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Very-low-energy collisions between two atoms are usually suppressed, in that the probability of close
approach of the atoms becomes greatly reduced as the collision energy vanishes, even if the potential is
completely attractive~with the exception of the Coulomb interaction!. The suppression is a quantum effect,
related to the Wigner threshold law. It is gauged by comparing the ratio of the probability of being inside the
well to the probability of being outside for both the classical and quantum regimes. As the asymptotic kinetic
energy vanishes, the approaching atoms reach a minimum distance of typically 20 or 30 a.u. Here we study
attractive interaction potentials of the form2a/r n, and give some numerical results for accurateX 1Sg

1 and
a 3Su

1 states of Li2 and Na2 molecules. We show that in some circumstances it is possible to use Wentzel-
Kramers-Brillouin theory in the suppression regime~where it fails! and to correct for its failure with a simple
factor.

PACS number~s!: 03.65.Mk, 34.20.2b, 32.50.1d

I. INTRODUCTION

Collisions of atoms at ultralow temperatures are a critical
issue in Bose-Einstein condensation, high precision atomic
measurements, coherent atomic sources, and the operation of
atomic traps. In this paper we draw attention to a simple but
dramatic effect which suppresses contact between atoms at
very low energies and which may help in the control of trap
dynamics. The effect~sometimes called ‘‘quantum reflec-
tion’’ ! is well known in the collision of an atom with a sur-
face. At very low energies, the atom never enters the attrac-
tive well and is instead reflected at long range even for an
interaction that is purely attractive at the large distances
where reflection occurs@1–5#. This conclusion can be modi-
fied when many-body effects are included. The suppression
may be relevant to collisions of atoms with superfluid He-
lium surfaces, where it leads to a reduction in the chances of
atom-surface sticking at low energies@6,7#.

A correct quantum calculation of low-energy atom colli-
sions necessarily incorporates the suppression effects@8#. For
example, the collision suppression effect is intimately related
to the well-known Wigner threshold law fors-wave inelastic
scattering@9#. It is nonetheless instructive to compare the
classical, semiclassical, and quantum descriptions in order to
clarify the nature of the suppression and to develop an un-
derstanding of the subtle consequences of suppression in
many-body collision systems. In the context of atomic colli-
sions, this point of view was taken earlier by Julienne and
Mies @10#, and further developed in Ref.@11#. As in the case
of the tunnel effect, diffraction, and Anderson localization,
quantum collision suppression is a concept that derives its
utility by comparison with classical mechanics.

The word ‘‘suppression,’’ like tunneling, has come to be
used for a variety of related phenomena. Suppression entails

some form of exclusion of amplitude from certain regions.
The collisional suppression we consider here does not, how-
ever, shut down inelastic processes at low energy. Indeed, the
thresholdAE suppression of the radial wave function trans-
lates into the usual result that threshold inelastic cross sec-
tions diverge as 1/AE, leading to inelastic rates that become
constant at low temperature.

Our purpose here is to extend previous studies of quantum
suppression, to make simple physical pictures of the suppres-
sion ~which can be found also in Ref.@11#!, to develop a
simple correction factor that can be applied to the semiclas-
sical description of scattering at low energies, and to report
the results of explicit calculations for the7Li- 7Li and
23Na-23Na systems based on accurate molecular potential-
energy curves.

