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Approximate analytical solution of the quantum-mechanical three-body Coulomb continuum
problem
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In this work a symmetric representation of the three-body Coulomb continuum wave function is constructed
that represents an exact asymptotic solution of the many-body @ogey equation on a five-dimensional
hypersphere of large hyperradius. Consequently, the wave function is shown to satisfy the Kato cusp conditions
at all three two-body collision points. At finite distances the proposed solution is designed to account for
properties of the total potential surface. In particular, dynamical stabilization due to the presence of ridge
structure in the total potentidWannier ridge is encompassed in the present treatment. The behavior of the
wave function at the total dissociation threshold is investigated. In order to allow for three-body interactions we
linearly expand each two-body Coulomb potential in terms of all three two-body potentials. The expansion
coefficients determine the amount of distortion of each two-body subsystem by the presence of the third
particle and thus give direct information on the strength of three-body interactions.

PACS numbe(s): 34.80.Dp, 34.10x, 25.10+s

The study of the dynamics of three charged particles movinconsistent with the boundary condition of the Salinger
ing in the three-body continuum is one of the fundamentakquation, as will be shown below. Mathematically, the three-
outstanding questions in atomic, molecular, and nucleabody Schrdinger equation constitutes an elliptical partial
physics. The simple analytic dependence of Coulomb poterdifferential equation in six variables with nondenumerable
tials and the small number of particles involved are in greainfinity of solutions. Hence, appropriate boundary conditions
contrast to the complexity of this process. The main diffi-prescribed on an asymptotic five-dimensional closed mani-
culty arises from the i_nfinite range of Coulomb. forces which¢gld _# are needed to fix the wave function describing the
forbids free asymptotic states of charged particles. Hence, grocess under consideration. Unfortunately, the specification
three-body Coulomb continuum state remains a correlatefl; 5,ch asymptotic states is an involved task. Redrrdid
one in the whole Hilbert space. This brings about principle as,q otherg5—7] proposed asymptotic scattering states valid

well as practlcal_ problems. Standard methods of scatterlnﬁ1 a subspace of/ in which all interparticle distances tend
theory assume, in general, short-range forces, and therefofe .

. . infinity. Only recently Alt and Mukhamedzhand\8]
are not applicable to Coulomb systems. The evaluation o L .
transition amplitudes for reactions involving charged par—Sho_We‘j Ehat a _correct d_escnptlo.n of the whole as ymptotic
ticles requires then the knowledge of a many-body wave€9on % requires the mtrpduc.tlon of local relative mo-
function whose exact form is unknown. Much theoreticalMenta. It should be borne in mind, however, that such as-
effort has been thus devoted to finding approximate eX|0re§4mpto'[|c states are crucial as boundary_condltlons to'be im-
sions for this wave function. An important prototype of suchPosed on acceptable solutions of the Sdimger equation.
a problem is the motion of two electrons in the field of aFrom a practical point of view, they are of limited value
nucleus which is the final state achieved in electron-impac$ince evaluation of ionization amplitudes involves integra-
ionization and double photoionization of atomic systemstion over configuration space in domains outside the asymp-
The traditional, more practical, approach has been to brealotic region./Z. For example, reaction zones most important
down the three-body system into two two-body subsystem$or such amplitudes are often confined to a small region
which are uncoupled in the configuration space. The correlaaround the origin where all particles are close together.
tion between these two subsystems is then accounted fdtence, a proper description of continuum states resulting
parametrically, e.g., by the use of momentum-dependent efrom such processes requires wave functions such that their
fective product charge$l-3]. In other words the six- range of validity goes beyond asymptotic regions. In other
dimensional wave function of the three-body continuum iswords, a propagation of asymptotic states to finite distances
expressed in the coordinates,r,, of two electronsa,b with must be compatible with properties of the potential surface
respect to the nucleus. No explicit dependence on the elegvhich is known to control the fragmentation dynamjés.
tron coordinater,=r,—r} is included. Although this ap- In this work a strategy is developed to construct three-
proach has rendered possible the calculation of ionizatiolvody continuum states which are, to leading order, exact as-
amplitudes which are to some extent in agreement with exymptotic solutions on the manifold”Z. The Kato-cusp con-
perimental data, its range of validity is difficult to estimate. ditions are then satisfied at all three two-body collision
In addition, such schemes are still unsatisfactory from a funpoints. At finite distances, the back-to-back configuration
damental point of view. For example, wave functions pro-r,= —r, (Wannier configurationis correctly described by
vided by such methods do not satisfy the Kato cusp condithe proposed function. This configuration is of particular in-
tions at the electron-electron collision point and areterest since the potential surface contains a saddle structure
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The reduced masses are defined as
wip=rmm; /(mi+m;);i,j €{1,2,3;j>i. Accordingly, the
momenta conjugate tor{ ,R,) are defined askf;,Ky).
These momenta are related to each other by

