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We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic trap, modeled by an aniso-
tropic harmonic potential. We evaluate the wave function and the energy of the Bose-Einstein condensate as a
function of the particle number, both for positive and negative scattering length. The results for the transverse
and the vertical size of the cloud of atoms, as well as for the kinetic and potential energy per particle, are
compared with the predictions of approximated models. We also compare the aspect ratio of the velocity
distribution with experimental estimates available for87Rb. Vortex states are considered and the critical angular
velocity for production of vortices is calculated. We show that the presence of vortices significantly increases
the stability of the condensate in the case of attractive interactions.

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj

I. INTRODUCTION

Recent experiments support the existence of a Bose-
Einstein condensate in vapors of alkali atoms, such as ru-
bidium @1#, litium @2# and sodium@3#, confined in magnetic
traps and cooled down to temperature of the order of 100 nK.
This important discovery opens new interesting perspectives
in the field of many-body physics~for a comprehensive re-
view on Bose-Einstein condensation see, for instance, Ref.
@4#!.

The vapors of alkali atoms used in the experiments are
very dilute, i.e., the average distance among the atoms is
much larger than the range of the interaction. So the physics
is expected to be dominated by two-body collisions, well
accounted for by the knowledge of thes-wave scattering
length. This also implies that the Gross-Pitaevskii theory@5#
for weakly interacting bosons finds in these systems an ideal
field of application. This theory has been already used to
describe bosons confined in isotropic traps@6–8#. The aniso-
tropic case has been recently discussed by Baym and Pethick
@9#, who have obtained approximate analytic solutions,
thereby providing a qualitative insight into many interesting
features of these systems. To make the analysis more quan-
titative one has to solve numerically the Gross-Pitaevskii
equations.

In the present work we provide a complete set of solutions
of the Gross-Pitaevskii equations applied toN alkali atoms in
anisotropic traps. We calculate the condensate wave function
at T50 for bosons interacting through positive and negative
scattering lengths. We explore theN dependence of relevant
quantities, such as energy, chemical potential, and the aspect
ratio of the velocity distribution. We also discuss vortex
states, studying the density profile and the critical angular
velocity.

The results of the numerical minimization of the energy
functional are compared with the analytic solution of the
noninteracting anisotropic harmonic oscillator as well as
with approximated models available when the interaction is
strongly repulsive~strongly repulsive limit!. For instance, we
will show that the surface structure of the condensate wave
function, for which a sound treatment of the kinetic energy is
needed, is relevant in determining the aspect ratio. Our re-

sults for the aspect ratio in87Rb, withN of the order of a few
thousands, are in agreement with the experimental findings
of Ref. @1#. An accurate determination of the particle distri-
bution in the vapor cloud is also relevant in order to calculate
the moment of inertia of the system, which is directly con-
nected with the superfluid behavior@10#.

We find instabilities in the solutions for negative scatter-
ing length when the number of atoms exceeds certain critical
values, of the order of 1400 for7Li, in agreement with a
previous analysis@7#. However, we find also that the stability
of these systems is significantly increased when vortex states
are considered. This happens because the vortex flow pushes
the atoms away from the center of the trap decreasing the
highest value of the local density. For7Li we find minima of
the Gross-Pitaevskii functional corresponding to vortex
states with quantum of circulation higher than 1 and having
N of the order of 10 000.

The paper is organized as follows. In Sec. II we present
the formalism of the Gross-Pitaevskii theory for anisotropic
traps and discuss the solutions in two limits~the noninteract-
ing and the strongly repulsive limit!. We also discuss the
generalization of the theory to include vortex states. In Sec.
III we briefly introduce the numerical procedure, which is
based on the steepest descent method for functional minimi-
zation. In Sec. IV we present the results for the two cases of
positive (87Rb! and negative (7Li ! scattering length. Finally,
in Sec. V we summarize the main results.

II. GROSS-PITAEVSKII THEORY FOR TRAPPED
BOSONS

In the Gross-Pitaevskii theory@5# the ground-state energy
for condensed bosons of massm is given by the functional

E@c#5E dr F \2
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wherec(r ) is the condensate wave function~order param-
eter!, v' andvz are the two angular frequencies associated
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with the external potential of the anisotropic trap, anda is
the s-wave scattering length. The wave function is assumed
to be normalized to the number of atoms in the condensate

E dr uc~r !u25N. ~2!

