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Quantum suppression of cold atom collisions
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Very-low-energy collisions between two atoms are usually suppressed, in that the probability of close
approach of the atoms becomes greatly reduced as the collision energy vanishes, even if the potential is
completely attractivéwith the exception of the Coulomb interactjoThe suppression is a quantum effect,
related to the Wigner threshold law. It is gauged by comparing the ratio of the probability of being inside the
well to the probability of being outside for both the classical and quantum regimes. As the asymptotic kinetic
energy vanishes, the approaching atoms reach a minimum distance of typically 20 or 30 a.u. Here we study
attractive interaction potentials of the forma/r", and give some numerical results for accuﬂétéEg* and
a 33, states of Lj and Na molecules. We show that in some circumstances it is possible to use Wentzel-
Kramers-Brillouin theory in the suppression regifménere it failg and to correct for its failure with a simple
factor.

PACS numbg(s): 03.65.Mk, 34.20-b, 32.50+d

I. INTRODUCTION some form of exclusion of amplitude from certain regions.
The collisional suppression we consider here does not, how-
Collisions of atoms at ultralow temperatures are a criticalever, shut down inelastic processes at low energy. Indeed, the
issue in Bose-Einstein condensation, high precision atomithreshold\E suppression of the radial wave function trans-
measurements, coherent atomic sources, and the operationlafes into the usual result that threshold inelastic cross sec-
atomic traps. In this paper we draw attention to a simple butions diverge as 3/E, leading to inelastic rates that become
dramatic effect which suppresses contact between atoms eonstant at low temperature.
very low energies and which may help in the control of trap  Our purpose here is to extend previous studies of quantum
dynamics. The effectsometimes called “quantum reflec- suppression, to make simple physical pictures of the suppres-
tion”) is well known in the collision of an atom with a sur- sion (which can be found also in Ref11]), to develop a
face. At very low energies, the atom never enters the attracgsimple correction factor that can be applied to the semiclas-
tive well and is instead reflected at long range even for arsical description of scattering at low energies, and to report
interaction that is purely attractive at the large distanceghe results of explicit calculations for théLi-’Li and
where reflection occursl—5]. This conclusion can be modi- 2*Na*Na systems based on accurate molecular potential-
fied when many-body effects are included. The suppressiofnergy curves.
may be relevant to collisions of atoms with superfluid He-
lium surfaces, where it leads to a reduction in the chances of
atom-surface sticking at low energigs 7]. Il. THEORY OF THE SUPPRESSION
A correct quantum calculation of low-energy atom colli-
sions necessarily incorporates the suppression efi@:tsor
example, the collision suppression effect is intimately related Suppose the atomic interaction potential is attractive at
to the well-known Wigner threshold law farwave inelastic large distances with a repulsive wall at small distances. In
scattering[9]. It is nonetheless instructive to compare theclassical scattering at low energiEs the head-on approach
classical, semiclassical, and quantum descriptions in order tof the two atoms takes place slowly but the atoms continue
clarify the nature of the suppression and to develop an untheir journey toward a collision that occurs when they reach
derstanding of the subtle consequences of suppression the repulsive wall. The atoms hit the wall with a probability
many-body collision systems. In the context of atomic colli-of unity. In quantal scattering, the probability of the atoms
sions, this point of view was taken earlier by Julienne andpenetrating into the attractive well and continuing to the re-
Mies [10], and further developed in Rdfl1]. As in the case pulsive wall diminishes to zero a&s—0. Even ins-wave
of the tunnel effect, diffraction, and Anderson localization, head-on collisions, the two atoms do not approach closely.
guantum collision suppression is a concept that derives it¥his statement requires modification for potentials decreas-
utility by comparison with classical mechanics. ing asr ~2 or slower and for the case when a bound state of
The word “suppression,” like tunneling, has come to bethe potential exists at zero energy. The suppression is a
used for a variety of related phenomena. Suppression entaitgiantum-mechanical reflection of the amplitude by the as-

