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We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge
number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method.
Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this
deviation can be expressed in terms of the transport cross section,s tr , for scattering of a free electron by the
ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe’s formula; we look into
the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in
Rutherford scattering. The corresponding relativistic correction is obtained froms tr for scattering of a Dirac
electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the
scattering distribution, but merely a single quantity,s tr , determined by differences of successive phase shifts.
For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on
atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values
of g5(12v2/c2)21/2. An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil
corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a
simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger
than that of the perturbation formula, by a factor of;2–3 for heavy ions. But the finite nuclear radius leads
to a strong reduction at high energies and the elimination of the factorg2 belonging to point nuclei.

PACS number~s!: 34.50.Bw, 34.80.2i, 03.65.Nk, 11.80.2m

I. INTRODUCTION

When swift ions move through matter, their dissipation of
energy is almost exclusively due to interaction with and en-
ergy transfer to electrons. In this paper we study the corre-
sponding stopping powers for light and heavy ions when
their velocity approaches the velocity of light, i.e., from
near-relativistic energies and up to any extreme relativistic
energy. The aim is to account for both average energy loss
and straggling in energy loss, and to obtain results that are
accurate for all values of the projectile charge. In order to do
this, we have to perform precise quantum mechanical calcu-
lations for Dirac electrons scattered by a Coulomb potential.
We make a shortcut as compared with previous calculations
and obtain the stopping and straggling in a direct manner.

Our treatment has close connections to the Bethe-Bohr-
Bloch description of nonrelativistic slowing down. Bohr’s
paper from 1913@1# treats the electronic stopping of a swift
charged particle within classical mechanics, with perturba-
tion theory for distant collisions, leading to an adiabatic limit
of energy transfer determined by orbital frequencies of elec-
trons, but with a precise description of close collisions. In
Bethe’s 1930 paper@2#, first-order quantum perturbation
theory is used for all collisions. The adiabatic limit is deter-
mined by transition frequencies and, although this may not
be obvious, there is essentially agreement with the classical
adiabatic concept~cf. also Sec. III!. The discussion by Bloch
@3# bridges the gap between the two treatments. This situa-
tion is described in Bohr’s renowned survey paper from 1948
@4#. It is shown there that, for a collision between an ion of
charge numberZ1 and an electron with relative velocityv,
the dimensionless parameter

k[2h5
2Z1e

2

\v
, ~1!

allows quantum perturbation theory when small, but permits
a classical treatment when large compared to unity. Note that
in connection with the Dirac equation it will be convenient to
use the symbolh instead of Bohr’sk.

There are two corrections to this picture of slowing down
of swift ions, however. First, as shown by Bohr@4#, ions for
which k.1 will also carry electrons, with processes of cap-
ture and loss. This leads to a considerable change of stopping
for heavy ions because of the reduction of charge, due to
screening by electrons bound to the ion. Second, the Bethe-
Bohr-Bloch description contains only terms even inZ1 , or
k. The so-called Barkas correction is of a different kind,
being odd inZ1; its dominating term behaves asZ1

3 and is
important in both classical and quantum descriptions.

When we now return to the relativistic case, the above
two nonrelativistic corrections become small and are com-
pletely negligible for large values ofg5(12v2/c2)21/2.
They are therefore not relevant to our central purpose; we
shall later indicate the approximate magnitude of these cor-
rections.

The Bethe perturbation formula was extended to relativ-
istic energies, cf. Bethe@5#, Fano@6#, and Jackson@7#. This
leads to accurate results for slowing down of ions with low
charge number, such as protons anda particles; but with one
reservation for largeg, as we shall see later.

The situation becomes more complicated for relativistic
heavy nuclei. This is indicated by Bohr’s parameterk in ~1!,
which remains pertinent in the relativistic case. Since
v,c, k can easily become comparable to or larger than
unity, which gives one indication that quantum perturbation
theory is not accurate in close collisions. Furthermore, it is
important to use the relativistic Dirac equation for electrons.
In a review paper from 1980, Ahlen has given an expression
for the average energy loss for heavy relativistic ions@8,9#.
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He there relies on early calculations of scattering of Dirac
electrons by point nuclei. These results are in parametrized
form, and the resulting stopping contains a set of terms with
Z1 up to the power seven. This is not a perturbation expan-
sion, however. We shall find that Ahlen’s expression has rea-
sonable accuracy — within a few percent — for moderate
values ofg.

In the following, we present a thorough discussion, prior
to the calculations. In Sec. II we attempt to account for all
terms in the formula for the average energy loss of a swift
ion. The central quantity to be calculated is introduced as the
deviationDL from the value ofL for perturbation theory, cf.
~2! and~4!. This quantity is shown to be given by the change
in transport cross section of an electron with relative velocity
v scattered by the ion. In Sec. III we consider the non-
relativistic case. Here, the deviationDL turns out to be the
Bloch correction; it is confined to close collisions and in this
connection we resolve some seeming paradoxes in the basic
Rutherford scattering. In Secs. II and III we also treat the
fluctuation in energy loss. Next, in Sec. IV, as an introduction
to the relativistic treatment, the Dirac equation is applied to
transport cross sections. In Sec. V we calculateDL for a
point nucleus, obtaining fair agreement with the results of
Ahlen; but this is a preliminary result. The realistic case of a
nucleus with standard radius is studied in Sec. VI. We find
considerable reductions as compared with a point nucleus,
for large g. In Sec. VII the fluctuation in energy loss is
obtained; it is strongly reduced for largeg because of finite
nuclear radii. Finally, in Sec. VIII we comment on the results
obtained.

II. THE BASIC STOPPING FORMULAE

A. Average energy loss

The electronic stopping power, for a nucleus with charge
Z1e in a random substance with charge numberZ2 , can be
written as

2
dE

dx
5
4pZ1

2e4

mv2
NZ2L; ~2!

NZ25n is the average density of electrons, andm the elec-
tron mass. We can now introduce a standard function,
Lstand, which in the main represents a quantum mechanical
perturbation formula,

Lstand5 lnS 2mv2I
g2D2

v2

c2
2
1

2
d, ~3!

with g5(12v2/c2)21/2. Moreover, I is given by Bethe’s
resultZ2lnI5(nfn0ln(\uvn0u), and determined by dipole oscil-
lator strengthsf n0 and transition frequenciesvn0 . The func-
tion 2d/2 is the familiar density effect correction of Fermi
@10#, modifying the adiabatic limit in distant collisions for
sufficiently largeg.

The functionLstand in ~3! depends only on the velocityv
of the particle, on the atomic numberZ2 of the medium, and
on the average electron densityn as contained in the density
effect. Thus, it does not depend on the charge numberZ1 of
the particle, and in factLstandrepresents relativistic first-order
quantum perturbation theory, implying thatdE/dx}Z1

2 . The

basic relativistic increase ofLstand is contained in
lng22v2/c2 and has equipartition, i.e., exactly equal contri-
butions, lng2v2/2c2, from close and distant collisions. But
the increase due to distant collisions will be saturated by the
density effect correction,2d/2, for sufficiently largeg.
There remains only lng from close collisions in the relativ-
istic increase ofLstand. It should be noted that, for simplicity,
we have omitted one term belonging to first-order perturba-
tion theory, i.e., the small shell correction due to the finite
orbital velocities of the target electrons. The full term be-
longing to first-order quantum perturbation theory is there-
fore Lpert5Lstand1dLshell. In ~3! we have also omitted the
so-called Mott term, proportional toZ1v/c

2, and formally
belonging to higher-order scattering theory.

