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Doubly differential cross sections for electron ejection in H-He collisions have been measured in the incident
atom energy range 2.3–10 keV. Analysis of the experimental data on the basis of the adiabatic theory of direct
ionization has been made and parameters of the quasimolecule, namely, the energy of the initial 2ps state
coupled with the continuum, the effective charge, and the real and imaginary parts of the internuclear distance
at which the ‘‘superpromoted’’ diabatic term crosses boundary of continuum, have been determined. The values
of the initial-state energy and the effective charge agree well with the corresponding parameters of the Li
united atom, whereas the dynamical characteristics ReR(E) and ImR(E) reveal considerable influence of
electron correlations. The possibility for the development of an alternative method of quantitative spectroscopy
of quasimolecules based on the analysis of experimental data on differential cross sections for direct ionization
is discussed.

PACS number~s!: 34.90.1q

I. INTRODUCTION

In recent years, considerable progress has been made in
the study of direct ionization, i.e., the process of electron
ejection caused by direct coupling of a discrete quasimolecu-
lar level with the continuum. This study has largely been
stimulated by the experimental work of Woerleeet al. @1# in
which a surprisingly simple empirical relation was obtained
between doubly differential cross sections for ejection of
electrons with energyE and parameters of an ion-atomic
system that undergoes direct ionization~unless otherwise
stated, atomic units are used throughout!:
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where the valuesR0 andE0 correspond to the internuclear
distance at which direct ionization is most probable and to
the energy of an ionized quasimolecular state. In Eq.~1! v is
the projectile velocity anda0 is a constant. The quantity in
the exponenta0(E2E0) resembles the Massey parameter.

Two features of Eq.~1! are of particular interest. First, the
pre-exponential factor does not depend upon the projectile
velocity; rather, this dependence is contained only in the ex-
ponent. Second, the exponential dependence of the cross sec-
tion on the quasimolecular level energyE0 suggests that iso-
lated energy ranges exist in the ejected electron energy
spectra that correspond to contributions of only one quasi-
molecular orbital to direct ionization. These features facili-
tate considerably the analysis of experimental data and show
a promising perspective to develop a new method for quan-
titative spectroscopy of quasimolecules.

Theoretical consideration of direct ionization has been
given by Solov’ev and Ovchinnikov@2–4# in the adiabatic
approximation using analytical features of potential-energy
curves of the diatomic systems. In this approximation, the
differential cross section for electron ejection via direct ion-
ization can be written as
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whereR(E) is the generally complex reciprocal function of
E(R). Solov’ev and Ovchinnikov@3# have discovered sev-
eral series of branch points in different ranges of internuclear
distances where the structure of potential surfaces changes
crucially. The present paper will deal only with theS series
of branch points situated in the region where quasimolecular
wave functions transform to those of the united atom.

The simplicity of Eqs.~2! and ~4! reveals the possibility
to determine several parameters of quasimolecules~i.e., en-
ergy of the level coupled with the continuum, effective
charge of the core, and characteristic internuclear distances!
directly from analysis of the electron energy spectra. Indeed,
such proposals have been put forth in@5–7#. It is important
that the determination of most parameters can be made using
only relative ~not absolute! values of differential cross sec-
tions, which can be measured very accurately. Some data on
parameters of relatively simple diatomic and triatomic quasi-
molecules have been reported in two short communications
@8,9#. It has been found that the values of parameters of
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diatomic quasimolecules extracted from experimental data
are close to those of united atoms. In the case of triatomic
quasimolecules the situation is different, but this is a special
problem, which is planned to be considered in our future
work.