II. THEORY OF THE SUPPRESSION

A. Qualitative picture

Suppose the atomic interaction potential is attractive at
large distances with a repulsive wall at small distances. In
classical scattering at low energiesE, the head-on approach
of the two atoms takes place slowly but the atoms continue
their journey toward a collision that occurs when they reach
the repulsive wall. The atoms hit the wall with a probability
of unity. In quantal scattering, the probability of the atoms
penetrating into the attractive well and continuing to the re-
pulsive wall diminishes to zero asE→0. Even ins-wave
head-on collisions, the two atoms do not approach closely.
This statement requires modification for potentials decreas-
ing asr22 or slower and for the case when a bound state of
the potential exists at zero energy. The suppression is a
quantum-mechanical reflection of the amplitude by the as-
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ymptotic tail of the potential. It may be demonstrated by the
simple case of the attractive square well. IfD is the well
depth,m is the reduced mass of the particle, anda is the
width of the well, thes-wave function inside the well nor-
malized to unit incoming flux is given in the limit of vanish-
ing wave numberk by

u~r !5
2

k8cos~ka!
Am

\
k1/2sin~k8r !, ~1!

wherek85A2mD/\2. Treating the sine wave as two travel-
ing waves, the ratioR of the flux inside the well to the flux
outside, which classically is unity, is instead

R5
k8k

k82 cos2~k8a!1k2 sin2~k8a!
. ~2!

Normally, if cos(k8a)Þ0,

R→
k

k8cos~k8a!
, ~3!

which means the inside flux is suppressed asAE asE→0. It
might seem that the square well is peculiar because of its
abrupt edge, but even a smooth potential becomes very sharp
on the scale of a wavelength asE→0.

One of the exceptions to the suppression is the possibility
of a bound state existing exactly at threshold (E50). This is
seen in the formula forR when cos(k8a)50. If such a
threshold bound state is pushed up or down only slightly,
suppression is restored, but to see it one has to get very close
to E50. This effect is easily explored with the help of Eq.
~2!.

Another instructive example is a simple one-dimensional
step-down potential. This potential naturally has no compli-
cations from bound-state resonances. In the case of a smooth
step downV(r )5A2A/@11 exp (r)# it can be shown that
the transmission probability of a plane wave over the ‘‘cliff’’
of energyE incident from the left is, for smallE,

T54A2p coth~pA2A!AE, ~4!

wherem5\51. ~This can be deduced from a discussion in
Ref. @12#.! Classically, the transmission probability is always
unity at any positive energy. The fundamental cause of the
suppression is seen in this example as the reduction of trans-
mission past a purely attractive ledge. The ratio of the quan-
tum to the classical probability for finding the particle to the
right of the step vanishes asAE.

B. Classical and semiclassical theory

Classically, the ratio of the probability density per unit
distance of finding the particles inside and outside the well is
equal to the inverse ratio of the speeds. Ifv` is the incident
velocity andv is the velocity at the deepest point of the well,
the ratio is given by

Kcl5
v`

v
5S E

E1D D 1/2, ~5!

which for low values ofk52mv/\ becomes

Kcl5
\k

A2mD
S 12

\2k2

4mD
1••• D . ~6!

In the semiclassical description, the amplitude is decom-
posed into incoming and outgoing terms, each of which has
the square root of the classical probability density as a pref-
actor. The two terms combine to give interference oscilla-
tions but after squaring the wave function and averaging over
the oscillations the classical probability density is recovered.
The semiclassical or Wentzel-Kramers-Brillouin~WKB!
scattering wave function in a potentialV(r ) is

uWKB~r !5
C

Ap~r !
sin@f~r !1p/4#, ~7!

where

p~r !5H 2m

\2 @E2V~r !#J 1/2, ~8!

f~r !5
1

\Er0~E!

r

p~r 8!dr8, ~9!

andr 0(E) is the inner distance of closest approach andC is
a normalization constant.

Near the equilibrium distancer e of an attractive well, the
wave functionuuWKB

in u will reach a local maximum; this local
maximum will act as a reference amplitude for comparison
with the external amplitude. Suppose this maximum is
reached atr in* ; then sin@f(r in* )1p/r #561 and,

uWKB
in 5uWKB~r in* !5

C

Ap~r in* !
, ~10!

where, because energy is close to zero, we may take
p(r in* )5A22mV(r in* ). At large distance we have

uWKB
out 5

C

A\k
sin~kr1h WKB!, ~11!

wherehWKB is the semiclassical approximation to the phase
shift. The semiclassical density ratio is

Ksc5
uuWKB

in u2

uuWKB
out u2

5
\k

pe
5S E

E1D D 1/2, ~12!

identical to the~incorrect! classical result. Thus suppression
requires a breakdown of the WKB approximation, as first
pointed out by Julienne and Mies@10,11#.