In theT→0 limit considered in this work,N coincides with
the total number of atoms in the trap. The explicit form of
the ground-state wave function is obtained by minimizing
the energy functional. One can also write explicitly the varia-
tion of the energy functional at first order, finding the Euler-
Lagrange equation

F2
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m
uc~r !u2Gc~r !5mc~r !, ~3!

where m is the chemical potential. This equation has the
form of a nonlinear stationary Schro¨dinger equation. It has
been recently solved for bosons in isotropic harmonic traps
by Edwards and Burnett@6#, by means of iterated Runge-
Kutta integrations. An efficient numerical calculation of the
ground state, which works well also in the case of aniso-
tropic traps with and without vortices, consists of minimizing
directly the energy functional~1! with a steepest descent
method, as we will show in Sec. III.

The Gross-Pitaevskii theory is expected to be accurate
when the system is dilute. Ifr is the density of bosons, the
parameter that measures the applicability of the theory is the
producta3r, which should be much less then 1. This condi-
tion is largely satisfied by the samples of alkali atoms used in
the recent experiments@1,2#. For instance, the central density
of 10 000 atoms of87Rb in the trap of Ref.@1# is expected to
be of the order of 1012–1013 cm23, which yields
a3r.1026 or less. Even in the experiment of Ref.@3# on
sodium, where the number of atoms in the condensate is
much larger, the quantitya3r remains very small
(.1025). The theory is also accurate for dilute systems of
bosons having negative scattering length. In this case, how-
ever, one has to take care of the possible instability induced
by the attractive interaction whenN is large. When the sys-
tem collapses, a more accurate theory is required in order to
include short-range effects.

To simplify the formalism one can choose a slightly dif-
ferent notation, taking advantage of the fact that all distances
and energies in the calculation scale as the typical length and
energy of the harmonic external potential. So we introduce
the standard lengths

a'5S \

mv'
D 1/2, az5S \

mvz
D 1/2 ~4!

and we rescale the spatial coordinate, the energy, and the
wave function as

r5a'r1 , ~5!

E5\v'E1 , ~6!

c~r !5AN/a'
3c1~r1!. ~7!

The wave functionc1 is normalized to 1. Finally, we intro-
duce the asymmetry parameter

l5vz /v' ~8!

and define the quantity

u15
8paN

a'

. ~9!

With these changes, the Gross-Pitaevskii energy functional
takes the form

E1

N
5E dr1F u¹1c1~r1!u21~x1

21y1
21l2z1

2!uc1~r1!u2

1
u1
2

uc1~r1!u4G ~10!

and the nonlinear Schro¨dinger equation becomes

@2¹1
21x1

21y1
21l2z1

21u1uc1~r1!u2#c1~r1!52m1c1~r1!,
~11!

wherem5\v'm1 . The dimensionless quantityu1 , entering
the left-hand side of Eq.~11!, characterizes the effect of the
interaction in the equation for the condensate. It is worth
noting that even if the system is very dilute (a3r!1) the
interactions can nevertheless play a crucial role in determin-
ing the solution of the Gross-Pitaevskii equations. In fact, the
two conditionsa3r!1 andu1.1 can be well satisfied for
realistic values of the parameters of the problem, i.e., the
scattering length, the oscillator frequencies, and the number
of atoms in the trap. We now discuss briefly the two limiting
cases of noninteracting particles and of strongly repulsive
interactions, where the solution of Eq.~11! is available in an
analytic way. We then show how the formalism can be ex-
tended to describe vortex states.

A. Noninteracting model

When the scattering lengtha vanishes, the problem re-
duces to the solution of the stationary Schro¨dinger equation
for an anisotropic harmonic oscillator. The ground-state
wave function is

c1~r1!5l1/4p23/4exp@2 1
2 ~x1

21y1
21lz1

2!#. ~12!

The chemical potential coincides with the energy per par-
ticle, which turns out to be (11l/2). The Gaussian has dif-
ferent transverse and vertical widths. In particular one has
^x1

2&5^y1
2&51/2 and^z1

2&51/(2l). The mean values of the
momentum operatorspx

2 andpz
2 can also be easily calculated.

In particular it is interesting to calculate the quantity

A^pz
2&/^px

2&5A^x1
2&/^z1

2&5Al. ~13!

In the following we consider the quantityA^pz
2&/^px

2& as a
measure of theaspect ratio, which characterizes the anisot-
ropy of the velocity distribution. This is a relevant quantity
in the interpretation of the experimental results. Values of the
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aspect ratio different from 1 reflect a peculiar and unique
feature of Bose-Einstein condensation.

