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We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge
number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method.
Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this
deviation can be expressed in terms of the transport cross seetjorior scattering of a free electron by the
ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe'’s formula; we look into
the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in
Rutherford scattering. The corresponding relativistic correction is obtained dtpfor scattering of a Dirac
electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the
scattering distribution, but merely a single quantity,, determined by differences of successive phase shifts.

For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on
atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values
of y=(1-v?c?~Y2 An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil
corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a
simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger
than that of the perturbation formula, by a factor-eR—3 for heavy ions. But the finite nuclear radius leads

to a strong reduction at high energies and the elimination of the faéttelonging to point nuclei.

PACS numbds): 34.50.Bw, 34.80-i, 03.65.Nk, 11.80-m

I. INTRODUCTION allows quantum perturbation theory when small, but permits
a classical treatment when large compared to unity. Note that
When swift ions move through matter, their dissipation ofin connection with the Dirac equation it will be convenient to

energy is almost exclusively due to interaction with and en-use the symbol; instead of Bohr’sk.
ergy transfer to electrons. In this paper we study the corre- There are two corrections to this picture of slowing down
sponding stopping powers for light and heavy ions whenof swift ions, however. First, as shown by BdH, ions for
their velocity approaches the velocity of light, i.e., from which x> 1 will also carry electrons, with processes of cap-
near-relativistic energies and up to any extreme relativistiGyre and loss. This leads to a considerable change of stopping
energy. The aim is to account for both average energy oSy heavy ions because of the reduction of charge, due to
and straggling in energy loss, and to obtain results that arg;reening by electrons bound to the ion. Second, the Bethe-

accurate for all values of the projectile charge. In order to chohr—BIoch description contains only terms evenZp, or
this, we have to perform precise quantum mechanical calcu- '

; . k. The so-called Barkas correction is of a different kind,
lations for Dirac electrons scattered by a Coulomb potential, " . S oo :

We make a shortcut as compared with previous calculationge'ng odd.le, IS dommatmg term behaves jiéi,and IS
and obtain the stopping and straggling in a direct manner, 'MPortant in both classical and quantum descriptions.

Our treatment has close connections to the Bethe-Bohr- When we now return to the relativistic case, the above
Bloch description of nonrelativistic slowing down. Bohr's WO nonrelativistic corrections become small and are com-
paper from 19131] treats the electronic stopping of a swift Pletely negligible for large values of=(1—v%c?) "2
charged particle within classical mechanics, with perturbaThey are therefore not relevant to our central purpose; we
tion theory for distant collisions, leading to an adiabatic limit Shall later indicate the approximate magnitude of these cor-
of energy transfer determined by orbital frequencies of electections.
trons, but with a precise description of close collisions. In  The Bethe perturbation formula was extended to relativ-
Bethe's 1930 papef2], first-order quantum perturbation istic energies, cf. Bethg5], Fano[6], and Jacksof7]. This
theory is used for all collisions. The adiabatic limit is deter-leads to accurate results for slowing down of ions with low
mined by transition frequencies and, although this may no€harge number, such as protons angarticles; but with one
be obvious, there is essentially agreement with the classic&gservation for largey, as we shall see later.
adiabatic concep(cf. also Sec. Il). The discussion by Bloch The situation becomes more complicated for relativistic
[3] bridges the gap between the two treatments. This situd€avy nuclei. This is indicated by Bohr’s parametein (1),
tion is described in Bohr’s renowned survey paper from 1948vhich remains pertinent in the relativistic case. Since
[4]. It is shown there that, for a collision between an ion ofv<C, « can easily become comparable to or larger than
charge numbeZ, and an electron with relative velocity, unity, which gives one indication that quantum perturbation
the dimensionless parameter theory is not accurate in close collisions. Furthermore, it is
important to use the relativistic Dirac equation for electrons.
In a review paper from 1980, Ahlen has given an expression

_2Z,€?
- for the average energy loss for heavy relativistic ip89].

k=29="3, ®
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He there relies on early calculations of scattering of Dirachasic relativistic increase 0fLg,,g iS contained in
electrons by point nuclei. These results are in parametrizegh1?—y?/c?> and has equipartition, i.e., exactly equal contri-
form, and the resulting stopping contains a set of terms withyutions, Iny—v%/2c?, from close and distant collisions. But
Z, up to the power seven. This is not a perturbation expanthe increase due to distant collisions will be saturated by the
sion, however. We shall find that Ahlen’s expression has readensity effect correction~8/2, for sufficiently large y.
sonable accuracy — within a few percent — for moderateThere remains only i from close collisions in the relativ-
values ofy. istic increase of. g, It should be noted that, for simplicity,

In the following, we present a thorough discussion, priorwe have omitted one term belonging to first-order perturba-
to the calculations. In Sec. Il we attempt to account for alltion theory, i.e., the small shell correction due to the finite
terms in the formula for the average energy loss of a swifigrbital velocities of the target electrons. The full term be-
ion. The central quantity to be calculated is introduced as thﬁ)nging to first-order guantum perturbation theory is there-
deviationAL from the value ofL for perturbation theory, cf. fore L per= Lstandt SLsher- IN (3) we have also omitted the
(2) and(4). This quantity is shown to be given by the changeso-called Mott term, proportional t@,v/c?, and formally
in transport cross section of an electron with relative velocitybe|0nging to higher-order scattering theory.

v scattered by the ion. In Sec. lll we consider the non- we have mentioned the shell effect, the Barkas effect, and

relativistic case. Here, the deviatiarL turns out to be the the screening by a captured electron. Introducing these three
Bloch correction; it is confined to close collisions and in thisminor corrections, we can now write for the difference be-

connection we resolve some seeming paradoxes in the basigeen the true. in (2) andLggqgin (3),
Rutherford scattering. In Secs. Il and Il we also treat the
fluctuation in energy loss. Next, in Sec. IV, as an introduction
to the relativistic treatment, the Dirac equation is applied to
transport cross sections. In Sec. V we calculate for a
point nucleus, obtaining fair agreement with the results ofwhere AL is the quantity we want to derive; it arises from
Ahlen; but this is a preliminary result. The realistic case of athe deviation of scattering from quantum perturbation theory.
nucleus with standard radius is studied in Sec. VI. We find\ote here that the formula®), (3), and(4) apply in non-
considerable reductions as compared with a point nucleuselativistic theory too. In that cas@dL represents precisely
for large y. In Sec. VIl the fluctuation in energy loss is Bloch’s correction to the Bethe stopping formula.

