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In this work a symmetric representation of the three-body Coulomb continuum wave function is constructed
that represents an exact asymptotic solution of the many-body Schro¨dinger equation on a five-dimensional
hypersphere of large hyperradius. Consequently, the wave function is shown to satisfy the Kato cusp conditions
at all three two-body collision points. At finite distances the proposed solution is designed to account for
properties of the total potential surface. In particular, dynamical stabilization due to the presence of ridge
structure in the total potential~Wannier ridge! is encompassed in the present treatment. The behavior of the
wave function at the total dissociation threshold is investigated. In order to allow for three-body interactions we
linearly expand each two-body Coulomb potential in terms of all three two-body potentials. The expansion
coefficients determine the amount of distortion of each two-body subsystem by the presence of the third
particle and thus give direct information on the strength of three-body interactions.

PACS number~s!: 34.80.Dp, 34.10.1x, 25.10.1s

The study of the dynamics of three charged particles mov-
ing in the three-body continuum is one of the fundamental
outstanding questions in atomic, molecular, and nuclear
physics. The simple analytic dependence of Coulomb poten-
tials and the small number of particles involved are in great
contrast to the complexity of this process. The main diffi-
culty arises from the infinite range of Coulomb forces which
forbids free asymptotic states of charged particles. Hence, a
three-body Coulomb continuum state remains a correlated
one in the whole Hilbert space. This brings about principle as
well as practical problems. Standard methods of scattering
theory assume, in general, short-range forces, and therefore
are not applicable to Coulomb systems. The evaluation of
transition amplitudes for reactions involving charged par-
ticles requires then the knowledge of a many-body wave
function whose exact form is unknown. Much theoretical
effort has been thus devoted to finding approximate expres-
sions for this wave function. An important prototype of such
a problem is the motion of two electrons in the field of a
nucleus which is the final state achieved in electron-impact
ionization and double photoionization of atomic systems.
The traditional, more practical, approach has been to break
down the three-body system into two two-body subsystems
which are uncoupled in the configuration space. The correla-
tion between these two subsystems is then accounted for
parametrically, e.g., by the use of momentum-dependent ef-
fective product charges@1–3#. In other words the six-
dimensional wave function of the three-body continuum is
expressed in the coordinatesra ,rb of two electronsa,b with
respect to the nucleus. No explicit dependence on the elec-
tron coordinaterab5ra2rb is included. Although this ap-
proach has rendered possible the calculation of ionization
amplitudes which are to some extent in agreement with ex-
perimental data, its range of validity is difficult to estimate.
In addition, such schemes are still unsatisfactory from a fun-
damental point of view. For example, wave functions pro-
vided by such methods do not satisfy the Kato cusp condi-
tions at the electron-electron collision point and are

inconsistent with the boundary condition of the Schro¨dinger
equation, as will be shown below. Mathematically, the three-
body Schro¨dinger equation constitutes an elliptical partial
differential equation in six variables with nondenumerable
infinity of solutions. Hence, appropriate boundary conditions
prescribed on an asymptotic five-dimensional closed mani-
fold M are needed to fix the wave function describing the
process under consideration. Unfortunately, the specification
of such asymptotic states is an involved task. Redmond@4#
and others@5–7# proposed asymptotic scattering states valid
in a subspace ofM in which all interparticle distances tend
to infinity. Only recently Alt and Mukhamedzhanov@8#
showed that a correct description of the whole asymptotic
regionM requires the introduction of local relative mo-
menta. It should be borne in mind, however, that such as-
ymptotic states are crucial as boundary conditions to be im-
posed on acceptable solutions of the Schro¨dinger equation.
From a practical point of view, they are of limited value
since evaluation of ionization amplitudes involves integra-
tion over configuration space in domains outside the asymp-
totic regionM. For example, reaction zones most important
for such amplitudes are often confined to a small region
around the origin where all particles are close together.
Hence, a proper description of continuum states resulting
from such processes requires wave functions such that their
range of validity goes beyond asymptotic regions. In other
words, a propagation of asymptotic states to finite distances
must be compatible with properties of the potential surface
which is known to control the fragmentation dynamics@9#.

In this work a strategy is developed to construct three-
body continuum states which are, to leading order, exact as-
ymptotic solutions on the manifoldM. The Kato-cusp con-
ditions are then satisfied at all three two-body collision
points. At finite distances, the back-to-back configuration
ra52rb ~Wannier configuration! is correctly described by
the proposed function. This configuration is of particular in-
terest since the potential surface contains a saddle structure
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in this subspace which strongly influences the correlated dy-
namics of the system@12,9#. In addition, the behavior of the
wave function at the three-body dissociation threshold is
studied and shown to be regular. An approximate version of
the wave function derived here has already been employed
for the description of two continuum electrons following
electron-impact single ionization of helium and atomic hy-
drogen. Preliminary results for the cross section of these pro-
cesses turn out to be in good agreement with experimental
findings over a wide range of collision geometry@13,14#.
The paper is organized as follows. In Sec. I we investigate
the asymptotic behavior of the Schro¨dinger equation and the
range of validity of asymptotic wave functions and heuristi-
cally introduce the idea of this work. In Sec. II the scattering
problem is reformulated in curvilinear coordinates in which
the separation of the internal, body-fixed degrees of freedom
from the space-fixed degrees of freedom is more transparent.
Further, three-body interactions are explicitly introduced by
an expansion of each two-body potential as a linear combi-
nation of all three two-body interactions. Section III deals
with an application of the model where a wave function de-
scribing two continuum electrons in the field of a nucleus is
derived. Threshold behavior, Kato-cusp conditions, and as-
ymptotic behavior are analyzed. In addition, the uniqueness
of this procedure is discussed. Conclusions are drawn in Sec.
IV. Atomic units are used throughout.

I. ASYMPTOTIC BEHAVIOR

In the center-of-mass system the internal motion of three
charged particles with massesmi and chargesZi ; iP$1,2,3%
can be described by each of the three Jacobi coordinates
(r i j ,Rk); i , j ,kP$1,2,3%;e i jkÞ0; j. i ~see Fig. 1!. The three
sets of Jacobi coordinates can be employed equivalently.
They are connected with each other by the transformation

S r3R2
D 5D1S r23R1

D and S r12R3
D 5D2S r23R1

D , ~1!

where

D15S m23/m3 1

12m13m23/m3
2 2m13/m3

D ,
D25S 2m23/m2 1

211m12m23/m2
2 2m12/m2

D . ~2!

The reduced masses are defined as
m i j5mimj /(mi1mj ); i , jP$1,2,3%; j. i . Accordingly, the
momenta conjugate to (r i j ,Rk) are defined as (k i j ,K k).
These momenta are related to each other by

S k23K1
D 5D2

t S k12K3
D 5D1

t S k13K2
D , ~3!

whereD1
t and D2

t are transposed matrices ofD1 and D2 ,
respectively. The scalar product

~r i j ,Rk!•S k i jK k
D

is invariant for all three sets of Jacobi coordinates. The ki-
netic energy operatorH0 is then diagonal and reads

H052
1

2m i j
D r i j

2
1

2mk
DRk

, ;~r i j ,Rk!, ~4!

where mk5mk(mi1mj )/(m11m21m3). The eigenenergy
of ~4! is then given as

E05
k i j
2

2m i j
1

K k
2

2mk
, ;~r i j ,Rk!. ~5!