Kos Kiz Kis

=Dt =pt
Kl) 2( Ks Ky ®
where D} and D} are transposed matrices B and D,,

respectively. The scalar product

Kii
i
FIG. 1. The Jacobi coordinates as used in the text. (rij R ( Kk)

in this subspace which strongly influences the correlated dyis invariant for all three sets of Jacobi coordinates. The ki-
namics of the systerfi2,9]. In addition, the behavior of the netic energy operatdd is then diagonal and reads

wave function at the three-body dissociation threshold is

studied and shown to be regular. An approximate version of _ LA _ LA V(1 Ry 4

the wave function derived here has already been employed O 2u T 2uy R 1T

for the description of two continuum electrons following

electron-impact single ionization of helium and atomic hy-Where u,=m(m;+m;)/(m;+m,+mz). The eigenenergy
drogen. Preliminary results for the cross section of these pro?f (4) is then given as

cesses turn out to be in good agreement with experimental 5 5
findings over a wide range of collision geomef3,14. E — Kij " Ki V(r. R

. . . . 0o— - ’ (I’”, k)- (5)
The paper is organized as follows. In Sec. | we investigate 2uij  2p

the asymptotic behavior of the Scllinger equation and the o L ]
range of validity of asymptotic wave functions and heuristi- The time-independent Schiimger equation of the system
cally introduce the idea of this work. In Sec. Il the scattering'eads
problem is reformulated in curvilinear coordinates in which

the separation of the internal, body-fixed degrees of freedom
from the space-fixed degrees of freedom is more transparent.
Further, three-body interactions are explicitly introduced by

an expansion of each two-body potential as a linear combigo e we defined a product chargg=27,Z;;j>ie{1,2,3.

nation of all three two-body interactions. Section Il deaISThe relative coordinates; occurring in the Coulomb poten-
i

with an application of the model where a wave function dé+ja s have to be expressed in terms of the appropriately cho-
scribing two continuum electrons in the field of a nucleus ISgen set 1 .R)
yR\m) .

derived_. Threshold behavior, Kato—cusp .conditions,. and as- Asymptotic scattering solutions @) for large interpar-
ymptotic behavior are analyzed. In addition, the uniquenesg o Jistances . . hereafter referred to &&edmond asymp-
of this procedure is discussed. Conclusions are drawn in Se¢ii- have the Ilgo,m[4—7 15:
IV. Atomic units are used throughout. ' T

3
7.

Ho+ 2 — —E
1] ij

j>i

(ra,Rm|¥)=0. (6)

3

I. ASYMPTOTIC BEHAVIOR lim W(r;,R)—(2m) Sexpiki-rij+iKy: Rk),Hl
rijﬂx I"J:'
—w 1=t
In the center-of-mass system the internal motion of three R
charged particles with masses and chargeZ;;i{1,2,3 xexd £iajIn(kirij=kij-rij],
can be described by each of the three Jacobi coordinates V(1 ,RY. (7)

(rij ,Re);iLi.ke{1,2,3;€,#0;j>i (see Fig. 1L The three
sets of Jacobi coordinates can be employed equivalentlyrhe + and— signs refer to outgoing and incoming boundary
They are connected with each other by the transformation conditions, respectively. The Sommerfeld parametgrare
defined as follows:
(rs)_D<r23 q 2 _D(rzs) 0
R, "R, IRy 2R, _Zijkij ®
ajj kij .
where
The asymptotic form(7) is the generalization of the familiar

Mozlmg 1 ) two-body(Keplen case to three-body systems. However, un-

D,= 1— pyguos/m2 = pya/mg like the situation in two—body'scattering, in three—body sys-
tems other types of asymptotics are present where, in a cer-
—upslm, 1 tain set ¢;;,Ry), one Japobi coordi_nate_ tends to infinity
D,= ) ) (2)  Whereas the other coordinate remains fiiB¢ Therefore,
=1+ pagpos/my = pap/my we define the following asymptotic regions:
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:%’:={rij,Rk;rij—>00 and Rk—>oo, V(rij,Rk)}, (9) wi5=(2w)_3lzexqikij-rij+iKa-Ra)Nij
) rij XlFl(ia'ijyly_i[kur +klj rl]])
Lo =11j,Rai5~—0 and R,—x, V(r;,R,), o
Ra X equ 7a|n(KaRa+ Kuz' Ra)]v (13)
(10)
Ry where
%Ij [r” ,Rk, . —>0 andr —>00 V(rij ,Rk)] . (11)
i — Lt Z)p,
The Redmond asymptotic is valid i’ and 7 , but not in Yar™ K, '
ZL., as will be explicitly shown below. In fact, the relation
7i;C .~ holds (but not the convergeHence, we restrict the Ny 1= (2m) 3%~ ”“ii’zf‘(l—iaij). (14)

treatment to the subspacé&sand.”Z, . The asymptotic form
of the wave function in%, is readily derived. To leading

order Eq.(6) in %, takes on the form The confluent hypergeometric function and the gamma func-

tion are denoted byF,(a,b,z) andT'(z), respectively. The

Z,] Z,.(Zi+Z)) as B existence of a global analytic asymptotic defined on
Hot =+ —FR— —E|¥.=0, V({1 R)eZ,. M=% ,U.%; derives from the fact that the regions, and
L “ 12 % arenot d|S]0|nt In order to find such an asymptotic form

and to facilitate the derivation of wave functions valid at
Equation(12) is separable in the coordinates;(R,). Solu-  finite distances, we consider the propagation of the asymp-
tions of (12) satisfying outgoing boundary conditions read: totic (7) to finite distances, as proposed in R¢is5,7,17,15:

3
ij Ri)=Wa(r ij R _(277)3/26X[Ilk ij""iKk'Rk)ml;.[:1 Nmn1F1(i @mn, L= 1[Knal mnt Kmn* Fmnl) - (19

n>m

W(r

To show explicitly the range of validity ofL5) we make, for the exact solution ¢8), the general ansatz:
W(rij , R =W3c(rij,Ro[1—f(rij ;R0 ]. (16)

To be specific we choose the sej{,R,) and insert(16) in (6) to arrive at the differential equation

1 1
A, _+—(ikyst+ +
[2M13Ar13 s —(ikyzt aiKiaFis 0112k12':12)Vr13
1
o — ("‘23+ @aKogF 3= a1K1oF19) - Vi | f = @1KioF 1o (Z1F 13— ZogF23) (1) =D (f), (17)
2uas " 2" 23

where

1F1(1+iaijvzv_i[kijrij+kij'rij])Iz .

i 1Fa(agp 1=ifkiri+ki i) i) 18

For the derivation of(17) we factor out the plane-wave part (f6) in Jacobi coordinates and then transform to relative
coordinates (43, »3) . This introduces the mass-polarization teby,, in (17), which has the form

1
Dpol(f)::m_s[Dl(f_l)+D2f]a (19

where

Dy =[a1KiaF1at a1KiFo]- Vr23+ [@aKogFaz— a1kiFio]- Vy at v V (20)

ras’

and

D1 =(a1K13) (a23Ka3) F1z- Foz— (a1Ky3) (@1K12) Fig Fiot (aa3Kag) (@1 Kqp) Foge Fiot 2Kyo( @ K1) (1 — agp) (1+ |212‘ F12)

F1(2+iaq2,3,—i[Kigr 1o+ Ko T12]) T (ak 2)1F1(1+i0112:2:_i[k12r12+ Ki2:T12]) 3
1F1(ia1p, 1= i[kgr 1o+ Ko T15]) 12 Fi(iagg, 1—i[Kygf 1o+ Koo Taal) oo

(21)
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Note that when dealing with continuum states resulting from s 5 , o
ionization of atomic systems we take, to be the mass of fzfo—f d rlsf d°r 236G (r 13T 13, 23— T 29) 7 13,1 29),

the nucleus anan, to be the mass of the particle initially (25)
bound. In this case the polarization tefi) is negligible
(my/m;—0). where the Green functio®(r3,r,3) is given by
The solution of(6) is thus reduced to the solution of Eq.
(17). The functionf=1 solves(17) but leads, however, to [ 1 LA + L ikt ardkeF
the trivial solution'? =0. The exact solutio (r;; ,R,) can 2u13 18 2ung 1B g B TINITIS

only be replaced byV;c(rj; ,Ry) if the functionf=0 is a

solution of (17). This can only be the case when the inhomo- + g KioF 1) - Vr13+ —(iKogt oKosFos
geneous term M23
1 1
%3 = ,LL12212F12' (Zl3F13_ Zz3F23) + H Dl (22) - a12k12|:12) : Vr23_ m_3 D2 G(r131r23)
3
vanishes(in principle we arrive at a manifold of solutions =5%(r13) 8%(ry9). (26)

f=const. Due to flux argument, however, only the solution . . )
f=0 is acceptable The behavior of the expressiotin Eq.  1he following boundary conditions then have to be imposed:

(22) is dictated by the generalized functioRg (18), which

exhibit the asymptotic form f(rij R =0, Vrij,Ree 7, (27
FoLr as
4T _ a 12
lim |FIJ|H ,l]—,l\] +O(|kijrij+kij'rij|72). f(rij’Rk)_l_ \I}sc’ Vrij’Rae’éa' (28)
rij—o kij'(kij+rij)rij

(23 From (27) we deducefy,=0. However, finding the Green
functionG(r3,r»3) could be quite an involved task. In order
0 derive approximate analytical expression for the wave
unction we consider, instead, the functional dependence of
gﬁe inhomogeneous terve (22). Let us assume for the mo-

It should be emphasized that the functidhs and.” are to
be understood in the distributive sense, i.e., asymptoticall
only terms ofF;; which fall off faster than the Coulomb

potentials can be disregarded. Consequently, the expressi .
7 (22) is asymptotically negligible only in the case when ment the product charges; to be position dependent and

two independent Jacobi coordinates tend to infinity, Or,consider.%ﬁ as function ofZ;; . The decisive point is now to