L — Lstand= AL + Sl gheirt 6L garkast OL scr (4)

obtained; it is strongly reduced for largebecause of finite It is appropriate to make a few guiding comments con-
nuclear radii. Finally, in Sec. VIIl we comment on the resultscerning the magnitude of the three correction terms4in
obtained. when we approach the relativistic region. We note that the
relative correction in stopping is less than 1% when
Il. THE BASIC STOPPING FORMULAE |6L|<0.1, sincelL~10. In most cases by far the corrections
are below this limit and thus negligible. The standard non-
A. Average energy loss relativistic shell correction is known fairly accurately,

The electronic stopping power, for a nucleus with chargedl ghei= —1.&‘2"31)5/1)2, where the numerator represents the

Z,e in a random substance with charge numBgr can be  Thomas-Fermi estimate Qf2§>, the average square of elec-

written as tron velocities in the atom. Thus, the standard shell correc-
24 tion is completely negligible whem—c. Next, a cursory
_dE_4wnZie NZ.L- ,  estimate of  the Barkas correction is
dx  mp? 2= @ SL garkas~ (4Z1€%/mv?) (w/v)L [11], wherew is a represen-

tative frequency of the atomy~Z, Rydberg. This correc-
NZ,=n is the average density of electrons, andhe elec- tion is completely negligible fov —c, unless bothz, and
tron mass. We can now introduce a standard functionz, are large, in which case it may approach 1%. Finally,
Lsane Which in the main represents a quantum mechanicabl . is due to the probability of the ion carrying an electron,
perturbation formula, from balance between capture and loss, and with a conse-
quent screening of the ion potential. This correction is less
easily formulated in a simple way. It is usually negligible,
() : :
unless botlz, andZ, are large, where it may attain a mag-
nitude ~ —1%.

2mu? ) v 1
Lstang= 1IN | Y _?_55-

with y=(1—v?/c?)~ 2. Moreover,| is given by Bethe’s

resultZ,Inl == foIn(%| wyg|), and determined by dipole oscil- o

lator strengthd ,, and transition frequencias,,. The func- B. Fluctuation in energy loss

tion — &/2 is the familiar density effect correction of Fermi  We shall also calculate the average square fluctuation in

[10], modifying the adiabatic limit in distant collisions for energy lossQ?={(SE—(SE))?), where SE is the energy

sufficiently largey. loss. We consider high velocities where we can disregard the
The functionL g,nqin (3) depends only on the velocity — minor quantum corrections in distant collisions. The average

of the particle, on the atomic numb2s of the medium, and square fluctuation is then entirely dependent on the close

on the average electron densityas contained in the density collisions, and we formulate its increase as

effect. Thus, it does not depend on the charge nurdbeaf

the particle, and in fadt i, ,grepresents relativistic first-order d0?

- 2,4 2
guantum perturbation theory, implying th;hE/dxoch. The dx Amz1eNZoy°X, ®)
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which represents Rutherford scattering when the funckion whereé is the deflection in the center-of-mass frame. More-
is unity. With first-order quantum perturbation theory the over,T, is the maximum energy transfer. The contribution to

Dirac equation leads to average energy loss will be
v’ OIE—szTd Nz,
X=1- 7, (6) T dx 2 o= 2?0'&:
2c
so that this value oK corresponds td ¢angin (3). We shall Utr:J do(1-cos), 8

obtain X by a direct calculation analogous to that fot.
When we turn to the possibilities of measuring the averwheredo is the differential cross section for deflectioh
age energy loss and its average square fluctuation, we finglle shall here assume th@y=2mv?y?. Note that it then

that this depends on the thickness of the target. In point ofollows from (8) and(2) that the contribution t&. from o, is

fact, for sufficiently thick targets, the energy-loss distribution

will be Gaussian around the average energy loss, and with Ly= 0y /(mK?X?). 9

width Q. For thin targets, one finds a Landau-type distribu-

tion of smaller peak width, with a long tail towards large Since the ions with which we are concerned have mass ratio

energy losses; it may then be difficult to assess the averadd/m=~AXx1836 the formula foiTy is accurate in the center-

energy loss, as discussed in Sec. VII. of-mass frame both in the nonrelativistic case and for large

v, e.g., fory=1000 whenA is large. In such cases the

formulas also hold in the initial rest frame of the ion, where

then 6 represents the deflection in this frame. For exceed-
In this subsection we give a brief survey of a methodingly high values ofy we can still apply the above formulas

based on transport cross sections, which method accounts for the ion rest frame, if wide angle scattering is suppressed,

high-velocity stopping in a precise manner, thereby elucidatef. the introductory discussion in Sec. VI.

ing the connection between classical and quantal treatments.

This method has been used of old in unpublished lecture IIl. NONRELATIVISTIC CASE

notes by one of ugl2], and it has later been applied by other AND BLOCH CORRECTION

authors as well; cf.13,14. We use the method here because

it vastly simplifies the relativistic calculations with Dirac  In the basic nonrelativistic case we meet with a seeming

electrons. paradox concerninghL. In point of fact, for a Coulomb
The essence is to calculate the scattering of electrons ®otential, —Z;e%/r, Rutherford scattering is valid not only

rest, more precisely the transport cross sectignfor free classically and in exact quantum theory, but also in first-

electrons with relative velocity scattered by the Coulomb order quantum perturbation, i.edg/dé or do/dT are the

potential of the ion. We may first indicate wiyL in (4) is ~ same in the three cases. And yet differences dike- of°",

given by the differencegtr_gfre”, between the transport Which describe the Bloch correction, are not zero. In order to

cross sections for exact scattering and quantal perturbatioglarify this situation we shall treat the transport cross section

In point of fact, AL in (4) represents the difference in some detail.

L — Langbetween exact calculation and first-order quantum Consider then scattering in any spherically symmetric po-

treatment. The difference does not occur in distant collisionstential. As to the quantum mechanical transport cross section

near the adiabatic limit, where we have perturbation anywaye have to integrate the product of {tosf) and two scat-

Moreover, we have ir(4) eliminated, first, the shell effect tering wave functions containing Legendre polynomials

correctiondL ¢, due to electrons not being at rest before theP1(cost), wherel is the angular momentum. It follows that,

collision; second, the effeaiL ., of electrons bound by the A=27X being the wavelength of the relative motion,

ion and thus screening the potential and being captured or

lost; third, the Barkas correctiodl g4kas, iN Which the force qu_ 2 ; _

from the atom initially counteracts ?hgsforce from the ion and o = 4mA ;o (I D)sin(8=8i.0), (10

thereby modifies the free scattering. When, therefore, we

have eliminated all atomic corrections, including capture ango that the transport cross section is determined by the dif-

loss, we are left with the estimate of scattering of free elecferences of phase shifts for successive angular momenta.

trons at rest by the pure ion potential, comparing an exact In the classical description we can writkr=2mqdq,

result with the first Born approximation. We have thus ar-whereq is the impact parameter, art= 9(q) is the classi-

rived at an estimate similar to that made by Bloch, but on acal angle of deflection:

surer footing, not least because we have taken the Barkas

effect into account.

C. The method of transport cross section

cl_ i
Let us therefore consider the energy loss by a heavy ion of ‘Ttr—4ﬂf qdasir[ §(q)/2]. D
velocity v colliding with electrons at rest. The energy trans-
fer T is given by Now, a well-defined impact parametgis not in accord with

guantum concepts. Instead, we can use angular momentum
which classically isL=pqg, and we may put it equal to

0
T=Tosm2§ ' @) I'#, so that(11) becomes
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ol=4mx jl dl’sir?[ (1" x)/2]. (12

There is a close correspondence betwéHp) and (12).
Thus, the summation ovdr=0,1,2, ...