The time-independent Schro¨dinger equation of the system
reads

FH01(
i , j
j. i

3
Zi j
r i j

2EG ^r kl ,RmuC&50. ~6!

Here we defined a product chargeZi j5ZiZj ; j. iP$1,2,3%.
The relative coordinatesr i j occurring in the Coulomb poten-
tials have to be expressed in terms of the appropriately cho-
sen set (r kl ,Rm).

Asymptotic scattering solutions of~6! for large interpar-
ticle distancesr i j , hereafter referred to asRedmond asymp-
totic, have the form@4–7,15#:

lim
r i j→`
Rk→`

C~r i j ,Rk!→~2p!23exp~ ik i j •r i j1 iK k•Rk! )
i , j51
j. i

3

3exp@6 ia i j ln~ki j r i j6k i j •r i j !#,

;~r i j ,Rk!. ~7!

The1 and2 signs refer to outgoing and incoming boundary
conditions, respectively. The Sommerfeld parametera i j are
defined as follows:

a i j5
Zi jm i j

ki j
. ~8!

The asymptotic form~7! is the generalization of the familiar
two-body~Kepler! case to three-body systems. However, un-
like the situation in two-body scattering, in three-body sys-
tems other types of asymptotics are present where, in a cer-
tain set (r i j ,Rk), one Jacobi coordinate tends to infinity
whereas the other coordinate remains finite@8#. Therefore,
we define the following asymptotic regions:

FIG. 1. The Jacobi coordinates as used in the text.
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L:5$ r i j ,Rk ;r i j→` and Rk→`, ;~r i j ,Rk!%, ~9!

La :5H r i j ,Ra ;
r i j
Ra
→0 and Ra→`, ;~r i j ,Ra!J ,

~10!

L i j :5H r i j ,Rk ;
Rk

r i j
→0 and r i j→`, ;~r i j ,Rk!J . ~11!

The Redmond asymptotic is valid inL andL i j , but not in
La , as will be explicitly shown below. In fact, the relation
L i j,L holds~but not the converse!. Hence, we restrict the
treatment to the subspacesL andLa . The asymptotic form
of the wave function inLa is readily derived. To leading
order Eq.~6! in La takes on the form

SH01
Zi j
r i j

1
Za~Zi1Zj !

Ra
2EDca

as50, ;~r i j ,Ra!PLa .

~12!

Equation~12! is separable in the coordinates (r i j ,Ra). Solu-
tions of ~12! satisfying outgoing boundary conditions read:

ca
as5~2p!23/2exp~ ik i j •r i j1 iKa•Ra!Ni j

3 1F1~ ia i j ,1,2 i @ki j r i j1k i j •r i j # !

3exp@ i ḡaln~KaRa1Ka•Ra!#, ~13!

where

ḡa :5
Za~Zi1Zj !ma

Ka
,

Ni j :5~2p!23/2e2pa i j /2G~12 ia i j !. ~14!

The confluent hypergeometric function and the gamma func-
tion are denoted by1F1(a,b,z) andG(z), respectively. The
existence of a global analytic asymptotic defined on
M5LaøL i j derives from the fact that the regionsLa and
L i j are not disjoint. In order to find such an asymptotic form
and to facilitate the derivation of wave functions valid at
finite distances, we consider the propagation of the asymp-
totic ~7! to finite distances, as proposed in Refs.@16,7,17,15#:

C~r i j ,Rk!'C3C~r i j ,Rk!:5~2p!3/2exp~ ik i j •r i j1 iK k•Rk! )
m,n51
n.m

3

Nmn1F1~ iamn ,1,2 i @kmnrmn1kmn•rmn# !. ~15!

To show explicitly the range of validity of~15! we make, for the exact solution of~6!, the general ansatz:

C~r i j ,Rk!5C3C~r i j ,Rk!@12 f ~r i j ,Rk!#. ~16!

To be specific we choose the set (r13,R2) and insert~16! in ~6! to arrive at the differential equation

F 1

2m13
D r13

1
1

m13
~ ik131a13k13F131a12k12F12!“ r13G f

1F 1

2m23
D r23

1
1

m23
~ ik231a23k23F232a12k12F12!•“ r23G f2a12k12F12•~Z13F132Z23F23!~12 f !5Dpol~ f !, ~17!

where

Fi j :5
1F1~11 ia i j ,2,2 i @ki j r i j1k i j •r i j # !

1F1~ ia i j ,1,2 i @ki j r i j1k i j •r i j # !
~ k̂ i j1 r̂ i j !. ~18!

For the derivation of~17! we factor out the plane-wave part of~16! in Jacobi coordinates and then transform to relative
coordinates (r13,r23). This introduces the mass-polarization termDpol in ~17!, which has the form

Dpol~ f !:5
1

m3
@D1~ f21!1D2f #, ~19!

where

D2 :5@a13k13F131a12k12F12#•“ r23
1@a23k23F232a12k12F12#•“ r3

1“ r23
•“ r3

~20!

and

D1 :5~a13k13!~a23k23!F13•F232~a13k13!~a12k12!F13•F121~a23k23!~a12k12!F23•F1212k12~a12k12!~ i2a12!~11 k̂12• r̂12!

3
1F1~21 ia12,3,2 i @k12r 121k12•r12# !

1F1~ ia12,1,2 i @k12r 121k12•r12# !
1~a12k12!

1F1~11 ia12,2,2 i @k12r 121k12•r12# !

1F1~ ia12,1,2 i @k12r 121k12•r12# !

2

r 12
. ~21!
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Note that when dealing with continuum states resulting from
ionization of atomic systems we takem3 to be the mass of
the nucleus andm1 to be the mass of the particle initially
bound. In this case the polarization term~19! is negligible
(m1 /m3→0).

The solution of~6! is thus reduced to the solution of Eq.
~17!. The function f51 solves~17! but leads, however, to
the trivial solutionC50. The exact solutionC(r i j ,Rk) can
only be replaced byC3C(r i j ,Rk) if the function f50 is a
solution of~17!. This can only be the case when the inhomo-
geneous term

R:5m12Z12F12•~Z13F132Z23F23!1
1

m3
D1 ~22!

vanishes~in principle we arrive at a manifold of solutions
f5const. Due to flux argument, however, only the solution
f50 is acceptable!. The behavior of the expressionR in Eq.
~22! is dictated by the generalized functionsFi j ~18!, which
exhibit the asymptotic form

lim
r i j→`

uFi j u→U k̂ i j1 r̂ i j

k i j •~ k̂ i j1 r̂ i j !r i j
U1O~ uki j r i j1k i j •r i j u22!.

~23!