; . gy ; . find product charges which leave the total potential, and
lently,r;; — ooV 1,2 >i, f h N LS ; X
ﬁg\ljg/a entlyrj—eVi,j€{1,23:j>i, for in this case we hence the Schdbnger equation, invariant, i.e.,

Bl

ij

rij—mc

-

3
lim L%?*)O(“(ijrij"rkij'rij|_2), Vrij,Rke:%, (24) Z
o

3

_~ i

=ZJ T (29)
j>i

Ry—®

as is evident from(23). That means only in the §ub§pacesv_\/here the position-dependent product charges are denoted by
2 and 7 is the wave functionV ;¢ an asymptotic eigen- 7z, . Subject to conditiori29) the treatment remains exact. In
state of the Schuinger equation(6), in agreement with  addition to(29) we require

[4-8]. In the asymptotic subspac€,, however, the term

2 (22) is of the order of the Coulomb potential and hence %(Zj)ﬁo, Vrij,R,e %,, (30
cannot be neglected. Accordinglf==0 does not solvél7) _
and V4. is not a global asymptotic solution @6) in . 7. Z;; finite, Vr;; ,Ree Z. (31

Asymptotic solutions valid inZ have been proposed in Ref.

[8]. In order to obtain solutions whose validity range extendsFurther, assume the solution @) to have the same analyti-
to regions inside and outside” the functionf, defined by cal form as(15), however, with product charges satisfying
Eq.(17), is required. Formally this function is determined by (30) and(31), i.e.,

3
\P(rij aRk)“\PDSSC(rij aRk)::quikij'rij 'HKk' Rk)len_Izl 1F1(i:8mnili_i[kmnrmn+ kmn' rmn]): (32)

n>m

where the normalization constant is denotedl\_b\jmd position-dependent Sommerfeld parameters have been introduced as

Bmn= Ko (33
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Now the main conjecture is, if the wave functi@®) leads to the remaindét7) when making the ansafi6) and inserting
in (6), then the expressiai82) is an exact asymptotic itr, [because 0f30) and(22)] and in.# and.%j; [because 0f31) and
(24)]. From the above treatment, however, it is not obvious that such a procedure would be justifiable, since kinetic energy
operators would operate then on the product chaijes Thus, we are obliged to decouple kinematical from dynamical
properties, as will be done in the next section.

It is remarkable that familiar treatments by Peterf@pand Rudge and Seat¢f,18] (see alsd3]) of the two-electron
wave function in the double continuum derive frdB0), (31), and(29) as a special casg;,=0 where the interelectronic
coordinate is chosen to brg,. In this case and under the assumptigr<k;; , Eq. (29) reduces the well knowReterkop-
Rudge-Seaton relation

ijo

_— — 3
213 223 Z

— 34
Koo | Kos EJ K (39

where the product charges; now depend on the momenta rather than positions. Solutio8) afith Z,,=0 andZ,3,Z,;
satisfying(34) are readily established:

Wosadrij R | =expikij - rij+ Ky R)N131F1(i B13, L,—i[Kygr 131+ Ky 113])Nog1F 1 (i B2z, L= [ Kagl 231 Kog I 23]),
Z,,=0
(35

whereﬁij = (2m)  ¥exp(- mB;/2)I'(1—ip;;). From the structure of Eq$35) and(15) it is obvious that the solutio(B5) is
asymptotically exact only in a limited subspace. of.

IIl. CURVILINEAR COORDINATES FOR COULOMB coordinatesgi::rij iﬁi,— -Ijj. Thus, it appears worthwhile
SYSTEMS IN THE CONTINUUM to reformulate the scattering problem in the curvilinear coor-

In this section position-dependent product charges are dé&linates
rived by decoupling dynamical from kinematical properties.
The total potential is invariant under overall rotations, hence
dynamical properties will depend on body-fixést interna)
coordinates only, i.e., on coordinates parametrizing the tri-

. R
§1 =Tt Koz I3,

& =Tr3* Kz 13,

angle formed by the three particles regardless of its orienta- E3=rp |212. Mo,
tion in space. In addition, product chargés measuring the

strength of interaction between particieandj are known to £4=T23,
depend on the shape of this triangle but not on its [@z&]].

This indicates a special functional dependence of product §5=T13,
chargesZ;; , to be introduced.