JENS LINDHARD AND ALLAN H. SORENSEN

53

LPe"=In(2mv?/%w). This upper limit applies of course also in
the general formulg15), which contains(16) and (18) as
limits for k<<1 andx> 1, respectively. It is to be noted that
in assessing,qin the above manner we have verified that the

is replaced by an adiabatic limit is common to the nonrelativistic Bohr and

integration overl’. We therefore have a simple connection Bethe treatments, as indicated in the Introduction.
between classical and quantum angular momenta, and either We shall now attempt to elucidate the three formyls,

of them are constants of the motion. Furthermore, the correl6), and(18) by combining them into one, albeit only in an
spondence implies that the classical deflection connects @Pproximate manner. We know that the Bohr formula for

phase shift differencesy(xl’)/2< 8, — 6,1, where it is
plausible to conclude that« |+ 1/2. This result for deflec-
tions is in accord with findings of Landau and Lifshijt&5s],
derived by a different argument.

After these general considerations we return to the actu
case of Rutherford scattering. The quantum phase shifts al

familiar,

i K
8= —argl’ I+1+7 + (13

K
EInZkr,

where the last term is the common divergent phase shift.
From (13) we get an extremely simple formula for the phase

shift differences:

(14a

i K
5|_5|+1:ar%|+1+?

or

K24

S T D

o= 6+1)= (14b)

It is preferable to express the transport cross seetipim
terms of thel. factor in stopping. We therefore apply HS),
so that Eqs(10) and (14) lead to the simple result

[+1

qu_ -
L .:Eo (1+1)%+ k%4 (19

In first-order perturbation we can disregat8, and find

pert_ 1

tr _|:0|+l. (16)

Since classical Rutherford scattering connects impact param

eter and scattering angle by the formula

tan( §9/2) =Z,e?/(mv?q)=(x/2)(11"), (17)
the classical formul#12) becomes
Li= Jon'l,2+ = (18)

stopping is obtained fror(iL8) when the integration is from 0
to 1,4, @s it must be in classical physics. But we can modify
this by considering the correspondence between the classical
angle of deflectiony=9(x1’), and the quantum phase shifts
(6,— 6,4 1), as alluded to aftefl2). There, it was indicated
%at I"=1+1/2 gives a suitable correspondence to quantum
eory, so that the integration {8) might start from 1/2. In
point of fact, the association {a5) becomes closest if 1/2 is
replaced byC~1~0.56. This gives the following approxima-

tion to (15):
l+Cc? | ag

Ia\d
L =f dl — =In .
" Jo T (+CTH KA G2 KA

It is seen that this formula represents the Bethe and Bohr
formulas, respectively, for small and large valuesxofin
between, it gives a fair approximation (b5), deviating no-
where more than 0.05.

The numerator and denominator in the logarithn{18)
are measured in units of angular momentum, or — if multi-
plied by X — in units of impact parameter. Since the denomi-
nator gives the impact parameter at which wide angle scat-
tering commences, we find that for classical scattering it is at
X«l2, for perturbation theory axC~1, and for the precise
quantum calculation at X(C 2+ x%/4)*2. The difference in
the values of15), (16), and(18) is therefore due to the close
collisions.

We now return to our original aim of findingL in the
nonrelativistic limit. From(15) and(16),

AL— E [+1 1
(+1)2+ k24 1+1]

(19

(20

and, in contrast t§15) and(16), this formula converges for
unrestricted summation. In fact, let us stipulate that the sum
in (20) goes to infinity; we make a negligible error, approxi-

mately — «?/(812,).

The result(20) is Bloch’s correction to the Bethe formula.
It can be expressed in terms of the logarithmic derivative of
the gamma functionAL=—Rey(1+ix/2)—InC. Within
the non-relativistic description of electrons without spin we
therefore have a complete formula for i.e., (4), including
all corrections.

For small values ofx in (20), we can expand and find
AL~ —1.202(x/2)?; for moderate values of the correction

As is characteristic for thé factor, the above three for- AL is nearly linear ink. But (20) is not applicable when
mulas would diverge logarithmically if there were no upper x> 1, because the scattering is changed by screening of the
limit, i.e., the adiabatic limit,4. Since the classical adiabatic chargez,e, due to electrons residing on the ion. It may be

impact parameter isq,—2v/wC for a frequency w

(C=1.781, and I€=0.5771 is Euler's constantwe should
in (18) integrate up td ,¢=2mv?/ (% wC), leading to Bohr’s
formula L= In(2mv%|Z,€?C). With the same upper limit
we find from (16) Bethe's formula for high velocities,

added that, if we could use antinuclei with high negative
charge numberg,, there would be no capture of electrons
and (20) should be relevant also fok|> 1.

We now turn to the increase in energy fluctuation, as de-
scribed by(5). It is dominated by the close collisions. We
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disregard the quantum corrections belonging to distant colli{19) contains a generalized expression foP#i2, which is
sions, because they are negligible at high velocities. We aréeen to be proportional to {I+C 12+ «%4}. Since

therefore concerned with scattering of electrons at rest, i.esjr?9/2 is to be generally applicable it must have a maximum
precisely the physical situation described by the transpofalue equal to unity, and it follows that

cross section in the calculation dfL. Our purpose here is  si?9/2— (C~2+ k%/4){(1+C 1) 2+ x4}, and a factor
again to prepare the ground for the relativistic Dirac treat-(«2/4)/(C~2+ x?/4) comes outside the integral. Correspond-
ment by considering the nonrelativistic description, as welling to this, we find for the reformulation ¢@4)

as to resolve a seeming paradox in the latter case.

Consider then the transport fluctuation cross section, K24 . [ (C 2+ K%14)?
Q= ) 2 87TK J’ d|(|+C71) —1\2 2 2
C™*+« /4 0 {(1+C™ )%+ k“/4}
Q= f do(1-cow)?, (21) (26)
which is connected to the specific increase in energy los@nd With(22), we obtain exactly the resul@s).
fluctuation by We have hereby a simple description of the quantum Ru-
therford scattering in close collisions, as seen in a classical
do? T interpretation. The scattering is scaled essentially to larger
ax NL,Q. (22)  impact parameterg. At the same time the differential cross

section 2rgdq is to be reduced by probability of scatter-

The nonrelativistic expression f@, for a spherically sym- N, (KZ_/4)/{072;F «*/4}. When is small, the reduction is
metric potential, and derived analogously(i®), is proportional toZ7, as expected in first-order quantum per-
turbation. This should give a simple understanding of the

: interpretation problems encountered in Bloch’s correction,
qQu— 2 — . )
QY=4mx go (I+1) 2sir(841 - 8) i.e., oy, as well as inQ.
[+2
; IV. TRANSPORT CROSS SECTION
— ———si(81,— ) |- 23
21+ 3o (A2 ')} @3 FOR DIRAC ELECTRONS

The corresponding classical expression is found directly In the previous sections we have made it clear that the

from (21). We write the impact parameter as=xl’, and  central correctiolAL to a perturbation formula for the stop-

find in analogy to(12) ping logarithm is simply determined by the difference be-
tween the transport cross sectians and ob" for scattering

of electrons of relative velocity by the nucleus. We shall

now apply the Dirac equation, and need at first the scattering

theory for electrons with velocity in a spherically symmet-

In the quantum expressig23) it only remains to apply the ric potential.