It should be emphasized that the functionsFi j andR are to
be understood in the distributive sense, i.e., asymptotically
only terms ofFi j which fall off faster than the Coulomb
potentials can be disregarded. Consequently, the expression
R ~22! is asymptotically negligible only in the case when
two independent Jacobi coordinates tend to infinity, or,
equivalently,r i j→`; i , jP$1,2,3%; j. i , for in this case we
have

lim
r i j→`
Rk→`

R→O~ uki j r i j1k i j •r i j u22!, ;r i j ,RkPL, ~24!

as is evident from~23!. That means only in the subspaces
L andL i j is the wave functionC3C an asymptotic eigen-
state of the Schro¨dinger equation~6!, in agreement with
@4–8#. In the asymptotic subspaceLa , however, the term
R ~22! is of the order of the Coulomb potential and hence
cannot be neglected. Accordingly,f50 does not solve~17!
andC3C is not a global asymptotic solution of~6! in M.
Asymptotic solutions valid inM have been proposed in Ref.
@8#. In order to obtain solutions whose validity range extends
to regions inside and outsideM the functionf , defined by
Eq. ~17!, is required. Formally this function is determined by

f5 f 02E d3r 138 E d3r 238 G~r132r138 ,r232r238 !R~r138 ,r238 !,

~25!

where the Green functionG(r13,r23) is given by

F 1

2m13
D r13

1
1

2m23
D r23

1
1

m13
~ ik131a13k13F13

1a12k12F12!•“ r13
1

1

m23
~ ik231a23k23F23

2a12k12F12!•“ r23
2

1

m3
D2GG~r13,r23!

5d3~r13!d
3~r23!. ~26!

The following boundary conditions then have to be imposed:

f ~r i j ,Rk!50, ;r i j ,RkPL, ~27!

f ~r i j ,Rk!512
ca
as

C3C
, ;r i j ,RaPLa . ~28!

From ~27! we deducef 050. However, finding the Green
functionG(r13,r23) could be quite an involved task. In order
to derive approximate analytical expression for the wave
function we consider, instead, the functional dependence of
the inhomogeneous termR ~22!. Let us assume for the mo-
ment the product chargesZi j to be position dependent and
considerR as function ofZi j . The decisive point is now to
find product charges which leave the total potential, and
hence the Schro¨dinger equation, invariant, i.e.,

(
i , j
j. i

3
Z̄i j
r i j

[(
i , j
j. i

3
Zi j
r i j

, ~29!

where the position-dependent product charges are denoted by
Z̄i j . Subject to condition~29! the treatment remains exact. In
addition to~29! we require

R~ Z̄i j !→0, ;r i j ,RaPLa , ~30!

Z̄i j finite, ;r i j ,RkPL. ~31!

Further, assume the solution of~6! to have the same analyti-
cal form as~15!, however, with product charges satisfying
~30! and ~31!, i.e.,

C~r i j ,Rk!'CDS3C~r i j ,Rk!:5exp~ ik i j •r i j1 iK k•Rk!N̄ )
m,n51
n.m

3

1F1~ ibmn ,1,2 i @kmnrmn1kmn•rmn# !, ~32!

where the normalization constant is denoted byN̄ and position-dependent Sommerfeld parameters have been introduced as

bmn5
Z̄mnmmn

kmn
. ~33!
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Now the main conjecture is, if the wave function~32! leads to the remainder~17! when making the ansatz~16! and inserting
in ~6!, then the expression~32! is an exact asymptotic inLa @because of~30! and~22!# and inL andL i j @because of~31! and
~24!#. From the above treatment, however, it is not obvious that such a procedure would be justifiable, since kinetic energy
operators would operate then on the product chargesZ̄i j . Thus, we are obliged to decouple kinematical from dynamical
properties, as will be done in the next section.

It is remarkable that familiar treatments by Peterkop@2# and Rudge and Seaton@1,18# ~see also@3#! of the two-electron
wave function in the double continuum derive from~30!, ~31!, and ~29! as a special caseZ̄1250 where the interelectronic
coordinate is chosen to ber12. In this case and under the assumptionr i j}k i j , Eq. ~29! reduces the well knownPeterkop-
Rudge-Seaton relation

Z̄13
k13

1
Z̄23
k23

5(
i , j
j. i

3
Zi j
ki j

, ~34!

where the product chargesZ̄i j now depend on the momenta rather than positions. Solutions of~6! with Z̄1250 andZ̄13,Z̄23
satisfying~34! are readily established:

CDS3C~r i j ,Rk! U
Z̄1250

5exp~ ik i j •r i j1 iK k•Rk!N̄13 1F1~ ib13,1,2 i @k13r 131k13•r13# !N̄23 1F1~ ib23,1,2 i @k23r 231k23•r23# !,

~35!

whereN̄i j :5(2p)23/2exp(2pbij /2)G(12 ib i j ). From the structure of Eqs.~35! and~15! it is obvious that the solution~35! is
asymptotically exact only in a limited subspace ofM.

II. CURVILINEAR COORDINATES FOR COULOMB
SYSTEMS IN THE CONTINUUM

In this section position-dependent product charges are de-
rived by decoupling dynamical from kinematical properties.
The total potential is invariant under overall rotations, hence
dynamical properties will depend on body-fixed~or internal!
coordinates only, i.e., on coordinates parametrizing the tri-
angle formed by the three particles regardless of its orienta-
tion in space. In addition, product chargesZ̄i j measuring the
strength of interaction between particlesi and j are known to
depend on the shape of this triangle but not on its size@9,11#.
This indicates a special functional dependence of product
chargesZ̄i j , to be introduced.

A natural space-fixed system is provided by momenta
(k i j ,K k), usually determined in scattering experiment. The
orientation of the aforementioned triangle in space is then
commonly described by Euler angles. However, these angles
are of no direct physical meaning to our problem. On the
contrary, the analytical form of~7! and the two-body Cou-
lomb continuum wave function suggest that coordinates rel-
evant to the motion of Coulomb particles are the parabolic

coordinatesj6:5r i j6 k̂ i j •r i j . Thus, it appears worthwhile
to reformulate the scattering problem in the curvilinear coor-
dinates

j1
65r 236 k̂23•r23,

j2
65r 136 k̂13•r13,

j3
65r 126 k̂12•r12,

j45r 23,

j55r 13,

j65r 12. ~36!

The coordinates (j4 ,j5 ,j6) parametrize the shape and size
of the triangle spanned by the three particles whereas the
orientation of this triangle in space is described by
(j1 ,j2 ,j3). Indeed, a relationship between the quantities
jk /r i j ;e i jkÞ0,j. iP$1,2,3% and Euler angles is readily es-
tablished@19#. The uniqueness of the transformations~36! is
indicated by the Jacobi determinant

dj1
1`dj2

1`dj3
1`dj4`dj5`dj6

d3r i j`d3Rk
}$~ k̂123 k̂23!•r23@ k̂13•~r133r23!#1~ k̂133 k̂12!•r13@ k̂23•~r133r23!#%

1

r 23r 13r 12
,

~37!

where` signifies the outer product of differential operators. From~37! it is evident that the Jacobi determinant is dimension-
less and the transformation~36! is unique if, e.g.,uk̂13• k̂23uÞ1. The6 sign in~36! implies that one takes the plus~minus! sign
if outgoing ~incoming! boundary conditions are required. To simplify notation, hereafter we confine the treatment to outgoing
waves and writej j

1[j j . Further, we exclude singular directionsr̂ i j • k̂ i j521 which corresponds to incoming waves. Treat-
ment of scattering systems with incoming boundary conditions runs along the same lines.