A natural space-fixed system is provided by momenta 6=z (36
(kij ,Ky), usually determined in scattering experiment. TheThe coordinates,,¢5,£¢) parametrize the shape and size
orientation of the aforementioned triangle in space is therf the triangle spanned by the three particles whereas the
commonly described by Euler angles. However, these anglesrientation of this triangle in space is described by
are of no direct physical meaning to our problem. On the(¢,,£,,£3). Indeed, a relationship between the quantities
contrary, the analytical form of7) and the two-body Cou-  £/rj; ;€ #0,j>i{1,2,3 and Euler angles is readily es-
lomb continuum wave function suggest that coordinates reltablished 19]. The uniqueness of the transformatid$) is
evant to the mation of Coulomb particles are the parabolidndicated by the Jacobi determinant

dEFNDESNDEE NDENENDEs  ~ - . . )
- o3 r~3/\d3 R, o {(K1pX Kag) - 1o Kig- (113X T29) [+ (K13X K1p) - T1d Koz (r13Xr23) ]}
ij

Mogf 13l 12

(37)
where/\ signifies the outer product of differential operators. Fr@W it is evident that the Jacobi determinant is dimension-
less and the transformati@86) is unique if, e.qg. lk13 k.4 # 1. The= sign in(36) implies that one takes the plgsinus sign
if outgoing (incoming boundary conditions are required. To simplify notation, hereafter we confine the treatment to outgoing
waves and writ@fzgj . Further, we exclude singular directioﬁ§~ ki;=—1 which corresponds to incoming waves. Treat-
ment of scattering systems with incoming boundary conditions runs along the same lines.

Since we are dealing with continuum solutions at fixed total en€syythe following ansatz for the wave function is

appropriate:



53 APPROXIMATE ANALYTICAL SOLUTION OF THE QUANTUM- ... 2319

W(rij R =Nexp(ir;j- ki +iRy- K)W(ri ,Ry). (38)

Inserting the ansat@8) into the Schrdinger equatior(6) leads to the equation

3
iA Iy NPT B IR I —2> 4 V(ri,R)=0 (39
i pi 0 gy KR mn Fmn e
n>=m
|
In terms of the coordinate86) Eq. (39) casts ‘I_’Dssc(§1 & §3)|<g £ £
1oer 465156
[Hpar+ Hin+ HmiX]\IT(glv s 156)20' (40) = 1F1(i ﬁ23(§4,§5,§6),1,_ik23§1)

The operatoH ,, is differential in paraboli¢externa) coor- X 1F1(i 81384, 85, £6), 1~ 1K1362)
dinates €;,£>,&5) only: X 1F1( B1a(€4,85,€6),1,—1K1263), (44)

whereg;; are given by(33). It should be emphasized that the

Hpar: = M—g[ﬁglflo"gﬁ 1K2361d¢, — masla3] wave function(44) originates from an intrinsic separation of
234 the total Hamiltonian as given bit0) and is not enforced,
2 ) e.g., by some ansatz for the wave function.
+—Mlags[angzﬁgﬁ|k13§2<9§2—,u13213] The structure of the differential equatio@l) and its
eigenfunction(44) resemble similar situations encountered in
2 adiabatic treatments where some degrees of freedom are var-
ks w1sfs o [06,830¢, T Kibads, — p1aZ15], (A1) jeg parametrically, or even “frozen.” This suggests for the
wave function(38) the approximation
whereas the operatdi;, is differential in internal coordi- Ry e
nates only: P n (¢, £6)~Vpsad €1,&5 f3)|<g4 £5.£) (45)
Note that the whole solutioi38) can then be written in
Hoo=—— 1 125 £29 +2|k23§ 54(9 terms of the coordinate86) because the plane-wave argu-
N7 g €2 7845476 £, b ment can be expressed as
111 §— &5 } 3
+ 9 £20, +2ik 3 _ m; -+ m;
M13[§2 £5596 7 T3 g s kij'riJ+Kk'Rk_j>i2:1—ml+m2+m3kij'rij
1 §3— &6
+ — | =9 E50, + 2ik dg | (42 M1
| 20560t 2ikaa— g — g | (42 = kel b1 £+ ko £5)
The remainder ternil ,;, contains mixed derivatives result + E2 k(- &g) (46)

ing from off-diagonal elements of the metric tensor and

couples internal to external motion
To remain in the adiabatic picture, let us assume the opera-

tors Hp, and Hyy commute for a fixed set of parameters
H o 2 {(V Eu (V, 5 ) (&;,J=4,5,6) (which is, in general, not the caseThe ap-
proximation (45) means then that, in a fragmentation pro-
cess, for example, the variation in internal coordinates
+(Vngu)'(VRk§v)}a§u‘9§u' (43) (&4,¢5,&6) is negligibly small compared with the variation
in parabolic coordinates(,j =1,2,3). Physically, this is not
Now the decisive point is that the operatdg,, (41) depends justifiable for arbitrary choice ok;; ,Ky. It is important to
parametricallyon internal coordinateség,és,£¢) and is ex-  recognize that parabolic coordinated (j =1,2,3) can also
actly separable for a given set of “parameterg’, (¢5,&6).  be adiabatically treated since they enter parametrically in the
This feature oH y,, remains unaffected in the case where thedifferential operatoH;, [see Eq.(42)]. A comparative study
product charge<;; are position dependent, provided they in which either €;,j=1,2,3) or §;,j=4,5,6) are considered
depend on internal coordinaté,, &, &) only. Thus, we make adiabatically would reveal direct information on the motion
use of this additional freedom and assumg= Z;; (£4,6s,8s)- of Coulomb particles. Now, in analogy to an adiabatic ap-
The exact functional dependence will be investigated belowproach one could proceed by expanding the exact wave func-
With these product charge; , the regular exact eigenfunc- tion of the system(38) in the basig44). Then, in a standard
tion of (41) with zero eigenvalue can be given in closedway, the Schrdinger equatiof40) reduces to an infinite set
form: of integrodifferential equations for the coefficients of the
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adiabatic expansion. Details of such an expansion and its Ill. DYNAMICALLY COUPLED WAVE FUNCTION
implications will be presented elsewhere. Here we adopt a OF TWO ELECTRONS IN THE FIELD OF A NUCLEUS
different strategy motivated by the physical interpretation of
Eq. (44). According to Eq(44) the motion of three Coulomb
particles propagates along parabolic coordinates. Th
strength of interaction between two individual partidleand