A. Qualitative picture

1050-2947/96/5@)/234(8)/$06.00 53 234 © 1996 The American Physical Society



53 QUANTUM SUPPRESSION OF COLD ATOM COLLISIONS 235

ymptotic tail of the potential. It may be demonstrated by the hk f2K?
simple case of the attractive square well.Ofis the well Kc|=\/2 5\l 2.0 e (6)
depth, i is the reduced mass of the particle, aads the K
width of the well, thes-wave function inside the well nor- | the semiclassical description, the amplitude is decom-
malized to unit incoming flux is given in the limit of vanish- hosed into incoming and outgoing terms, each of which has
ing wave numbek by the square root of the classical probability density as a pref-
5 actor. The two terms combine to give interference oscilla-
ur)= o—-— \/EklIZSin( K'r), (1) tions bu_t af_ter squaring the wave fur!c_tion anq ayeraging over
k'cogka) V7 the oscillations the classical probability density is recovered.

, ) ] The semiclassical or Wentzel-Kramers-BrillouifWKB)
wherek’ = \/2,L,LD/h . Treatlng the sine wave as two travel- Scattering wave function in a potentM(r) is
ing waves, the ratidR of the flux inside the well to the flux

outside, which classically is unity, is instead = C i (1) /4] 0
u ry=——si r)+al4],
Kk WKB /p(r)
R= k'? cos?(k’a)+k? sirf(k’a) @ where
Normally, if cosk’a)+# 0, 21 172
) p(r)=[?[E—V(r)] , ®
R icogka) ® 1
on=3]"_pnar, ©
which means the inside flux is suppressed/&sasE— 0. It ro(E)

might seem that the square well is peculiar because of its
abrupt edge, but even a smooth potential becomes very sha
on the scale of a wavelength Bs- 0.

dro(E) is the inner distance of closest approach éni
normalization constant.
Near the equilibrium distanae, of an attractive well, the

One of the exceptions to the suppression is the possibili%v ¢ : in i h a local . - this local
of a bound state existing exactly at threshdio=0). This is ave functionuyg| will reach a local maximum; this loca
maximum will act as a reference amplitude for comparison

seen in the formula foR when cosk’a)=0. If such a ) ; : . .
threshold bound state is pushed up or down only slightlyWith the external amplitude. Suppose this maximum is

suppression is restored, but to see it one has to get very clo&gached atf; then siig(rii) + m/r]=*1 and,
to E=0. This effect is easily explored with the help of Eq.

(2) in N~

Another instructive example is a simple one-dimensional e = Uwie(Fin) Vp(rk)’ 19
step-down potential. This potential naturally has no compli- ]

cations from bound-state resonances. In the case of a smodiffiere, because energy is close to zero, we may take
step downV(r)=A—A/[1+ exp ()] it can be shown that p(ri)=+v—2mV(r{). At large distance we have

the transmission probability of a plane wave over the “cliff”

of energyE incident from the left is, for smalk, U\%&B: \/ﬂ Sin(KT + 7 we) (11)
T=4\27 coth( m\2A)\E, (4)

where nyg is the semiclassical approximation to the phase
wherem=#=1. (This can be deduced from a discussion inshift. The semiclassical density ratio is

Ref.[12].) Classically, the transmission probability is always
1/2

unity at any positive energy. The fundamental cause of the |u{,r\‘,,<B|2 Ak E
suppression is seen in this example as the reduction of trans- sczmz E “\E¥xp/ (12

mission past a purely attractive ledge. The ratio of the quan-
tum to the classical probability for finding the particle to the jdentical to the(incorrec classical result. Thus suppression
right of the step vanishes a&E. requires a breakdown of the WKB approximation, as first
pointed out by Julienne and Mi¢&0,11].
B. Classical and semiclassical theory

Classically, the ratio of the probability density per unit C. Breakdown of the semiclassical theory

distance of finding the particles inside and outside the well is The semiclassical WKB approximation is accurate when
equal to the inverse ratio of the speedsv Jfis the incident the wavelength undergoes little change in a wavelength.
velocity andv is the velocity at the deepest point of the well, Thus we need the condition
the ratio is given by

p'(r)]
172 ewk=T ——7 <1 13

(5) p(r)

for WKB to work. We show in Fig. 1 the WKB errogxg
which for low values ok=2uv/# becomes for the Morse potential