Since we are dealing with continuum solutions at fixed total energy~5! the following ansatz for the wave function is
appropriate:
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C~r i j ,Rk!5Nexp~ i r i j •k i j1 iRk•K k!C̄~r i j ,Rk!. ~38!

Inserting the ansatz~38! into the Schro¨dinger equation~6! leads to the equation

F 1

m i j
D r i j

1
1

mk
DRk

12i S 1

m i j
k i j •“ r i j

1
1

mk
K k•“RkD 22(

m,n
n.m

3
Zi j
r mnG C̄~r i j ,Rk!50. ~39!

In terms of the coordinates~36! Eq. ~39! casts

@Hpar1H in1Hmix#C̄~j1 , . . . ,j6!50. ~40!

The operatorHpar is differential in parabolic~external! coor-
dinates (j1 ,j2 ,j3) only:

Hpar:5
2

m23j4
@]j1

j1]j1
1 ik23j1]j1

2m23Z23#

1
2

m13j5
@]j2

j2]j2
1 ik13j2]j2

2m13Z13#

1
2

m12j6
@]j3

j3]j3
1 ik12j3]j3

2m12Z12#, ~41!

whereas the operatorH in is differential in internal coordi-
nates only:

H in :5
1

m23
F 1j42 ]j4

j4
2]j4

12ik23
j12j4

j4
]j4G

1
1

m13
F 1j52 ]j5

j5
2]j5

12ik13
j22j5

j5
]j5G

1
1

m12
F 1j62 ]j6

j6
2]j6

12ik12
j32j6

j6
]j6G . ~42!

The remainder termHmix contains mixed derivatives result-
ing from off-diagonal elements of the metric tensor and
couples internal to external motion

Hmix :5 (
uÞv51

6

$~“ r i j
ju!•~“ r i j

jv!

1~“Rk
ju!•~“Rk

jv!%]ju
]jv

. ~43!

Now the decisive point is that the operatorHpar ~41! depends
parametricallyon internal coordinates (j4 ,j5 ,j6) and is ex-
actly separable for a given set of ‘‘parameters’’ (j4 ,j5 ,j6).
This feature ofHpar remains unaffected in the case where the
product chargesZi j are position dependent, provided they
depend on internal coordinate~j4,j5,j6! only. Thus, we make
use of this additional freedom and assumeZi j5Z̄i j ~j4,j5,j6!.
The exact functional dependence will be investigated below.
With these product chargesZ̄i j , the regular exact eigenfunc-
tion of ~41! with zero eigenvalue can be given in closed
form:

C̄DS3C~j1 ,j2 ,j3!u~j4 ,j5 ,j6!

5 1F1„ib23~j4 ,j5 ,j6!,1,2 ik23j1…

3 1F1„ib13~j4 ,j5 ,j6!,1,2 ik13j2…

3 1F1„ib12~j4 ,j5 ,j6!,1,2 ik12j3…, ~44!

whereb i j are given by~33!. It should be emphasized that the
wave function~44! originates from an intrinsic separation of
the total Hamiltonian as given by~40! and is not enforced,
e.g., by some ansatz for the wave function.

The structure of the differential equation~41! and its
eigenfunction~44! resemble similar situations encountered in
adiabatic treatments where some degrees of freedom are var-
ied parametrically, or even ‘‘frozen.’’ This suggests for the
wave function~38! the approximation

C̄~j1 , . . . ,j6!'C̄DS3C~j1 ,j2 ,j3!u~j4 ,j5 ,j6! . ~45!

Note that the whole solution~38! can then be written in
terms of the coordinates~36! because the plane-wave argu-
ment can be expressed as

k i j •r i j1K k•Rk5 (
j. i51

3
mi1mj

m11m21m3
k i j •r i j

5
m1

m1
k23~j12j4!1

m2

m2
k13~j22j5!

1
m3

m3
k12~j32j6!. ~46!

To remain in the adiabatic picture, let us assume the opera-
tors Hpar andHmix commute for a fixed set of parameters
(j j , j54,5,6) ~which is, in general, not the case!. The ap-
proximation ~45! means then that, in a fragmentation pro-
cess, for example, the variation in internal coordinates
(j4 ,j5 ,j6) is negligibly small compared with the variation
in parabolic coordinates (j j , j51,2,3). Physically, this is not
justifiable for arbitrary choice ofk i j ,K k . It is important to
recognize that parabolic coordinates (j j , j51,2,3) can also
be adiabatically treated since they enter parametrically in the
differential operatorH in @see Eq.~42!#. A comparative study
in which either (j j , j51,2,3) or (j j , j54,5,6) are considered
adiabatically would reveal direct information on the motion
of Coulomb particles. Now, in analogy to an adiabatic ap-
proach one could proceed by expanding the exact wave func-
tion of the system~38! in the basis~44!. Then, in a standard
way, the Schro¨dinger equation~40! reduces to an infinite set
of integrodifferential equations for the coefficients of the
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adiabatic expansion. Details of such an expansion and its
implications will be presented elsewhere. Here we adopt a
different strategy motivated by the physical interpretation of
Eq. ~44!. According to Eq.~44! the motion of three Coulomb
particles propagates along parabolic coordinates. The
strength of interaction between two individual particlesi and
j is no longer determined by their product chargesZiZj as is
the case in two-body scattering or inC3C ~16!. The product
chargesZ̄i j (j4 ,j5 ,j6) depend rather dynamically on the
shape of the triangle formed by the three particles. This func-
tional dependence can now be designed to account for cor-
rect boundary conditions onM and, if possible, to minimize
the part not diagonalized by~44!. An natural way of intro-
ducing the functionsZ̄i j (j4 ,j5 ,j6) while preserving scaling
properties of the Schro¨dinger Eq. ~6! is to split the total
potential in three two-body-type potentialsV̄i j5Z̄i j /r i j and
to assume each of these potentials to be the most general
linear superposition of the three physical two-body potentials
Vi j :5ZiZj /r i j with coefficients āi j dependent on internal
coordinates only, i.e.,

S V̄23

V̄13

V̄12

D 5AS V23

V13

V12

D , ~47!

where Ā(j4 ,j5 ,j6) is a 333 matrix with elements
āi j5āi j (j4•••6):

A5S ā11ā12ā13ā21ā22ā23

ā31ā32ā33
D . ~48!

Taking into account thatZ̄i j5V̄i j r i j , an equivalent relation
for Z̄i j (j4 ,j5 ,j6) can immediately be deduced from~47!.
Note that Eq.~47!, an essential result of this work, introduces
three-body interactions automatically and in an obvious way.