We have mentioned the shell effect, the Barkas effect, and
the screening by a captured electron. Introducing these three
minor corrections, we can now write for the difference be-
tween the trueL in ~2! andLstand in ~3!,

L2Lstand5DL1dLshell1dLBarkas1dLscr, ~4!

whereDL is the quantity we want to derive; it arises from
the deviation of scattering from quantum perturbation theory.
Note here that the formulas~2!, ~3!, and ~4! apply in non-
relativistic theory too. In that case,DL represents precisely
Bloch’s correction to the Bethe stopping formula.

It is appropriate to make a few guiding comments con-
cerning the magnitude of the three correction terms in~4!,
when we approach the relativistic region. We note that the
relative correction in stopping is less than 1% when
udLu,0.1, sinceL;10. In most cases by far the corrections
are below this limit and thus negligible. The standard non-
relativistic shell correction is known fairly accurately,
dLshell>21.5Z2

4/3v0
2/v2, where the numerator represents the

Thomas-Fermi estimate of^ve
2&, the average square of elec-

tron velocities in the atom. Thus, the standard shell correc-
tion is completely negligible whenv→c. Next, a cursory
estimate of the Barkas correction is
dLBarkas;(4Z1e

2/mv2)(v̄/v)L @11#, wherev̄ is a represen-
tative frequency of the atom,v̄;Z2 Rydberg. This correc-
tion is completely negligible forv→c, unless bothZ1 and
Z2 are large, in which case it may approach 1%. Finally,
dLscr is due to the probability of the ion carrying an electron,
from balance between capture and loss, and with a conse-
quent screening of the ion potential. This correction is less
easily formulated in a simple way. It is usually negligible,
unless bothZ1 andZ2 are large, where it may attain a mag-
nitude;21%.

B. Fluctuation in energy loss

We shall also calculate the average square fluctuation in
energy loss,V25Š(dE2^dE&)2‹, wheredE is the energy
loss. We consider high velocities where we can disregard the
minor quantum corrections in distant collisions. The average
square fluctuation is then entirely dependent on the close
collisions, and we formulate its increase as

dV2

dx
54pZ1

2e4NZ2g
2X, ~5!
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which represents Rutherford scattering when the functionX
is unity. With first-order quantum perturbation theory the
Dirac equation leads to

X512
v2

2c2
, ~6!

so that this value ofX corresponds toLstand in ~3!. We shall
obtainX by a direct calculation analogous to that forDL.

When we turn to the possibilities of measuring the aver-
age energy loss and its average square fluctuation, we find
that this depends on the thickness of the target. In point of
fact, for sufficiently thick targets, the energy-loss distribution
will be Gaussian around the average energy loss, and with
width V. For thin targets, one finds a Landau-type distribu-
tion of smaller peak width, with a long tail towards large
energy losses; it may then be difficult to assess the average
energy loss, as discussed in Sec. VII.

C. The method of transport cross section

In this subsection we give a brief survey of a method
based on transport cross sections, which method accounts for
high-velocity stopping in a precise manner, thereby elucidat-
ing the connection between classical and quantal treatments.
This method has been used of old in unpublished lecture
notes by one of us@12#, and it has later been applied by other
authors as well; cf.@13,14#. We use the method here because
it vastly simplifies the relativistic calculations with Dirac
electrons.

The essence is to calculate the scattering of electrons at
rest, more precisely the transport cross sections tr for free
electrons with relative velocityv scattered by the Coulomb
potential of the ion. We may first indicate whyDL in ~4! is
given by the difference,s tr2s tr

pert, between the transport
cross sections for exact scattering and quantal perturbation.
In point of fact, DL in ~4! represents the difference
L2Lstandbetween exact calculation and first-order quantum
treatment. The difference does not occur in distant collisions,
near the adiabatic limit, where we have perturbation anyway.
Moreover, we have in~4! eliminated, first, the shell effect
correctiondLshell due to electrons not being at rest before the
collision; second, the effectdLscr of electrons bound by the
ion and thus screening the potential and being captured or
lost; third, the Barkas correction,dLBarkas, in which the force
from the atom initially counteracts the force from the ion and
thereby modifies the free scattering. When, therefore, we
have eliminated all atomic corrections, including capture and
loss, we are left with the estimate of scattering of free elec-
trons at rest by the pure ion potential, comparing an exact
result with the first Born approximation. We have thus ar-
rived at an estimate similar to that made by Bloch, but on a
surer footing, not least because we have taken the Barkas
effect into account.

Let us therefore consider the energy loss by a heavy ion of
velocity v colliding with electrons at rest. The energy trans-
fer T is given by

T5T0sin
2
u

2
, ~7!

whereu is the deflection in the center-of-mass frame. More-
over,T0 is the maximum energy transfer. The contribution to
average energy loss will be

2
dE

dx
5NZ2E Tds5NZ2

T0
2

s tr ,

s tr5E ds~12cosu!, ~8!

whereds is the differential cross section for deflectionu.
We shall here assume thatT052mv2g2. Note that it then
follows from ~8! and~2! that the contribution toL from s tr is

L tr5s tr /~pk2|2!. ~9!

Since the ions with which we are concerned have mass ratio
M /m'A31836 the formula forT0 is accurate in the center-
of-mass frame both in the nonrelativistic case and for large
g, e.g., for g51000 whenA is large. In such cases the
formulas also hold in the initial rest frame of the ion, where
then u represents the deflection in this frame. For exceed-
ingly high values ofg we can still apply the above formulas
in the ion rest frame, if wide angle scattering is suppressed,
cf. the introductory discussion in Sec. VI.

III. NONRELATIVISTIC CASE
AND BLOCH CORRECTION

In the basic nonrelativistic case we meet with a seeming
paradox concerningDL. In point of fact, for a Coulomb
potential,2Z1e

2/r , Rutherford scattering is valid not only
classically and in exact quantum theory, but also in first-
order quantum perturbation, i.e.,ds/du or ds/dT are the
same in the three cases. And yet differences likes tr2s tr

pert,
which describe the Bloch correction, are not zero. In order to
clarify this situation we shall treat the transport cross section
in some detail.

Consider then scattering in any spherically symmetric po-
tential. As to the quantum mechanical transport cross section
we have to integrate the product of (12cosu) and two scat-
tering wave functions containing Legendre polynomials
Pl(cosu), wherel is the angular momentum. It follows that,
l52p| being the wavelength of the relative motion,

s tr
qu54p|2(

l50
~ l11!sin2~d l2d l11!, ~10!

so that the transport cross section is determined by the dif-
ferences of phase shifts for successive angular momenta.

In the classical description we can writeds52pqdq,
whereq is the impact parameter, andq5q(q) is the classi-
cal angle of deflection:

s tr
cl54pE qdqsin2@q~q!/2#. ~11!

Now, a well-defined impact parameterq is not in accord with
quantum concepts. Instead, we can use angular momentum
which classically isL5pq, and we may put it equal to
l 8\, so that~11! becomes
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s tr
cl54p|2E l 8dl8sin2@q~ l 8|!/2#. ~12!

