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The single-rescattering contribution to the amplitude pertaining to three-body charge exchange reactions
~triangle amplitude! contains the off-shell CoulombT-matrix TC describing the intermediate-state Coulomb
scattering of charged subsystems. For ease of computation, the latter is usually replaced by the potentialVC

which, however, is unsatisfactory in many cases. An alternative approximation, obtained by ‘‘renormalizing’’
the ‘‘triangle’’ contribution withVC instead ofTC by a simple analytic expression, is shown to yield results in
excellent agreement with the numerically calculated exact amplitude, for atomic elastic exchange reactions,
over a wide range of~medium to high! projectile energies and scattering angles~including the forward
direction!.

PACS number~s!: 34.80.Bm, 34.90.1q, 25.55.Kr, 24.10.2i

In the multiple-scattering formulation of the theory of ex-
change processes in three-charged-particle systems, the reac-
tion amplitude is given as the sum of the one-particle ex-
change plus the first- and the higher-order rescattering
contributions. At sufficiently high energies one expects that
the first two terms of this multiple-scattering series, the so-
called ‘‘pole’’ and the triangle amplitude, should provide an
adequate description of ‘‘diffractive’’ cross sections which
fall off very quickly as one goes away from the extreme
forward direction, while the pole amplitude alone is known
to be insufficient for achieving a reasonable description of
the experimental data, e.g., for electron transfer in electron-
hydrogen scattering even in the 100-keV range.

The triangle or single-rescattering amplitude contains the
off-shell Coulomb T matrix describing intermediate-state
Coulomb scattering of the projectile with each of the charged
target particles. Though explicitly known, the complicated
singularity structure of the latter makes the calculation of
such expressions a rather difficult task even today. Hence, in
numerical workTC is usually replaced by its Born approxi-
mationVC, which drastically reduces the required analytical
and numerical effort. The approximate exchange amplitude
obtained in this way will be called the Coulomb-Born ap-
proximation.

Despite its practical importance, we are aware of only two
early numerical investigations@1,2# of the exact triangle ex-
change amplitude. In@2# it was calculated for various
electron-transfer processes and compared with the Coulomb-
Born approximation. The conclusion was that for none of the
~limited number of! reactions investigated, the latter could be
considered acceptable. Hence, it is evident that an approxi-
mation which is much more accurate but not much more
expensive to calculate than the Coulomb-Born approxima-
tion, would be very useful for practical applications to
atomic charge-exchange reactions. We propose here an ap-
proximate amplitude which satisfies these requirements. It
resulted from an analysis of the analytic properties of the
exact triangle amplitude.

Denote the masses and charges of the three particles by
mn and en , n51,2,3. We consider the exchange process

a1(bg)m→b1(ga)n : particlea, having a center-of-mass
~c.m.! momentumqa , impinges on the bound state of par-
ticlesb andg characterized by quantum numbersm; in the
final state particlesg anda are bound in a state with quan-
tum numbersn, and particleb, with a c. m. momentum
qb8 , is free. The initial bound-state wave function belonging
to the binding energyÊam is denoted byucam&, and analo-
gously for the outgoing bound state. Presently we confine
ourselves to thein praximost important case that the projec-
tile massma and the mass of the target particleb, which the
projectile is scattered off, are equal, i.e.,mb5ma .

The triangle contribution to the exchange scattering am-
plitude is given by (gÞaÞbÞg)

Mbn,am
TC ~qb8 ,qa!5^qb8 u^cbnuTg

C~E1 i0!ucam&uqa&. ~1!

Here,Tg
C is the CoulombT operator for the interacting pair

(ab). On the energy shell the initial- and final-state mo-
menta are related to the energy via

E5
qa
2

2Ma
1Êam5

qb8
2

2Mb
1Êbn , ~2!

where, e.g., Ma5ma(mb1mg)/(ma1mb1mg) is the
a-channel reduced mass. Similarly, we define the quantity

Mbn,am
VC (qb8 ,qa) which follows from~1! by the replacement

Tg
C→Vg

C , and is referred to as the Coulomb-Born approxi-
mation of~1!. As is well known, for simple bound-state wave
functions the latter can even be calculated analytically.