The invariance of the total potential under the transforma-
tion ~47! requires that

(
i51

3

āi j51; j51,2,3. ~49!

Within the condition~49! our treatment is exact. To uniquely
fix the coefficientsāi j there are, in addition to~49!, six fur-
ther conditions to be imposed. These conditions can be freely
chosen according to practical considerations as well as to the
specific type of three-particle system under investigation. An
example of this will be given below. It should be mentioned
here that the simplest choice of the matrixĀ compatible
with ~49! is Ā51. In this case the wave functionCDS3C
reduces toC3C ~16!. According to Eq.~47! Ā51 means,
however, that coupling~in the configuration space! between
any of three two-body subsystems is disregarded. This is
consistent with the HamiltonianHpar @Eq. ~41!# being the
sum of three position-decoupled two-body Hamiltonians. In
this sense the wave functionC3C, the eigenfunction of
Hpar, is actuallyuncorrelated.

III. DYNAMICALLY COUPLED WAVE FUNCTION
OF TWO ELECTRONS IN THE FIELD OF A NUCLEUS

In the preceding section we outlined how additional free-
dom in constructing three-body wave functions of the form
~44! can be gained be choosing appropriate coordinates. In
this section it will be shown how the coefficientsāi j can be
designed to construct a wave function describing two con-
tinuum electrons in the field of a nucleus with the following
properties.

~i! It is, to leading order, an exact asymptotic solution of
Eq. ~6! onM.

~ii ! The motion of electrons escaping on the potential
ridge is correctly described.

~iii ! The behavior of the wave function at total breakup
threshold is regular.

~iv! The two electrons are described on equal footing.
To account for the symmetry of the final state with respect

to the two electrons, it is customary in the literature on
electron-atom ionizing collisions to designate the relative co-
ordinates of the electrons with respect to the nucleus byra
andrb ; hereafter we adopt this notation and choosem3 to be
the mass of the nucleus. The coordinatesr13[j2 , r23[j1 ,
andr12[j3 become thenrb , ra , andrba :5rb2ra , respec-
tively. Conjugate momenta, product charges, and Sommer-
feld parameters are then correspondingly renamed. The
nucleus is assumed infinitely massive.

A. Effective product charges

Condition~49!, which ensures the conservation of the to-
tal potential under~47!, requires the coefficientsāi j to be
finite in the whole phase space. Disregarding terms of the
order 1/m3 the asymptotic conditions, Eq.~13!, reduce in the
case of two electrons in the field of a nucleus of chargeZ to

lim
r a→`

~r b /r a!→0

c2
as5~2p!23/2Nbexp~ ik i j •r i j1 iKa•Ra!

3 1F1~ iab ,1,2 ikbj2!

3expF2 i
Z21

ka
lnkaj1G ~50!

and

lim
r b→`

~r a /r b!→0

c1
as5~2p!23/2Naexp~ ik i j •r i j1 iKa•Ra!

3 1F1~ iaa ,1,2 ikaj1!

3expF2 i
Z21

kb
lnkbj2G . ~51!

Further, we treat the two electrons on equal footing and take
first-order terms to arrive at the relation

lim
R3→`

~r ba /R3!→0

~K3R31K3•R3!
i ḡ3

5~kbr b1kb•rb!
i ḡ3/22i ḡ3~kar a1ka•ra!

i ḡ3/2. ~52!
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From Eq.~52! and Eq.~13! we deduce

lim
R3→`

~r ba /R3!→0

c3
as52i ḡ3~2p!23/2Nba

3exp~ ik i j •r i j1 iKa•Ra!

3 1F1~ iaba ,1,2 ikbaj3!

3exp@ iablnkbj21 iaalnkaj1#. ~53!

An important feature of the total potential which is known to
dominate the correlated dynamic of two electrons escaping
from positively charged particles is the presence of a ridge
structure in the subspacera52rb @9,10#. In this configura-
tion the force exerted on the two-electron system vanishes.
The Schro¨dinger equation reduces in this case to@9#

FH01
124Z

4r a
1
124Z

4r b
2EGCcol~r i j ,Rk!50. ~54!

Solutions of Eq.~54! describing a two-electron continuum
state can be immediately deduced:

Ccol~ra ,rb!5exp~ ikb•rb1 ika•ra!N̄a

3 1F1~ iga ,1,2 i @kar a1ka•ra# !N̄b

3 1F1~ igb ,1,2 i @kbr b1kb•rb# !, ~55!

where

ga5
124Z

4ka
, gb5

124Z

4kb
. ~56!

Asymptotically, the collinear configuration (ra52rb) is
contained in the spaceL i j,L. In fact, it can be shown that
the solutionCcol(r i j ,Rk) ~55! and the wave functionC3C
~15!, apart from an irrelevant constant phase, are asymptoti-
cally identical in the collinear configuration. At finite dis-
tances, however,C3C does not satisfy Eq.~54!. Upon com-
parison of Eq.~55! with the wave functionCDS3C, given by
Eq. ~32!, we deduce the relation

lim
ra52rb

$ Z̄a~ra ,rb ,rba!52Z1 1
4 ; Z̄b~ra ,rb ,rba!52Z1 1

4 ; Z̄ba~ra ,rb ,rba!50%, ~57!

which ensure that the two electrons escaping along the potential saddle have the behavior given by Eqs.~55! and ~54!. It
should be emphasized that asymptotic arguments are irrelevant in concluding Eq.~57!. Asymptotic conditions, as given by Eqs.
~50!, ~51!, and ~53!, can be accounted for by demanding the product chargesZ̄j ; j5a,b,ba, and hence the Sommerfeld
parametersb j ; j5a,b,ba, to satisfy the relations

lim
r b→0
r a→`

H bb~ra ,rb ,rba!5ab ; ba~ra ,rb ,rba!5
~2Z11!

ka
; bba~ra ,rb ,rba!50J , ~58!

lim
r a→0
r b→`

H ba~ra ,rb ,rba!5aa ; bb~ra ,rb ,rba!5
~2Z11!

kb
; bba~ra ,rb ,rba!50J , ~59!

lim
r ba→0

r a ,r b→`

$ba~ra ,rb ,rba!5aa ; bb~ra ,rb ,rba!5ab ; bba~ra ,rb ,rba!5aba%. ~60!

Further, a symmetrical treatment of the two electrons re-
quires

Z̄a~ra ,rb ,rba!5Z̄b~rb ,ra ,rab!, ~61!

Z̄ba~ra ,rb ,rba!5Z̄ba~rb ,ra ,rab!. ~62!

Now, to determine the product chargesZ̄j , j5a,b,ba,
which satisfy Eqs.~57!–~62!, we proceed as follows. First
we determineZ̄a . The chargeZ̄b can then be obtained using
Eq. ~61!. Taking Eq.~49! into account,Z̄ba is then deduced.
According to Eq.~47!, Z̄a has the form

Z̄a~ra ,rb ,rba!52Zā111ā12
r a
r ba

2Zā13
r a
r b
. ~63!

