and Pethittaps and discuss the solutions in two limtse noninteract-
[9], who have obtained approximate analytic solutionsing and the strongly repulsive limitWe also discuss the
thereby providing a qualitative insight into many interestinggeneralization of the theory to include vortex states. In Sec.
features of these systems. To make the analysis more quahl we briefly introduce the numerical procedure, which is
titative one has to solve numerically the Gross-Pitaevskibased on the steepest descent method for functional minimi-
equations. zation. In Sec. IV we present the results for the two cases of
In the present work we provide a complete set of solutiongositive ¢’Rb) and negative Li) scattering length. Finally,
of the Gross-Pitaevskii equations appliedNt@lkali atoms in  in Sec. V we summarize the main results.
anisotropic traps. We calculate the condensate wave function
at T=0 for bosons interacting through positive and negative || GROSS-PITAEVSKII THEORY FOR TRAPPED
scattering lengths. We explore thedependence of relevant BOSONS
guantities, such as energy, chemical potential, and the aspect
ratio of the velocity distribution. We also discuss vortex In the Gross-Pitaevskii theof] the ground-state energy
states, studying the density profile and the critical angulafor condensed bosons of massis given by the functional
velocity.
The results of the numerical minimization of the energy E[lﬁ]:f dr
functional are compared with the analytic solution of the
noninteracting anisotropic harmonic oscillator as well as
with approximated models available when the interaction is 2,2 2
stron . S . + w5Z%) | (r)|*+
gly repulsivdstrongly repulsive limit. For instance, we
will show that the surface structure of the condensate wave
function, for which a sound treatment of the kinetic energy iswhere (r) is the condensate wave functiéarder param-
needed, is relevant in determining the aspect ratio. Our reeten, w, andw, are the two angular frequencies associated
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with the external potential of the anisotropic trap, ands P(r)= /N/af Pa(ry). (7)
the s-wave scattering length. The wave function is assumed

to be normalized to the number of atoms in the condensaterhe wave functiony, is normalized to 1. Finally, we intro-
duce the asymmetry parameter

f dr [4(r)2=N. @ A= w,l0, ®

In the T— 0 limit considered in this workiN coincides with and define the quantity

the total number of atoms in the trap. The explicit form of 8raN
the ground-state wave function is obtained by minimizing u;= . 9)
the energy functional. One can also write explicitly the varia- a

tion of the energy functional at first order, finding the EuIer—With these changes, the Gross-Pitaevskii energy functional
Lagrange equation takes the form

72 m E
“am Fgleldrelytre) == drl[|V1wl<r1>|2+(x%+yi+xzz§)|m(rl)lz
4mh2a ) Uy
R =g, @ +7|¢1(r1)|4} a0

where u is the chemical potential. This equation has theand the nonlinear Schdinger equation becomes

form of a nonlinear stationary Schiimger equation. It has

been recently solved for bosons in isotropic harmonic trapsl =V 5+ X5+ Y5+ X225+ uy| ¢y (r ) 2]44(r1) = 21 41(r 1),

by Edwards and Burneft6], by means of iterated Runge- (11
Kutta integrations. An efficient numerical calculation of the
ground state, which works well also in the case of aniso
tropic traps with and without vortices, consists of minimizing
directly the energy functionall) with a steepest descent
method, as we will show in Sec. IIl.

The Gross-Pitaevskii theory is expected to be accurat
when the system is dilute. [§ is the density of bosons, the - 3 e
parameter that measures the applicability of the theory is thg/vo.cc')ndltlonsa p<1 andu;=~1 can be well Sat'Sf'eq for
producta®p, which should be much less then 1. This condi-reahsn(_: values of the parameters of th_e problem, i.e., the
tion is largely satisfied by the samples of alkali atoms used iﬁ.catterlng_ length, the oscnlator_ frequenqes, and the_nl_Jr_nber
the recent experimenf4,2]. For instance, the central density of atoms in the trap. We now discuss briefly the two limiting

of 10 000 atoms of7Rb in the trap of Ref{1] is expected to cases of noninteracting particles and of strongly repulsive
be of the order of 1H-102 cm~3, which yields interactions, where the solution of Ed.1) is available in an

a%p=10"6 or less. Even in the experiment of R&8] on analytic way. We then show how the formalism can be ex-

sodium, where the number of atoms in the condensate itsended to describe vortex states.