phase shifts from{13) and (14). When these are introduced For a spin-1/2 particle, the scattering amplitude may be

Q°'=8m2f I’dl’sin“g. (24)
0

in (23), with To=2muv?, we get directly expressed agl5,16
dQ? I+1 |+ 24 k22 f(0)=A(cos)+B(cosH)n-
4 o2a o, (27)
ax ~4meNLL T e e A

)4 where the components of are the usual Pauli matrices and
=4mZi1e'NZ,. (29 nis a unit vector perpendicular to the incident and exit di-

) ) rections. The scattering cross section summed over final spin
In order to obtain the last result, we have here rewritten thg | ,es yields for an unpolarized initial state simphp]

sum as

2 2 2 do
Z ZE I+1+ /4 3 | +2+ k°/4 :1+K/4:1 d_Q:|A|2+|B|2' (28)
S\ (1+1)%+ k%14 (1+2)%+ k%14 1+k%4

This result shows that Rutherford scattering — whether ifEXPIiCit expressions for the quantiti#sand B appearing in
the Born approximation, classically, or in precise quantunt(ﬂ) and (28) are given for the nonrelativistic case in Ref.
formulation — always gives the simple res(@s). In fact, in 15]. These expressions may be ada_pt_ed_ to the reI§t|V|st|c
all cases where the location in space of the scattering proce§8S€ Simply by replacing the nonrelativistic phase shifts by
is immaterial, we can use the simple Rutherford formula N Proper relativistic ones. The resul ]
This is because the scattering amplitude, when summed
freely over angular momenta, gives the Rutherford ampli-
tude. In the case of stopping, however, the cutoff at the adia-
batic distance is essential, and the spatial distribution be-
comes important. o
It only remains to see whether our classical interpretation B= i 2 (ezia,l,l_ezial)Pl(cosﬁ) (29)
of the Bloch correction can hold in the present case. In fact, 23 ! ’

A= 2 [+ 17111 +1(e2 - 1)]P (cosh),
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where A relates to the electron momentup=ymv as V. PRELIMINARY RESULTS FOR STOPPING POWER:
X=*#lp, P, is a Legendre polynomial anB} is an associ- POINTLIKE NUCLEI

ated Legendre function, c[fl?] Indicesl and—1—1 refer to We shall now apply the general results obtained in the
states where the uppétiarge”) component of the electron previous section to the case of the Coulomb potential of a
spinor has orbital angular momentdmvhile the total angu- point chargeZ,e. We thereby obtain the stopping of a point
lar momentum j assumes the valueg=I1—-1/2 and nuycleus, and our results can be compared directly with those
j=1+1/2. The expression§29 may be inserted iN28  of Ahlen [8,9]. The results in this section are only prelimi-
which, in turn, may be applied i(8). Upon integration over nary; in the following section we treat the proper case of
angles, and after some algebra, the following expression fanuclei with finite radii, and then quite considerable modifi-

the transport cross section results: cations are obtained when the Lorentz facfois large(for
heavy ions, typicallyy>10).
5 [+2 In the relativistic case, the Coulomb phase shifts assume
oy=47Xx2>, (1+1) m3|n2(5—|—1—5—|—2) the form[16]
=0
1 S, =¢& (s, +1+i7) L +1 | (33
. _ k=&, arg (s, Imp)— 7S+ 5ml,
oS0 A G 2113 2 2

where 7 is defined in(1), that is, = aZ,c/v with « denot-
_ (30) ing the fine-structure constant. The signpfs positive for
attractive interaction but negative in the case of repulsion
(negativeZ; or negative-energy electron stateslote that
The result(10), valid for spinless particles, is obtained by for relativistic scattering, which is the subject of the rest of
putting 5= 5_,_ 1. By the same substitution, the expressionsthis paper, Bohr'sc is replaced by 2 while the symbol is
(29 reduce (27) to the usual expression for the non- reserved for the quantum number introduced in the previous

XSiP( )41~ 6-1-1)

relativistic scattering amplitude. section. The quantities, and ¢, are defined as
It is convenient to characterize the partial waves corre- .
_ ; . k—inly
sponding to a total angular momentum quantum numhosr s.=Vk?—(aZ,)?, e%é=—7T+. (34)
the quantum numbet= = (j + 1/2), which may take on any Sk 17

nonzero integer value. The quantum numperay be recov-
ered fromk asj=|«|—1/2, while the orbital angular mo-
mentum quantum numbérassumes the value

The quantityy is the total particle energy measured in units
of the rest energyy=E/mc®. Since we consider solutions to
the Dirac equation of positive energy only, this energy mea-
sure is of course identical to the usual Lorentz factor defined
previously. Let us first consider the last term(B2) where

we replace 1/2 in the numerator by 1 and sum over positive
values ofk only. With

In terms of the quantum numberand after renumbering for

k=j+1/2 for«>0
| = (31

—k—1=j—1/2 fork<O’

positive k values, Eq(30) may be formulated as tan(s,— 6_ )= — i’ (35)
YK
Utr:4777(22 || k-1 SIN(8,— 8,_1) the spin-flip Aj _=O) contribution to the stopping logarithm
% 2k—1 may be written in closed form as
1/2 e 1 K 1
H _ spin flip_ _—_
+ 4K2— 1S|n2( 5;« o_ K) . (32) Ltr ,}/2K21 4K2_ 1 K2+ ( 7’/ ’}’)2 ’ (36)

Both terms in brackets if82) correspond to a difference of wherelL,, as usual connects to t'he transport cross section as
Al=1 (for the upper, so-called large, component of the elecku=(4m7°X%) "'o,. The sum is convergent and easy to
tron spinoy, but while in the first term alsaj =1, the sec- evaluate numerlcally._An equal_ly simple expression has not
ond term corresponds tdj=0. Accordingly, the second Peen found for the first sum i(32); as compared to the
term will be called the spin-flip contribution. In the ultra- NONrelativistic case the situation is now complicated by the
relativistic limit 5_ ,— &, [16] whereby Eq(32) reduces to a fact thats, is not an integer. For the phase-shift differences
form rather similar to, though not identical to, the non- entering this part of32), the following expression holds:

relativistic result(10).

It should be emphasized thé80) and (32) hold for any 5.~ 5K_1=Earcta 7(Sc-1 SKZ)
spherically symmetric potential. For potentials that at large 2 SkSc-1t 7
distances vary as the Coulomb potential, the situation is 1 nly
completely analogous to the nonrelativistic case. Thus, the + Earctan DT ()2
sums in(30) and (32) formally have a logarithmic diver- w(k=1)+(nly)
gence. But inAL we are always concerned with the differ- —argl'(s,+1+in)+argi(s,_1+1+in)
ence o,— 0", which difference is absolutely convergent,
and has contributions only from close collisions just like its _ Z(s s K 37)
non-relativistic counterpart, the Bloch correction. 2\ Pemlog] )
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As opposed to the spin-flip term, the first sum@2) has the
familiar logarithmic divergence. However, in the limit of
large | x|, sirf(8,—d,_1) tends to the values/ k)2 whereby
the contribution td_,, tends to 1/k| and thus becomes inde-
pendent of bothy and y.