Condition ~59! imposed onZ̄a(ra ,rb ,rba) leads toa1151.
To ensureZ̄a(ra ,rb ,rba) being finite in the limits given by
Eqs.~58! and ~60! we make for the coefficientsā12,ā13 the
ansatz

ā125a12S 32cos4a

4

r ba
r a1r b

D 2 r a
r a1r b

,

ā135a13S r b
r a1r b

Dm, ~64!
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wherea12(ra ,rb ,rba),a13(ra ,rb ,rba) are arbitrary functions,
cosa5rb /A(r a21r b

2), andm.1 is an arbitrary positive real
number. Subject to condition~58!, Z̄a(ra ,rb ,rba) has to sat-
isfy the relation~notem.1):

lim
r b→0
r a→`

Z̄a~ra ,rb ,rba!52Z1152Z1a12, ~65!

which requiresa1251. In addition, relation~57! imposed on
~63! leads to

lim
rb→ra

Z̄a~ra ,rb ,rba!52Z1
1

4
52Z1

1

4
1a132

2m

~66!

and hencea1350. Thus, the chargeZ̄a reads:

Z̄a~ra ,rb ,rba!52Z1S 31cos42a

4

r ba
r a1r b

D 2 r a
2

~r a1r b!r ba
.

~67!

The analytical form ofZ̄b(ra ,rb ,rba) derives from Eqs.~67!
and ~61! to

Z̄b~ra ,rb ,rba!52Z1S 31cos42a

4

r ba
r a1r b

D 2 r b
2

~r a1r b!r ba
.

~68!

Finally, the interelectronic chargeZ̄ba(ra ,rb ,rba) is obtained
using Eq.~49!, which can be formulated in the form

Z̄ba~ra ,rb ,rba!52Z
r ba
r a

2Z
r ba
r b

112Z̄a
r ba
r a

2Z̄b
r ba
r b

512S 31cos42a

4

r ba
r a1r b

D 2 ~69!

It is readily established that the conditions given by Eqs.~49!
and ~57!–~62! are satisfied by the product charges deter-
mined above. The uniqueness of this procedure will be dis-
cussed below.

B. Physical interpretations

According to CDS3C(ra ,rb) constructed with product
charges given by Eqs.~67!–~69! the motion of Coulomb par-
ticles proceeds along parabolic coordinatesj1...3, as is the
case withC3C(ra ,rb). In contrast toC3C(ra ,rb) however,
the wave functionCDS3C(ra ,rb) does not separate into a
product of three two-body Coulomb continuum states as it
might appear at first glance. Rather, it is a product of three
functions each of them is a three-body function. To see this
directly we introduce hyperspherical coordinates
r:5Ar a21r b

2, tana5r a /r b , cosu5r̂a• r̂b . Now consider
for example the part ofCDS3C(ra ,rb) depending on the in-
terelectronic parabolic coordinatesj3 . The chargeZ̄ba and
thus the strength of repulsion between the electrons, is de-
pendent on the shape of the triangle formed by the three
particles, as shown in Fig. 2, whereas in theC3C approxima-
tion Zba would be a constant surface atZba51. Now if the
two electrons emerge in the same directionrba→0 the
electron-electron interaction is fully switched on. As the two
electrons move away from each other their mutual repulsive
interaction is gradually screened by the nucleus. For ex-
ample, if one electron is far away from the nucleus whereas
the other is near the nucleus then the electron-electron inter-
action is totally switched off due to screening and the elec-
tron nearby the nucleus experiences the full nuclear charge,
whereas the other electron ‘sees’ merely an effective charge
of Z21 @compare Eqs.~67! and ~68!#. When the two elec-
trons travel outward on opposite sides of and equal distances
from the nucleus, i.e., in the Wannier configuration, the
electron-electron repulsion possesses a local minimum and is
subsumed completely in an effective electron-nuclear inter-
action. Considering the back-to-back configuration
( r̂a52 r̂b) and varying the ratioa, the electron-electron in-

FIG. 2. The chargeZ̄ba , as given by Eq.~69!,
depicted in hyperspherical coordinates.
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teraction is slowly switched on. The electron nearby the
nucleus becomes more attracted the closer it approaches the
nucleus whereas the other electron is increasingly screened
from the nucleus. This mechanism closely resembles the sta-
bility analyses by the Wannier theory for low energetic three-
body break up@12,21–28#. We remark, however, that the
Wannier theory deduces the energy functional dependence of
the total ionization cross section at the three-particle frag-
mentation threshold from the volume of the phase space
available for double escape of the two electrons. In the Wan-
nier theory and its modifications@12,21–25# the total poten-
tial is expanded around the Wannier configuration. In con-
trast, in the present treatment the total potential is exactly
diagonalized because of Eq.~49! whereas parts of the kinetic
energy are neglected~as shown below!. Hence, a direct link
between this work and the Wannier theory is not obvious. In
particular, it is not clear whether the theory presented in this
work would lead to the Wannier threshold law for the total
cross section. In a forthcoming work we will show, however,
how the Wannier threshold law can be explicitly imple-
mented when constructing the dynamical product charges
Z̄j , j5a,b,ba.

C. Threshold behavior

It is established that the wave functionC3C(ra ,rb), when
employed to describe a continuum final state resulting from
an ionization process, leads to ionization cross sections ex-
ponentially decreasing with decreasing small excess energy
@20#, a fact which is at variance with the Wannier theory and
experimental finding. Here the origin of this shortcoming is
investigated and it is shown how the coupling introduced by
Z̄j , j5a,b,ba, removes this deficiency. To this end we in-
troduce hyperspherical momenta

K:5~ka
21kb

2!/25E, tanb5
ka
kb
, and cosQk5 k̂a• k̂b .

~70!

From Eqs.~68!, ~69!, and ~61! it is clear that the product
charges, given by Eqs.~67!–~69! are limited to the intervals
Z̄a ,Z̄bP@2Z,0#;Z̄baP@0,1#, i.e., a two-body interaction can
be screened by the presence of a third charged particle but
does not change sign. Thus, expanding the wave function
C̄DS3C(ra ,rb) @see Eq.~44!# in terms of Bessel functions
@29,30# and, for small excess energiesE→0, taking leading
order terms in excess energy we obtain

lim
E→0

C̄DS3C~ra ,rb!