much larger, the quantitya®p remains very small _ )
(=107%). The theory is also accurate for dilute systems of A. Noninteracting model
bosons having negative scattering length. In this case, how- When the scattering length vanishes, the problem re-
ever, one has to take care of the possible instability induceduces to the solution of the stationary Sainger equation
by the attractive interaction wheN is large. When the sys- for an anisotropic harmonic oscillator. The ground-state
tem collapses, a more accurate theory is required in order t@ave function is
include short-range effects.

To simplify the formalism one can choose a slightly dif- dr(r)=AY7m"exg — 1 (x2+y2+aZd)]. (12
ferent notation, taking advantage of the fact that all distances
and energies in the calculation scale as the typical length anthe chemical potential coincides with the energy per par-
energy of the harmonic external potential. So we introducdicle, which turns out to be (£\/2). The Gaussian has dif-

whereu=hw, u,. The dimensionless quantity,, entering

the left-hand side of Eq11), characterizes the effect of the
interaction in the equation for the condensate. It is worth
noting that even if the system is very diluta’p<1) the
gﬂeractions can nevertheless play a crucial role in determin-
Ing the solution of the Gross-Pitaevskii equations. In fact, the

the standard lengths ferent transverse and vertical widths. In particular one has
(x3y=(y?)=1/2 and(z?)=1/(2\). The mean values of the
. :< i\ 12 . :( h )1’2 (4 ~Mmomentum operatons? andp? can also be easily calculated.
o imoe, Z \mo, In particular it is interesting to calculate the quantity
and we rescale the spatial coordinate, the energy, and the V(P2 = (X3 {Z2) = . (13)
wave function as
In the following we consider the quantity{p2)/(p2) as a
r=a,rq, (5 measure of thaspect ratig which characterizes the anisot-

ropy of the velocity distribution. This is a relevant quantity
E=hw, E,, (6) in the interpretation of the experimental results. Values of the



53 BOSONS IN ANISOTROPIC TRAPS: GROUND STATES AND ... 2479

aspect ratio different from 1 reflect a peculiar and unique 3
feature of Bose-Einstein condensation. V=K (18)
1
B. Strongly repulsive limit with r?=x2?+y?. The numbelx is the quantum of circula-

The opposite limit is obtained when the interaction is sotion and the angular momentum alonds N«7.. Now, one
strong or the number of particles so large that the kinetid@s to put the complex wave functidin in place ofy in the
energy can be neglected in the energy functional. It corre€nergy functionall). Using the adimensional quantities de-
sponds to very large values of the parametefsee Eq(9)].  fined in Egs.(5)~(7) andr$, =x{+y7, the resulting Gross-
This limit has been already discussed in Ré®9]. The Pitaevskii functional becomes
solution is easily obtained by dropping the kinetic energy
term in Eq.(11). It has the form E1

E
N =fdr1

+ Y wml“}, 19

IVt (ro) |2+ (kP L2415+ 022D (1) 2
1
wi(u):u—l(zﬂl—xi—yi—xzzi (14

if the right-hand side is positive angl;=0 elsewhere. The
chemical potential is easily calculated by imposing the norwhich differs from the functiona(10) because of the cen-

malization conditionf ¢2dr,;=1. One finds trifugal term. The corresponding nonlinear Sdfirger
equation is
5 2/5
2pa= ﬁ)\ul) (15) [—Vi+r?r 241 N2+ Uy () [Pl (ry)
andu=%w, u;. Using the definition ofi; given in Eq.(9) =2pai(r). (20)

and the relationu=dE/dN, one also gets the relationship
E/N=(5/7)w. The cloud of atoms extends over a radius
R;=+2u, and a vertical siz&,=\R;. One also finds the
results

Due to the presence of the centrifugal term, the solution of
this equation fork#0 has to vanish on the axis.