We have investigated@3# the analytic behavior of the ex-
change amplitude~1! in the j(5cosq) plane, where
q5/(qb8 ,qa) is the scattering angle. There we show that

the singularity ofMbn,am
TC for

la
2~qb82qa!21~kbn1kam!250, ~3!

or equivalently at
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j5j~s! :5
qa
21qb8

21~kam1kbn!
2/la

2

2qaqb8
.1, ~4!

is the one closest to the physical forward-scattering region.
Here, kam5A2mauÊamu, kbn5A2mbuÊbnu, and
mb5mamg /(ma1mg) is the reduced mass of the pair
(ag) and analogously forma (5mb in our case!, and
la5ma /ma . Clearly, if its distance to the physical region is
small enough, it can dominate completely the near-forward

scattering. It is to be noted thatMbn,am
VC has a singularity of

similar type at the same position.
We have also derived the corresponding ‘‘residues’’ at this

singularity which are, of course, different for the two ampli-
tudes. Let us define the quantities

k~s!
2 5la

2
~qa

2kbn1qb8
2kam!

~kbn1kam!
1kbnkam ~5!

and

p~s!
2 5

~qb81lgqa!2kbn1~qa1lgqb8 !2kam

~kbn1kam!
1kbnkam ,

~6!

wherelg5ma /mg andqa•qb8 has still to be substituted by
its valueqaqb8j (s) at the singularity. Furthermore, we intro-
duce ja

(s)5@k(s)
2 1la

2qa
21kam

2 #/2lak(s)qa and jb
(s)5@k(s)

2

1la
2qb8

21kbn
2 #/2lak(s)qb8 . Then we find for the ratio of the

exact to the approximate triangle amplitude,

Rbn,am :5
Mbn,am

TC ~qb8 ,qa!

Mbn,am
VC ~qb8 ,qa!

, ~7!

in the vicinity of the singularity at~3! or ~4!

Rbn,am '

j→j~s!

Rbn,am
sing

:5
Aihg

~s!
R̃bn,am

sing

@la
2~qb82qa!21~kbn1kam!2#22ihg

~s! , ~8!

with

R̃bn,am
sing 5C0

2 G~12ham!

G~12ham2 ihg
~s!!

G~12hbn!

G~12hbn2 ihg
~s!!

G~2ham2hbn22ihg
~s!!

G~2ham2hbn!
~9!

and

A5 S hg
~s!k~s!

2mala
2eaebp~s!

D 2A~ja
~s!221!~jb

~s!221!

qaqb8 ~j~s!
2 21!

. ~10!

Here,ham5ebegma /kam is the Coulomb parameter for the
incoming bound-state (bg)m , with hbn being defined analo-
gously. For atomic processes involving hydrogenic bound
state wave functions, we haveham52nam and
hbn52nbn with nam (nbn) being the corresponding
principal quantum number. Furthermore,
hg
(s)5eaebAma/4(E1 i02k(s)

2 /2Mg) is the Coulomb pa-
rameter appropriate for the intermediate-state scattering, and
C0
252phg

(s)/( exp$2phg
(s)%21) the Coulomb penetration

factor.G(z) is the gamma function.
From this we deduce the following results which are valid

for attractive and repulsive Coulomb scattering in intermedi-
ate state.

~i! For three-body energies,E.k(s)
2 /2Mg , the magnitude

of the ratio of the exact to the approximate triangle ampli-
tude directly at the singular point~4! is given by

lim
j→j~s!

uRbn,amu5uR̃bn,am
sing u. ~11!

That is, in some neighborhood of~4!, we have the simple
relation

uMbn,am
TC ~qb8 ,qa!u'uR̃bn,am

sing uuMbn,am
VC ~qb8 ,qa!u. ~12!

As follows from ~9!, only for sufficiently smallhg
(s) , i.e., for

sufficiently large energies,uR̃bn,am
sing u approaches the value of

one, implying that the Coulomb-Born approximation can be
considered satisfactory. ForE,k(s)

2 /2Mg , when hg
(s) is

purely imaginary,uR̃bn,am
sing u is a somewhat more complicated

function.
By definition, Eq.~12! holds forj'j (s).1. But it is natu-

ral to conjecture that its range of validity may extend—as an
approximate relation—into the physical region, at least in
some neighborhood of the forward direction, providedj (s) is
not too far off the value of one.

To simplify the discussion, we consider only elastic ex-
change with particlesa andb being identical@as in (e,e8)
or (p,p8) reactions#, i.e., n5m and Êbm5Êam . Use of the
on-shell condition allows us to express Eq.~4! as

j~s!5112
~112ma /mg!uÊamu

E1uÊamu
. ~13!