5J0~2A2Z̄aj1!J0~2A2Z̄bj2!I 0~A2Z̄baj3!, ~71!

whereJ0(x),I 0(x) are Bessel and modified Bessel functions,
respectively. A similar equation applies toC3C(ra ,rb) with
the replacementZ̄a52Z5Z̄b ,Z̄ba51. The Bessel function
J0(x) has an oscillatory bound asymptotic behavior whereas
the modified Bessel functionI 0(x), corresponding to the
electron-electron interaction, is unbound for large arguments
x. Hence, to account for this behavior, the normalization
uNeeu2 of the electron-electron Coulomb wave must decrease
exponentially with vanishing excess energy. The ionization

cross section declines then exponentially at lower excess en-
ergy. This behavior is consistent within a two-body electron-
electron Rutherford scattering. Since the wave function
C3C(ra ,rb) describes the three-particle system as three non-
interacting two-body systems~as shown above! it is compre-
hensible that properties of the electron-electron Rutherford
scattering are directly reflected into the behavior of the
whole system. It should be noted, however, that in a three-
body continuum the two electrons are subject to the total
potential, which is totally different from their mutual repul-
sive two-body interaction. Thus, even though the normaliza-
tion factor ~also called the Gamov factor! uNeeu of the
electron-electron interaction, occurring, for example, in
C3C(ra ,rb), can sometimes be useful in simulating electron-
electron repulsion in the continuum@31,32# it originates from
a wrong behavior of the corresponding radial part. Since the
product chargesZ̄a ,Z̄b ,Z̄ba are designed to account for prop-
erties of thetotal potential it is expected thatCDS3C(ra ,rb)
has a drastically different threshold behavior than

C3C(ra ,rb). In fact, the argumentA2Z̄baj3 of the modified
Bessel function in Eq.~71! remains limited whenj3 tends to
infinity since thenZ̄ba becomes zero. This can be seen when
rewriting Eq. ~69! in the Jacobi coordinates (R3 ,r12) and
considering r 12[j3→`. Therefore, the exponential de-
crease of ionization cross sections when employing
C3C(ra ,rb) final state is removed by usingCDS3C(ra ,rb) to
describe the state of the final channel@13,14#. Investigation
of the exact threshold behavior of the total cross section for
two-electron escape usingCDS3C(ra ,rb) for the final state is
a mathematically involved task since in this case the normal-
ization ofCDS3C(ra ,rb) is required. Details of such a study
are planned to be published elsewhere.

D. Kato-cusp conditions

The normalization of an eigenfunctionC(r i j ,Rk) of the
Schrödinger equation requires the functionC(r i j ,Rk) to be
bound in the whole six-dimensional space (r i j ,Rk), i.e.,
uuC(r i j ,Rk)uu,e. On the other hand, Coulomb potentials
Zi j /r i j are singular at the two-body collision pointsr i j→0.
Hence, the wave functionC(r i j ,Rk) must reveal certain
properties to be regular~at r i j→0) and normalizable. In case
C(r i j ,Rk) does not vanish at the two-body coalescence
points, these conditions are known as the Kato-cusp condi-
tions @33,34#,

S ]C̃~r i j ,Rk!

]r i j
D
r i j50

5Zi jm j iC~r i j50,Rk!, ;~r i j ,Rk!,

~72!

where C̃(r i j ,Rk) is the wave function averaged over a
sphere of small radiusr e!1 around the singularityr i j50.
Now we show that the wave functionCDS3C(ra ,rb) as de-
rived in previous sections does satisfy the conditions~72!. To
obtain an expression forC̃DS3C(ra ,rb) at, e.g., the collision
point (r b50,r a /r b→`), we linearizeCDS3C(ra ,rb) around
r b50,
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C̃DS3C~rb ,ra!5N exp~ ika•ra!

3 1F1~ iba ,1,2 i @kar a1ka•ra# !

3 1F1~ ibba ,1,2 i @kbar ba1kba•rba# !

3D~rb!, ~73!

whereN 5(2p)3/2) j N̄ j , j5a,b,ba, and

D~rb!5
2p

4pr e
2E

21

1

r e
2dcosu@11 ikbcosu1abkbr b~11cosu!#

511abkbr b . ~74!

In deriving Eq. ~74! we take thez axes askb and define
cosu5k̂b• r̂b . Note that in the limit (r b→0;r a /r b→`) and
to leading order the Sommerfeld parameterbb tends toab
@see Eq.~58!#. Therefore, we arrive at

S ]C̃DS3C~rb ,ra!

]r b
D
r b50

5ZbN exp~ ika•ra!

3 1F1~ iba ,1,2 i @kar a1ka•ra# !

3 1F1~ ibba ,1,2 i @kbar ba1kba•rba# !

5ZbCDS3C~r b50,ra!. ~75!

The Kato-cusp conditions at (r a50,r b /r a→`) and
(r ba50,R3 /r ba→`) can be shown to be fulfilled in an
analogous way. Two important remarks are due here. Follow-
ing the procedure above, the wave functionC3C(rb ,ra) is

shown to satisfy the Kato-cusp conditions and hence exposes
a regular behavior at all two-body collision points. This is a
direct consequence of all two-body interactions being ac-
counted for to infinite order byC3C(rb ,ra) on the two-body
energy shell, as shown above and in Refs.@17,35,36#.

The second remark concerns wave functionsCunkor
which do not contain an explicit dependence on the interelec-
tronic coordinatesrba , e.g., the wave function given by Eq.
~35!. Strictly speaking, these wave functions do not satisfy
the Kato-cusp condition at the electron-electron collision
point r ba50 since]Cunkor /]r 1250.

E. Asymptotic behavior

From the asymptotic properties of the product charges
Z̄j , j5a,b,ba @Eqs. ~58!–~60!# it is obvious that the con-
structed wave functionCDS3C(ra ,rb ,rba) takes asymptoti-
cally the forms given by Eqs.~50!, ~51!, and ~53!, in the
respective limits and hence solves the corresponding asymp-
totic Schrödinger equations~12!. The same asymptotic con-
ditions, as given by Eq.~12!, have been imposed on the wave
function derived in Ref.@8#. Hence, the wave function pre-
sented here and that given in Ref.@8# differ only with a
constant phase factor in the subspacesLa . To explicitly
show that the part of the three-body Schro¨dinger equation
not diagonalized byCDS3C(ra ,rb ,rba) falls faster than the
Coulomb potential in the asymptotic regionL we drop the
approximation~45! and write instead for the exact solution
the general ansatz:

C̄~j1 , . . . ,j6!5C̄DS3C~ra ,rb ,rba!~12F !. ~76!

Upon substitution of~76! in Eq. ~40! a differential equation
is obtained for the arbitrary functionF(j1 , . . . ,j6),

H ~H in1Hmix!C̄DS3C~ra ,rb ,rba!

C̄DS3C~ra ,rb ,rba!
J ~12F !22FD

2
1“1lnC̄DS3C•“11“2lnC̄DS3C•“21 i ~ka•“11kb•“2!GF50. ~77!

The differential operators appearing in Eq.~77! have the forms “15( j51
6 (“aj j )]j j

,“25( j51
6 (“bj j )]j j

, and

D5( j51
6 (Da1Db)]j j

1( i , j51
6 @(“aj i)•(“aj j )1(“bj i)•(“bj j )#]j j

]j i
. The differential operatorHmix has the explicit form:

Hmix

2
5~ k̂ba1 r̂ba!•@~ k̂b1 r̂b!]j2

2~ k̂a1 r̂a!]j1
#]j3

1 r̂ba•@~ k̂b1 r̂b!]j2
2~ k̂a1 r̂a!]j1

#]j6

1~ k̂a1 r̂a!• r̂a]j1
]j4

1~ k̂b1 r̂b!• r̂b]j2
]j5

1~ k̂ba1 r̂ba!•@ r̂b]j2
2 r̂a]j1

12r̂ba]j6
#]j3

1 r̂ba•~ r̂b]j2
2 r̂a]j1

!. ~78!