The remarkable similarity in the exponential behavior of
cross sections and reasonable values of extracted parameters
indicates that the range of applicability of the theoretical ap-
proach extends far beyond the systemZ1eZ2 . This has en-
couraged us to undertake experimental and theoretical stud-
ies to examine the adiabatic description of an electron
ejection in non-Coulomb fields. We have chosen the system
H-He characterized by the existence of the ‘‘promoted’’ di-
abatic 2ps orbital that correlates with the 1s level of H in
the limit of separated atoms and contains only one electron.
Thus the process of direct ionization can be treated as ‘‘pro-
motion’’ into a continuum state of a single electron in the
field of a core formed by two nuclei and two electrons occu-
pying 1ss orbitals correlated with the 1s levels of He at
R→`. Therefore, one can expect that the one-electron ap-
proximation used in the theoretical calculations will work
well in the case under study. On the other hand, the field of
the core is not purely Coulombic, and this can lead to ob-
servable differences between theory and experiment.

II. EXPERIMENTAL TECHNIQUE

The main elements of our experimental apparatus for
studying electron energy spectra were described earlier@10#.
Since then, the spectrometer was modified considerably to
increase its accuracy and reliability. A short description of
these modifications is given below.

An ion beam from a duoplasmatron source entered a gas
cell placed inside the cylindrical electrostatic mirror with
entrance angle u lab554.5° and energy resolution
DE/E50.63%. The primary beam current was measured by
a Faraday cup separated from the gas cell by a grounded ring
and a guard electrode biased negatively to avoid penetration
of secondary electrons from the Faraday cup into the ana-
lyzer volume. Energy-analyzed electrons passed through the
exit slit of the analyzer and entered a detector consisting of a
channeltron mounted behind a small conical analyzer with
retarding voltage equal to two-thirds of that applied to the
outer~mesh! electrode of the main analyzer. The background
attained corresponded to~2–5!% of the signal at the target
gas pressurep 5 ~2–4!31024 Torr in the ejected electron
energy rangeE 5 3–100 eV. The electron counting rate was
normalized to the primary beam current. The residual mag-
netic field in the collision region was reduced toH,10 mG
by m-metal shielding and compensation of the field using
three pairs of Helmholtz coils. Our electron spectrometer
was characterized by a very small contact potential differ-
enceDV,0.1 eV, which allowed us to obtain reasonable
results at ejected electron energies as low asE>1 eV.

Absolute values of the doubly differential cross sections
are determined using the relation
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wheren is the target gas density,DEe is the absolute energy
resolution, h50.74 is the detection efficiency,
*VdL53.731023 sr cm is the geometrical parameter char-
acterizing the ejected electron solid angle and collection
length, andNe andN0 are the fluxes of electrons and primary
beam particles, respectively. The constants necessary for cal-
culation of cross sections were determined both from special
control experiments and from normalization to data available
in the literature~in particular, the data of Ref.@11#!. These
experiments were performed using both a small electron gun
placed inside the inner electrode of an analyzer and the elas-
tically scattered electron beam as sources of electrons with
fixed energy. The functionV( l ) was found from the varia-
tion of detected electron signal with the displacement of the
electron source along the analyzer axis. The analyzer trans-
mission was determined using two Faraday cups that mea-
sured currents of electrons entering the analyzer volume and
deflected to the detector site by the analyzing voltage. The
detection efficiency was determined from readings with the
detector operating as a Faraday cup in a single-electron
counting mode. The energy resolution was found by measur-
ing profiles of lines from the electron gun, from electron
elastic scattering, and from Auger transitions. Spectroscopic
data on positions of Auger lines were used to determine the
analyzer constant. The coefficients relating doubly differen-
tial cross sections with electron energy, gas pressure, and the
ratio of fluxes determined from control experiments and
from normalization were found to agree within 5%. When
measuring energy spectra of electrons ejected by neutral
atom impact, a differentially pumped neutralization chamber
with deflecting electrodes was placed before the analyzer
chamber. In that case, the primary atomic beam was mea-
sured using the method of secondary emission from a sepa-
rated bottom of the Faraday cup, the secondary emission
coefficients for protons and hydrogen atoms being assumed
equal.~Special experiments@12# show that this assumption
holds well at the atomic-beam incident energyEH>1 keV.!

The accuracy of absolute values of measured cross sec-
tions was estimated as630%. Errors of relative measure-
ments were6 ~2–8!%, depending upon ejected electron en-
ergy.