Let us consider the perturbation limit, that ig,—~0 and, 4

of course,aZ,(= nv/c)—0. Here siA(5,— 5,_y) in (32) as- =
sumes the form
2 2
) 7 1-1/y
Sir( 8, 5K_1)—(;) 1+—2(K_1)) . |7l<1. N | | | :
(38 0.01 0.10 1.00 10.00 100.00

y—1
In the nonrelativistic limit, i.e.,y—1, the second factor on . o .
the right-hand side of38) approaches 1, and upon insertion F-lG..l. C_:Ioge-colhsmn_ COﬂt.I'IbUtIOAL as a function OIf’y—.l
into (32) and application of the expressi¢86) for the spin- (projectile kinetic energy in units of the rest ene)rggr pII’OJeCtI|e
flip contribution (in the limit »—0), the result(16) is ob- ~ chargesZ;=1, 10, 18, 36, 54, and 92. The quantiiy gives the
tained. It may be noted that the spin-flip term contributes 1/F°rrection to the perturbation value of the stopping logariitsn
for 1=0 (and that its relative contribution decreases rapidly?"d is computed for the Coulomb potential of point nuclei(4t)
with increasing'; the total value of the sum is 2Ir2L). By and (37). Finite nuclear size will affect the results substantially at
insertion of(38) in (32) and application 0f36) we obtain high y values; cf. Figs. 5-7.

s}

1 5 1 3 1( 1)2 1
—_ 1__
k=2

= —st—+ts=5+> ——. -1 1
=1k 8 4y 8y° 2 Y k(k°=1) AL= > @K—sinzw — 81— 57
e | 97 2k—1 o 2| k|
(39

(k#0)

Here the last sum converges rapidly. If it is extended to in- 1 i K 1 v?

. . . + +

finity (39) reduces to the simple result P 51 1 ()2 2 (41)

2
pert_ E_ v < where summations have been extended to infinity since the
k=1 K 2C exact choice ofkay IS immaterial due to the rapid conver-

gence of the series. The phase-shift differences appearing in

The last term, which has the remarkable feature of beinghe first term are given b§87). Their determination requires
independent oZ,, is due to the spin of the electron: In a computation of the argument of the complex gamma func-
first Born approximation the differential scattering cross section. This, however, is very simple by application of the very
tion equals the nonrelativistic Rutherford cross section timeprecise “magic” formula forl’(z) given in[19]. As a check
a factor 1— (v/c)?sirf6/2, where the second term is due to of the numerical calculations, we have producedla of
spin, cf.[16,18. Our perturbation value for the transport zero(up to 1 part in 16) for Z,—0. The formula(41) rep-
cross section40) leads to a stopping logarithm for close resents the relativistic generalization of the nonrelativistic
collisions of INCq ymw/h)—v42c%+ 12k mast --- for  result(20), i.e., of the Bloch correction.
kma=q' ymv/#f whereq’ is a fixed, y-independent impact Figure 1 presents the calculatad for a wide range of
parameter which separates close and distant collisions. Bgnergies and charges. Foy= 1, our result is hardly distin-
addition of the contribution from distant collisions as ob- guishable from first-order perturbation theory. At non-
tained in a semiclassical perturbation treatment, i.e., by adelativistic energies, the stopping approaches the Bohr value
dition of In(2yAv/ICq’)—v?2c?— 6/2 to the logarithmic fac-  for high charges. This shows up through negative values of
tor, our result reproduces that of standard perturbatiodAL. As noted in Secs. I-Ill, the ions will carry electrons at
calculations, i.e.,.Lgang iIn (3). Note that the correction low energies, however, and the curves cannot be applied with
—v?/c? receives equal contributions from close and distantany accuracy here. For high charges and relativistic energies,
collisions; see als6,7]. AL becomes positive. In the ultrarelativistic limit, the result

In the ultrarelativistic limit,y—oo, the result forAL, de-  for AL is independent of energy as discussed above.
fined as the differencé,—LP®", becomes independent of  Figure 2 demonstrates explicitly the agreement between
energy. From the expressi@86) it is obvious that the spin- the general nonperturbative result f&L and the non-
flip contribution vanishes in the high-energy limit. As far as relativistic formula (20), ALygr=— 7?2 _o(1+ 1) Y (I
the remaining terms are concerned, we note thataZ, +1)°+7?]"%, at low energies. The figure displays
when y— o, whereby the entire energy dependence of theAL —ALyg for the same projectile charges and collision en-
phase-shift differencés7) is in the second arctan. Obviously, ergies as shown in Fig. 1. Fer— 1 curves approach O for all
this term vanishes in the limit of high energies. charge numbers and f@; — 0 the results approach 0 for any

In the general nonperturbative case a numerical computaenergy. For moderate charge numbers, the curves display es-
tion is required for the determination &f,. In view of the  sentially the linear Mott correctiod, «mv/2c, for the latter
results(32), (36), and(40) we have see, €.g9[20], (in the limit v—c, the correctionZ,amv/2c
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FIG. 2. As Fig. 1 but subtractingLyg from the ordinate. The
quantity AL \g is the nonrelativistic Bloch correction given by the

expression20).

53
composed of a set of terms wily up to the seventh power.

If we subtractAL g from our computed value AL as in

Fig. 2, we may compare to Ahlen’s correctid@®/2. For
Z,=1 good agreement is obtained at all energies tested
(0.01= y—1=<100) but the correction itself is small, not ex-
ceeding 0.012. For high charges good values are obtained
with Ahlen’s estimate at high energies, whereas poor values
are obtained at low energies. We may quote some examples.
Our result forAL — AL g increases with energy for positive
charges; cf. Fig. 2. FaZ; =84 and 92, the value 3t=100 is

1.67 and 1.88, respectively. Fdr =84, Ahlen'sG/2 agrees
with our number to the two decimals displayed hevéh his
parameter cgg set to 0.44Q For Z,=92, the estimate is
higher than our value by 0.09with cosy=0.405). At
v=1.5 our values for the same two charge numbers are 1.18
and 1.29, whereas Ahlen’s are higher by 0.07 and 0.15. At
v=1.2 our values are 0.78 and 0.82, whereas Ahlen’s are

assumes the values of 0.115, 0.206, and 0.413 folower by 0.10 and 0.19. At still lower energies Ahle@g2

Z,=10, 18, and 36, whereas the numerical calculation irbecomes virtually useless. These results correspond well
these three cases gives 0.119, 0.220, and 0.4¥énhce, for
moderate charge numbers, the stopping is approximately olan uncertainty of no more than a few percent to the average

tained by adding the nonrelativistidl \g and the linear Mott

correction to the relativistit ;5,4 0f (3).