E

‘=3 ~lETD
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_ k2
10 Kgm=[u"? T 1 3, (19
2 - _ = 2
‘\‘ Ko+ a Zpk )
9 S .
20 7 ' ! =a?lu"2kY1+ak?(p—a)+--- 20
U 30 40 U™ kL (p—a)+---] (20)
where p is the effective range. The ratio of the quantum-
10- mechanical probability of entering the well to the semiclas-
sical probability Eq(5) is given by
FIG. 1. Aplot of the WKB error term as a function of coordinate K 2
for three low energiesE=0.05 a.u(solid), E=0.005 a.u(dashed] p=_9"_ _’L;a2| un|2 D+ E\/E
andE=0.0005 a.u(dash-dot Kse 7
2uEa
V(r)=101—- exp(—r)]*>—10, (14 X| 1+ —7—(p=a)+ ... |, (21)

(with m=#=1) for three different energieg=0.05, 0.005, z5g_0.

0.0005. A similar figure was given by Julienne and Mi&§] We now demonstrate that the amplitude of the inner wave
for the collision of two HefS) atoms. The error increases fynction is independent of as E— 0. Following Gribakin
with lower energy and extends to larger radii, pointing to theand Flambaunj14], we obtain an analytical expression for
region where the suppression originates. Proceeding outwaggh(r) by solving thes-wave scattering Eq15). We use the

at smallr and passing through the inner turning poiat  \wKB approximation for scattering in an attractive potential
which the WKB approximation fails but is easily corrected  that varies at large distances asrr —". At E=0 the condi-

the wave function enters the well. Inside the entire well retjon Eq. (13) for the validity of the WKB approximation in
gion well the WKB wave function is accurate. As it moves this case is

towards the asymptotic region, it breaks down for low ener-
gies, but eventually regains its accuracy as it reaches still 2y\2n=2)
larger distances. Because of the breakdown region, the as- r< n
ymptotic WKB solution has the wrong amplitude and phase.
This error is the harbinger of the suppression phenomenonyherey= 2 a/%2. For ’Li, n=6 andy=4213 a.u., hence
we must have <37a, to be in the “safe” zone for WKB.
D. Quantum suppression The ’Li potential-energy curve retains its long-range form
. - .
The partial-wave equation for zero-anguIar—momentunw'gtrgesfg;i:;“82$Wh$gctme\?vsKg]aa%ﬁ)’d;(;ttigﬁti;h\gﬁ dlz:ld
ttering of rticle of m tentiaNM(r) i : . P
scattering of a particle of mags by a potential/(r) is the potential varies as . The WKB approximation is also

: (22

d2u(r) 2uV(r) valid within the potential well and we can write the zero-
az Tt k?— 72 u(r)=0, (15  energy wave function in the form
h thatu(0)=0. It i ient t liza(r) to th n(r) L '(l rd’(’)+ 14 >
such tha =0. It is convenient to normalize(r) to the u(r)y=———sin| - r'p(r’y+al4|, r>rg,
asymptotic form Po(r) Bl
(23)
uout(r)wsm(k.r—’—n) (16) where ro=ry(0) is the inner classical turning point and
sinp Po=V—2uV(r). The normalization constaf is chosen so
that bothu™(r) andu®{r) match atr*. By extending the
so that in the zero energy limit Gribakin and Flambaum analysisee Appendix we find
that
ury~1-r/a, (17)
Vi T(1+v) .
wherea is the scattering length. The quantum ratio of the ©= cos(®—r* —a/d) | Jav(yn)” codr® — mv/2—ml4)

probability densities is given by
A=) ()
=|u"? sirty, (18 aymy

where v=1/(n—2), x=2yvr Y% and ®=¢(r*)+x*
where we have used a large exterior reference radjjjs €valuated at zero energy. Then near the equilibrium distance
such that sirkrg .+ »)=*1, and where we have dropped fe:
the argument(;,). Provided that the potential falls off faster , )
thanr ~5, we can use effective range thedf] to write Eq. uin= Vi T(1—v)(y) sin(mv) 25)

[un(r)|? cosr*+wvl2—wld);, (29

U g

(18) as a Jmv(2uD)¥4 cog®—vm/2)’
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TABLE I. Phase shift and inner amplitude as a function of the The wave function accumulates in the inner well at threshold
kinetic energy. resonances because once amplitude is “captured,” it is diffi-
cult to escape. For some purposes it is useful to think of the

15+ 3y + . . .