Figure 1 shows electron energy distributions measured in
the energy rangeEH 5 2.3–10 keV. The structure associated
with autoionization transitions of helium is subtracted from
the distributions. The exponential form of the distributions is
clearly seen. Now we proceed to the theoretical relations,
which form a basis for analysis of the experimental data.

III. THEORETICAL BACKGROUND

The semiclassical theory of nonadiabatic transitions in
slow atomic collisions has been presented in many papers
~e.g., see@13# and references therein!. The main idea of the
theory is to replace laborious summation of iteration terms of
the same order of magnitude in solving a system of Born-
Fock equations by considering the complex plane oft ~or
R) to find special points that give the main contribution to
the nonadiabatic transition amplitude. It has been shown that
such points are the branch pointsRC of an analytical function
E(R) in the vicinity of which one can setE(R)}AR2RC.
The probability of nonadiabatic transition between the states
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whose levels are connected by a branch point is calculated by
evaluating the relevant phase integral along a path that be-
gins and ends on the realR axis and goes around the branch
point RC @14,15#. In our case the situation becomes compli-
cated due to the fact that the pointsRC are situated far
enough from the real axis so that their existence has little
effect on the behavior of energy levels at real internuclear
distances~‘‘hidden’’ crossings @16#!. A special program is
necessary for the calculation of energy levels at complex
internuclear distances. Such a program to discern theRC
values in the vicinity of whichdE/dR}(R2RC)

21/2→` as
R→RC has been developed in@2# and has been used success-
fully for the calculation of total and differential cross sec-
tions of direct ionization in the systems H1-H, H1-He1, and
H1-He and of inner-shell ionization in more complex sys-
tems Ar1-Ar and Ar1-Kr @5#.

In this section, we will not discuss the general theoretical
assumptions. Our aim is only to review the theoretical rela-
tions needed for the determination of quasimolecule param-
eters.

The probability for a transition between a discrete state
E0 and a continuum stateE in the adiabatic approximation
can be written as@4#

P~E!5
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2pU1v dt~E!

dE
C~E!2UexpH 2

2

v
ImE
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E

t~«!d«J ,
~6!

wheret5vt andC(E) is the normalization factor.
Now we will try to answer the following question: at

which internuclear distanceR0 should the lower limit of
integration E05E(R0) be taken? The notation
E05E0

`5 limR→`E0(R) has been used in Ref.@17#. Since
E(R) is real along the real axisR, there is no change in the
imaginary part of the integral in Eq.~6!. The answer can be
obtained from the Taylor expansion ofE(R) nearR0:

E~R!'E01E8~R0!~R2R0!1
1

2
E9~R0!~R2R0!

2, ~7!

whereE05E(R0). Recognizing thatR0 ,E0 ,E(R) are real
but R is a complex value andE(R).E0 , we have

E8~R0![U ddRE~R!U
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50,

E9~R0![U d2dR2
E~R!U

R5R0

,0. ~8!

Usually the conditions~8! are fulfilled only atR050.
To determine differential cross sections for electron ejec-

tion, it is necessary to integrate~6! over the impact parameter
b:

ds

dE
52pE

0

`

P~E,b!bdb. ~9!

The straight-line trajectoryR25b21t2 approximation is
often used in Eq.~9!. In our case this approximation is jus-
tified because corrections connected with departures from
straight-line trajectories do not exceed 1%, even at incident
atom energies 2.3 keV. Using the results from Refs.@17# and
@18# that t(E) andC(E) may quite accurately be approxi-
mated by

Imt~E!5ImR~E!S 11
b2

2uR~E!u2D ,
C2~E!54pImR~E!UdR~E!

dE U21

~10!

and integrating over the impact parameter in Eq.~9!, we
obtain Eqs.~2! and ~4! for differential cross sections.