B. Strongly repulsive limit

The opposite limit is obtained when the interaction is so
strong or the number of particles so large that the kinetic
energy can be neglected in the energy functional. It corre-
sponds to very large values of the parameteru1 @see Eq.~9!#.
This limit has been already discussed in Refs.@6,9#. The
solution is easily obtained by dropping the kinetic energy
term in Eq.~11!. It has the form

c1
2~r1!5

1

u1
~2m12x1

22y1
22l2z1

2! ~14!

if the right-hand side is positive andc150 elsewhere. The
chemical potential is easily calculated by imposing the nor-
malization condition*c1

2dr151. One finds

2m15S 158p
lu1D 2/5 ~15!

andm5\v'm1 . Using the definition ofu1 given in Eq.~9!
and the relationm5dE/dN, one also gets the relationship
E/N5(5/7)m. The cloud of atoms extends over a radius
R15A2m1 and a vertical sizeZ15lR1 . One also finds the
results

^x1
2&5

2m1

7
, ^z1

2&5
2m1

7l2 ~16!

for the square radiuŝx1
2& and ^z1

2&. Due to the different
scaling properties of the wave function with respect to the
variable z @compare Eqs.~12! and ~14!#, the aspect ratio
A^pz

2&/^px
2& in this case is equal tol and not toAl as in the

noninteracting case. The central density of the cloud is
A2m1 /u1. The wave function~14! is expected to approxi-
mate well the exact solution of the nonlinear Schro¨dinger
equation~11! for large N, apart from the structure of the
surface region where the exact wave function has to vanish
smoothly. This fact has been already tested for isotropic traps
in Ref. @6#. However, some relevant observables can be sig-
nificantly affected by this surface structure even at largeN,
as we will see later.

C. Vortex states

The energy functional~10! is easily generalized to include
vortex states. Indeed one of the primary motivations of the
Gross-Pitaevskii theory was the study of vortex states in
weakly interacting bosons@5#. Here we consider states hav-
ing a vortex line along thez axis and all the atoms flowing
around it with quantized circulation. One can write the axi-
ally symmetric condensate wave function in the form

C~r !5c~r !exp@ iS~r !#, ~17!

wherec(r )5Ar(r ) is the modulus, while the phaseS acts
as a velocity potential:v5(\/m)¹S. By choosingS5kf,
wheref is the angle around thez axis andk is an integer,
one has vortex states with tangential velocity

v5
\

mr'
k, ~18!

with r'
25x21y2. The numberk is the quantum of circula-

tion and the angular momentum alongz is Nk\. Now, one
has to put the complex wave functionC in place ofc in the
energy functional~1!. Using the adimensional quantities de-
fined in Eqs.~5!–~7! and r 1'

2 5x1
21y1

2 , the resulting Gross-
Pitaevskii functional becomes

E1

N
5E dr1F u¹1c1~r1!u21~k2r 1'

221r 1'
2 1l2z1

2!uc1~r1!u2

1
u1
2

uc1~r1!u4G , ~19!

which differs from the functional~10! because of the cen-
trifugal term. The corresponding nonlinear Schro¨dinger
equation is

@2¹1
21k2r 1'

221r 1'
2 1l2z1

21u1uc1~r1!u2#c1~r1!

52m1c1~r1!. ~20!

Due to the presence of the centrifugal term, the solution of
this equation forkÞ0 has to vanish on thez axis.

For noninteracting particles one falls again in the case of
the stationary Schro¨dinger equation for the anisotropic har-
monic potential. For instance, thek51 solution has the form

c1~r1!}r 1'exp@2 1
2 ~r 1'

2 1lz1
2!#. ~21!

The energy per particle of thekÞ0 states of the anisotropic
harmonic oscillator is simplyk\v' plus the ground-state
energy. In our dimensionless notationm1511(l/2)1k.

In the interacting case the kinetic energy cannot be ne-
glected even for largeN, since it determines the structure of
the vortex core. In particular, the balance between the kinetic
energy and the interaction energy fixes a typical distance
over which the condensate wave function can heal. For a
dilute Bose gas thehealing lengthis given by@5#

j5~8pra!21/2, ~22!

wherer is the density of the system. In the case of a vortex
it corresponds to the distance over which the wave function
increases from zero, on the vortex axis, to the bulk density.
For the trapped atoms in theN→` limit we have seen that
the central density of the cloud is aboutA2m1 /u1, where
u1 andm1 are given in Eqs.~9! and~15!, so that the healing
length~in unitsa') is j1.(2m1)

21/2. Since the radiusR1 of
the cloud, in the same units, is of the order of (2m1)

1/2, one
has@9#

j1
R1

5
1

2m1
5

1

R1
2 ~23!

or, equivalently,

j

R
5S a'

R D 2. ~24!
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Thus the healing length is small compared with the size of
the cloud ifR is much larger thana' .