For noninteracting particles one falls again in the case of
the stationary Schinger equation for the anisotropic har-
5 > monic potential. For instance, the=1 solution has the form

2\ M1 2\ M1
(xp)= s (Z)=52 (16)
7 AN 1,2 2
ga(r)ocry ex — 3 (r +Azp ] (21

for the square radiugx;) and(z). Due to the different The energy per particle of the+ 0 states of the anisotropic

scaling properties of the wave function with respect to thenarmonic oscillator is simplychw, plus the ground-state
variable z [compare Eqs(12) and (14)], the aspect ratio energy. In our dimensionless notz;ti;aq=1+()\/2)+ K.
V(p_f)/<p§) in this case is equal td and not toyX as in the ~In the interacting case the kinetic energy cannot be ne-
noninteracting case. The central density of the cloud igjjected even for largl, since it determines the structure of
V2pq/u;. The wave function(14) is expected to approxi- the vortex core. In particular, the balance between the kinetic
mate well the exact solution of the nonlinear Saiinger  energy and the interaction energy fixes a typical distance

equation(11) for large N, apart from the structure of the over which the condensate wave function can heal. For a
surface region where the exact wave function has to vanishilute Bose gas thaealing lengthis given by[5]

smoothly. This fact has been already tested for isotropic traps

in Ref. [6]. However, some relevant observables can be sig- £=(8mpa) 1?2 (22)
nificantly affected by this surface structure even at laxge
as we will see later. wherep is the density of the system. In the case of a vortex
it corresponds to the distance over which the wave function
C. Vortex states increases from zero, on the vortex axis, to the bulk density.

For the trapped atoms in tHé—« limit we have seen that
the central density of the cloud is aboy2u,/u;, where
1 andu, are given in Eqs(9) and(15), so that the healing
ength(in unitsa, ) is &= (2u,) " ¥ Since the radiui, of
12 5ne

The energy functiondll0) is easily generalized to include
vortex states. Indeed one of the primary motivations of th
Gross-Pitaevskii theory was the study of vortex states ir'
weakly interacting bosonib]. Here we consider states hav- the cloud, in the same units, is of the order ofu(;
ing a vortex line along the axis and all the atoms flowing has[9] ’ ’
around it with quantized circulation. One can write the axi-
ally symmetric condensate wave function in the form & 1 1

. RT3 " (23)
W(r)=y(r)exdisS(r)], (17) Ri 2u1 Ry
where y(r)=Vp(r) is the modulus, while the phasacts  or, equivalently,
as a velocity potentialv=(A/m)VS. By choosingS= k¢,
where ¢ is the angle around the axis andx is an integer,

. ) . 24
one has vortex states with tangential velocity 249
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Thus the healing length is small compared with the size oimethod of functional minimization; however, the Gross-
the cloud ifR is much larger tham, . Pitaevskii functional is much simpler than the typical func-
\ortex states play an important role in characterizing thetionals used in strongly correlated systems and the steepest
superfluid properties of Bose systems, as is well known irdescent method described above is efficient enough for our
the case of superfluid heliufil]. The critical angular ve- purposes.
locity required to produce vortex states is easily calculated In practice, one has to discretize theg (,z) space with a
once the energies of the states with and without vortices arvo-dimensional grid of points, so that the wave function
known. One has to compare the energy of a vortex state ihecomes a matrix. At each time step the matrix elements are

frame rotating with angular frequendy, that is,E—QL,,

changed as in Eq.28), where the derivatives entering the

with the energy of the ground state with no vortices. SinceHamiltonian are evaluated by means of finite-difference for-

the angular momentum per particle<$, the critical angular
velocity, in w, units, is

mulas. The algorithm can be tested by comparing the results
of the noninteracting case with the analytical solution of the

anisotropic harmonic potential. In the interacting case, with
largeN, it is also possible to compare the numerical results
with the analytic solution(14). Another test of accuracy is
rg’)iven by the virial theorem, which fixes rigorous relation-
ships among the different contributions to the kinetic and the
potential energy of the system at any valueNof

The system is sufficiently well described using a grid of

IIil. NUMERICAL PROCEDURE 50% 50 points in the range @r,, <5, and the same faz.