Previous calculations have shown that the fast electrons
ejected in low-energy ion-atom collisions areS-promotion
electrons. TheS-promotion electrons are associated with
classical, periodic, and unstable trajectories, which represent
electron motion along the axis joining the charges@19#.
@ ImR(E) characterizes the instability of this motion. Smaller
ImR(E) corresponds to more stable motion.# The kinetic en-
ergy of electrons on these trajectories increases when the
charges approach each other. The increase of kinetic energy
leads to ionization even when the relative velocity is insuf-
ficient to ionize electrons in a single binary collision. A
simple analog of this mechanism is the acceleration of elastic
balls bouncing between two walls slowly approaching each
other.

In the case of Ne-Ne, calculations are in satisfactory
agreement with the data obtained from analysis of experi-
mental cross sections at high ejected electron energies@1#;
however, with decreasing electron energy, the discrepancy
between theory and experiment exceeds the experimental er-
ror bars.

Finally, we should decide what is meant by effective
charge in the case when the field of a core is not purely a
Coulombic one and some screening takes place. This can be
done starting from the existence of the ‘‘delay effect’’ asso-
ciated with the fact that the motion of an ejected electron is
governed by the form of Hamiltonian at the moment of ion-
ization, but not at the moment of observation@20#. Since the

FIG. 1. Energy distributions of electrons ejected in H-He colli-
sions. Figures near the curves indicate incident atom energy in keV.
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theory treats the ionization process as being associated with
formation of quasistationary states calculated in the same
Hamiltonian as the bound states andE05E0(0), it is reason-
able to assume that the effective charge extracted from ex-
perimental data coincides with or is very close to that of a
core for the ionized orbital in the limit of the united atom.

The above analysis permits us to use the following initial
assumptions in the derivation of formulas necessary for the
practical determination of quasimolecular parameters.

~i! The energyuE0u is equal to the binding energy of the
ionized orbital in the united atom limit.

~ii ! The effective chargeZ eff is equal to the charge of the
ionized orbital in the united atom limit.

IV. DETERMINATION OF PARAMETERS
OF QUASIMOLECULES

Using relation~2! the functiona(E) can be determined as
follows @5–7#:

a~E!5S 1v2 2
1

v1
D 21

ln
s8~v1 ,E!

s8~v2 ,E!
, ~11!

wheres85ds/dE and v1.v2 . To determinea(E), it is
necessary to take a ratio of differential cross sections mea-
sured at the same electron energy but at different projectile
velocities. By increasing the number of pairsv1 ,v2 , one can
determinea(E) to high accuracy; however, it is necessary to
notice the spread of the valuesa(E) for different pairs
v1 ,v2 . If this spread is of a systematic nature~e.g., values at
higher velocities always exceed those at lower energies!,

then it may indicate that more than one orbital contributes to
direct ionization in the given electron energy range. Such
behavior ofa(E) was observed in the case of H1-He @7#.
Using the theorem of the mean, Eq.~4! can be written in the
form

a~E!5a0~E!~E2E0!, ~12!

wherea0(E) is a smooth function of electron energy and
a0(0)52 ImR(0). The use ofEqs. ~11! and ~12! makes it
possible to determine the parametersE0 ,a0 ,ImR(0).

All the expressions given above describe direct ionization
in the center-of-mass coordinate system. To use them, it is
important to transform our doubly differential cross sections
measured in the laboratory coordinate system into singly dif-
ferential cross sections in the center-of-mass system, so it is
necessary to know the angular distribution of ejected elec-
trons.

A reasonable approximation for the angular distribution in
the molecular coordinate system employs the square of the
spherical angular wave functionYlm for the corresponding
united atom state@17#. More consistent use of the united
atom approximation, in our opinion, requires taking into ac-
count not only angular components of wave functions but
also the angular component of the perturbation
DH5( i@Zi /r2(Zi ur2Ri u)#, which atr.Ri is expanded in
terms of even-order Legendre polynomialsPL(cosumol) be-
ginning withL52 @21#. (r is the electron coordinate.! In this
case the angular part of transition probability can be written
as

f ~umol!5~21! l0BlL
2 (

l
~2l11!S l L L

0 0 0D S l l l

0 0 0D H l l l

l 0 L LJ Pl~cosumol!, ~13!

where

BlL5~2L11!~2l11!S l L l 0

0 0 0D ,
l 0 and l are the angular momenta of initial and final state,
respectively,u mol is the electron ejection angle with respect
to the internuclear axis, and (0

a
0
b
0
c) and $e

a
d
b
f
c% are 3j and 6j

symbols. In our case (2ps) we find

f ~u mol!511P2~cosu mol!. ~14!