C. Breakdown of the semiclassical theory

The semiclassical WKB approximation is accurate when
the wavelength undergoes little change in a wavelength.
Thus we need the condition

eWKB5\
up8~r !u
p~r !2

!1 ~13!

for WKB to work. We show in Fig. 1 the WKB erroreWKB
for the Morse potential
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V~r !510@12 exp ~2r !#2210, ~14!

~with m5\51) for three different energies,E50.05, 0.005,
0.0005. A similar figure was given by Julienne and Mies@10#
for the collision of two He(3S) atoms. The error increases
with lower energy and extends to larger radii, pointing to the
region where the suppression originates. Proceeding outward
at small r and passing through the inner turning point~at
which the WKB approximation fails but is easily corrected!,
the wave function enters the well. Inside the entire well re-
gion well the WKB wave function is accurate. As it moves
towards the asymptotic region, it breaks down for low ener-
gies, but eventually regains its accuracy as it reaches still
larger distances. Because of the breakdown region, the as-
ymptotic WKB solution has the wrong amplitude and phase.
This error is the harbinger of the suppression phenomenon.

D. Quantum suppression

The partial-wave equation for zero-angular-momentum
scattering of a particle of massm by a potentialV(r ) is

d2u~r !

dr2
1Fk22 2mV~r !

\2 Gu~r !50, ~15!

such thatu(0)50. It is convenient to normalizeu(r ) to the
asymptotic form

uout~r !;
sin~kr1h!

sinh
, ~16!

so that in the zero energy limit

uout~r !;12r /a, ~17!

wherea is the scattering length. The quantum ratio of the
probability densities is given by

Kqm5
uuin~r in* !u2

uuout~r out* !u2
[uuinu2 sin2h, ~18!

where we have used a large exterior reference radiusr out*
such that sin(krout* 1h)561, and where we have dropped
the argument (r in* ). Provided that the potential falls off faster
thanr25, we can use effective range theory@13# to write Eq.
~18! as

Kqm5uuinu2
k2

k21S 1a2
1

2
rk2D 2 , ~19!

5a2uuinu2k2@11ak2~r2a!1•••#, ~20!

where r is the effective range. The ratio of the quantum-
mechanical probability of entering the well to the semiclas-
sical probability Eq.~5! is given by

P5
Kqm

Ksc
'
2m

\2 a
2uuinu2AD1EAE

3F11
2mEa

\2 ~r2a!1 . . . G , ~21!

asE→0.
We now demonstrate that the amplitude of the inner wave

function is independent ofE asE→0. Following Gribakin
and Flambaum@14#, we obtain an analytical expression for
uin(r ) by solving thes-wave scattering Eq.~15!. We use the
WKB approximation for scattering in an attractive potential
that varies at large distances as2ar2n. At E50 the condi-
tion Eq. ~13! for the validity of the WKB approximation in
this case is

r!S 2g

n D 2/~n22!

, ~22!

whereg5A2ma/\2. For 7Li, n56 andg54213 a.u., hence
we must haver!37a0 to be in the ‘‘safe’’ zone for WKB.
The 7Li potential-energy curve retains its long-range form
into separationsr * much less than 37a0 , so that there is a
large region ofr where the WKB approximation is valid and
the potential varies asr26. The WKB approximation is also
valid within the potential well and we can write the zero-
energy wave function in the form

uin~r !5
C

Ap0~r !
sin S 1\Er0

r

dr8p~r 8!1p/4D , r.r 0 ,

~23!

where r 05r 0(0) is the inner classical turning point and
p05A22mV(r ). The normalization constantC is chosen so
that bothuin(r ) anduout(r ) match atr * . By extending the
Gribakin and Flambaum analysis~see Appendix!, we find
that

C5
A\

cos~F2r *2p/4! H G~11n!