There is a close correspondence between~10! and ~12!.
Thus, the summation overl50,1,2, . . . is replaced by an
integration overl 8. We therefore have a simple connection
between classical and quantum angular momenta, and either
of them are constants of the motion. Furthermore, the corre-
spondence implies that the classical deflection connects to
phase shift differences,q(| l 8)/2↔d l2d l11 , where it is
plausible to conclude thatl 8↔ l11/2. This result for deflec-
tions is in accord with findings of Landau and Lifshitz@15#,
derived by a different argument.

After these general considerations we return to the actual
case of Rutherford scattering. The quantum phase shifts are
familiar,

d l52argGS l111
ik

2 D1
k

2
ln2kr, ~13!

where the last term is the common divergent phase shift.
From ~13! we get an extremely simple formula for the phase
shift differences:

d l2d l115argS l111
ik

2 D ~14a!

or

sin2~d l2d l11!5
k2/4

~ l11!21k2/4
. ~14b!

It is preferable to express the transport cross sections tr in
terms of theL factor in stopping. We therefore apply Eq.~9!,
so that Eqs.~10! and ~14! lead to the simple result

L tr
qu5(

l50

l11

~ l11!21k2/4
. ~15!

In first-order perturbation we can disregardk2, and find

L tr
pert5(

l50

1

l11
. ~16!

Since classical Rutherford scattering connects impact param-
eter and scattering angle by the formula

tan~q/2!5Z1e
2/~mv2q!5~k/2!~1/l 8!, ~17!

the classical formula~12! becomes

L tr
cl5E dl8

l 8

l 821k2/4
. ~18!

As is characteristic for theL factor, the above three for-
mulas would diverge logarithmically if there were no upper
limit, i.e., the adiabatic limitl ad. Since the classical adiabatic
impact parameter isqad52v/vC for a frequency v
(C51.781, and lnC50.5771 is Euler’s constant!, we should
in ~18! integrate up tol ad52mv2/(\vC), leading to Bohr’s
formula L tr

cl5 ln(2mv2/uZ1e2uvC). With the same upper limit
we find from ~16! Bethe’s formula for high velocities,

L tr
pert5 ln(2mv2/\v). This upper limit applies of course also in

the general formula~15!, which contains~16! and ~18! as
limits for k!1 andk@1, respectively. It is to be noted that
in assessingl ad in the above manner we have verified that the
adiabatic limit is common to the nonrelativistic Bohr and
Bethe treatments, as indicated in the Introduction.

We shall now attempt to elucidate the three formulas~15!,
~16!, and~18! by combining them into one, albeit only in an
approximate manner. We know that the Bohr formula for
stopping is obtained from~18! when the integration is from 0
to l ad, as it must be in classical physics. But we can modify
this by considering the correspondence between the classical
angle of deflectionq5q(| l 8), and the quantum phase shifts
2(d l2d l11), as alluded to after~12!. There, it was indicated
that l 85 l11/2 gives a suitable correspondence to quantum
theory, so that the integration in~18! might start from 1/2. In
point of fact, the association to~15! becomes closest if 1/2 is
replaced byC21'0.56. This gives the following approxima-
tion to ~15!:

L tr5E
0

lad
dl

l1C21

~ l1C21!21k2/4
5 ln

l ad

AC221k2/4
. ~19!

It is seen that this formula represents the Bethe and Bohr
formulas, respectively, for small and large values ofk. In
between, it gives a fair approximation to~15!, deviating no-
where more than 0.05.

The numerator and denominator in the logarithm in~19!
are measured in units of angular momentum, or — if multi-
plied by| — in units of impact parameter. Since the denomi-
nator gives the impact parameter at which wide angle scat-
tering commences, we find that for classical scattering it is at
|k/2, for perturbation theory at|C21, and for the precise
quantum calculation at;|(C221k2/4)1/2. The difference in
the values of~15!, ~16!, and~18! is therefore due to the close
collisions.

We now return to our original aim of findingDL in the
nonrelativistic limit. From~15! and ~16!,

DL5(
l50

F l11

~ l11!21k2/4
2

1

l11G , ~20!

and, in contrast to~15! and ~16!, this formula converges for
unrestricted summation. In fact, let us stipulate that the sum
in ~20! goes to infinity; we make a negligible error, approxi-
mately2k2/(8l ad

2 ).
The result~20! is Bloch’s correction to the Bethe formula.

It can be expressed in terms of the logarithmic derivative of
the gamma function,DL52Rec(11 ik/2)2 lnC. Within
the non-relativistic description of electrons without spin we
therefore have a complete formula forL, i.e., ~4!, including
all corrections.

For small values ofk in ~20!, we can expand and find
DL'21.202(k/2)2; for moderate values ofk the correction
DL is nearly linear ink. But ~20! is not applicable when
k@1, because the scattering is changed by screening of the
chargeZ1e, due to electrons residing on the ion. It may be
added that, if we could use antinuclei with high negative
charge numbersZ1 , there would be no capture of electrons
and ~20! should be relevant also foruku@1.

We now turn to the increase in energy fluctuation, as de-
scribed by~5!. It is dominated by the close collisions. We
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disregard the quantum corrections belonging to distant colli-
sions, because they are negligible at high velocities. We are
therefore concerned with scattering of electrons at rest, i.e.,
precisely the physical situation described by the transport
cross section in the calculation ofDL. Our purpose here is
again to prepare the ground for the relativistic Dirac treat-
ment by considering the nonrelativistic description, as well
as to resolve a seeming paradox in the latter case.

Consider then the transport fluctuation cross section,

Q5E ds~12cosu!2, ~21!

which is connected to the specific increase in energy loss
fluctuation by

dV2

dx
5NZ2

T0
2

4
Q. ~22!

The nonrelativistic expression forQ, for a spherically sym-
metric potential, and derived analogously to~10!, is

Qqu54p|2(
l50

~ l11!H 2sin2~d l112d l !

2
l12

2l13
sin2~d l122d l !J . ~23!

The corresponding classical expression is found directly
from ~21!. We write the impact parameter asq5| l 8, and
find in analogy to~12!

Qcl58p|2E
0
l 8dl8sin4

q

2
. ~24!

In the quantum expression~23! it only remains to apply the
phase shifts from~13! and ~14!. When these are introduced
in ~23!, with T052mv2, we get directly

dV2

dx
54pZ1

2e4NZ2(
l50

l11

~ l11!21k2/4

l121k2/2

~ l12!21k2/4

54pZ1
2e4NZ2 . ~25!

In order to obtain the last result, we have here rewritten the
sum as

( 5(
l50

S l111k2/4

~ l11!21k2/4
2

l121k2/4

~ l12!21k2/4D5
11k2/4

11k2/4
51.

This result shows that Rutherford scattering — whether in
the Born approximation, classically, or in precise quantum
formulation — always gives the simple result~25!. In fact, in
all cases where the location in space of the scattering process
is immaterial, we can use the simple Rutherford formula.
This is because the scattering amplitude, when summed
freely over angular momenta, gives the Rutherford ampli-
tude. In the case of stopping, however, the cutoff at the adia-
batic distance is essential, and the spatial distribution be-
comes important.