Vortex states play an important role in characterizing the
superfluid properties of Bose systems, as is well known in
the case of superfluid helium@11#. The critical angular ve-
locity required to produce vortex states is easily calculated
once the energies of the states with and without vortices are
known. One has to compare the energy of a vortex state in
frame rotating with angular frequencyV, that is,E2VLz ,
with the energy of the ground state with no vortices. Since
the angular momentum per particle isk\, the critical angular
velocity, inv' units, is

Vc5k21@~E1 /N!k2~E1 /N!0#. ~25!

In the noninteracting case the difference of energy per par-
ticle is simplyk, so thatVc51; the critical angular velocity
is just the angular frequency of the trap in the (x,y) plane.

III. NUMERICAL PROCEDURE

The main purpose of this work is the numerical minimi-
zation of the Gross-Pitaevskii functional~19! in order to cal-
culate the properties of the ground state (k50) and of vor-
tex states (kÞ0) for given values of the parameters
N,l,a' , anda. A method of direct minimization is provided
by the steepest descent approach. In brief, it consists of pro-
jecting onto the minimum of the functional an initial trial
state by propagating it in imaginary time. A time-dependent
wave functionc1(r1 ,t), wheret is a fictitious time variable,
is evaluated at different time steps, starting from an arbitrary
trial function and converging to the exact solution
c1(r1 ,`)[c1(r1). The time evolution can be formulated in
terms of the equation

]

]t
c1~r1 ,t !52

d̄E1 /N

d̄c1~r1 ,t !
, ~26!

where d̄ indicates the constrained functional derivative that
preserves the normalization. This equation defines a trajec-
tory in the wave function space~and the fictitious time is just
a label for different configurations! in which at each step one
moves a little bit down the gradient2 d̄E/ d̄c. The con-
strained functional derivative is obtained by adding the nor-
malization condition to the functional derivative

dE1 /N

dc1~r1 ,t !
5Hc1~r1 ,t !, ~27!

whereH depends nonlinearly onc1 . The end product is the
self-consistent minimization of the energy, which corre-
sponds to (]c1 /]t)50 or, including the normalization, to
the equationHc152m1c1 , which coincides with the non-
linear Schro¨dinger equation~20!. In practice one chooses an
arbitrary time stepDt and iterates the equation

c1~r1 ,t1Dt !.c1~r1 ,t !2Dt Hc1~r1 ,t !, ~28!

by normalizingc1 to 1 at each iteration. The time stepDt
controls the rate of convergence. Several methods have been
proposed in the recent literature~see, for instance, Ref.@12#
and references therein! to improve the steepest descent

method of functional minimization; however, the Gross-
Pitaevskii functional is much simpler than the typical func-
tionals used in strongly correlated systems and the steepest
descent method described above is efficient enough for our
purposes.

In practice, one has to discretize the (r 1' ,z) space with a
two-dimensional grid of points, so that the wave function
becomes a matrix. At each time step the matrix elements are
changed as in Eq.~28!, where the derivatives entering the
Hamiltonian are evaluated by means of finite-difference for-
mulas. The algorithm can be tested by comparing the results
of the noninteracting case with the analytical solution of the
anisotropic harmonic potential. In the interacting case, with
largeN, it is also possible to compare the numerical results
with the analytic solution~14!. Another test of accuracy is
given by the virial theorem, which fixes rigorous relation-
ships among the different contributions to the kinetic and the
potential energy of the system at any value ofN.

The system is sufficiently well described using a grid of
50350 points in the range 0,r 1',5, and the same forz.
The number of iterations in imaginary time depends on the
degree of convergence required and the goodness of the ini-
tial trial wave function. The latter can be one of the two
analytical limits already discussed, but the final results do
not depend on the trial wave function. Typically we use
2000–10 000 iterations. Since the internal energy is a local
functional, each iteration is very fast, so that the functional
minimization takes no more than 2–3 min of CPU on a
DEC-Alpha processor.