Clearly,j (s)→1 for E→`, irrespective of masses and of the
binding energy; hence relation~12! can be expected to be
valid even for physical values ofj5cosq ~but our nonrela-
tivistic theory may have ceased to be appropriate then!. For
intermediate energies, if the projectile mass is much larger
than the mass of the spectatorg (ma /mg@1), we have

53 2439APPROXIMATE TRIANGLE AMPLITUDE FOR THREE-BODY . . .



j (s)@1 so that the right-hand side~rhs! of ~12! will not yield
satisfactory results for j<1. A typical example is
H(p,p8) H for whichma /mg5mp /me . On the other hand,
for ma /mg!1, as it happens in reactions like H(e,e8) H
wherema /mg5me /mp , j (s) can be very close to one pro-
vided the energy is not small. In such situations relation~12!
is expected to represent a reliable approximation in the
physical region already for moderately high energies.

We have calculated numerically bothMbn,am
TC and

Mbn,am
VC for physical values ofj. Thus the absolute value of

their ratio uRbn,amu can be compared with its value
uR̃bn,am

sing u at the singular pointj (s) in the unphysical region,
cf. Eq. ~11!. This is done in Table I for the elastic exchange
reaction e1 H(1s)→e81 H(1s), i.e., m5n50, with the
index zero characterizing hydrogen atoms in the ground
state. Inspection reveals that for electron energies even as
low as 1 keV the numerical values are reproduced to an
excellent accuracy for angles up to, say, 60°, while from 10
keV on the validity of relation~12! practically extends over
the whole angle regime. The reason for this success is two-
fold. First, in the range of energies and scattering angles

considered the absolute value ofMbn,am
TC differs very little

from that ofMbn,am
VC with respect to their angular depen-

dence. Second, these two quantities differ noticeably with
respect to their magnitude. But this defect is cured by the
~angle-independent! ‘‘renormalization’’ factor uR̃bn,am

sing u
which, as indicated above, is not so surprising in view of the
closeness of the positionj (s) of the singular point to the
physical region. Forp1 H(1s)→p81 H(1s), for which the
analogous results are shown in Table II, the rhs of~12! yields
similarly accurate results but only beginning at higher ener-
gies ~this latter fact is as expected since herej (s) is much
larger than its value for the electron reaction at the same
energy!. Consequently, whenever the triangle amplitude
alone suffices to describe exchange cross sections~and the
energy is larger than, say, 1 keV for electron-induced and 50
keV for proton-induced reactions!, the easy-to-calculate ap-
proximate formula~12! can be utilized which will greatly
simplify calculations.

~ii ! Encouraged by these results we suggest the relation

Mbn,am
TC ~qb8 ,qa!'Rbn,am

sing
Mbn,am

VC ~qb8 ,qa!, ~14!

expressing the exact rescattering amplitude itself by the ap-

TABLE I. Comparison ofuRb0,a0u obtained by quadrature as function of the cosine of the scattering
angle, withuRb0,a0

sing u, for several projectile kinetic energies, for the reactione1 H(1s)→e81 H(1s). Also
shown is the corresponding value ofj (s) .

0.1 keV 1 keV 10 keV 100 keV
(j (s)) ~1.2723! ~1.0272! ~1.0027! ~1.0003!

uRb0,a0
sing u 0.1363 0.6661 0.8876 0.9637

j5cosq uRb0,a0u

1.0000 0.1337 0.6633 0.8877 0.9637
0.9239 0.1765 0.6567 0.8860 0.9635
0.7071 0.2900 0.6634 0.8862 0.9635
0.3827 0.4190 0.6920 0.8897 0.9639
0.0000 0.5260 0.7259 0.8946 0.9645

20.3827 0.6024 0.7554 0.8992 0.9650
20.7071 0.6516 0.7771 0.9031 0.9655
20.9239 0.6780 0.7898 0.9053 0.9658
21.0000 0.6873 0.7939 0.9062 0.9659

TABLE II. Same as in Table I, but for the reactionp1 H(1s)→p81 H(1s).

0.01 MeV 0.1 MeV 1 MeV 10 MeV
(j (s)) ~10.9902! ~1.9990! ~1.0999! ~1.0010!

uRb0,a0
sing u 0.3602~-2! 0.2504 0.6841 0.8923

j5cosq uRb0,a0u

1.0000 0.4235(22! 0.2572 0.6861 0.8926
0.9239 0.4238(22! 0.2574 0.6864 0.8926
0.7071 0.4246(22! 0.2578 0.6866 0.8924
0.3827 0.4257(22! 0.2583 0.6864 0.8922
0.0000 0.4269(22! 0.2587 0.6861 0.8921

20.3827 0.4280(22! 0.2589 0.6857 0.8920
20.7071 0.4290(22! 0.2590 0.6855 0.8919
20.9239 0.4322(22! 0.2591 0.6853 0.8919
21.0000 0.6063 0.6382 0.7891 0.9099
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proximate one. Note thatMbn,am
VC is purely real. For a de-

tailed test of relation~14! it is preferable to divide both sides

by Mbn,am
VC and by the oszillating factor@la

2(qb82qa)
2

1(kbn1kam)
2#2ihg

(s)
occurring inRbn,am

sing . That is, we com-
pare both sides of the equivalent relation

Rbn,am@la
2~qb82qa!21~kbn1kam!2#22ihg

~s!