X2 a’x, suppression effect as a penetrable barrier potential that nor-

loaE uin uin mally reflects amplitude, except if there is a quasibound state
e 7 |Ueiac 7 |Uerad (resonanceinside the barrier.
-9.0 —0.132945 0.0324576 0.055 288 0.3102428
—10.0 -0.041795 0.0329669 0.019 194 0.290084 0 Ill. SCATTERING: THE ALKALI-METAL ATOMS
—110 ~0013206 00330252 0006130  0.2880431 In this section we calculate the suppression effect for
—120 —-0004176 00330313 0001940 028783537 ;7 ; anq 23Na2Na, collisions for which accurate
potential-energy curves have been construft&d The par-
Na tial wave equations were solved by numerical integration. In

—90  —0240411 00290656 —0.500465 0.0402837 Tapja | we give the magnitude™| of the inner wave func-
—100 -0072210 0.0321190 —0.158352 0.0447692 oy evaluated near the deepest point of the wells for the four
—11.0 -0.022644 0.0325653 —0.050039 0.0452760 potential-energy curves. As predicted, the wave function is
—12.0 -0.007153 0.0326159 —0.015822 0.0453297

nearly independent of the energy of relative motion. In Table
Il we compare the magnitude™| of the inner wave function

. . o determined numerically from Table | for Er=10"12 a.u.
Equation(25) shows that with the normalization E(L7), with the results of the analytical formula E@25), for

u"(riy) is independent oE at low E. Therefore, the rati® £_q The agreement demonstrates the utility of @8). In

of the quantum mechanical to the semiclassical probabilit)f:igs' 2 and 3, we compare the numerical and analytical re-
of finding the particle in the inner well tends to zero aSgits for the ’suppression factor in the fol=P 1. The

112 - : : :
E" a result that is consistent with the conclusions of g0 jatedR includes the second terms of the expansion Eq.
Clougherty and Kohi4] for atom-surface scattering, includ- (26). The agreement is close. Both sets of results demon-

ing (in their casg inelastic processes. Inserting B85 into  gyate the dramatic rise in suppression as the energy de-
Eq. (21) we can writeP as creases below I0° a.u. or, equivalently, 3@K.

1 2uEa
P=PoE™ 1+ —7—(p—a)+ - |, (26)
IV. PHOTOABSORPTION AND THE FACTORIZATION
. APPROXIMATION
with
1 , . ., Photoabsorption of radiation by colliding alkali-metal at-
b 2p| T A=) ] (yv) sin *(7v) oms has been the subject of considerable experimental and
o a2 (2uD)? cos?(d—mvl2)" theoretical attentiorf18,19. Provided the intensity of the
(27) radiation field is not high, the concepts behind the suppres-

o sion factorP suggests an approximate factorization
The lone exception is a zero-energy bound state, where the

factor cosP —v7/2) vanishes as the scattering length

blows up aE— 0, giving an energy dependence to E2f). (29

Oabs= Powkes »

TABLE II. Inner amplitude|ui”| determined from Eq(25) for zero-energym=6,v=%) compared to the
Table | numerical resultul,, .| at INE=10"12 All quantities are in atomic units.

Li, Nay
2p = 12 798.391 2 = 41907.7602
a = 1388 a = 1472
y = 4213.274 y = 7854.185
15+ 3y + 15 + 3y +
Quantity X2 a’X, XZg a’yy,
a 36.9 -17.2 34.94 77.3
p 66.5 1014.8 187.5 62.5
D 3.880 46< 102 1519 06% 102 2.743 835 %X 1072 7.931 79& 1074
® 4277 +0.204 218 1%+1.389 241 66+ 0.5506 157+ 2.8548
[u™| 0.03252 0.2885 2 0.0318 0.0455
lul ol 0.0330 3 0.2878 4 0.032 62 0.045 33
Po=R, 3632.673 12 275.733 9343.428 15 967.447
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FIG. 2. Suppression ratiR for the X 'S/ anda 3 states of 23 FIG. 3. Suppression ratil for the X 'S anda °3] states of
-
Li,. Na, .