The main purpose of this work is the numerical minimi- The number of iterations in ?maginary time depends on the_
zation of the Gross-Pitaevskii function@9) in order to cal-  degree of convergence required and the goodness of the ini-
culate the properties of the ground staie<{0) and of vor- tial trlgl wave function. The latter can be one of the two
tex states k#0) for given values of the parameters analytical limits alread_y discussed, t_)ut the f!nal results do
N,\,a, , anda. A method of direct minimization is provided Ot depend on the trial wave function. Typically we use
by the steepest descent approach. In brief, it consists of prg000—10 000 iterations. Since the internal energy is a local
jecting onto the minimum of the functional an initial trial functional, each iteration is very fast, so that the functional
state by propagating it in imaginary time. A time-dependentMinimization takes no more than 2-3 min of CPU on a
wave functiony(r1,t), wheret is a fictitious time variable, DEC-Alpha processor.
is evaluated at different time steps, starting from an arbitrary
trial function and converging to the exact solution
P1(rq,°)=in(rq). The time evolution can be formulated in
terms of the equation

Qc=x"'[(E1/N),—(E1/N)o]. (29

In the noninteracting case the difference of energy per pal
ticle is simply x, so thatQ).=1; the critical angular velocity
is just the angular frequency of the trap in they) plane.

IV. RESULTS
A. Positive scattering length: ¥Rb

As an example of atoms with repulsive interaction we

9 5E1/N choose®’Rb, as in the experiment of Refl]. The s-wave
E'ﬂl(rlyt): -, (26)  triplet-spin  scattering length is in the range
Sha(ra,t) 85ay<a< 140a,, wherea, is the Bohr radiug13]. In our

where 8 indicates the constrained functional derivative thatanalysIS we usa=1_0010. The asymmetry pa_rameter of the
xperimental trap I9\=w2/wl=\/§. The axial frequency

reserves the normalization. This equation defines a traje& . ;
Itoory in the wave function spadand thg fictitious time isjustJ /2 is taken to be 220 H214]._'I;he corresponding char-
a label for different configurationgn which at each step one acteristic length isa, =1.222¢10°" cm apd the ratio be-
. . = tween the scattering and the oscillator lengths
moves a |Itt|Q bit down the gradler)% SEI 5. The con- ala, =4.33x 10 3
stra_lne(_d funcUor_naI derivative is pbtalned_by _addlng the nor- We minimize the Gross-Pitaevskii functional in a wide
malization condition to the functional derivative . .
range of particle numbeX. Results for the chemical poten-
tial and the energy per particle are shown in Table |. Both
quantities are expressed in unitsfab, or of the equivalent
temperaturéi o, /kg=3.73 nK. The partial contributions to
the energy per particle coming from the kinetic enefign),
the harmonic oscillator potenti@HO), and the internal po-
tential energy(pot) are also given. Th&l=1 case coincides
with the noninteracting anisotropic harmonic oscillator: in
this case the internal potential energy vanishes, the kinetic
energy and the harmonic oscillator potential energy are
equal, and the chemical potential and the total energy per
Pa(ry tH A=ty (r, ) — At Hiy(ry,), particle are both equal to the analytic value
(1+N/2)=2.41. WhenN increases the repulsion among at-
by normalizingy; to 1 at each iteration. The time steéy oms tends to lower the central density, expanding the cloud
controls the rate of convergence. Several methods have beeh atoms towards regions where the trapping potential is
proposed in the recent literatueee, for instance, Ref12] higher. This produces an increase of both the internal and the
and references therginto improve the steepest descent harmonic oscillator potential energy per particle. Conversely,

is

SE,IN
5¢l(rl vt)

whereH depends nonlinearly otf, . The end product is the
self-consistent minimization of the energy, which corre-
sponds to {4, /9t)=0 or, including the normalization, to
the equatiorH ¢y =2u1¢,, which coincides with the non-
linear Schrdinger equatiorf20). In practice one chooses an
arbitrary time stepAt and iterates the equation

:le(rlit)v (27)

(28)
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TABLE I. Results for the ground state 6fRb atoms in a trap with = \/8. Chemical potential and
energy are in unitd w, , with 27w, =220 Hz. Length is in unitg, .