It only remains to see whether our classical interpretation
of the Bloch correction can hold in the present case. In fact,

~19! contains a generalized expression for sin2q/2, which is
seen to be proportional to 1/$( l1C21)21k2/4%. Since
sin2q/2 is to be generally applicable it must have a maximum
value equal to unity, and it follows that
sin2q/2→(C221k2/4)/$( l1C21)21k2/4%, and a factor
(k2/4)/(C221k2/4) comes outside the integral. Correspond-
ing to this, we find for the reformulation of~24!

Q5
k2/4

C221k2/4
8p|2E

0

`

dl~ l1C21!
~C221k2/4!2

$~ l1C21!21k2/4%2
,

~26!

and with ~22!, we obtain exactly the result~25!.
We have hereby a simple description of the quantum Ru-

therford scattering in close collisions, as seen in a classical
interpretation. The scattering is scaled essentially to larger
impact parametersq. At the same time the differential cross
section 2pqdq is to be reduced by aprobability of scatter-
ing, (k2/4)/$C221k2/4%. Whenk is small, the reduction is
proportional toZ1

2 , as expected in first-order quantum per-
turbation. This should give a simple understanding of the
interpretation problems encountered in Bloch’s correction,
i.e., s tr , as well as inQ.

IV. TRANSPORT CROSS SECTION
FOR DIRAC ELECTRONS

In the previous sections we have made it clear that the
central correctionDL to a perturbation formula for the stop-
ping logarithm is simply determined by the difference be-
tween the transport cross sectionss tr ands tr

pert for scattering
of electrons of relative velocityv by the nucleus. We shall
now apply the Dirac equation, and need at first the scattering
theory for electrons with velocityv in a spherically symmet-
ric potential.

For a spin-1/2 particle, the scattering amplitude may be
expressed as@15,16#

f ~u!5A~cosu!1B~cosu!n•s, ~27!

where the components ofs are the usual Pauli matrices and
n is a unit vector perpendicular to the incident and exit di-
rections. The scattering cross section summed over final spin
values yields for an unpolarized initial state simply@15#

ds

dV
5uAu21uBu2. ~28!

Explicit expressions for the quantitiesA andB appearing in
~27! and ~28! are given for the nonrelativistic case in Ref.
@15#. These expressions may be adapted to the relativistic
case simply by replacing the nonrelativistic phase shifts by
the proper relativistic ones. The result is@16#

A5
|

2i (
l50

`

@~ l11!~e2id2 l2121!1 l ~e2id l21!#Pl~cosu!,

B5
|

2 (
l51

`

~e2id2 l212e2id l !Pl
1~cosu!, ~29!
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where | relates to the electron momentump5gmv as
|5\/p, Pl is a Legendre polynomial andPl

1 is an associ-
ated Legendre function, cf.@17#. Indicesl and2 l21 refer to
states where the upper~‘‘large’’ ! component of the electron
spinor has orbital angular momentuml while the total angu-
lar momentum j assumes the valuesj5 l21/2 and
j5 l11/2. The expressions~29! may be inserted in~28!
which, in turn, may be applied in~8!. Upon integration over
angles, and after some algebra, the following expression for
the transport cross section results:

s tr54p|2(
l50

~ l11!F l12

2l13
sin2~d2 l212d2 l22!

1
l

2l11
sin2~d l112d l !1

1

~2l11!~2l13!

3sin2~d l112d2 l21!G . ~30!

The result~10!, valid for spinless particles, is obtained by
puttingd l5d2 l21 . By the same substitution, the expressions
~29! reduce ~27! to the usual expression for the non-
relativistic scattering amplitude.

It is convenient to characterize the partial waves corre-
sponding to a total angular momentum quantum numberj by
the quantum numberk56( j11/2), which may take on any
nonzero integer value. The quantum numberj may be recov-
ered fromk as j5uku21/2, while the orbital angular mo-
mentum quantum numberl assumes the value

l5H k5 j1 1/2 fork.0

2k215 j2 1/2 fork,0
. ~31!

In terms of the quantum numberk and after renumbering for
positivek values, Eq.~30! may be formulated as

s tr54p|2(
k

ukuF k21

2k21
sin2~dk2dk21!

1
1/2

4k221
sin2~dk2d2k!G . ~32!

Both terms in brackets in~32! correspond to a difference of
D l51 ~for the upper, so-called large, component of the elec-
tron spinor!, but while in the first term alsoD j51, the sec-
ond term corresponds toD j50. Accordingly, the second
term will be called the spin-flip contribution. In the ultra-
relativistic limit d2k→dk @16# whereby Eq.~32! reduces to a
form rather similar to, though not identical to, the non-
relativistic result~10!.

It should be emphasized that~30! and ~32! hold for any
spherically symmetric potential. For potentials that at large
distances vary as the Coulomb potential, the situation is
completely analogous to the nonrelativistic case. Thus, the
sums in ~30! and ~32! formally have a logarithmic diver-
gence. But inDL we are always concerned with the differ-
ences tr2s tr

pert, which difference is absolutely convergent,
and has contributions only from close collisions just like its
non-relativistic counterpart, the Bloch correction.

V. PRELIMINARY RESULTS FOR STOPPING POWER:
POINTLIKE NUCLEI

We shall now apply the general results obtained in the
previous section to the case of the Coulomb potential of a
point chargeZ1e. We thereby obtain the stopping of a point
nucleus, and our results can be compared directly with those
of Ahlen @8,9#. The results in this section are only prelimi-
nary; in the following section we treat the proper case of
nuclei with finite radii, and then quite considerable modifi-
cations are obtained when the Lorentz factorg is large~for
heavy ions, typicallyg.10).

In the relativistic case, the Coulomb phase shifts assume
the form @16#

dk5jk2argG~sk111 ih!2
1

2
psk1

1

2
p l , ~33!

whereh is defined in~1!, that is,h[aZ1c/v with a denot-
ing the fine-structure constant. The sign ofh is positive for
attractive interaction but negative in the case of repulsion
~negativeZ1 or negative-energy electron states!. Note that
for relativistic scattering, which is the subject of the rest of
this paper, Bohr’sk is replaced by 2h while the symbolk is
reserved for the quantum number introduced in the previous
section. The quantitiessk andjk are defined as

sk5Ak22~aZ1!
2, e2i jk5

k2 ih/g

sk2 ih
. ~34!

The quantityg is the total particle energy measured in units
of the rest energy,g5E/mc2. Since we consider solutions to
the Dirac equation of positive energy only, this energy mea-
sure is of course identical to the usual Lorentz factor defined
previously. Let us first consider the last term in~32! where
we replace 1/2 in the numerator by 1 and sum over positive
values ofk only. With

tan~dk2d2k!52
h

gk
, ~35!

the spin-flip (D j50) contribution to the stopping logarithm
may be written in closed form as

L tr
spin flip5

1

g2(
k>1

k

4k221

1

k21~h/g!2
, ~36!

whereL tr as usual connects to the transport cross section as
L tr5(4ph2|2)21s tr . The sum is convergent and easy to
evaluate numerically. An equally simple expression has not
been found for the first sum in~32!; as compared to the
nonrelativistic case the situation is now complicated by the
fact thatsk is not an integer. For the phase-shift differences
entering this part of~32!, the following expression holds:

dk2dk215
1

2
arctan

h~sk212sk!

sksk211h2

1
1

2
arctan

h/g

k~k21!1~h/g!2

2argG~sk111 ih!1argG~sk21111 ih!