Further, performing a transformation to the space-fixed
center-of-mass coordinate system

cos2u mol5cos2uc.m.1~123cos2u c.m.!
b2

2uR~E!u2
~15!

and a Galilean transformation gives

cos2uc.m.5
~cos2umol2d!2

122dcosumol1d2
, ~16!

Ec.m.5Elab~122dcosumol1d2!, ~17!

where d5(vc.m./velab)!1, vc.m.5MHvH /(MH1MHe), and
velab5A2Elab. Integrating the distribution over the impact
parameter gives expressions relating doubly differential cross
sections in the laboratory system with singly differential
cross sections in the center-of-mass system:

s lab9 5~122dcosumol1d2!21/2s c.m.9 , ~18!

sc.m.9 5
1

8p
sc.m.8 F113cos2uc.m.13~123cos2uc.m.!

v
a~Ec.m.!

G ,
~19!

sc.m.8 5
4puR~E c.m.!u2ImR~Ec.m.!

a~Ec.m.!

3expF2
a~Ec.m.!

v G H 12expF2
a~Ec.m.!

v G J . ~20!

The ‘‘survival factor’’ in curly brackets on the right-hand
side of Eq.~20! accounts for a loss of flux on the returning
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part of the trajectory; its contribution can be appreciable at
low electron energies. It is worth mentioning some features
of Eqs. ~16!–~20! essential for our calculation. At high
enough, but nearly equal, electron energiesE1 andE2 , one
can use the relation

a~E1!

a~E2!
5
E1

E2
,

so that

a~E1!

v
5

a~E2!

v
1O~d!.

Exponents corresponding to different electron energies in
Eq. ~20! differ by a constant factor, which cancels when us-
ing Eq. ~11!. Further, since our observation angle is very
close to the ‘‘magic’’ angleum5arccos(1/A3), P2(um50)
and the second term in the square brackets of Eq.~19! is
proportional to the product of two small parametersd and
v/a; its contribution is compensated effectively by that of
the survival factor in Eq.~20!. As a result, the valuesa(E)
determined from cross sections in the center-of-mass system
and in the laboratory system practically coincide over the
whole electron energy range under study. The data on
a(E) are shown in Fig. 2.

In our previous communications@7,22#, the values entered
in Eq. ~12! were determined from the logarithm of the ratio
of differential cross sections measured at the same velocity
and different, but nearly equal, electron energies. In this
work a more accurate method of fitting Eq.~12! to the re-
gression line obtained from statistical analysis of the data on
a(E) has been used. For this reason, a large set of values
determined using Eq.~11! has been collected and is charac-
terized by the weighted mean dispersions25931024.

From regression and correlation analysis ofa values on
the ‘‘tail’’ of the measured energy distribution~see the Ap-
pendix!, we find confidence limits of the regression line fit of
which Eq. ~12! yieldsE052(3.460.6) eV. This result can
be used further for the determination of the parameters
Zeff5nA2E0, ImR(0), and ReR(0)5ImR(0)2/2Zeff ~see
Ref. @22#!, wheren is the principal quantum number of the
united atom.

To find ImR(0), we pass to the low-energy part of the
distribution, use the Taylor expansion of ImR(E) near
E50, and obtain

a~E!'2 ImR~0!~E2E0!1g~E22E0
2!1h~E32E0

3!,

g5U ddEImR~E!U
E50

, h5
1

3U d
2

dE2
ImR~E!U

E50

. ~21!