N M1 (E1/N) (E1/N)kin (E1/N)no (E1/N) pot \/@ \/@

1 2.414 2414 1.207 1.207 0.000 0.707 0.420
100 2.88 2.66 1.06 1.39 0.21 0.79 0.44
200 3.21 2.86 0.98 1.52 0.36 0.85 0.45
500 3.94 3.30 0.86 1.81 0.63 0.96 0.47
1000 4.77 3.84 0.76 2.15 0.93 1.08 0.50
2000 5.93 4.61 0.66 2.64 1.32 1.23 0.53
5000 8.14 6.12 0.54 3.57 2.02 1.47 0.59
10000 10.5 7.76 0.45 4.57 2.74 1.69 0.65
15000 12.2 8.98 0.41 5.31 3.26 1.84 0.70
20000 13.7 9.98 0.38 5.91 3.68 1.94 0.73

the kinetic energy per particle decreases because the densibwered. The density in the cloud becomes almost flat and it
distribution is flattened. In the strongly repulsive limit, is well approximated by the analytic solutigf4), valid in
N—co, one should find that the internal potential energy isthe strongly repulsive limit. At the surface the wave function
much greater than the kinetic energy, which is the case disranishes gradually, the typical decay length being almost in-
cussed in Sec. Il B. Indeed, the convergence towards thigependent oN. The contribution of the surface to the ki-
limit turns out to be rather slow. An approximate estimate ofnetic energy remains sizable even for lalde so that the
the kinetic energy per particle can be obtained, assuming thenetic energy is larger than the Gaussian estimate
wave function to be a Gaussian, having a width of the order?/(2mR?). A typical profile of the condensate wave func-
of the radiusR of the cloud[9]. In this model the kinetic tion ¢, is plotted along the axis forN=5000 in Fig. 2. The
energy is of the order of?/(2mR?), which is much smaller exact minimization of the Gross-Pitaevskii functiorisblid
than the internal potential energy even for relatively smallline) is compared with the noninteracting castashed ling

N. The discrepancy between the Gaussian approximation anghd the strongly repulsive limidot-dashed ling

the exact solution is well understood by looking at the effect  Simple relationships among the different contributions to
of the surface structure of the cloud. In Fig. 1 we plot thethe total energy are obtained by means of the virial theorem.

profiles of the wave function along theand thez axis for ~ When applied to the anisotropic trap it gives the rigorous
several values oN. The noninteracting case is shown as arelation

dashed line. Increasiny, the central density is significantly

2
<pX> m 2 1
om E“&(X )+ EEpotzoy (29)
0.6 | ,
"\\\ 7R}
0.5 = N=5000 7
\\
\
04 — \ —
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FIG. 1. Ground-state wave function f8fRb along thex axis
(upper pantand along the axis (lower par}. Distances are in units FIG. 2. Ground-state wave function for 5000 atoms&&Rb.
a, [see Eq.(4)]. The dashed line is the noninteracting case; theDashed line, noninteracting caggee Sec. Il A dot-dashed line,
solid lines corresponds t&=100,200,500,1000,2000,5000, and strongly repulsive limitsee Sec. Il B solid line, exact solution of
10 000, in descending order of central density. the Gross-Pitaevskii functional.
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TABLE Il. Chemical potentialin unitsf w, ) and average trans-

verse and vertical sizén units a,) in the strongly repulsive ap- ' ' '
proximation(Sec. Il B), for 8’Rb in the same trap as in Table I. 9g Fmmmmmmmmmmmmmmmm e -
N M1 V{x) () L _
100 1.60 0.68 0.24 %
500 3.05 0.94 0.33 =
1000 4.02 1.07 0.38 g
5000 7.66 1.48 0.52 §
10 000 10.1 1.70 0.60
20 000 13.3 1.94 0.69

a}nd analogously foy and;. Summing over the three equa- 0 5000 10000 15000 20000
tions forx, y, andz one finds N

2Ekin_2EHO+ 3Ep0t: 0. (30)
FIG. 3. Ratio of the axial to transverse average velocity as a
One can easily see that the numerical results in Table | agref@nction ofN in 87Rb..The lower and upper dashed lines correspond
: : : to VA and\, respectively.
very well with this relation.