Figure 3 illustrates the distribution afL—v?/2c? over
angular momenta for some typical cases. A few angular mosize.
menta give sizable contributions. For the cas& pf 36 and
y=2, values of «| larger than 8 contribute 0.043 toL; for
Z,=92 values of|«| larger than 8 contribute 0.133 at agreement between our results and those presentetdjn
vy=100 and 0.112 a¢=2. It may be noted that those angular For Z,=92 the deviation is nowhere larger than 0.05.
momenta that give sizable contributions to the sdih) cor-
respond to impact parameters much smaller than atomic raurements of the average energy loss are reported for projec-

dii.

with the author’s claim that his estimate @2 contributes

energy loss provided/c>|Z,|/100. It should be remem-

bered, however, that at high energies, beginning/atl0,

the results are modified substantially due to finite nuclear
In [14] the quantityAL — ALyg was calculated for point-

like nuclei essentially by the present method. There is fair

In a recent publication by Scheidenbergerl.[21], mea-

tiles with y values close to 2 and atomic nhumbers of 8, 18,

It is of interest to compare our results to those quoted by86, and 54. The authors compare to theoretical values that
Ahlen[8,9]. In making the comparison we can disregard thecorrespond to the sum df,,q Of (3), the nonrelativistic
small Barkas term. Then his stopping-power formula splitsBloch correction, and their own estimate of what is called the
into four parts: one term corresponding to the perturbatiorMott correction(cf. Ahlen’s G/2). In general, good agree-
result, another to the nonrelativistic Bloch correction, a termment is obtained between theoretical and experimental re-
contributing a correctiois/2 to the logarithrmlL, and finally
the density-effect correction. In the determination of the corfull stopping power and the perturbation value corresponding
rectionG/2, which Ahlen calls the Mott correction, he relies to L,nq Of (3) as read off the table if21] are in good
on early calculations of scattering of Dirac electrons by pointagreement with our results farL. For the considered colli-
nuclei. These results are in parametrized form, &id is

0.8T T T T T

0.4

0.2

[

T T T T

.......... 2,292, y=100 1
— Z,=92, y=2 ]
- --2,=36, y=2

|
e
N

T

Contribution to AL—v?/2c*

|
©
N

FIG. 3. Distribution over ||

of the contribution to

sults. The difference between the theoretical values for the

sion systems, the largeAtL value encountered is 0.571 ac-
cording to our calculations.

It may be of interest to display the effect of the electron
spin. For scalar electrons, the formylE0) holds at any en-
ergy and we therefore merely need their relativistic phase
shifts. For the Coulomb potential, the radial Klein-Gordon
equation takes the same form as the nonrelativistic Schro
dinger equation except for a replacement I¢f+1) by
I(I+1)—(aZ,)? in the angular-momentum barrier. The
analysis of the Klein-Gordon equation is then similar to the
analysis of the Schdinger equation if the angular momen-
tum| in the Schrdinger equation is replaced by an effective
angular momentuml* = —1/2+ (1 +1/2)°— (aZ;)?; cf.
[22]. As a result, the Klein-Gordon phase shifts take the form
SC=—argl'(I* +1+i5)— (7/2) (I* — 1)+ 7In(2kr). In the
determination oL, an approach based on the Klein-Gordon
equation does not contain the termv?/2c?; cf. [16], but

AL —v?/2c?; cf. Eq. (41). Each box represents two quantum num- yields twice the Mott correctioZ;awv/2c for low charge

bers=|«]|.

numbers; cf[20]. Accordingly, we show in Fig. 4 the differ-
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tive minimum impact parameteg,,~R, and similarly
o quantum perturbation hds,.~1/R, we have essentially the
0.81 L ] same cutoff in both cases. Accordingly, we expect that for all

i charge numbers thé functions converge to the value
L—In(g.4/R), whereq,qis the effective adiabatic cutoff. In
the following, we shall see how far these simple predictions
are substantiated by the precise calculations.

The basis for our calculation is the results of Sec. IV,
which hold in general for any spherically symmetric poten-
tial. In order to find the effect of finite nuclear size, we have
ook ‘ J . to compute the corresponding phase shifts or, rather, differ-
0.001 0.010 0.100 1.000 10.000 100.000 ences in successive phase shifts. To this end, we shall assume

7-1 the nuclear charge to be distributed homogeneously over a
: . . sphere of radius R, which we choose as 1.18
L O et T e S e et NSRS 10 15 om,cf (23] withthe value o tken acord
ckfeelrges(exceptél=92) as in Fgfai See text for details. ing to the atomic weight. We proceed as described by Bhalla
and Rosd?24]; see alsd25]. For any given value ok, the
B radial wave functions of the electron outside the nucleus may
ence betweenLyg—v/2c°—Z,amv/2¢c and Lpiac. FOr  now be expressed as a linear combination of the regular and
point charges, the solution of the Klein-Gordon equation retne jrregular(or singulay solutions of the Dirac equation
quires «Z;<1/2, for which reason we have excluded gptained for the pure Coulomb potential for the same
Z,=92 from our usual set of projectile charges; cf. Figs. 1insigeR, the radial wave functions are expressed as a series
and 2. For moderate charge numhys= 20, additional spin- i the radial distance. The full solution to the Dirac equa-

effects amount to less than O(Wvhich correspond to typi-  tjon, and thereby the phase shift, is obtained by joining the
cally 1% of the totalL valug. On the other hand, as the g sets of solutions &R.

charge number increases beyond 20, the curves of Fig. 4 start | ot g andf denote the uppefor “large”) and lower(or
to deviate substantially from 0. “small” ) components. Fok<0 the expansions for<R
may be written as

1.0T T T T

0.6
0.4F

0.2}

Le=v/2¢*=Z,amv/2¢ =Ly

0.0 b=

VI. FINAL RESULTS FOR STOPPING POWER:
FINITE NUCLEAR SIZE

. L . o . o GintErgint:PkE anpzna FintErfint:Pk+12 bnpznv
At high relativistic energies the finite size of the projectile n=0 n=0
nucleus must become important for electron scattering. Thus, (42)
an electron with rectilinear classical motion will encounter ] )

the nucleus when its angular momentum p&=ymcR  Where k=|«|, p=r/R, and the subscript “int” stands for

whereR is the nuclear radius. If this angular momentum is ofinterior. For «<>0 the powers outside the summations are
order of #/2, we may expect modification of the first few interchanged between the two components. Insertion of the

quantum phase shifts as compared to those for a poirﬁxpansions{42) in the Dirac equat'io'n leads to the following
nucleus. With a standard value for the nuclear radius thi§€ecurrence relations for the coefficients fox0:
criterion demands % ymcR2/i = yAY3/160, whereA is the

projectile mass number. Reduction of stopping may therefore A= — (2k+1)

occur already for moderate values of The corresponding 0 R(y—1)+3az,/2°%
reduction of straggling should be even larger, since strag-

gling depends entirely on close collisions. 2a;=[R(y+1)+3az,/2]bg,

We note, moreover, that, because of the finite nuclear ra-
dius, the potential has a maximum depth of order of _ _
47,A~Y*mc®. We can therefore expect that for sufficiently (2k+2n+1)by=~[R(y=1)+3aZy2]an+ (aZ4/2)an-1,
high relative energyymc? of the electron, the stopping can
again be calculated by means of first-order perturbation
theory, i.e., it is proportional t(Zi. In first-order quantum
perturbation theory, the scattering has an effective maximu
momentum transfer dfk,,,=%/R. This maximum momen-
tum transfer has a decisive influence on the calculations.
follows that the recoil velocityl of the nucleus, originally at
rest, is at mosti/c=(6A*3) 1 for standard nuclear radius.
The maximum recoil velocity is thus exceedingly small, ex-
cept perhaps in the case of the proton. Independently of th
value ofy, we therefore use thiaitial rest frameof the ion
for our formulation of scattering. )1~ (1) -