j is no longer determined by their product charges; as is

In the preceding section we outlined how additional free-
?om in constructing three-body wave functions of the form
44) can be gained be choosing appropriate coordinates. In
this section it will be shown how the coefficien?ﬁ can be

. . designed to construct a wave function describing two con-
the case in two-body scattering orW¥iyc (16). The product tinuum electrons in the field of a nucleus with the following

chargesZ;;j(£4.¢5,66) depend rather dynamically on the ;

! ) , properties.

shape of the triangle formed by the three particles. This func- (i) It is, to leading order, an exact asymptotic solution of
tional dependence can now be designed to account for COEq 6) or{ Y '

rect boundary_conditiqns % and, if possible, to minjmize (i) The mation of electrons escaping on the potential
the part not diagonalized bi@4). An natural way of intro- ridge is correctly described.

ducing the functionZ;;(£4,£s.£5) while preserving scaling (iii) The behavior of the wave function at total breakup
properties of the Schadinger Eq.(6) is to split the total  hreshold is regular.
potential in three two-body-type potentidlg; =Z;; /r;; and (iv) The two electrons are described on equal footing.

to assume each of these potentials to be the most general To account for the symmetry of the final state with respect
linear superposition of the three physical two-body potentialgo the two electrons, it is customary in the literature on
Vij :=Z;Z;lr;; with coefficientsa;; dependent on internal electron-atom ionizing collisions to designate the relative co-

coordinates only, i.e., ordinates of the electrons with respect to the nucleus by
B andry, ; hereafter we adopt this notation and choosgto be
Vo3 Vo3 the mass of the nucleus. The coordinates=¢&,, roz=¢;,

Vel =7 v @7 a_mdrlzzgg_become themy, r,, andry,:=r,—r,, respec-

bl B B tively. Conjugate momenta, product charges, and Sommer-

Vi, V12 feld parameters are then correspondingly renamed. The
nucleus is assumed infinitely massive.

where .,/7/}(54,55,56) is a 3xX3 matrix with elements

aij=aij(é4...6): A. Effective product charges
_ o _ Condition (49), which ensures the conservation of the to-
1812813 tal potential under(47), requires the coeﬁicientﬁij to be

A= 282823 | . (49  finite in the whole phase space. Disregarding terms of the
WY order 1m; the asymptqtlc con_dltlons, EL3), reduce in the
31832833 case of two electrons in the field of a nucleus of chatge

Taking into account thaZ;;=V;;r;;, an equivalent relation lim  y3°=(2m) 3 Npexplik;; - r;j +iK, R,)

for Z;j(é4.,85,66) can immediately be deduced frof7). Fa—®

Note that Eq(47), an essential result of this work, introduces (p/ra)—0

three-body interactions automatically and in an obvious way. X 1F1(iap,1,—ikpéy)

The invariance of the total potential under the transforma-
tion (47) requires that

Z-1
X EXF{ =1 k—lnka§1 (50
3 a
21 a;=1; j=1,23. (49  and
=
lim  ¢3°=(27)  ¥Nexp(iki; - 1ij +iK - R,)
Within the condition(49) our treatment is exact. To uniquely Fp—o
fix the coefficientse_lij there are, in addition t¢49), six fur- (ralry)—0
ther conditions to be imposed. These conditions can be freely X Fy(iag,1—iKaty)
chosen according to practical considerations as well as to the e asl
specific type of three-particle system under investigation. An Z-1
example of this will be given below. It should be mentioned xexp{ —I k_b|nkb§2 . (59

here that the simplest choice of the matrix compatible

with (49) is .Z=1. In this case the wave functioW pssc  Further, we treat the two electrons on equal footing and take
reduces to¥ ¢ (16). According to Eq.(47) .Z=1 means, first-order terms to arrive at the relation