The average size of the cloud in both directions can be

easily evaluated once the ground-state wave function i¥Vh'|e the number of part|clgs is of the order of 5000. The
known. In the last two columns of Table | we report the agreement with our results is good, even if one has to con-

N ey N i . sider that the experimental estimate implicitly assumes a bal-
quzant|t|e§ {x1) apd (z1). When N, Increases the quantity listic expansion of the atoms after switching off the external
(x1) deviates rapidly from the noninteracting value 1/2, ré-ya, The effects of the interaction on the expansion of the

flecting the spreading of the atom distribution in the directiongas should be explicitly taken into account in order to draw
of the softer trapping potential. The increase (@f) is more definitive conclusions.
slower, but never negligible. On can compare the results of | et us now consider the vortex states. In Fig. 4 we show
the numerical solution of the Gross-Pitaevskii equations withhe wave function of a cloud of 5000 atoms: the:1 wave
the ones obtained in the strongly repulsive lifee Eq. fynction [Fig. 4(b)], which corresponds to atoms flowing
(16)]. In Table Il we give the approximated chemical poten-zound thez-axis with angular momentu, is compared
tial (15 and the average siz€46), using the same input \ith the x=0 ground statéFig. 4@)]. The atoms are pushed
parameterdfrequencies of the trap and scattering length away from the axis forming a toroidal cloud. From the en-
Comparing these values with the ones in Table I, one clearlyrgy of the vortex states we calculate the critical angular
sees that the strongly repulsive limit provides good estlmate§e|ocity, through Eq(25). The results foi=1 are shown in
for the quantitiegx?) and(z}). This means that the behavior Fig. 5 The critical angular velocity decreases rapidly with
of the surface structure, which is very different in the exactN. For N>5000 it is less than 40% of the noninteracting
and approximated wave functions, does not affect signifiyg|ye, given by the transverse angular frequengyof the
Cantly the aVerage SiZeS of the C|0ud. ACtUa”y, the estimat%ap' A rough estimate Of the Critical frequency in the |arge_
of (x3) is better than the one fdiz3), since the exact wave N fimit is given by[9] Q./w, =(a, /R)2n(R/&, whereR is
function approaches more rapidly the one of the stronglthe radius of the cloud. Thhealing lengthis the distance
repulsive limit in the direction of the softer trapping poten- over which the wave function grows from zero to thelk
tial. The approximated values of the chemical potential aresalue. In the limit of large systems it can be approximated by
close to the exact ones fof very large. The quality of the Eq. (22) with p equal to the density in the central part of the
strongly repulsive approximation is improved in systemstoroidal distribution. The estimates of bothand Q. ob-
with greater values of the parameter, as in the case of the tained in this way are in qualitative agreement with the be-
sodium vapor used in the experiment of RE3], where  havior of the numerical solutions. One can also find solutions
N=10> andu, is of the order of 18 for k>1. The critical velocity turns out to increase with
Another interesting quantity that can be easily calculated-or instance, the critical frequen€y,/27 for the creation of
from the ground-state wave function is the aspect ratio of thgortices in a system of 10 000 atoms is 26, 35, and 41 Hz for
velocity distribution, that is, the ratia/(pi)/(pxz). This  k=1,2, and 3, respectively.
guantity is equal tQ/X in the noninteracting case and should  Finally, it is worth recalling that the dimensionless param-
approach\ in the strongly repulsive limit. The numerical eter characterizing the effects of the interactions in the
results, as a function dfl, are shown in Fig. 3. The two Gross-Pitaevskii equations is given by=8waN/a, [see
limiting cases are shown as dashed lines. One clearly se&)s.(9) and(10)]. This implies that all the results obtained
that the convergence to the value 2.828is very slow; the in the present work can be applied, with a proper rescaling of
aspect ratio remains well below the asymptotic value eveithe variableN, to different choices fora and/ora, . For
for N=20 000. The aspect ratio measured in Réf.is es- instance, changing the axial frequency of the trap from 220
timated to be about 50% larger than the noninteracting valueilz to 120 Hz, so that, increases by a factoy11/6, is
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FIG. 5. Critical angular velocity, in unite, , for the formation
of k=1 vortices in®Rb vapor as a function d¥.
provides the solutiong for which SE/ 5= 0, but does not
say anything about the stability of these solutions. A proper
treatment of the stability requires a time-dependent theory
[7,8]. The minimization of the Gross-Pitaevskii functional
with the steepest descent method explores the configuration
space with axial symmetry near the local minimum.