2
p

2 S sk2sk212
k

uku D . ~37!
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As opposed to the spin-flip term, the first sum in~32! has the
familiar logarithmic divergence. However, in the limit of
large uku, sin2(dk2dk21) tends to the value (h/k)2 whereby
the contribution toL tr tends to 1/uku and thus becomes inde-
pendent of bothh andg.

Let us consider the perturbation limit, that is,h→0 and,
of course,aZ1(5hv/c)→0. Here sin2(dk2dk21) in ~32! as-
sumes the form

sin2~dk2dk21!5S h

k D 2S 11
121/g

2~k21! D
2

, uhu!1 .

~38!

In the nonrelativistic limit, i.e.,g→1, the second factor on
the right-hand side of~38! approaches 1, and upon insertion
into ~32! and application of the expression~36! for the spin-
flip contribution ~in the limit h→0), the result~16! is ob-
tained. It may be noted that the spin-flip term contributes 1/3
for l50 ~and that its relative contribution decreases rapidly
with increasingl ; the total value of the sum is 2ln221). By
insertion of~38! in ~32! and application of~36! we obtain

L tr
pert5 (

k>1

1

k
2
5

8
1

1

4g
1

3

8g2 1
1

2 S 12
1

g D 2(
k>2

1

k~k221!
.

~39!

Here the last sum converges rapidly. If it is extended to in-
finity ~39! reduces to the simple result

L tr
pert5 (

k>1

1

k
2

v2

2c2
, uhu!1 . ~40!

The last term, which has the remarkable feature of being
independent ofZ1 , is due to the spin of the electron: In a
first Born approximation the differential scattering cross sec-
tion equals the nonrelativistic Rutherford cross section times
a factor 12(v/c)2sin2u/2, where the second term is due to
spin, cf. @16,18#. Our perturbation value for the transport
cross section~40! leads to a stopping logarithm for close
collisions of ln(Cq8gmv/\)2v2/2c211/2kmax1••• for
kmax[q8gmv/\ whereq8 is a fixed,g-independent impact
parameter which separates close and distant collisions. By
addition of the contribution from distant collisions as ob-
tained in a semiclassical perturbation treatment, i.e., by ad-
dition of ln(2g\v/ICq8)2v2/2c22d/2 to the logarithmic fac-
tor, our result reproduces that of standard perturbation
calculations, i.e.,Lstand in ~3!. Note that the correction
2v2/c2 receives equal contributions from close and distant
collisions; see also@6,7#.

In the ultrarelativistic limit,g→`, the result forDL, de-
fined as the differenceL tr2L tr

pert, becomes independent of
energy. From the expression~36! it is obvious that the spin-
flip contribution vanishes in the high-energy limit. As far as
the remaining terms are concerned, we note thath→aZ1
when g→`, whereby the entire energy dependence of the
phase-shift difference~37! is in the second arctan. Obviously,
this term vanishes in the limit of high energies.

In the general nonperturbative case a numerical computa-
tion is required for the determination ofL tr . In view of the
results~32!, ~36!, and~40! we have

DL5 (
k52`
~kÞ0!

` F uku
h2

k21

2k21
sin2~dk2dk21!2

1

2ukuG
1

1

g2(
k51

`
k

4k221

1

k21~h/g!2
1
v2

2c2
, ~41!

where summations have been extended to infinity since the
exact choice ofkmax is immaterial due to the rapid conver-
gence of the series. The phase-shift differences appearing in
the first term are given by~37!. Their determination requires
computation of the argument of the complex gamma func-
tion. This, however, is very simple by application of the very
precise ‘‘magic’’ formula forG(z) given in @19#. As a check
of the numerical calculations, we have produced aDL of
zero ~up to 1 part in 106! for Z1→0. The formula~41! rep-
resents the relativistic generalization of the nonrelativistic
result ~20!, i.e., of the Bloch correction.

Figure 1 presents the calculatedDL for a wide range of
energies and charges. ForZ151, our result is hardly distin-
guishable from first-order perturbation theory. At non-
relativistic energies, the stopping approaches the Bohr value
for high charges. This shows up through negative values of
DL. As noted in Secs. I–III, the ions will carry electrons at
low energies, however, and the curves cannot be applied with
any accuracy here. For high charges and relativistic energies,
DL becomes positive. In the ultrarelativistic limit, the result
for DL is independent of energy as discussed above.

Figure 2 demonstrates explicitly the agreement between
the general nonperturbative result forDL and the non-
relativistic formula ~20!, DLNR[2h2( l50( l11)21@( l
11)21h2#21, at low energies. The figure displays
DL2DLNR for the same projectile charges and collision en-
ergies as shown in Fig. 1. Forg→1 curves approach 0 for all
charge numbers and forZ1→0 the results approach 0 for any
energy. For moderate charge numbers, the curves display es-
sentially the linear Mott correctionZ1apv/2c, for the latter
see, e.g.@20#, ~in the limit v→c, the correctionZ1apv/2c

FIG. 1. Close-collision contributionDL as a function ofg21
~projectile kinetic energy in units of the rest energy! for projectile
chargesZ151, 10, 18, 36, 54, and 92. The quantityDL gives the
correction to the perturbation value of the stopping logarithm~3!
and is computed for the Coulomb potential of point nuclei; cf.~41!
and ~37!. Finite nuclear size will affect the results substantially at
high g values; cf. Figs. 5–7.
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assumes the values of 0.115, 0.206, and 0.413 for
Z1510, 18, and 36, whereas the numerical calculation in
these three cases gives 0.119, 0.220, and 0.473!. Hence, for
moderate charge numbers, the stopping is approximately ob-
tained by adding the nonrelativisticDLNR and the linear Mott
correction to the relativisticLstandof ~3!.

Figure 3 illustrates the distribution ofDL2v2/2c2 over
angular momenta for some typical cases. A few angular mo-
menta give sizable contributions. For the case ofZ1536 and
g52, values ofuku larger than 8 contribute 0.043 toDL; for
Z1592 values of uku larger than 8 contribute 0.133 at
g5100 and 0.112 atg52. It may be noted that those angular
momenta that give sizable contributions to the sum~41! cor-
respond to impact parameters much smaller than atomic ra-
dii.