however, that couplingin the configuration spagdetween

any of three two-body subsystems is disregarded. This is |im (KzRz+ K3-R3)‘;3

consistent with the Hamiltoniai ,,, [EqQ. (41)] being the Rg—

sum of three position-decoupled two-body Hamiltonians. In(rba/Rs)—0

this sense the wave functioW;-, the eigenfunction of D ‘_

Hpar, is actuallyuncorrelated =(kprp+Kp-rp) 7322173(kar s+ ko 1o) 732 (52)
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From Eq.(52) and Eq.(13) we deduce W (Mo, o) =exp(iky-rp+iky ra)N,
lim  y35=2175(2m) 3Ny, X 1F1(i¥a, 1~ i[Kal s+ Ka- Fa)Np
R3*>°°
(rpa/Rg)—0 X 1F1(i v, L= i[Kerpt Ky Tp]), (59

xexplikij - rij +iK,-R,)
X F1(iapa,1,—iKpaés) where
 exli apinkpéy+iagnkyé,]. (53

An important feature of the total potential which is known to Ya= . Y=
dominate the correlated dynamic of two electrons escaping 4ka 4Ky
from positively charged particles is the presence of a ridge

structure in the subspacg= —r, [9,10. In this configura- ) , ) . ]
tion the force exerted on the two-electron system vanishe\Symptotically, the collinear configurationr{=—r) is

(56)

The Schidinger equation reduces in this casq % containecj in the space;; C . In fact, it can be shpwn that
the solutionW . (r; ,Ry) (55 and the wave functionV ;¢
1-47 1-47 (15), apart from an irrelevant constant phase, are asymptoti-
Hot 4r, * ary, —E|[Weo(rij ,R=0. (54 cally identical in the collinear configuration. At finite dis-

tances, howevel ;¢ does not satisfy Eq54). Upon com-
Solutions of Eq.(54) describing a two-electron continuum parison of Eq(55) with the wave functionV pgsc, given by
state can be immediately deduced: Eq. (32), we deduce the relation

M {Z(ra o Fod = —Z+3 Zu(Faulp Foa)=—Z+ 3 Zpa(Ta.Tp.Mpa) =0 (57
ra:—rb

which ensure that the two electrons escaping along the potential saddle have the behavior given(b9) Eagsl (54). It

should be emphasized that asymptotic arguments are irrelevant in concludify E4symptotic conditions, as given by Egs.

(50), (51), and (53), can be accounted for by demanding the product chazges=a,b,ba, and hence the Sommerfeld
parameterss; ;j =a,b,ba, to satisfy the relations

. (—Z+1)
lim ) By(ra:fb.oa) =@n;  Bala:loifba) =~ Bralla:lb.Toa) =0, (58)
r,—0 a
0
) (—2Z+1)
lim 1\ Ba(ra.lp,pa) = @a; Bb(raarbvrba):k—b; Boal(lra:p:pa) =07, (59
ra—0
rbﬂoo
lim  {Ba(ra,fb:foa) =@a; Bo(ra,b:ba) =@; Bballas'b:Mba) = Xpal- (60)
rha—0
I'at,)l'b—mo
|
Further, a symmetrical treatment of the two electrons re- _ _ _ I, N
quires Zg(Ta b Tpa) = —Zay+ alza _Za13a- (63
a
Za(TaTo Toa)=Zb(MpsFarlan), (61)  Condition (59) imposed onZ,(r,,ry.rp,) leads toay;=1.

To ensureZ,(r,,ry,ry,) being finite in the limits given by
_ _ Egs. (58) and (60) we make for the coefficienta;,,a;3 the
Zpa(Ta:lp:Tba) =Zba(lb:a:lab)- (62  ansatz

Now, to determine the product chargé, j=a,b,ba, ap,=aj,

3—cosdax rp, )2 Fa

which satisfy Eqs(57)—(62), we proceed as follows. First 4 Fatrp/ Fatrp’

we determine&Z,. The charge&Z,, can then be obtained using "

Eqg. (61). Taking Eq.(49) into accountZy, is then deduced. 5= a5 "o ) , (64)
According to Eq.(47), Z, has the form ratrp
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FIG. 2. The charg&,,, as given by Eq(69),
depicted in hyperspherical coordinates.

wherea (I, .rpa)a13(ra.Mp . Fba) are arbitrary functions, It is readily established that the conditions given by E49)
cose=r,/\[(r2+r2), andm>1 is an arbitrary positive real and (57)—(62 are satisfied by the product charges deter-
number. Subject to conditiof58), Z(r,rp,Ms) has to sat- mined above. The uniqueness of this procedure will be dis-
isfy the relation(notem>1): cussed below.
M Zo(ralp.fee)= —Z+1=—Z+ag,, 65) B. Physical interpretations
ry—0 According to Wpgsdra,rp) constructed with product
fa— charges given by Eq$67)—(69) the motion of Coulomb par-