Apn~gn!n cos~r *2pn/22p/4!

2
G~12n!~gn!n

aApn
cos~r *1pn/22p/4!J , ~24!

where n51/(n22), x52gnr21/2n, and F5f(r * )1x*
evaluated at zero energy. Then near the equilibrium distance
r e ,

uin52
A\

a

G~12n!~gn!n

Apn~2mD !1/4
sin~pn!

cos~F2np/2!
. ~25!

FIG. 1. A plot of the WKB error term as a function of coordinate
for three low energies:E50.05 a.u.~solid!, E50.005 a.u.~dashed!,
andE50.0005 a.u.~dash-dot!.
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Equation ~25! shows that with the normalization Eq.~17!,
uin(r in* ) is independent ofE at lowE. Therefore, the ratioP
of the quantum mechanical to the semiclassical probability
of finding the particle in the inner well tends to zero as
E1/2, a result that is consistent with the conclusions of
Clougherty and Kohn@4# for atom-surface scattering, includ-
ing ~in their case! inelastic processes. Inserting Eq.~25! into
Eq. ~21! we can writeP as

P5P0E
1/2F11

2mEa

\2 ~r2a!1••• G , ~26!

with

P05S 2m

\2 D 1/2@G~12n!#2~gn!2n

~2mD !1/2
sin 2~pn!

cos2~F2pn/2!
.

~27!

The lone exception is a zero-energy bound state, where the
factor cos(F2np/2) vanishes as the scattering lengtha
blows up asE→0, giving an energy dependence to Eq.~25!.

The wave function accumulates in the inner well at threshold
resonances because once amplitude is ‘‘captured,’’ it is diffi-
cult to escape. For some purposes it is useful to think of the
suppression effect as a penetrable barrier potential that nor-
mally reflects amplitude, except if there is a quasibound state
~resonance! inside the barrier.

III. SCATTERING: THE ALKALI-METAL ATOMS

In this section we calculate the suppression effect for
7Li- 7Li and 23Na-23Na, collisions for which accurate
potential-energy curves have been constructed@15#. The par-
tial wave equations were solved by numerical integration. In
Table I, we give the magnitudeuuinu of the inner wave func-
tion evaluated near the deepest point of the wells for the four
potential-energy curves. As predicted, the wave function is
nearly independent of the energy of relative motion. In Table
II we compare the magnitudeuuinu of the inner wave function
determined numerically from Table I for lnE510212 a.u.
with the results of the analytical formula Eq.~25!, for
E50. The agreement demonstrates the utility of Eq.~26!. In
Figs. 2 and 3, we compare the numerical and analytical re-
sults for the suppression factor in the formR5P21. The
calculatedR includes the second terms of the expansion Eq.
~26!. The agreement is close. Both sets of results demon-
strate the dramatic rise in suppression as the energy de-
creases below 10210 a.u. or, equivalently, 30mK.

IV. PHOTOABSORPTION AND THE FACTORIZATION
APPROXIMATION

Photoabsorption of radiation by colliding alkali-metal at-
oms has been the subject of considerable experimental and
theoretical attention@18,19#. Provided the intensity of the
radiation field is not high, the concepts behind the suppres-
sion factorP suggests an approximate factorization

sabs5PsWKB , ~28!

TABLE I. Phase shift and inner amplitude as a function of the
kinetic energy.