The above allows us to make a simple conclusion about H=c./c :F /G —Fint/Gint G_
asymptotic stopping. Since classical scattering has an effec- 2 F/Gi— F®IG® G

2(n+1)an, 1=[R(y+1)+3aZy/2]b,— (aZ4/2)b,_;.
(43

e recurrence relations foe>0 are obtained by inter-
I(t:hanging thea andb coefficients in(43) and simultaneously
changing the signs of andZ,. Forr>R, we write theG
and F functions as Gg.~=¢,G"+c,G® and
Fex=C1F(M+c,F® where the superscripts identify the
reegular and singular Coulomb solutions. Matching at the
nuclear surface then yields

(44)
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where all ratios are taken at=R. The requested phase shift
assumes the form

2 T TTTHT T T TTTIT T T TTTT T TTTTY T T TTTTIT

s.=ardexp(i &) +Hexp(i 6)], (45)

T T T T

where the phase shifi{") for the regular Coulomb compo- :
nent is given by(33) whereas that for the singular compo-

nent5® is obtained from the same equation by the substitu-

tion s,— —s,. The ratio between the two regular Coulomb
components at=R may be written as

F(®) y—1ReA™
c™ = Ny IimA® (46
(include a minus sign in front of the square root for states of

negative energywhere R&A (") and ImA(" denote the real
and imaginary parts oA ("), respectively,

L1t )

| B B

AL
o

~.

T T T TSI T 7Y T

A=¢l&«PRY E (s +1+i7, 25,41, 2pRI%)

(47) "2‘/‘/\' Ll Loball Lobdr Lobrrnni :'ll
0.01 0.10 1.00  10.00 100.00 1000.00
and ;F, is the confluent hypergeometric function. For the y=1
ratio of the singular components an identical set of equations
holds except for the substitutios,— —s, everywhere in FIG. 5. Stopping for finite nuclear size. The curves display the

A. For the ratio between the tw@ components we have values ofAL for atomic numberg,=1, 10, 18, 36, 54, 66, 79, 92,
and 109 as computed for spherical nuclei of radius

G |I'(s,+1+ip)| T'(-2s.+1) ”e ImA (™ 1.18A¥x 107 cm and homogeneous charge distribution. The

Go = T(—s.+1+iy)| [(2s.+1) (2pR/t) "m- valug ofA is chosen according tp the atomic weighF. The thi.n lines

K o (48) tending to constant values at hlghshquL for point nuclei of

charge numbers 10, 36, and 92; cf. Fig. 1.

Finally, the ratioF;/G;, is given by the ratio of the sum of

the corresponding coefficients where we arbitrarily choosélag=v/wp, the quantity wy=47ne’/m denoting the

ag=1 for k>0 andby=1 for x<O0. plasma frequency corresponding to the average density

We have computed the modifications of the phase shift§=NZ, of target electrons. The high-energy ends of the
relative to the Coulomb case for gold ang=225 curves displayed in Fig. 5 are all nearly equal to
[pR/%=4.0] and compared to the modifications reported by —In(YRmd#)+v?/2c?. This is seen more clearly in Fig. 7. If
Yennie, Ravenhall, and Wilsof26]; see alsg[18]. These We add the high-energy asymptote ltg,nq0f (3) with the
authors compute in a special high-energy approximation
whered,= 6_,.. For any given value ofx| our two results
closely bracket that of26]. For all values of «| the devia-
tions are comparable to the actual difference computed be-
tween modifications for+|«|. This difference decreases
with increasing values ofx|. It attains its maximum of
0.0024 at|x|=1. This number is small compared to the
modification of —0.8582 reported ifn26] for j=1/2.

In Figs. 5 and 6 we display our result farL for finite
radiusR of the projectile nucleus. As opposed to the case of
pointlike nuclei, whereAL tends to a constant at high ener-
gies, Fig. 1, the finite value d® now causeaL to decrease
below this asymptote and eventually become negative. The 0.5
effect of finite nuclear size obviously sets in earlier for high b
than for low charge numbers, for uranium a 1% effect on the i
stopping occurs already at=10. Surprisingly, however, all IR i
curves very nearly pass through a common point close to 0.0 "
y=85 andAL=0. A similar “fix point” appeared at low ] Y,

2.0 T T TTYIT T TTTIT T T T TTTH

AL

TS T |

energies; cf. Figs. 1 and 5. For sufficiently large energies the
dependence AL on y is logarithmic, so that the contribu- A

. .. . . —-0.5 IR o] W oo
tion to L from close collisions saturates, as predicted in the 1 10 100 1000

initial comments in the present section. This implies that at =1

ultra-relativistic energies the average energy loss becomes

independent of energy, since the density effect saturates the FIG. 6. Same as Fig. 5 but enhancing the region of intermediate
contribution from distant collisions at an impact parametery values.

TR T
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FIG. 8. DifferenceL , —L_=AL, —AL _ in stopping logarithm
for nuclei and antinuclei of finite size for charge numbers 10, 36,
and 92.

-0.8

essentially by continuing from the maximum of the present
; curve at constant value. As soon as the energy is relativistic,
10 100 1000 that is,y— 1>1, the difference is surprisingly close to being
71 linear in|Z4| until the effect of the finite nuclear size sets in.
Although the difference between particle and antiparticle
FIG. 7. Difference betweenL and —In(yRmdh)+v%/2c? for  stopping is very nearly equal to twice the linear Mott correc-
the high-energy part of the data displayed in Fig. 5. The curvesion, subtraction of this correction fromAL—ALyg still
indicate that the close-collision contribution to the stopping asymp{eaves a variation of about one unit for the range of charge
totically tends to a constant. and energy shown in Figs. 1 and 2 for both signs of the
interaction; see also the discussion of Fig. 2.
density effect correction having the asymptotic value quoted |t may be noted that the influence of the finite nuclear size
in [8], we arrive at the simple result on the stopping is not independent of the sign of the projec-
tile charge. This result shows up through a later onset of
L —In(2¢/Rwp) - 0.2=In(1.64c/Rawp) (49) nuclear-.gize effects for the case oFl2 repuls?on than for the case
t of attraction displayed in Fig. 5. As to the difference between
the values ofAL encountered in the two cases we note from
Fig. 8 that this falls back towards zero at high energies.

for the total stopping logarithm in the ultrarelativistic limi
In this limit L depends very weakly on target and projectile
parameters, having valués=14 in condensed matter.