It is of interest to compare our results to those quoted by
Ahlen @8,9#. In making the comparison we can disregard the
small Barkas term. Then his stopping-power formula splits
into four parts: one term corresponding to the perturbation
result, another to the nonrelativistic Bloch correction, a term
contributing a correctionG/2 to the logarithmL, and finally
the density-effect correction. In the determination of the cor-
rectionG/2, which Ahlen calls the Mott correction, he relies
on early calculations of scattering of Dirac electrons by point
nuclei. These results are in parametrized form, andG/2 is

composed of a set of terms withZ1 up to the seventh power.
If we subtractDLNR from our computed value ofDL as in
Fig. 2, we may compare to Ahlen’s correctionG/2. For
Z151 good agreement is obtained at all energies tested
(0.01<g21<100) but the correction itself is small, not ex-
ceeding 0.012. For high charges good values are obtained
with Ahlen’s estimate at high energies, whereas poor values
are obtained at low energies. We may quote some examples.
Our result forDL2DLNR increases with energy for positive
charges; cf. Fig. 2. ForZ1584 and 92, the value atg5100 is
1.67 and 1.88, respectively. ForZ1584, Ahlen’sG/2 agrees
with our number to the two decimals displayed here~with his
parameter cosx set to 0.440!. For Z1592, the estimate is
higher than our value by 0.09~with cosx50.405). At
g51.5 our values for the same two charge numbers are 1.18
and 1.29, whereas Ahlen’s are higher by 0.07 and 0.15. At
g51.2 our values are 0.78 and 0.82, whereas Ahlen’s are
lower by 0.10 and 0.19. At still lower energies Ahlen’sG/2
becomes virtually useless. These results correspond well
with the author’s claim that his estimate ofG/2 contributes
an uncertainty of no more than a few percent to the average
energy loss providedv/c.uZ1u/100. It should be remem-
bered, however, that at high energies, beginning atg.10,
the results are modified substantially due to finite nuclear
size.

In @14# the quantityDL2DLNR was calculated for point-
like nuclei essentially by the present method. There is fair
agreement between our results and those presented in@14#.
For Z1592 the deviation is nowhere larger than 0.05.

In a recent publication by Scheidenbergeret al. @21#, mea-
surements of the average energy loss are reported for projec-
tiles with g values close to 2 and atomic numbers of 8, 18,
36, and 54. The authors compare to theoretical values that
correspond to the sum ofLstand of ~3!, the nonrelativistic
Bloch correction, and their own estimate of what is called the
Mott correction~cf. Ahlen’s G/2). In general, good agree-
ment is obtained between theoretical and experimental re-
sults. The difference between the theoretical values for the
full stopping power and the perturbation value corresponding
to Lstand of ~3! as read off the table in@21# are in good
agreement with our results forDL. For the considered colli-
sion systems, the largestDL value encountered is 0.571 ac-
cording to our calculations.

It may be of interest to display the effect of the electron
spin. For scalar electrons, the formula~10! holds at any en-
ergy and we therefore merely need their relativistic phase
shifts. For the Coulomb potential, the radial Klein-Gordon
equation takes the same form as the nonrelativistic Schro¨-
dinger equation except for a replacement ofl ( l11) by
l ( l11)2(aZ1)

2 in the angular-momentum barrier. The
analysis of the Klein-Gordon equation is then similar to the
analysis of the Schro¨dinger equation if the angular momen-
tum l in the Schro¨dinger equation is replaced by an effective
angular momentuml *521/21A( l11/2)22(aZ1)

2; cf.
@22#. As a result, the Klein-Gordon phase shifts take the form
d l
KG52argG( l *111 ih)2 (p/2) (l *2 l )1h ln(2kr). In the
determination ofL, an approach based on the Klein-Gordon
equation does not contain the term2v2/2c2; cf. @16#, but
yields twice the Mott correctionZ1apv/2c for low charge
numbers; cf.@20#. Accordingly, we show in Fig. 4 the differ-

FIG. 2. As Fig. 1 but subtractingDLNR from the ordinate. The
quantityDLNR is the nonrelativistic Bloch correction given by the
expression~20!.

FIG. 3. Distribution over uku of the contribution to
DL2v2/2c2; cf. Eq. ~41!. Each box represents two quantum num-
bers6uku.
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ence betweenLKG2v2/2c22Z1apv/2c and LDirac. For
point charges, the solution of the Klein-Gordon equation re-
quires aZ1,1/2, for which reason we have excluded
Z1592 from our usual set of projectile charges; cf. Figs. 1
and 2. For moderate charge numbersZ1<20, additional spin-
effects amount to less than 0.1~which correspond to typi-
cally 1% of the totalL value!. On the other hand, as the
charge number increases beyond 20, the curves of Fig. 4 start
to deviate substantially from 0.

VI. FINAL RESULTS FOR STOPPING POWER:
FINITE NUCLEAR SIZE

At high relativistic energies the finite size of the projectile
nucleus must become important for electron scattering. Thus,
an electron with rectilinear classical motion will encounter
the nucleus when its angular momentum ispR.gmcR,
whereR is the nuclear radius. If this angular momentum is of
order of \/2, we may expect modification of the first few
quantum phase shifts as compared to those for a point
nucleus. With a standard value for the nuclear radius this
criterion demands 15gmcR2/\.gA1/3/160, whereA is the
projectile mass number. Reduction of stopping may therefore
occur already for moderate values ofg. The corresponding
reduction of straggling should be even larger, since strag-
gling depends entirely on close collisions.

We note, moreover, that, because of the finite nuclear ra-
dius, the potential has a maximum depth of order of
4Z1A

21/3mc2. We can therefore expect that for sufficiently
high relative energygmc2 of the electron, the stopping can
again be calculated by means of first-order perturbation
theory, i.e., it is proportional toZ1

2 . In first-order quantum
perturbation theory, the scattering has an effective maximum
momentum transfer of\kmax.\/R. This maximum momen-
tum transfer has a decisive influence on the calculations. It
follows that the recoil velocityu of the nucleus, originally at
rest, is at mostu/c.(6A4/3)21 for standard nuclear radius.
The maximum recoil velocity is thus exceedingly small, ex-
cept perhaps in the case of the proton. Independently of the
value ofg, we therefore use theinitial rest frameof the ion
for our formulation of scattering.

The above allows us to make a simple conclusion about
asymptotic stopping. Since classical scattering has an effec-

tive minimum impact parameterqmin'R, and similarly
quantum perturbation haskmax'1/R, we have essentially the
same cutoff in both cases. Accordingly, we expect that for all
charge numbers theL functions converge to the value
L→ ln(qad/R), whereqad is the effective adiabatic cutoff. In
the following, we shall see how far these simple predictions
are substantiated by the precise calculations.

The basis for our calculation is the results of Sec. IV,
which hold in general for any spherically symmetric poten-
tial. In order to find the effect of finite nuclear size, we have
to compute the corresponding phase shifts or, rather, differ-
ences in successive phase shifts. To this end, we shall assume
the nuclear charge to be distributed homogeneously over a
sphere of radius R, which we choose as 1.18
A1/3310213 cm, cf. @23#, with the value ofA taken accord-
ing to the atomic weight. We proceed as described by Bhalla
and Rose@24#; see also@25#. For any given value ofk, the
radial wave functions of the electron outside the nucleus may
now be expressed as a linear combination of the regular and
the irregular~or singular! solutions of the Dirac equation
obtained for the pure Coulomb potential for the samek.
InsideR, the radial wave functions are expressed as a series
in the radial distancer . The full solution to the Dirac equa-
tion, and thereby the phase shift, is obtained by joining the
two sets of solutions atR.

Let g and f denote the upper~or ‘‘large’’ ! and lower~or
‘‘small’’ ! components. Fork,0 the expansions forr,R
may be written as

Gint[rg int5rk(
n50

`

anr
2n, F int[r f int5rk11(

n50

`

bnr
2n,

~42!

where k[uku, r[r /R, and the subscript ‘‘int’’ stands for
interior. For k.0 the powers outside the summations are
interchanged between the two components. Insertion of the
expansions~42! in the Dirac equation leads to the following
recurrence relations for the coefficients fork,0:

a052
~2k11!