IV. RESULTS

A. Positive scattering length: 87Rb

As an example of atoms with repulsive interaction we
choose87Rb, as in the experiment of Ref.@1#. The s-wave
triplet-spin scattering length is in the range
85a0,a,140a0 , wherea0 is the Bohr radius@13#. In our
analysis we usea5100a0 . The asymmetry parameter of the
experimental trap isl5vz /v'5A8. The axial frequency
vz/2p is taken to be 220 Hz@14#. The corresponding char-
acteristic length isa'51.22231024 cm and the ratio be-
tween the scattering and the oscillator lengths is
a/a'54.3331023.

We minimize the Gross-Pitaevskii functional in a wide
range of particle numberN. Results for the chemical poten-
tial and the energy per particle are shown in Table I. Both
quantities are expressed in units of\v' or of the equivalent
temperature\v' /kB53.73 nK. The partial contributions to
the energy per particle coming from the kinetic energy~kin!,
the harmonic oscillator potential~HO!, and the internal po-
tential energy~pot! are also given. TheN51 case coincides
with the noninteracting anisotropic harmonic oscillator: in
this case the internal potential energy vanishes, the kinetic
energy and the harmonic oscillator potential energy are
equal, and the chemical potential and the total energy per
particle are both equal to the analytic value
(11l/2)52.41. WhenN increases the repulsion among at-
oms tends to lower the central density, expanding the cloud
of atoms towards regions where the trapping potential is
higher. This produces an increase of both the internal and the
harmonic oscillator potential energy per particle. Conversely,
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the kinetic energy per particle decreases because the density
distribution is flattened. In the strongly repulsive limit,
N→`, one should find that the internal potential energy is
much greater than the kinetic energy, which is the case dis-
cussed in Sec. II B. Indeed, the convergence towards this
limit turns out to be rather slow. An approximate estimate of
the kinetic energy per particle can be obtained, assuming the
wave function to be a Gaussian, having a width of the order
of the radiusR of the cloud@9#. In this model the kinetic
energy is of the order of\2/(2mR2), which is much smaller
than the internal potential energy even for relatively small
N. The discrepancy between the Gaussian approximation and
the exact solution is well understood by looking at the effect
of the surface structure of the cloud. In Fig. 1 we plot the
profiles of the wave function along thex and thez axis for
several values ofN. The noninteracting case is shown as a
dashed line. IncreasingN, the central density is significantly

lowered. The density in the cloud becomes almost flat and it
is well approximated by the analytic solution~14!, valid in
the strongly repulsive limit. At the surface the wave function
vanishes gradually, the typical decay length being almost in-
dependent ofN. The contribution of the surface to the ki-
netic energy remains sizable even for largeN, so that the
kinetic energy is larger than the Gaussian estimate
\2/(2mR2). A typical profile of the condensate wave func-
tion c1 is plotted along thex axis forN55000 in Fig. 2. The
exact minimization of the Gross-Pitaevskii functional~solid
line! is compared with the noninteracting case~dashed line!
and the strongly repulsive limit~dot-dashed line!.

Simple relationships among the different contributions to
the total energy are obtained by means of the virial theorem.
When applied to the anisotropic trap it gives the rigorous
relation

^px
2&

2m
2
m

2
v'^x2&1

1

2
Epot50, ~29!

TABLE I. Results for the ground state of87Rb atoms in a trap withl5A8. Chemical potential and
energy are in units\v' , with 2pv'5220 Hz. Length is in unitsa' .

N m1 (E1 /N) (E1 /N)kin (E1 /N)HO (E1 /N) pot A^x1
2& A^z1

2&

1 2.414 2.414 1.207 1.207 0.000 0.707 0.420
100 2.88 2.66 1.06 1.39 0.21 0.79 0.44
200 3.21 2.86 0.98 1.52 0.36 0.85 0.45
500 3.94 3.30 0.86 1.81 0.63 0.96 0.47
1000 4.77 3.84 0.76 2.15 0.93 1.08 0.50
2000 5.93 4.61 0.66 2.64 1.32 1.23 0.53
5000 8.14 6.12 0.54 3.57 2.02 1.47 0.59
10000 10.5 7.76 0.45 4.57 2.74 1.69 0.65
15000 12.2 8.98 0.41 5.31 3.26 1.84 0.70
20000 13.7 9.98 0.38 5.91 3.68 1.94 0.73

FIG. 1. Ground-state wave function for87Rb along thex axis
~upper part! and along thez axis ~lower part!. Distances are in units
a' @see Eq.~4!#. The dashed line is the noninteracting case; the
solid lines corresponds toN5100,200,500,1000,2000,5000, and
10 000, in descending order of central density.