whereasis the quantum cross sectio,is the probability |n Fig. 4a), we compare the quantum and the uncorrected

of entering the well andry is the cross section obtained anq corrected semiclassical values Bf,(E)|? for v =68 as
with WKB wave functions. The factorization should be suc- i i 1 1 it
a function of E for the singletX '3 —A 3 transition.

cessful provided no threshold resonances occur. Such a fagyq ¢qrrection is substantial and it brings the semiclassical

torization is also clearly discussed in the work of Julienne,

. X _"“calculations into agreement with the quantum results for en-
and Mies[10]. Because of the quantum suppression, a kine- g S

. , . ergies up to 107 a.u. BeyondE=10"°°, the WKB approxi-
matical estimate of the frequency of approach into the well, 74 s valid and no correction is needed. The simple ex-

may be_seriously r_nisleqding. We e_XP'Or? the callse+of phom}:’)ansion Eq.(26) does not work for the intervening energy
absorption by a pair ofLi atoms colliding in theX Eg and range.

3y + 7 ; i A . . .
a3, states of'Li,, assumings-wave scattering. The po-  Similar conclusions apply to the triplet transition
tentials and transition dipole moments are summarized by 3y +_135+ although the agreement is poofsee Fig.
cate et al.[15]. The dipole matrix element that controls the ! g’ : :
‘ L 4(b)]. The poorer performance arises because the classical
absorption probability is distance of closest approach(E) in thea 33! state lies
‘ inside the well of the excited state and the WKB truncation
DU(E)ZJ dru,(n)D(r)ug(r), (29) of .the |n|t|allfr.ee-wave funonn to the Ieft. of the turning
0 point may eliminate a contribution the matrix element. Also,
the outer turning point ofi,(r) is at quite large, and over-
where D(r) is the dipole transition moment,(r) is the laps withuf“®(r) in a region where the WKB error term is
final vibrational state wave function ang(r) is the initial ~ considerable. _ _
wave function describing a pair of free atoms with an energy The quantum suppression correction can be used for en-

E of relative motion. Then ergies up to the mK range, a range well above that which
experiments are currently able to reach. Quantum suppres-
ID,(E)|2=P|DWVKE(E)|2, (30)  sion is an important effect in atomic collisions taking place
in weak perturbative fields.
Where The collision suppression in this context of a secondary

procesgphotoassociations connected to the Wigner thresh-
. old law for x-wave inelastic scatterini®], which predicts a
D\UNKB(E):J dru‘é"KB(r)D(r)uv(r). (3D JE behavior very near threshold. That law, deduced origi-
ro nally with R-matrix theory, can be viewed as a manifestation



53 QUANTUM SUPPRESSION OF COLD ATOM COLLISIONS 239

by actual accretion, could be assisted by the existence of
suppression of the inner part of the wave function at low
temperatures, since this suppression is independent of the
sign of the scattering length. The wave-function suppres-
sion in the WKB breakdown regioftypically at several tens
of atomic unit3 may form the last line of defense against
complete collapse of a negative scattering length Bose con-
densate. There is a caveat: large suppression sets in typically
earlier (higher energyfor positive scattering length than for
negative; this is a purely geometrical effect having to do with
the less likely combination of large asymptotic amplitude
and negative intercept for the extrapolated wave function.
We related the suppression to breakdown of the WKB
approximation(see also Refd.10,11]). A simple rule to es-
timate the validity of WKB is

[p'(r)]
p(r)?

If this holds from the region of the well outward, then no
S suppression will occur.
) corrected ---- T The suppression behavior in more complex regions where
WKB ----- I . . . .
100004 Y multichannel couplings become relatively strong at low en-
I ergies may be differentd] and remains to be explored in

atom-atom interactions.

Dipole matrix element (arb. units)

h

<1. (32)

Dipole matrix element (arb. units)

1000 T T T T T
-11 -9 -7
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V. SUMMARY AND OUTLOOK APPENDIX: DERIVATION OF |ug‘|

We have reviewed the suppression effect and provided Following Gribakin and Flambaurii4], we will find an
some perspective on what it is and when to expedfTite  analytical expression fdug|. To do so, we solve the Schro
exceptsi)ons are Coulomb potentials and threshold resadinger equation fos-wave zero-energy scattering particle
nances.