R~g21!13aZ1/2
b0 ,

2a15@R~g11!13aZ1/2#b0 ,

~2k12n11!bn52@R~g21!13aZ1/2#an1~aZ1/2!an21 ,

2~n11!an115@R~g11!13aZ1/2#bn2~aZ1/2!bn21 .
~43!

The recurrence relations fork.0 are obtained by inter-
changing thea andb coefficients in~43! and simultaneously
changing the signs ofg andZ1 . For r.R, we write theG
and F functions as Gext5c1G

(r )1c2G
(s) and

Fext5c1F
(r )1c2F

(s) where the superscripts identify the
regular and singular Coulomb solutions. Matching at the
nuclear surface then yields

H[c2 /c15
F ~r !/G~r !2F int /Gint

F int /Gint2F ~s!/G~s!

G~r !

G~s! , ~44!

FIG. 4. Spin effects. The figure shows the difference between
LKG2v2/2c22Z1apv/2c and LDirac for the sameg values and
charges~exceptZ1592) as in Fig. 1. See text for details.
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where all ratios are taken atr5R. The requested phase shift
assumes the form

dk5arg@exp~ idk
~r !!1Hexp~ idk

~s!!#, ~45!

where the phase shiftdk
(r ) for the regular Coulomb compo-

nent is given by~33! whereas that for the singular compo-
nentdk

(s) is obtained from the same equation by the substitu-
tion sk→2sk . The ratio between the two regular Coulomb
components atr5R may be written as

F ~r !

G~r ! 5Ag21

g11

ReL~r !

ImL~r ! ~46!

~include a minus sign in front of the square root for states of
negative energy! where ReL (r ) and ImL (r ) denote the real
and imaginary parts ofL (r ), respectively,

L~r ![ei ~jk2pR/\!
1F1~sk111 ih, 2sk11, 2ipR/\!

~47!

and 1F1 is the confluent hypergeometric function. For the
ratio of the singular components an identical set of equations
holds except for the substitutionsk→2sk everywhere in
L. For the ratio between the twoG components we have

G~r !

G~s! 5
uG~sk111 ih!u

uG~2sk111 ih!u
G~22sk11!

G~2sk11!
~2pR/\!2sk

ImL~r !

ImL~s! .

~48!

Finally, the ratioF int /Gint is given by the ratio of the sum of
the corresponding coefficients where we arbitrarily choose
a051 for k.0 andb051 for k,0.

We have computed the modifications of the phase shifts
relative to the Coulomb case for gold andg5225
@pR/\54.0# and compared to the modifications reported by
Yennie, Ravenhall, and Wilson@26#; see also@18#. These
authors compute in a special high-energy approximation
wheredk5d2k . For any given value ofuku our two results
closely bracket that of@26#. For all values ofuku the devia-
tions are comparable to the actual difference computed be-
tween modifications for6uku. This difference decreases
with increasing values ofuku. It attains its maximum of
0.0024 at uku51. This number is small compared to the
modification of20.8582 reported in@26# for j51/2.

In Figs. 5 and 6 we display our result forDL for finite
radiusR of the projectile nucleus. As opposed to the case of
pointlike nuclei, whereDL tends to a constant at high ener-
gies, Fig. 1, the finite value ofR now causesDL to decrease
below this asymptote and eventually become negative. The
effect of finite nuclear size obviously sets in earlier for high
than for low charge numbers, for uranium a 1% effect on the
stopping occurs already atg.10. Surprisingly, however, all
curves very nearly pass through a common point close to
g585 andDL50. A similar ‘‘fix point’’ appeared at low
energies; cf. Figs. 1 and 5. For sufficiently large energies the
dependence ofDL on g is logarithmic, so that the contribu-
tion to L from close collisions saturates, as predicted in the
initial comments in the present section. This implies that at
ultra-relativistic energies the average energy loss becomes
independent of energy, since the density effect saturates the
contribution from distant collisions at an impact parameter

qad5v/vpl , the quantity vpl5A4pne2/m denoting the
plasma frequency corresponding to the average density
n5NZ2 of target electrons. The high-energy ends of the
curves displayed in Fig. 5 are all nearly equal to
2 ln(gRmc/\)1v2/2c2. This is seen more clearly in Fig. 7. If
we add the high-energy asymptote toLstand of ~3! with the

FIG. 5. Stopping for finite nuclear size. The curves display the
values ofDL for atomic numbersZ151, 10, 18, 36, 54, 66, 79, 92,
and 109 as computed for spherical nuclei of radius
1.18A1/3310213 cm and homogeneous charge distribution. The
value ofA is chosen according to the atomic weight. The thin lines
tending to constant values at highg showDL for point nuclei of
charge numbers 10, 36, and 92; cf. Fig. 1.

FIG. 6. Same as Fig. 5 but enhancing the region of intermediate
g values.
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density effect correction having the asymptotic value quoted
in @8#, we arrive at the simple result

L→ ln~2c/Rvpl!20.25 ln~1.64c/Rvpl! ~49!

for the total stopping logarithm in the ultrarelativistic limit.
In this limit L depends very weakly on target and projectile
parameters, having valuesL'14 in condensed matter.

In the relativistic case, in contrast to the nonrelativistic
case, the correctionDL depends on the sign of the interac-
tion as well as on its magnitude. In order to illustrate this, we
display in Fig. 8 the difference inDL values for positive and
negative charge numbers. This hypothetical case may also be
conceived as the difference between electron and positron
transport cross sections in scattering by ordinary nuclei. The
curves in Fig. 8 are computed for finite nuclear size; for any
charge number, the curve for pointlike nuclei is obtained

essentially by continuing from the maximum of the present
curve at constant value. As soon as the energy is relativistic,
that is,g21.1, the difference is surprisingly close to being
linear in uZ1u until the effect of the finite nuclear size sets in.
Although the difference between particle and antiparticle
stopping is very nearly equal to twice the linear Mott correc-
tion, subtraction of this correction fromDL2DLNR still
leaves a variation of about one unit for the range of charge
and energy shown in Figs. 1 and 2 for both signs of the
interaction; see also the discussion of Fig. 2.

It may be noted that the influence of the finite nuclear size
on the stopping is not independent of the sign of the projec-
tile charge. This result shows up through a later onset of
nuclear-size effects for the case of repulsion than for the case
of attraction displayed in Fig. 5. As to the difference between
the values ofDL encountered in the two cases we note from
Fig. 8 that this falls back towards zero at high energies.

VII. FLUCTUATION IN ENERGY LOSS

Let us now turn to the question of fluctuation in energy
loss. As discussed in Sec. II, a determination of the mean
square fluctuation requires determination of the cross section
Q, Eq. ~21!. For a spin-1/2 particle, the evaluation of this
cross section follows the same steps as the evaluation of the
transport cross section in Sec. IV. In analogy to~30!, we
obtain the following result:

Q52s tr24p|2(
l50

`

~ l11!~ l12!F l

~2l11!~2l13!
sin2~d l122d l !1

l13

~2l13!~2l15!
sin2~d2 l212d2 l23!