FIG. 2. Ground-state wave function for 5000 atoms of87Rb.
Dashed line, noninteracting case~see Sec. II A!; dot-dashed line,
strongly repulsive limit~see Sec. II B!; solid line, exact solution of
the Gross-Pitaevskii functional.
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and analogously fory andz. Summing over the three equa-
tions for x, y, andz one finds

2Ekin22EHO13Epot50. ~30!

One can easily see that the numerical results in Table I agree
very well with this relation.

The average size of the cloud in both directions can be
easily evaluated once the ground-state wave function is
known. In the last two columns of Table I we report the
quantitiesA^x1

2& andA^z1
2&. WhenN increases the quantity

^x1
2& deviates rapidly from the noninteracting value 1/2, re-

flecting the spreading of the atom distribution in the direction
of the softer trapping potential. The increase of^z1

2& is
slower, but never negligible. On can compare the results of
the numerical solution of the Gross-Pitaevskii equations with
the ones obtained in the strongly repulsive limit@see Eq.
~16!#. In Table II we give the approximated chemical poten-
tial ~15! and the average sizes~16!, using the same input
parameters~frequencies of the trap and scattering length!.
Comparing these values with the ones in Table I, one clearly
sees that the strongly repulsive limit provides good estimates
for the quantitieŝx1

2& and^z1
2&. This means that the behavior

of the surface structure, which is very different in the exact
and approximated wave functions, does not affect signifi-
cantly the average sizes of the cloud. Actually, the estimate
of ^x1

2& is better than the one for̂z1
2&, since the exact wave

function approaches more rapidly the one of the strongly
repulsive limit in the direction of the softer trapping poten-
tial. The approximated values of the chemical potential are
close to the exact ones forN very large. The quality of the
strongly repulsive approximation is improved in systems
with greater values of the parameteru1 , as in the case of the
sodium vapor used in the experiment of Ref.@3#, where
N.105 andu1 is of the order of 103.

Another interesting quantity that can be easily calculated
from the ground-state wave function is the aspect ratio of the
velocity distribution, that is, the ratioA^pz

2&/^px
2&. This

quantity is equal toAl in the noninteracting case and should
approachl in the strongly repulsive limit. The numerical
results, as a function ofN, are shown in Fig. 3. The two
limiting cases are shown as dashed lines. One clearly sees
that the convergence to the value 2.8285l is very slow; the
aspect ratio remains well below the asymptotic value even
for N520 000. The aspect ratio measured in Ref.@1# is es-
timated to be about 50% larger than the noninteracting value,

while the number of particles is of the order of 5000. The
agreement with our results is good, even if one has to con-
sider that the experimental estimate implicitly assumes a bal-
listic expansion of the atoms after switching off the external
trap. The effects of the interaction on the expansion of the
gas should be explicitly taken into account in order to draw
more definitive conclusions.

Let us now consider the vortex states. In Fig. 4 we show
the wave function of a cloud of 5000 atoms; thek51 wave
function @Fig. 4~b!#, which corresponds to atoms flowing
around thez-axis with angular momentumN\, is compared
with thek50 ground state@Fig. 4~a!#. The atoms are pushed
away from the axis forming a toroidal cloud. From the en-
ergy of the vortex states we calculate the critical angular
velocity, through Eq.~25!. The results fork51 are shown in
Fig. 5. The critical angular velocity decreases rapidly with
N. For N.5000 it is less than 40% of the noninteracting
value, given by the transverse angular frequencyv' of the
trap. A rough estimate of the critical frequency in the large-
N limit is given by @9# Vc /v'.(a' /R)2ln(R/j), whereR is
the radius of the cloud. Thehealing lengthis the distance
over which the wave function grows from zero to thebulk
value. In the limit of large systems it can be approximated by
Eq. ~22! with r equal to the density in the central part of the
toroidal distribution. The estimates of bothj and Vc ob-
tained in this way are in qualitative agreement with the be-
havior of the numerical solutions. One can also find solutions
for k.1. The critical velocity turns out to increase withk.
For instance, the critical frequencyVc/2p for the creation of
vortices in a system of 10 000 atoms is 26, 35, and 41 Hz for
k51,2, and 3, respectively.

Finally, it is worth recalling that the dimensionless param-
eter characterizing the effects of the interactions in the
Gross-Pitaevskii equations is given byu158paN/a' @see
Eqs. ~9! and ~10!#. This implies that all the results obtained
in the present work can be applied, with a proper rescaling of
the variableN, to different choices fora and/or a' . For
instance, changing the axial frequency of the trap from 220
Hz to 120 Hz, so thata' increases by a factorA11/6, is

TABLE II. Chemical potential~in units\v') and average trans-
verse and vertical size~in units a') in the strongly repulsive ap-
proximation~Sec. II B!, for 87Rb in the same trap as in Table I.