Taking three valuesa(E1), a(E2), anda(E3) in the low-
energy part of the spectra and using Eq.~21!, we obtain a
system of three equations with three variables the solution of
which yields@22#

Im R~0! 5
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Substituting the values and the limits ofE0 into Eq.~22!, we
find

ImR~0!51.760.2 a.u.,

ReR~0!51.560.2 a.u.,

Zeff51.160.1.

Finally, we should determine the functions ImR(E) and
ReR(E). The former can be determined very accurately from
differentiation of the functiona(E):

ImR~E!5
1

2

d

dE
a~E!. ~23!

The latter is determined with much larger errors since the
absolute values of differential cross sections should be used
for this purpose:

ReR~E!5AA~E!a~E!

4pImR~E!
2Im2R~E!. ~24!

A comparison of the determined functions ImR(E) and
ReR(E) with calculations is given in Figs. 3 and 4.

FIG. 2. Massey parameter as a function of ejected electron en-
ergy.
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V. DISCUSSION

Figure 5 shows an approximate correlation diagram for
the system H-He obtained by compilation of available calcu-
lation results~see @23# and references therein!. The value

E0 determined in this work, as well as an approximate diaba-
tic term in the complex plane, is shown in Fig. 5. The values
determineduE0u andZeff agree well with the analogous data
for the level 2p of the united atom Li~3.54 eV and 1.02,
respectively!.

In the case of ReR(E) and ImR(E) ~Figs. 3 and 4! the
situation is more ambiguous. Experimental data and calcula-
tions agree satisfactorily at low electron energiesE→0;
however, this agreement becomes increasingly poorer with
increasing electron energy. In this connection, it should be
mentioned that the determination of experimental data on
ReR(E) and ImR(E) is based on the relations~3! and~4! in
which no particular type of interaction is incorporated. On
the other hand, the corresponding theoretical values have
been computed using the program of Ovchinnikov and
Solov’ev @4# developed for the systemZ1eZ2 and some as-
sumptions about the chargesZ1 andZ2 have been necessary.
Assuming the experimental value of the total charge
Zeff51.1, two limiting cases of charge distribution have been
considered:Z15Z250.55 ~symmetrical case! and Z151.0,
Z250.1 ~strongly asymmetrical case!. As seen from Figs. 3
and 4, in the latter case~which seems to be more realistic!,
the agreement between experimental data and calculations is
even poorer than in the former one. One can also see that
with increasing electron energy, the calculated values
ImR(E) systematically exceed the experimental ones,
whereas just the opposite situation occurs for the values
ReR(E).

The observed disagreement clearly shows that the ap-
proximationZeff (R)5Zeff (0)5const can be used only at
low electron energies. At high enough electron energies, the
non-Coulombic nature of the system under study should be
taken into account in the theoretical calculations. As follows
from comparison of the data presented in Figs. 3 and 4, the
diabatic ps term responsible for direct ionization in the
H-He system is promoted to the continuum more sharply
than in theZ1eZ2 system and crosses the boundary of the

FIG. 3. Real part of the characteristic internuclear distance as a
function of ejected electron energy. Circles with error bars are the
values extracted from experimental data, the solid line is the calcu-
lation for Z15Z250.55, and the dashed line is the calculation for
Z151 andZ250.1.

FIG. 4. Imaginary part of the characteristic internuclear distance
as a function of ejected electron energy. Notations are the same as
in Fig. 3.

FIG. 5. Approximate correlation diagram for the system H-He.
The circle with the error bar is the value ofE0 determined in this
work. The dash-dotted curve shows the behavior of diabatic terms
in the complex plane.
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continuum at larger values of ReR(E) than in Z1eZ2. Ac-
cordingly, by increasing the derivativedE/dR, the values of
ImR(E) decrease as follows from Eq.~10!.