X1Sg
1 a3Su

1

log10E h uuexact
in u h uuexact

in u

Li2
29.0 20.132 945 0.032 457 6 0.055 288 0.310 242 8
210.0 20.041 795 0.032 966 9 0.019 194 0.290 084 0
211.0 20.013 206 0.033 025 2 0.006 130 0.288 043 1
212.0 20.004 176 0.033 031 3 0.001 940 0.287 835 3

Na2
29.0 20.240 411 0.029 065 6 20.500 465 0.040 283 7
210.0 20.072 210 0.032 119 0 20.158 352 0.044 769 2
211.0 20.022 644 0.032 565 3 20.050 039 0.045 276 0
212.0 20.007 153 0.032 615 9 20.015 822 0.045 329 7

TABLE II. Inner amplitudeuuinu determined from Eq.~25! for zero-energy (n56,n5
1
4) compared to the

Table I numerical resultsuuexact
in u at lnE510212. All quantities are in atomic units.

Li 2 Na2

2m 5 12 798.391 2m 5 41 907.7602
a 5 1388 a 5 1472
g 5 4213.274 g 5 7854.185

Quantity
X1Sg

1 a3Su
1 X1Sg

1 a3Su
1

a
36.9 217.2 34.94 77.3

r 66.5 1014.8 187.5 62.5
D 3.880 4631022 1.519 06331023 2.743 835 931022 7.931 79831024

F 42p10.204 218 11p11.389 241 66p10.5506 15p12.8548

uuinu 0.0325 2 0.2885 2 0.0318 0.0455
uuexact

in u 0.0330 3 0.2878 4 0.032 62 0.045 33
P05R0

21 3 632.673 12 275.733 9 343.428 15 967.447
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wheresabs is the quantum cross section,P is the probability
of entering the well andsWKB is the cross section obtained
with WKB wave functions. The factorization should be suc-
cessful provided no threshold resonances occur. Such a fac-
torization is also clearly discussed in the work of Julienne
and Mies@10#. Because of the quantum suppression, a kine-
matical estimate of the frequency of approach into the well
may be seriously misleading. We explore the case of photo-
absorption by a pair of7Li atoms colliding in theX 1Sg

1 and
a 3Su

1 states of7Li2 , assumings-wave scattering. The po-
tentials and transition dipole moments are summarized by
Côté et al. @15#. The dipole matrix element that controls the
absorption probability is

Dv~E!5E
0

`

druv~r !D~r !uE~r !, ~29!

whereD(r ) is the dipole transition moment,uv(r ) is the
final vibrational state wave function anduE(r ) is the initial
wave function describing a pair of free atoms with an energy
E of relative motion. Then

uDv~E!u25PuDv
WKB~E!u2, ~30!

where

Dv
WKB~E!5E

r0

`

druE
WKB~r !D~r !uv~r !. ~31!

In Fig. 4~a!, we compare the quantum and the uncorrected
and corrected semiclassical values ofuDv(E)u2 for v568 as
a function ofE for the singletX 1Sg

12A 1Su
1 transition.

The correction is substantial and it brings the semiclassical
calculations into agreement with the quantum results for en-
ergies up to 1027 a.u. BeyondE51025.5, the WKB approxi-
mation is valid and no correction is needed. The simple ex-
pansion Eq.~26! does not work for the intervening energy
range.

Similar conclusions apply to the triplet transition
a 3Su

1–13Sg
1 , although the agreement is poorer@see Fig.

4~b!#. The poorer performance arises because the classical
distance of closest approachr 0(E) in the a 3Su

1 state lies
inside the well of the excited state and the WKB truncation
of the initial free-wave function to the left of the turning
point may eliminate a contribution the matrix element. Also,
the outer turning point ofuv(r ) is at quite larger , and over-
laps withuE

WKB(r ) in a region where the WKB error term is
considerable.

The quantum suppression correction can be used for en-
ergies up to the mK range, a range well above that which
experiments are currently able to reach. Quantum suppres-
sion is an important effect in atomic collisions taking place
in weak perturbative fields.