N m1 A^x1
2& A^z1

2&

100 1.60 0.68 0.24
500 3.05 0.94 0.33
1000 4.02 1.07 0.38
5000 7.66 1.48 0.52
10 000 10.1 1.70 0.60
20 000 13.3 1.94 0.69

FIG. 3. Ratio of the axial to transverse average velocity as a
function ofN in 87Rb. The lower and upper dashed lines correspond
to Al andl, respectively.
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equivalent to keepinga anda' unchanged and reducing the
number of atoms by the same factorA11/6.

B. Negative scattering length:7Li

As an example of atoms with attractive interaction we
choose7Li, as in the experiment of Ref.@2#. The s-wave
triplet-spin scattering length is227a0 @15#. The axial fre-
quency reported in Ref.@2# is vz/2p5117 Hz and the cor-
responding characteristic length isa'52.97231024 cm,
thereby yielding a ratiouau/a'50.4831023. The transverse
frequency isvz/2p5163 Hz, so that the asymmetry param-
eter isl5vz /v'50.72.

The first important point to stress is that Gross-Pitaevskii
functional has no global minimum for a negative scattering
length. This reflects the tendency of the system to collapse.
For spatially inhomogeneous systems, however, the zero-
point energy can exceed the attractive potential, producing
local minima of the functional when the density of atoms is
not too high. The nonlinear stationary Schro¨dinger equation

provides the solutionsc for which dE/dc50, but does not
say anything about the stability of these solutions. A proper
treatment of the stability requires a time-dependent theory
@7,8#. The minimization of the Gross-Pitaevskii functional
with the steepest descent method explores the configuration
space with axial symmetry near the local minimum.

In Fig. 6 we show the results for the wave function along
thex and thez axis for several values ofN. As in Fig. 1 we
plot the noninteracting case with a dashed line. Here the
vapor extends more alongz than alongx, just because the
external potential of the trap is softer in the axial direction
(l,1). Apart from this purely geometrical fact, the most
striking difference with respect to the repulsive case is that

FIG. 4. Wave function, in arbitrary units, of 500087Rb atoms.
~a! Ground state.~b! Vortex state withk51.

FIG. 5. Critical angular velocity, in unitsv' , for the formation
of k51 vortices in87Rb vapor as a function ofN.

FIG. 6. Ground-state wave function for7Li along the x axis
~upper part! and along thez axis ~lower part!. Distances are in units
a' @see Eq.~4!#. The dashed line is the noninteracting case; the
solid lines corresponds toN5200,500 and 1000, in ascending order
of central density.
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here the central density of the cloud increases rapidly with
N. This is the effect of adding more and more attractive
potential energy. When the central density reaches a certain
critical limit the system collapses. In term of functional mini-
mization this implies that the convergence towards the local
minimum becomes slower and slower, until a criticalN
above which the energy falls down and does not converge
anymore. In7Li, with the input parameters given above, the
critical numberN turns out to be about 1400.

Looking at Fig. 6, one also notices that the wave function
changes its form in the same way alongx and z. Both the
average sizesA^x2& andA^z2& decrease slowly whenN in-
creases. For instance, forN51000 one hasA^x1

2&50.62 and
A^z1

2&50.69, both values being about 15% smaller than the
ones in the noninteracting case. The ratioA^x2&/^z2& is prac-
tically independent ofN. For instance, forN51 it is equal to
Al50.85, while forN51000 it is 0.90, with an increase of
only 5%. The aspect ratio of the velocity distribution, which
is equal toAl in the noninteracting case, behaves in the
same way. Even the energy per particle depends smoothly on
N. In units\v' , it is equal to 1.36 and 1.15 forN51 and
N51000, respectively.