Apart from this screening effect, one more correlation ef-
fect should be taken into consideration, that is, the dynamical
correlation between the major transition 2ps-«ps and the
transition 1ss-«ss, which involves the ‘‘passive’’ core elec-
trons and is characterized by a higher effective charge. As
follows from calculations for the system H1-He @8#, the con-
tribution of the 1ss-«ss transition is negligible at low elec-
tron energies, but increases considerably with increasing
electron energy. Thus the role of the dynamical correlation is
expected to be essential at higher electron energies and
would lead to an additional decrease in ImR(E). More de-
tailed discussion of the dynamical parameters ReR(E) and
ImR(E) and very difficult and elaborate theoretical calcula-
tions are needed.

Fortunately, the situation with parameters characterizing
the ionized level of the united atom is not so involved. Good
agreement of the data obtained in this work with spectro-
scopic data for the united atom reveals the possibility to use
the method, based on analysis of energy spectra of electrons
ejected, in direct ionization for quantitative spectroscopy of
quasimolecules with many electrons. This method has evi-
dent advantages over methods@24,25# based upon analysis of
electrons ejected in Auger ionization. First, it allows study-
ing any level of a quasimolecule, even those to which Auger
ionization is not allowed. Second, the accuracy of the
method is defined mainly due to an uncertainty in the mea-
surement statistics and is not affected by an uncertainty in
the energy of final states in contrast to the measurements of
Refs.@24,25#.
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APPENDIX

We have made a regression analysis using six values on
the ‘‘tail’’ of the measured energy distribution (E 5 25–50
eV, energy separationDE55 eV!. When entering the desig-
nationsxi5(E225)/521 (E in eV! andy5a(xi), we con-
struct the regression line using an expansion in terms of
Chebyshev polynomialsPj (x) @26#:

y~x!5(
j

b j Pj~x!, ~A1!

b j5
( i yiPj~xi !

( iPj
2~xi !

, ~A2!

P0~x!51, P1~x!5x2~k11!/2,

P25x22~k11!x1~k11!~k12!/6; ~A3!

(
i
P0
2~xi !5k, (

i
P1
2~xi !5k~k221!/12,

(
i
P2
2~xi !5k~k221!~k224!/180. ~A4!

k is the number ofx values (k56 in our case!. Substituting
experimental valuesa(E) ~Fig. 2! into Eqs.~A1! and ~A2!,
we find the equation for the regression line in the rangeE 5
25–50 eV:

y5a~E!50.28012.23E20.296E2 ~E in a.u.!.
~A5!

Calculation of zeroth-, first-, and second-order dispersions

S05(
i
yi
22

~( i yi !
2

k
51.187, ~A6!

S15S02b1
2(

i
P1
2~xi !50.0037, ~A7!

S25S12b2
2(

i
P2
2~xi !50 ~A8!

shows that the ratioD1 /D253S1/4S2@9.1 ~the Fischer cri-
terion is satisfied! and the dispersionD159.131024 is just
the same as the weighted mean dispersions2. This means
that to a high degree of accuracy~the confidence probability
0.95!, we can restrict ourselves to the quadratic term in Eq.
~A5! when fitting Eq.~A5! to Eq. ~12! and neglecting the
second derivativea9(E). @Since we have no terms of the
order E3 on the right-hand side of Eq.~A5! we find
E0523.4 eV.# To establish the confidence interval ofE0, we
have made a correlation analysis using a linear regression
approximation. In this case the allowed values of the angular
coefficientb1 can be determined using the Bartlett formula

Db56
Sy
Sx
A12r

k22
t12p/2 , ~A9!

where

Sy5Ak( i yi
22~( i yi !

2

k~k21!
, ~A10!

Sx5Ak( ixi
22~( ixi !

2

k~k21!
, ~A11!

r5b1Sx /Sy is the correlation coefficient andt12p/2 is Stu-
dent’s quantile for a given confidence probabilityp. Taking
the valuex̄ at the center of energy interval and substituting
the valuesy( x̄)1s, b12Db1 and y( x̄)2s, b11Db1 into
Eq. ~A5!, we find the lower and upper limits ofE0, respec-
tively: E052(3.460.6) eV.
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