In Fig. 6 we show the results for the wave function along
thex and thez axis for several values df. As in Fig. 1 we
plot the noninteracting case with a dashed line. Here the
vapor extends more alorgthan alongx, just because the
external potential of the trap is softer in the axial direction
(A<<1). Apart from this purely geometrical fact, the most
striking difference with respect to the repulsive case is that

T T I I
0 1 2 3 4 5
ry 4

FIG. 4. Wave function, in arbitrary units, of 5006’Rb atoms.
(a) Ground state(b) Vortex state withk=1.
equivalent to keeping anda, unchanged and reducing the
number of atoms by the same factgt1/6. —

B. Negative scattering length:”Li

As an example of atoms with attractive interaction we
choose ’Li, as in the experiment of Ref2]. The s-wave i
triplet-spin scattering length is-27a, [15]. The axial fre-
quency reported in Ref2] is w,/27=117 Hz and the cor-
responding characteristic length & =2.972x10 * cm, N
thereby yielding a rati¢al/a, =0.48< 10" 3. The transverse
frequency isw,/27m=163 Hz, so that the asymmetry param-
eter is\=w,/w, =0.72. 4

The first important point to stress is that Gross-Pitaevskii
functional has no global minimum for a negative scattering
length. This reflects the tendency of the system to collapse. F|G. 6. Ground-state wave function fdiLi along the x axis
For spatially inhomogeneous systems, however, the zerQupper pantand along the axis (lower pari. Distances are in units
point energy can exceed the attractive potential, producing, [see Eq.(4)]. The dashed line is the noninteracting case; the
local minima of the functional when the density of atoms issolid lines corresponds f§=200,500 and 1000, in ascending order
not too high. The nonlinear stationary Sctlimger equation  of central density.
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FIG. 7. Wave function, in arbitrary units, of 1000Li atoms. ry

(a) Ground state(b) Vortex state withk=1.
FIG. 8. Vortex-state wave functions, in arbitrary units, for dif-

wave
here the central density of the cloud increases rapidly witt{rent values oN and« in °Li.

N. This is the effect of adding more and more attractive
potential energy. When the central density reaches a certaangular frequency of the trap. In systems with an attractive
critical limit the system collapses. In term of functional mini- interaction the critical angular velocity is larger than for non-
mization this implies that the convergence towards the locainteracting particles, while the opposite is true for repulsive
minimum becomes slower and slower, until a critiddl interactions. This is because it costs internal potential energy
above which the energy falls down and does not converge lower the average density, as the vortex does, for attractive
anymore. In’Li, with the input parameters given above, the interactions. However, once a vortex is created, the corre-
critical numberN turns out to be about 1400. sponding state is more stable than in the absence of vorticity:
Looking at Fig. 6, one also notices that the wave functionone can put more atoms inside the rotating cloud before
changes its form in the same way alorngand z. Both the reaching the critical density for the final collapse. Indeed we

average sizes/(x?) and y(z?) decrease slowly wheN in-  find local minima of the Gross-Pitaevskii functional ftir
creases. For instance, fr=1000 one has/(x?)=0.62 and ~Much larger than 1400 ik>0. We show three examples in
V(z2)=0.69, both values being about 15% smaller than thd 19 8. One notices that the maximum density of the 1

. . ) oo _ state slightly increases from the cade- 1000[Fig. 7(b)] to
ones in the noninteracting case. Ther (°i>/<.z.> IS prac the caseN=3500 (top of Fig. 8, however remaining well
tically independent oN. For instance, foN=1 it is equal to