We have shown that the effect of quantum suppression of  d?u(r) 2m
collisions applies tcs-wave low-energy atom-atom scatter- gz~ YU(u(r)=0, where U(r)= -7 V(r),
ing using realistic potentials fofLi-‘Li and *Na-**Na col- (A1)
lisions at achievable energies. The suppression effect is well
established in the field of surface collisions. Its manifestatiorwith the boundary conditiom(0)=0.
in scattering theory is the Wigner threshold law fowaves, Assuming that the WKB approximation is valid within the
which we have reinterpreted here as quantum suppression pbtential well, we can write the wave function in the form
the collisions at very low energy. The suppression is in fact

part of the story behind Wigner cugp * threshold behavior. _ C : EJr / N
At energies reached by present day traps, dramatic sup- u(r) VPo(r) sin f rodr Po(r)+ 4 for r=>ro,
pression exists which can affect secondary processes such as (A2)

photoabsorption and trap loss, and accretion, i.e., formation

of clusters by three-body collisiofWe emphasize, however, wherer is the classical turning point argh= v —2mWV(r)

that these effects are already included in a proper treatmeig the local zero-energy momentum. At large distances, the

of threshold inelastic processgs. potential varies as- a/r" and the condition for the validity
Bose-Einstein condensation, which is adversely affectedf the WKB approximation reads
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2y 20-2) 1 _ 2 T(1=v)
r<(7> , Where y= %W. (A3) a= cos(m)(y")* Frg (A11)

In the case of lithium, takingn=6 we getr<37.5, ('Li: T
y=14213.3 a.0. We suppose that the potential curve takes its f(®)=|1—tan ®— —-|tan(mv)|. (A12)
asymptotic form—ar ~" at a shorter distance, in which case
the differential equation becomes We want to normalizei(r) in such a way that

d?u(r) 2 r

?jL r—nu(r)zo. (A4) u(r):C1r+Cz—>1—5. (A13)

Defining a new functioru= \r ¢ and a new variabl&, we S0 one must divide the previous result B and write
can rewrite Eq(A4) into a Bessel equatiofsee O’'Malley, u=u/C,. At r* we have
Spruch, and Rosenbel6]) whose general solution is given

* *
in terms of a combination of Bessel and Neumann functions, *Y — Uwka (™) _ u=(r*)
u(r)=—"2 = (A14)
2 2

U=(N=VIAL()—-BN,(X)], r>r*, (A5 o
which gives, after some algebra,

wherev=1/(n—2) andx=2yvr Y% Forn>3, v<1 and

we can use the expansion &f(x) andN,(x) for r—oo (or 32 \/ﬁ P cod x* — v T
x<1) to obtain the asymptotic form af..(r) C, coqd—x*—ml/d) 2 4
u=(r)=Cyr+Cs, (A6) _gco{xurﬂ_f)] (A15)
2 4]
where
with
B ! A7
1_('yy)V Sin(wv)r(l— V) ' ( ) EM and QEM (A]_G)
(yv)” i) i |
Yv
szm[A_B cot(mv)]. (A8)  where we used the expressions omnd C,, the fact that

D=p(r*)+x* andpo(r*)=Ay[r*] "2, and also the ex-
To determine the constants and B, we must match the pansion of],(x) andN,(x) for x*>1.
analytical solution to the WKB solution at'. Sincer* has For n>3, the quantity|ug| can be evaluated from Eq.
been chosen to satisfy the conditih3), we can assume (A15). In fact, we have
that its value is not too large and thet>1, in which case
we can use the expansion &f(x) andN,(x) for largex to uin= 1 S (A17)
evaluateu. (r) nearr* (see Butkoy{17]). Then, we find 0 \/E Cy’

A TV ) Y . Using the expression fax and Eq.(A15) for C/C,, we can
E—ta (I)—? , with (I>=% rodr p(r’). (A9) rewrite U as

The scattering length is simply given by in VA T (1~ v)(yv)” sin(7v)
Up=—— 7 — . (A18)
a ‘/WV(ZMD) COiq) ’7TV/2)

C, _
a=- C_1 =af(®), (A10) As mentioned before, the cases 3 is quite peculiar because
in that casev=1 and the Gribakin and Flambaum scheme
where becomes ill defined.
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