The collision suppression in this context of a secondary
process~photoassociation! is connected to the Wigner thresh-
old law for x-wave inelastic scattering@9#, which predicts a
AE behavior very near threshold. That law, deduced origi-
nally with R-matrix theory, can be viewed as a manifestation

FIG. 2. Suppression ratioR for theX 1Sg
1 anda 3Su

1 states of
7Li 2 .

FIG. 3. Suppression ratioR for theX 1Sg
1 anda 3Su

1 states of
23Na2 .
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of the suppression: if an inelastic process requires penetra-
tion into the interaction region, then it will be suppressed by
the reflection at large distance, subject to the usual caveats
regarding threshold bound states. IndeedAE behavior for
photoassociation fors waves was seen in calculations in Ref.
@19# and ascribed to the Wigner law.

V. SUMMARY AND OUTLOOK

We have reviewed the suppression effect and provided
some perspective on what it is and when to expect it.~The
exceptions are Coulomb potentials and threshold reso-
nances.!

We have shown that the effect of quantum suppression of
collisions applies tos-wave low-energy atom-atom scatter-
ing using realistic potentials for7Li- 7Li and 23Na-23Na col-
lisions at achievable energies. The suppression effect is well
established in the field of surface collisions. Its manifestation
in scattering theory is the Wigner threshold law fors waves,
which we have reinterpreted here as quantum suppression of
the collisions at very low energy. The suppression is in fact
part of the story behind Wigner cuspk21 threshold behavior.

At energies reached by present day traps, dramatic sup-
pression exists which can affect secondary processes such as
photoabsorption and trap loss, and accretion, i.e., formation
of clusters by three-body collision.~We emphasize, however,
that these effects are already included in a proper treatment
of threshold inelastic processes.!

Bose-Einstein condensation, which is adversely affected

by actual accretion, could be assisted by the existence of
suppression of the inner part of the wave function at low
temperatures, since this suppression is independent of the
sign of the scattering lengtha. The wave-function suppres-
sion in the WKB breakdown region~typically at several tens
of atomic units! may form the last line of defense against
complete collapse of a negative scattering length Bose con-
densate. There is a caveat: large suppression sets in typically
earlier~higher energy! for positive scattering length than for
negative; this is a purely geometrical effect having to do with
the less likely combination of large asymptotic amplitude
and negative intercept for the extrapolated wave function.

We related the suppression to breakdown of the WKB
approximation~see also Refs.@10,11#!. A simple rule to es-
timate the validity of WKB is

\
up8~r !u
p~r !2

!1. ~32!

If this holds from the region of the well outward, then no
suppression will occur.

The suppression behavior in more complex regions where
multichannel couplings become relatively strong at low en-
ergies may be different@4# and remains to be explored in
atom-atom interactions.
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APPENDIX: DERIVATION OF zu0
inz

Following Gribakin and Flambaum@14#, we will find an
analytical expression foruu0

inu. To do so, we solve the Schro¨-
dinger equation fors-wave zero-energy scattering particle

d2u~r !

dr2
2U~r !u~r !50, whereU~r !5

2m

\2 V~r !,

~A1!

with the boundary conditionu(0)50.
Assuming that the WKB approximation is valid within the

potential well, we can write the wave function in the form

u~r !5
C

Ap0~r !
sinS 1\Er0

r

dr8p0~r 8!1
p

4 D for r.r 0 ,

~A2!

wherer 0 is the classical turning point andp05A22mV(r )
is the local zero-energy momentum. At large distances, the
potential varies as2a/r n and the condition for the validity
of the WKB approximation reads

FIG. 4. Dipole matrix elementsuDv(E)u2, uDv(E)u corr
2 , and

uDv
WKB(E)u2 for the levelv568 of ~a! the singlet transitions and~b!

the triplet transitions of7Li 2 .
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r!S 2g

n D 2/~n22!

, where g[
1

\
A2ma. ~A3!