Returning to the question of the stability, we notice that,
when the local minimum associated with wave functions of
the form shown in Fig. 6 disappears, nothing preventsa pri-
ori the existence of other local minima associated with dif-
ferent configurations. Such configurations should have local
density lower than the critical one. A natural way to obtain a
favorable situation is to move the atoms away from thez
axis, conserving the total number of particles. This happens
in the presence of a vortex. In Fig. 7 we show the wave
function for 10007Li atoms with no vortices@Fig. 7~a!# and
with an axial vortex of unit circulation@Fig. 7~b!#. We use
the same units in both cases, so one can see that the maxi-
mum value of the wave function inside the toroidal distribu-
tion of the vortex is approximately a factor 2 lower than the
central value in the state with no vorticity~the density is four
times smaller!. The critical angular frequency for the forma-
tion of the vortex state in Fig. 7 is 1.12 times the transverse

angular frequency of the trap. In systems with an attractive
interaction the critical angular velocity is larger than for non-
interacting particles, while the opposite is true for repulsive
interactions. This is because it costs internal potential energy
to lower the average density, as the vortex does, for attractive
interactions. However, once a vortex is created, the corre-
sponding state is more stable than in the absence of vorticity:
one can put more atoms inside the rotating cloud before
reaching the critical density for the final collapse. Indeed we
find local minima of the Gross-Pitaevskii functional forN
much larger than 1400 ifk.0. We show three examples in
Fig. 8. One notices that the maximum density of thek51
state slightly increases from the caseN51000@Fig. 7~b!# to
the caseN53500 ~top of Fig. 8!, however remaining well
below the value of the central density in the state without
vorticity @Fig. 7~a!#. The three vortices in Fig. 8 have almost
the same peak density, but very different number of particles.
They correspond to well defined local minima of the func-
tional. If the number of particles is increased, one finds again
critical values ofN for which the minima disappear. For
k51 we find a critical value ofN.4000; fork52 and 3 we
find critical values of 6500 and 8300, respectively. It is worth
mentioning that the number of particles in the condensate
reported in the experimental work of Ref.@2# is an order of
magnitude higher than the critical value for the stability of
the Gross-Pitaevskii solution without vorticity (N.1400).
This discrepancy between the experimental finding of Ref.
@2# and the predictions of the Gross-Pitaevskii theory could
be significantly reduced if one assumes the existence of a
vortex in the atomic cloud.

V. CONCLUSIONS

In this paper we have solved the Gross-Pitaevskii equa-
tions for a dilute gas of alkali atoms in anisotropic magnetic
traps by numerical minimization of the total energy. The
theory provides the condensate wave function atT50 for
states with and without vorticity. The comparison

FIG. 7. Wave function, in arbitrary units, of 10007Li atoms.
~a! Ground state.~b! Vortex state withk51.

FIG. 8. Vortex-state wave functions, in arbitrary units, for dif-
ferent values ofN andk in 7Li.
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with approximate models, such as the noninteracting gas and
the strongly repulsive limit, has been carefully explored. We
have explicitly discussed the results for87Rb ~positive scat-
tering length! and 7Li ~negative scattering length! since these
elements have been used recently in the successful measure-
ments of Bose-Einstein condensation@1,2#. We summarize
here the main results of the present analysis.

~i! We have explored in a systematic way the density
distribution and the energy systematics of the atomic
clouds. The exact condensate wave function is flat in
the interior and vanishes smoothly at the surface. The
contribution of the surface to the kinetic energy per
particle remains sizable even for relatively largeN,
differently from the predictions of approximated mod-
els recently proposed. This affects significantly the
behavior of the aspect ratio of the velocity distribu-
tion. In the case of positive scattering length the as-
pect ratio is larger than the valueAl given by the
noninteracting model, but smaller than the valuel
given by the strongly repulsive limit. The values cal-
culated for87Rb are in agreement with the experimen-
tal findings of Ref.@1#.

~ii ! We have studied the properties of vortex states. For
systems with repulsive interaction the critical angular
velocity for the formation of vortices decreases rap-
idly with N with respect to the value of the noninter-

acting gas. Conversely, it increases withN in systems
with attractive interaction. The most striking feature
of vortex states is the tendency to lower the peak den-
sity in the cloud of atoms. This tendency has a dra-
matic effect for systems with an attractive interaction,
where high values of the peak density can produce the
disappearance of the local minimum of the functional,
i.e., the collapse of the system. In7Li this happens for
N.1400. It turns out that the presence of a vortex
increases the stability of the system, in the sense that
local minima with largerN can be found. We have
shown the results up toN58000 with circulation
numberk53. Higher values ofN can be obtained by
increasingk. Axially symmetric vortices with circu-
lation k are natural candidates as metastable configu-
rations for the condensed atoms in the traps here con-
sidered. In principle, other configurations could be
possible, for instance, several separate vortices with
unit circulation instead of a single vortex with circu-
lation k. The energetics of such states remains to be
investigated.

Further work is planned in order to study in more detail
the velocity distribution of the atomic vapor. Time-dependent
calculations are also feasible within the same theoretical
scheme.
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