In the relativistic case, in contrast to the nonrelativistic
case, the correctioAL depends on the sign of the interac-
tion as well as on its magnitude. In order to illustrate this, we Let us now turn to the question of fluctuation in energy
display in Fig. 8 the difference iAL values for positive and loss. As discussed in Sec. I, a determination of the mean
negative charge numbers. This hypothetical case may also Isgjuare fluctuation requires determination of the cross section
conceived as the difference between electron and positroQ, Eqg. (21). For a spin-1/2 particle, the evaluation of this
transport cross sections in scattering by ordinary nuclei. Theross section follows the same steps as the evaluation of the
curves in Fig. 8 are computed for finite nuclear size; for anytransport cross section in Sec. IV. In analogy(8%), we
charge number, the curve for pointlike nuclei is obtainedobtain the following result:

VII. FLUCTUATION IN ENERGY LOSS

SINP(8)+2— 6)+ SIP(8_1_1—6_1_3)

. +3
Q=20’t,—4777(2|20 (I+1)(1+2) (21+3)(21+5)

|
(21+1)(21+3)

2 e | 1 1
T D@32 +5)° " T At i | A+ 2=1 T 412=1

)sin2(5|—5_|_1)}. (50)

This expression is valid quite generally and without reference to any spéhifiegh centrally symmetrjcattering potential.
In the spinless limit, which is obtained by takidy= §_,_;, the formula reduces to the considerably simpler re@#}.
It is convenient to formulaté50) in terms of the quantum numbetr. The result is

(k—1)(k—2) K

- , -1
Q=204=472* 2 Ixl| 1)z O 0 Dt g ar 1)

SIM(8,— 8- 1)

1 «k+1 1 N 1 25 3
+§2K+1 4k’°—1  4(k+1)°-1 SI(8,— - -1) |, (51)



2454 JENS LINDHARD AND ALLAN H. SORENSEN 53

25 T T TTTIT T T TTTHT T T TTTTT T T TTTTT T T |_l|_HL 2.5_
i / ~ , 2.0f 1
. / \| Z,=109 i r .
2.0 ya P r ]

v Ay
- ; z=92 |} ] L5 —
L ! \ — > - 4
| ; y i £ C ]
{ \ = 1.0

\ < r 7
1.5 - C ]
0.5F .
> : T
0.0L ]

100 1000 10000
(72_1 )1/2A|/3

(w]

FIG. 10. Ratio of X and (X/R)®> as a function of
(v?—1)¥2A13 for the high-energy part of the data displayed in Fig.
9. The curves for charge numbers 1, 10, and 18 are hardly distin-
guishable.
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only pA¥® and =Z,«. In Fig. 10, we have used a reduced
momentum (?— 1)*?A12 as the abscissa. Let us turn to the

FIG. 9. Straggling for atomic numbeZs = 1, 10, 18, 36, 54, 65, Magnitude of the straggling, as represented3yIt is pro-

79, 92, and 109. The curves show the quandtydefined by Eq. pomonazl to the max'mum energy transfer, Wh'c_h IS
(5), as a function of energy for spherical nuclei of radius Tma= Pma/2Mm=2muv?y? in the Rutherford case whew is
1.18A"3x 1013 cm and homogeneous charge distribution. Thesufficiently large. We have now instead a maximum momen-
horizontal lines to the far right indicate the high-energy values betum transfer/i/R in first-order perturbation theory for large
longing to point nuclei. v, and therefore the effective maximum energy transfer is

~TeM =#2/(2mR?). Accordingly, we measurg?X in units

of 2T" /mc?, and this is the scaling unit used as ordinate in
whereay, is given by(32). The summations of the last two Fig. 10. If perturbation theory is valid, the curves from Fig. 9
terms in(51) may alternatively be performed solely for posi- should merge into one on Fig. 10. This is very nearly so for
tive values ofx if coefficients are doubled. Z,=1, 10, and 18. The other curves should deviate from this

We have previously, iit5), introduced straggling as a cor- whenZ,« increases. Actually, the curves in Fig. 10 behave

rection factorX times the Straggling belonging to Rutherford approxima’[e]y a$1+ (aZlC) 2]1/2_ The approximate satura-
scattering. According t¢22), this factor is connected © by tion of Q2 is also evident.
X=Ql(4mX?n%). We present the numerical computations ~ As mentioned in Sec. II, for sufficiently thick targets the
for finite nuclear radius only. In Fig. 9 is show\ as a  energy-loss distribution will be Gaussian around the average
function of y—1 in a very wide interval, and for the same energy loss, and with widtif). For thin targets, however,
atomic numbers as in the case of stopping. At low values obne finds a Landau-type distribution of smaller peak width,
y—1, all curves are seen to approach the limit 1. Up to quitewith a long tail towards large energy losses. The two cases
high values ofy—1, the proton represents accurately theare contained in the Landau-Vavilov distributiofs7—29.
perturbation formulaX=1-v?/2c?, belonging to point nu- The familiar parameteg distinguishing between thin and
clei. For moderate values of—1, before the effect of thick targets becomes
nuclear size sets in, the curves for heavier elements rise to

values of order of 2, much above the proton curve. We have 27Z%e*Z,Nx
indicated the high-energy plateaus Xffor point nuclei as &= W’ (52

horizontal lines on the right-hand side of the figure. For large

values of y—1, the X values decrease, starting with where ToX=2mv?y?X is the effective maximum energy

Z,;=109, and successively for lower atomic numbers. In theransfer. Moreover, the fluctuation parameXeis defined in

upper end, all curves decrease approximately@§ corre-  (5), and its magnitude exhibited in Fig. 9. FgK0.5 the

sponding to constant values for the straggling Landau distribution is obtainel®0], and for&=10 the dis-
This upper region is shown in a simpler way in Fig. 10, tribution is Gaussian. If we introduce the average energy loss

using scaling properties that may be explained briefly as fol{ 5SE) in (52), we find

lows. In the wave equation describing scattering, the poten-

tial leads to a scaling in terms of a reduced lengtR, and _ (6E) (SE) AX1836

therefore a reduced momentymR. At very largey, where &= 2LToX  E 4L(y+1)X’

the electron mass can be disregarded, and where we can

write (E/c)R=pR, the full wave equation scales wifhR. the formula containing the relative loss of kinetic energy

The result of calculations should therefore be a function of SE)/E, the mass numbek of the ion(with the approxima-

(53



53

tion M/M,~A), andL from (2), L~10. It is seen that for
increasing values of, and even thouglA is large, it be-
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tuation. Because of the cutoff in momentum transfer, scatter-
ing can be accounted for in the initial rest frame of the ion

comes more difficult to obtain a thick target with Gaussianfor all values ofy, i.e., recoil corrections are negligible.

distribution, as long a¥X remains of order unity. For very
large y, however, the paramet¥ decreases ag 2, and we

Third, as a background for the relativistic treatment, we
have discussed in detail the nonrelativistic Bloch correction,

rewrite (53) as thereby also illuminating a seeming paradox in Rutherford

scattering.

It may be added that in a recent preliminary experiment at
CERN, Datzet al. [31] have measured stopping of Pb ions
with =170 in carbon. The experimental result fois 14.5
wherey=X/(x/R)? is the ordinate in Fig. 10, having asymp- with an estimated uncertainty of 10% . This is in fair
totic values~1— 2. For heavy ions with large energies, the agreement with our theoretical value Sk = —0.716, which
Gaussian limit can then be obtained at quite small values deads toL=14.3; cf. Fig. 5 and Eq(3). The asymptotic
(SE)IE. expression(49) yields 14.2. Note that in the hypothetical

case of point nuclei thé value would be 16.3.

_<5E> A5/3,y
~ E 230yL’

(54
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