1
2

~2l11!~2l13!~2l15!
sin2~d2 l212d l12!1

l

~ l12!~2l11! S 1

4~ l11!221
1

1

4l 221D sin2~d l2d2 l21!G . ~50!

This expression is valid quite generally and without reference to any specific~though centrally symmetric! scattering potential.
In the spinless limit, which is obtained by takingd l5d2 l21 , the formula reduces to the considerably simpler result~23!.

It is convenient to formulate~50! in terms of the quantum numberk. The result is

Q52s tr24p|2 (
k52`

`

ukuF ~k21!~k22!

~2k21!~2k23!
sin2~dk2dk22!1

k21

~2k23!~4k221!
sin2~dk2d2k11!

1
1

2

k11

2k11 S 1

4k221
1

1

4~k11!221D sin2~dk2d2k21!G , ~51!

FIG. 7. Difference betweenDL and2 ln(gRmc/\)1v2/2c2 for
the high-energy part of the data displayed in Fig. 5. The curves
indicate that the close-collision contribution to the stopping asymp-
totically tends to a constant.

FIG. 8. DifferenceL12L25DL12DL2 in stopping logarithm
for nuclei and antinuclei of finite size for charge numbers 10, 36,
and 92.

53 2453RELATIVISTIC THEORY OF STOPPING FOR HEAVY IONS



wheres tr is given by~32!. The summations of the last two
terms in~51! may alternatively be performed solely for posi-
tive values ofk if coefficients are doubled.

We have previously, in~5!, introduced straggling as a cor-
rection factorX times the straggling belonging to Rutherford
scattering. According to~22!, this factor is connected toQ by
X5Q/(4p|2h2). We present the numerical computations
for finite nuclear radius only. In Fig. 9 is shownX as a
function of g21 in a very wide interval, and for the same
atomic numbers as in the case of stopping. At low values of
g21, all curves are seen to approach the limit 1. Up to quite
high values ofg21, the proton represents accurately the
perturbation formulaX512v2/2c2, belonging to point nu-
clei. For moderate values ofg21, before the effect of
nuclear size sets in, the curves for heavier elements rise to
values of order of 2, much above the proton curve. We have
indicated the high-energy plateaus ofX for point nuclei as
horizontal lines on the right-hand side of the figure. For large
values of g21, the X values decrease, starting with
Z15109, and successively for lower atomic numbers. In the
upper end, all curves decrease approximately asg22, corre-
sponding to constant values for the stragglingV2.

This upper region is shown in a simpler way in Fig. 10,
using scaling properties that may be explained briefly as fol-
lows. In the wave equation describing scattering, the poten-
tial leads to a scaling in terms of a reduced lengthr /R, and
therefore a reduced momentumpR. At very largeg, where
the electron mass can be disregarded, and where we can
write (E/c)R5pR, the full wave equation scales withpR.
The result of calculations should therefore be a function of

only pA1/3 andh5Z1a. In Fig. 10, we have used a reduced
momentum (g221)1/2A1/3 as the abscissa. Let us turn to the
magnitude of the straggling, as represented by~5!. It is pro-
portional to the maximum energy transfer, which is
Tmax5pmax

2 /2m52mv2g2 in the Rutherford case whenM is
sufficiently large. We have now instead a maximum momen-
tum transfer\/R in first-order perturbation theory for large
g, and therefore the effective maximum energy transfer is
'Tmax

eff [\2/(2mR2). Accordingly, we measureg2X in units
of 2Tmax

eff /mc2, and this is the scaling unit used as ordinate in
Fig. 10. If perturbation theory is valid, the curves from Fig. 9
should merge into one on Fig. 10. This is very nearly so for
Z151, 10, and 18. The other curves should deviate from this
whenZ1a increases. Actually, the curves in Fig. 10 behave
approximately as@11(aZ1C)

2#1/2. The approximate satura-
tion of V2 is also evident.

As mentioned in Sec. II, for sufficiently thick targets the
energy-loss distribution will be Gaussian around the average
energy loss, and with widthV. For thin targets, however,
one finds a Landau-type distribution of smaller peak width,
with a long tail towards large energy losses. The two cases
are contained in the Landau-Vavilov distributions@27–29#.
The familiar parameterj distinguishing between thin and
thick targets becomes

j5
2pZ1

2e4Z2Nx

mv2T0X
, ~52!

where T0X52mv2g2X is the effective maximum energy
transfer. Moreover, the fluctuation parameterX is defined in
~5!, and its magnitude exhibited in Fig. 9. Forj,0.5 the
Landau distribution is obtained@30#, and forj>10 the dis-
tribution is Gaussian. If we introduce the average energy loss
^dE& in ~52!, we find

j5
^dE&
2LT0X

5
^dE&
E

A31836

4L~g11!X
, ~53!

the formula containing the relative loss of kinetic energy
^dE&/E, the mass numberA of the ion~with the approxima-

FIG. 9. Straggling for atomic numbersZ151, 10, 18, 36, 54, 66,
79, 92, and 109. The curves show the quantityX, defined by Eq.
~5!, as a function of energy for spherical nuclei of radius
1.18A1/3310213 cm and homogeneous charge distribution. The
horizontal lines to the far right indicate the high-energy values be-
longing to point nuclei.

FIG. 10. Ratio of X and (|/R)2 as a function of
(g221)1/2A1/3 for the high-energy part of the data displayed in Fig.
9. The curves for charge numbers 1, 10, and 18 are hardly distin-
guishable.
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tion M /Mp'A), andL from ~2!, L;10. It is seen that for
increasing values ofg, and even thoughA is large, it be-
comes more difficult to obtain a thick target with Gaussian
distribution, as long asX remains of order unity. For very
largeg, however, the parameterX decreases asg22, and we
rewrite ~53! as

j5
^dE&
E

A5/3g

230yL
, ~54!

wherey5X/(|/R)2 is the ordinate in Fig. 10, having asymp-
totic values;122. For heavy ions with large energies, the
Gaussian limit can then be obtained at quite small values of
^dE&/E.

VIII. CONCLUDING REMARKS

The essential points in this paper are, first, that we have
been able to calculate relativistic stopping for heavy ions in a
simple manner, because its deviation from first-order quan-
tum perturbation can be formulated in terms of a transport
cross section. Similarly, the straggling is obtained from a
fluctuation cross section.

Second, the finite nuclear radii are important; they lead to
a cutoff of momentum transfers at;\/R. This gives a con-
siderable reduction in stopping, and a large reduction in fluc-

tuation. Because of the cutoff in momentum transfer, scatter-
ing can be accounted for in the initial rest frame of the ion
for all values ofg, i.e., recoil corrections are negligible.

Third, as a background for the relativistic treatment, we
have discussed in detail the nonrelativistic Bloch correction,
thereby also illuminating a seeming paradox in Rutherford
scattering.

It may be added that in a recent preliminary experiment at
CERN, Datzet al. @31# have measured stopping of Pb ions
with g5170 in carbon. The experimental result forL is 14.5
with an estimated uncertainty of610% . This is in fair
agreement with our theoretical value ofDL520.716, which
leads toL514.3; cf. Fig. 5 and Eq.~3!. The asymptotic
expression~49! yields 14.2. Note that in the hypothetical
case of point nuclei theL value would be 16.3.
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