'Aihg
~s!
R̃bn,am

sing . ~15!

Recall that the lhs which combines all angle-dependent fac-
tors is obtained by quadrature without any approximation.
The results are shown in Table III for electron, and in Table
IV for proton exchange scattering off hydrogen atoms in
their ground state, at two values of the projectile energy.
Inspection reveals that both sides agree with each other to
within a few percent with respect to their real, and to a some-
what lesser accuracy also with respect to their imaginary
parts, over a wide regime of energies and scattering angles.
This latter fact is understandable: the imaginary part of the

full triangle amplitude,Mbn,am
TC , is caused by the unitarity

cut, due to all the terms in the expansion ofTg
C of order

higher than the Born approximationVg
C which makes up the

real amplitudeMbn,am
VC . Therefore, their contribution to

ImMbn,am
TC cannot be expected to be so reliably represented

by the imaginary part ofRbn,am
sing . Nevertheless, if the accu-

racy of the approximation~14! is sufficient the rhs of~14!
can be used for the exact exchange amplitude which will
lead to considerable simplifications of calculations. Clearly,
the higher the energy is the more reliable this approximation
will be.

Two final comments are appropriate.~i! For a given en-
ergy, the smaller the binding energyuÊamu is, the closer to
the physical region liesj (s) and, thus, the larger is the range
of parameters for which~12! and ~14! represent excellent
approximations. This has been verified at the example of the
reactione1 H(2s)→e81 H(2s). ~ii ! The quality of the ap-
proximation formulas~12! and ~14! for bound-state excita-
tion (n.m) cannot be expected to be as generally good as
for elastic exchange (n5m). Two opposing tendencies come
into play: as before,j (s) is located the closer to one the larger
n is; on the other hand, for excitation the Coulomb-Born
approximation becomes at intermediate energies very much

TABLE III. The lhs of relation ~15! calculated as function of the cosine of the scattering angle, in
comparison with the rhs, for two projectile kinetic energies, for the reactione1 H(1s)→e81 H(1s). Values
of j (s) as in Table I.

10 keV 100 keV
(j (s)) ~1.0027! ~1.0003!
rhs 0.73002 i 0.5049 0.93502 i 0.2335

j5cosq lhs

1.0000 0.73232 i 0.5018 0.93542 i 0.2322
0.9239 0.70322 i 0.5389 0.92572 i 0.2671
0.7071 0.68702 i 0.5597 0.92212 i 0.2794
0.3827 0.68112 i 0.5725 0.92052 i 0.2861
0.0000 0.67452 i 0.5819 0.91982 i 0.2903

20.3827 0.67972 i 0.5887 0.91952 i 0.2930
20.7071 0.68042 i 0.5936 0.91942 i 0.2947
20.9239 0.68132 i 0.5963 0.91942 i 0.2956
21.0000 0.68152 i 0.5973 0.91952 i 0.2958

TABLE IV. Same as in Table III, but for the reactionp1 H(1s)→p81 H(1s). Values ofj (s) as in Table
II.

1 MeV 10 MeV
(j (s)) ~1.0999! ~1.0010!
rhs -0.67912 i 0.0823 0.39172 i 0.8018

j5cosq lhs

1.0000 20.67932 i 0.0959 0.39552 i 0.8002
0.9239 20.68062 i 0.0888 0.37542 i 0.8098
0.7071 20.68222 i 0.0780 0.35732 i 0.8177
0.3827 20.68242 i 0.0743 0.34822 i 0.8215
0.0000 20.68112 i 0.0824 0.34682 i 0.8219

20.3827 20.67752 i 0.1063 0.35322 i 0.8191
20.7071 20.66812 i 0.1534 0.36962 i 0.8117
20.9239 20.63932 i 0.2469 0.40502 i 0.7946
21.0000 20.33162 i 0.7160 0.75562 i 0.5069
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smaller in forward direction than the exact triangle ampli-
tude, due to the near orthogonality of the wave functions for
the incoming and the outgoing bound states. However, cal-
culations show that for scattering angles larger than 10°–
20° the nonorthogonality effects become negligible and thus

our approximation works well also for excitation. This prob-
lem is discussed in Ref.@3#.
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