x=0.85, while forN= 1000 it is 0.90, with an increase of belqw the .value of the central dgnsity in_ the state without
-O9, : I, WL el T ~' vorticity [Fig. 7(@)]. The three vortices in Fig. 8 have almost
only 5%. The aspect ratio of the velocity distribution, which o c<ame peak density, but very different number of particles.
is equal toyX in the noninteracting case, behaves in theThey correspond to well defined local minima of the func-
same way. Even the energy per particle depends smoothly qpnal. If the number of particles is increased, one finds again
N. In unitsfw, , itis equal to 1.36 and 1.15 fdd=1 and  ¢ritical values ofN for which the minima disappear. For
N=1000, respectively. B _ x=1 we find a critical value oN=4000; fork=2 and 3 we
Returning to the question of the stability, we notice that.fing critical values of 6500 and 8300, respectively. It is worth
when the local minimum associated with wave functions ofmentioning that the number of particles in the condensate
the form shown in Fig. 6 disappears, nothing prevenfsi-  reported in the experimental work of R¢2] is an order of
ori the existence of other local minima associated with dif-magnitude higher than the critical value for the stability of
ferent configurations. Such configurations should have locahe Gross-Pitaevskii solution without vorticityN& 1400).
density Iowgr th_an the critical one. A natural way to obtain aThjs discrepancy between the experimental finding of Ref.
favorable situation is to move the atoms away from the [2] and the predictions of the Gross-Pitaevskii theory could

axis, conserving the total number of particles. This happenge sjgnificantly reduced if one assumes the existence of a
in the presence of a vortex. In Fig. 7 we show the wave,grtex in the atomic cloud.

function for 1000’Li atoms with no vortice$Fig. 7(a)] and

with an aX|aI_ vortex of unit circulatiofFig. 7(b)]. We use _ V. CONCLUSIONS

the same units in both cases, so one can see that the maxi-

mum value of the wave function inside the toroidal distribu- In this paper we have solved the Gross-Pitaevskii equa-
tion of the vortex is approximately a factor 2 lower than thetions for a dilute gas of alkali atoms in anisotropic magnetic
central value in the state with no vorticifthe density is four traps by numerical minimization of the total energy. The

times smaller. The critical angular frequency for the forma- theory provides the condensate wave functionTatO for

tion of the vortex state in Fig. 7 is 1.12 times the transversestates with and without vorticity. The comparison



53 BOSONS IN ANISOTROPIC TRAPS: GROUND STATES AND ... 2485

with approximate models, such as the noninteracting gas and acting gas. Conversely, it increases within systems

the strongly repulsive limit, has been carefully explored. We
have explicitly discussed the results fRb (positive scat-
tering length and ’Li (negative scattering lengtsince these

elements have been used recently in the successful measure-

ments of Bose-Einstein condensatigh2]. We summarize
here the main results of the present analysis.

(i)

We have explored in a systematic way the density
distribution and the energy systematics of the atomic
clouds. The exact condensate wave function is flat in
the interior and vanishes smoothly at the surface. The
contribution of the surface to the kinetic energy per
particle remains sizable even for relatively lanye
differently from the predictions of approximated mod-
els recently proposed. This affects significantly the
behavior of the aspect ratio of the velocity distribu-
tion. In the case of positive scattering length the as-
pect ratio is larger than the valugh given by the
noninteracting model, but smaller than the value
given by the strongly repulsive limit. The values cal-
culated for®’Rb are in agreement with the experimen-
tal findings of Ref[1].

We have studied the properties of vortex states. For

with attractive interaction. The most striking feature
of vortex states is the tendency to lower the peak den-
sity in the cloud of atoms. This tendency has a dra-
matic effect for systems with an attractive interaction,
where high values of the peak density can produce the
disappearance of the local minimum of the functional,
i.e., the collapse of the system. {hi this happens for
N=1400. It turns out that the presence of a vortex
increases the stability of the system, in the sense that
local minima with largerN can be found. We have
shown the results up ttN=8000 with circulation
numberk=3. Higher values oN can be obtained by
increasingk. Axially symmetric vortices with circu-
lation x are natural candidates as metastable configu-
rations for the condensed atoms in the traps here con-
sidered. In principle, other configurations could be
possible, for instance, several separate vortices with
unit circulation instead of a single vortex with circu-
lation . The energetics of such states remains to be
investigated.

Further work is planned in order to study in more detalil

systems with repulsive interaction the critical angularthe velocity distribution of the atomic vapor. Time-dependent
velocity for the formation of vortices decreases rap-calculations are also feasible within the same theoretical
idly with N with respect to the value of the noninter- scheme.
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