The coordinatesr̂ j , j5a,b,ba occurring in Eq.~78! have to be expressed in terms of the coordinates~36!, which can be done
using symbolic computational programs.

The exact solution of the Schro¨dinger equation~40! can be replaced byC̄DS3C(ra ,rb ,rba ,) only if the functionF50 is a
solution of Eq.~77!, which is the case if the norm of the inhomogeneous operator in Eq.~77! is negligible. Thus, we can
restrict the discussion to the study of the inhomogeneous term

R5
~H in1Hmix!C̄DS3C~ra ,rb ,rba!

C̄DS3C~ra ,rb ,rba!
. ~79!

Note that derivatives of confluent hypergeometric functions with respect to the first argument can be performed by using the
series expansion, which is continuously convergent for the parameters used here and exchange summation and derivation. Now
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the termR depends on the product chargesZ̄j , j5a,b,ba. The asymptotic behavior ofR for large interparticle separations,
i.e., in the Redmond asymptotic, is controlled by the fact that the product chargesZ̄j , j5a,b,ba are constant in this limit. This
could be immediately seen by employing the parametrization

r a5 r̄ at, r b5 r̄ bt, and r ba5 r̄ bat, ~80!

where r̄ a , r̄ b , r̄ ba are nonvanishing, positive real constants andt is a positive real parameter which goes to infinity for large
interparticle separation, e.g., we can take the parametert to be the hyper-radius, thus the Coulomb potential is of the order
1/t. In the asymptotic regionL the termR has the form

lim
t→`

R5 lim
t→`

F Z̄b~ r̄ a , r̄ b , r̄ ba!~ k̂b1 r̂b!
1F1„ibb@ Z̄b~ r̄ a , r̄ b , r̄ ba!#11,2,2 ikbj2…

1F1„ibb@ Z̄b~ r̄ a , r̄ b , r̄ ba!#,1,2 ikbj2…

3Z̄a~ r̄ a , r̄ b , r̄ ba!~ k̂a1 r̂a!
1F1„iba@ Z̄b~ r̄ a , r̄ b , r̄ ba!#11,2,2 ikaj1…

1F1„iba@ Z̄b~ r̄ a , r̄ b , r̄ ba!#,1,2 ikaj1…
G

3Z̄ba~ r̄ a , r̄ b , r̄ ba!~ k̂ba1 r̂ba!
1F1„ibba@ Z̄b~ r̄ a , r̄ b , r̄ ba!#11,2,2 ikbaj3…

2 1F1„ibba@ Z̄b~ r̄ a , r̄ b , r̄ ba!#,1,2 ikbaj3…
→O~ t22!. ~81!

Therefore, the wave functionCDS3C is an asymptotic solution in the regimeL. To prove that the wave function is also an
asymptotic solution in the subspacesLa one could proceed as above and investigate the termR in the subspaceLa . This is
straightforward but cumbersome. We investigate instead the asymptotic behavior of the wave functionCDS3C in La . Let us
consider the limit (r b→`,r a /r b→0); the same consideration applies to the other limits. The wave functionCDS3Cexpanded
at (r a /r b→0,r b→`) reads

lim
~r a /r b!→0,r b→`

CDS3C5~2p!23/2Naexp~ ik i j •r i j1 iKa•Ra! 1F1~ iaa ,1,2 ikaj1!

3expF2 i
Z21

kb
lnkbj2G H 11

i

2 F ~11 r̂a• r̂b!

kba
lnj32

~31 r̂a• r̂b!

kb
lnj2G r ar b 1OS r a2r b2D J→c1

as. ~82!

Note that in Eq.~82! terms of the orderO(r a /r b) can be
neglected since they appear in the wave function and hence
correspond to terms in the Schro¨dinger equation falling off
faster than the Coulomb potential. Concluding, it has been
shown that the wave functionCDS3C(ra ,rbrba)u Z̄a ,Z̄b ,Z̄ba is an
asymptotic solution of the Schro¨dinger equation on the mani-
fold M.

F. Uniqueness

This work aims at diagonalizing the total potential exactly
by using wave functions of the analytical form given by Eq.
~44!. By doing so we are still left with an additional freedom
of splitting the total potential in the way given by Eq.~47!
and requiring~49!. The decisive point is now each choice of
the matrixĀ, given by Eq.~47!, will enter in the remaining,
not diagonalized, part of the kinetic energy as given by Eq.
~79!. In this sense, the theory presented here is a self-
consistent theory; the best choice ofĀ will minimize the
remainder termR. Hence, this work should be considered as
a starting point for systematic, more elaborate models where
the remainderR is first minimized by the method given here
and then investigated, e.g., numerically. Here we have cho-
sen Ā such that the remainderR falls off faster than the
Coulomb potential in the asymptotic regionM and the Wan-
nier configuration and the Kato-cusp conditions are ac-

counted for. As our imposed conditions@Eqs.~58!–~60!, and
~57!# are limits, there will naturally be other different func-
tions extrapolating between these limits. However, there is
no physical or mathematical reason to believe that, for ex-
ample, the simplest choice of the expansion matrixĀ51,
which leads to the wave functionC3C , given by Eq.~16!, is
more unique than the matrix used to construct the wave func-
tion CDS3C.

IV. CONCLUSIONS AND OUTLOOK

In this paper a method has been presented which, in a
three-body Coulomb continuum problem, separates internal,
body-fixed properties from space-fixed properties and allows
for introduction of three-body interactions in a mathematical
way. An example of applying the theory has been given by
constructing a wave function for two continuum electrons in
the field of a nucleus. It has been shown that the wave func-
tion can be designed to solve the time-independent Schro¨-
dinger equation asymptotically and to account for properties
of the total potential surface. The applicability of the present
model to physical reactions has already been demonstrated in
a previous work@13,14# where calculations of ionization am-
plitudes for electron-impact ionization of atomic hydrogen
and helium have been performed. Results turn out to be in
good agreement with experiments over a surprisingly wide
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range of collision geometries@13,14,37#. However, due to
technical problems we were obliged to make the approxima-
tion that the total potential is conserved only along paths of
free particles. The full numerical implementation of the wave
function presented here is the subject of current research.
Note that comparing results ofCDS3C andC3C allows for
direct estimate of the strength of three-body coupling. Be-
sides, deviations of results obtained by employingCDS3C
from experiment gives direct information on the strength of
the remainder partR. Finally, it should be noted that the
wave function derived in Sec. III is valid only for two con-
tinuum electrons in the field of a nucleus. Applications to
other three-particle systems require the detailed knowledge
of properties of the total potentials to be incorporated in the

wave functions. This can lead to totally different analytical
behavior of the effective product charges as they were intro-
duced in Sec. II.
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