In the case of lithium, takingn56 we getr!37.5a0 ~7Li:
g54213.3 a.u.!. We suppose that the potential curve takes its
asymptotic form2ar2n at a shorter distance, in which case
the differential equation becomes

d2u~r !

dr2
1

g2

r n
u~r !50. ~A4!

Defining a new functionu5Arf and a new variablex, we
can rewrite Eq.~A4! into a Bessel equation~see O’Malley,
Spruch, and Rosenberg@16#! whose general solution is given
in terms of a combination of Bessel and Neumann functions,

u.~r !5Ar @AJn~x!2BNn~x!#, r.r * , ~A5!

wheren[1/(n22) andx[2gnr21/2n. For n.3, n,1 and
we can use the expansion ofJn(x) andNn(x) for r→` ~or
x!1) to obtain the asymptotic form ofu.(r )

u.~r !5C1r1C2 , ~A6!

where

C15
B

~gn!n

1

sin~pn!G~12n!
, ~A7!

C25
~gn!n

G~11n!
@A2B cot~pn!#. ~A8!

To determine the constantsA and B, we must match the
analytical solution to the WKB solution atr * . Sincer * has
been chosen to satisfy the condition~A3!, we can assume
that its value is not too large and thatx*@1, in which case
we can use the expansion ofJn(x) andNn(x) for largex to
evaluateu.(r ) nearr * ~see Butkov@17#!. Then, we find

A

B
5tanS F2

pn

2 D , with F[
1

\Er0
`

dr8p~r 8!. ~A9!

The scattering length is simply given by

a52
C2

C1
5ā f ~F!, ~A10!

where

ā5 cos~pn!~gn!2n
G~12n!

G~11n!
, ~A11!

f ~F!5F12tanS F2
pn

2 D tan~pn!G . ~A12!

We want to normalizeu(r ) in such a way that

u~r !.C1r1C2→12
r

a
. ~A13!

So one must divide the previous result byC2 and write
u5u/C2 . At r * we have

u~r * !5
uWKB~r * !

C2
5
u.~r * !

C2
, ~A14!

which gives, after some algebra,

C

C2
5

A\

cos~F2x*2p/4! H P cosS x*2
pn

2
2

p

4 D
2
Q

a
cosS x*1

pn

2
2

p

4 D J , ~A15!

with

P[
G~11n!

Apn~gn!n and Q[
G~12n!~gn!n

Apn
, ~A16!

where we used the expressions fora andC2 , the fact that
F5f(r * )1x* and p0(r * )5\g@r * #2n/2, and also the ex-
pansion ofJn(x) andNn(x) for x*@1.

For n.3, the quantityuu0
inu can be evaluated from Eq.

~A15!. In fact, we have

u0
in[

1

Ape
C

C2
. ~A17!

Using the expression fora and Eq.~A15! for C/C2 , we can
rewriteu0

in as

u0
in.2

A\

a

G~12n!~gn!n

Apn~2mD !1/4
sin~pn!

cos~F2pn/2!
. ~A18!

As mentioned before, the casen53 is quite peculiar because
in that casen51 and the Gribakin and Flambaum scheme
becomes ill defined.
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R. Côté, A. Dalgarno, Y. Sun, and R. Hulet, Phys. Rev. Lett.
74, 3581~1995!.

@16# T. F. O’Malley, J. Spruch, and L. Rosenberg, J. Math. Phys.2,
491 ~1961!.

@17# E. Butkov,Mathematical Physics~Addison-Wesley, Reading,
MA, 1968!.

@18# P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L.
Rolston, and M. E. Wagshul, Phys. Rev. Lett.71, 2200~1993!;
C. J. Williams and P. S. Julienne, J. Chem. Phys.101, 2634
~1994!.

@19# R. Napolitano, J. Weiner, C. J. Williams, and P. S. Julienne,
Phys. Rev. Lett.73, 1352~1994!.

53 241QUANTUM SUPPRESSION OF COLD ATOM COLLISIONS