_ ) . ) ) ticles proceeds along parabolic coordinafgs 3, as is the
which requiresa;,= 1. In addition, relatior(57) imposed on  ~55¢ WithW se(r,,rp). In contrast toW s(r,,rp) however,
(63) leads to the wave functionW pg3dr,,r,) does not separate into a
product of three two-body Coulomb continuum states as it
might appear at first glance. Rather, it is a product of three

— 1 1
im Z,(ry,rp,rpa)=—2+-=—72+—-+a,2" " ; X . i
a(la:Mo.Mba) 4 4 =13 functions each of them is a three-body function. To see this

ry—r
oo (66) directy we introduce hyperspherical coordinates
_ p:=Nrs+rg, tam=r,/ry, co¥=r,-r,. Now consider
and hencea,3=0. Thus, the chargg, reads: for example the part o pg3(r,.r,) depending on the in-
terelectronic parabolic coordinatés. The chargeZ,, and
— 3+cosfa ry, \2 rg thus the strength of repulsion between the electrons, is de-
Za(ra,rb,rba)=—2+( 2 fa+fb) (Fat o) o’ pendent on the shape of the triangle formed by the three

particles, as shown in Fig. 2, whereas in thig: approxima-
tion Z,, would be a constant surface &,=1. Now if the
The analytical form ofZ,(r,,r,.rps) derives from Eqs(67) WO electrons emerge in the same direction,—0 the
and(61) to electron-electron interaction is fully switched on. As the two
electrons move away from each other their mutual repulsive
interaction is gradually screened by the nucleus. For ex-
. ample, if one electron is far away from the nucleus whereas
(Fa*Tp)lba the other is near the nucleus then the electron-electron inter-
(68) action is totally switched off due to screening and the elec-
tron nearby the nucleus experiences the full nuclear charge,
whereas the other electron ‘sees’ merely an effective charge

2

3+cosfa ry, r2

4 ra+ry

Zp(ra,fp,lpa) =—2Z+

Finally, the interelectronic Charg%)a(ra,rb ,Tba) IS Obtained

using Eq.(49), which can be formulated in the form of Z—1 [compare Eqs(67) and (68)]. When the two elec-
trons travel outward on opposite sides of and equal distances
Zo (Fa T ):—Zrﬁ‘—zrﬂiJrl—Z Tba = Tba from the nucleus, i.e., in the Wannier configuration, the
bal\'as'bs!ba r r ay br . L. .
a b a b electron-electron repulsion possesses a local minimum and is
34 cos® , 2 subsumed completely in an effective electron-nuclear inter-
=1— @ _ba (69)  action. Considering the back-to-back configuration

4 ratrp (ro=—T}) and varying the ratiav, the electron-electron in-
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teraction is slowly switched on. The electron nearby thecross section declines then exponentially at lower excess en-
nucleus becomes more attracted the closer it approaches tbegy. This behavior is consistent within a two-body electron-
nucleus whereas the other electron is increasingly screeneglectron Rutherford scattering. Since the wave function
from the nucleus. This mechanism closely resembles the stap,(r,,rp) describes the three-particle system as three non-
b|||ty analyses by the Wannier theory for low energetic three-interacting tWO'bOdy Systen'(as shown abo\)et is compre-
body break up[12,21-28. We remark, however, that the pensible that properties of the electron-electron Rutherford
Wannier theory deduces the energy functional dependence gtattering are directly reflected into the behavior of the
the total ionization cross section at the three-particle fragynele system. It should be noted, however, that in a three-

menltatt)||onf th(rjesr:)cl)ld from th? t\}/olume IOf the phasE SpacBody continuum the two electrons are subject to the total
available for double escape of the two electrons. In the Wang yianial which is totally different from their mutual repul-

mer'theory and its mod|f|cat|or{§.2,21—23 the ‘Ot"?" poten- sive two-body interaction. Thus, even though the normaliza-
tial is expanded around the Wannier configuration. In con-. fact | led the Gamov factofN.g of the
trast, in the present treatment the total potential is exactlyt/Ion actor (also called the amov tac ee .
diagonalized because of E@9) whereas parts of the kinetic clectron-electron mter_actlon, oceurning, for _example, n
energy are neglecte@s shown beloy Hence, a direct link  ©3c{Ta.f'b), can sometimes be useful in simulating electron-
between this work and the Wannier theory is not obvious. IrEl€ctron repulsion in the continuui1,33 it originates from
particular, it is not clear whether the theory presented in thi€ Wrong behavior of the corresponding radial part. Since the
work would lead to the Wannier threshold law for the total product chargeg,,Zy,Z, are designed to account for prop-
cross section. In a forthcoming work we will show, however, erties of thetotal potential it is expected thal pg3dr,,rp)
how the Wannier threshold law can be explicitly imple- has a drastically different threshold behavior than
mented when constructing the dynamical product chargesr,(r, r,). In fact, the argument/2Z,.£; of the modified
Z;,j=a,b,ba Bessel function in E¢(71) remains limited wher§; tends to
infinity since thenz,, becomes zero. This can be seen when
C. Threshold behavior rewriting Eq. (69) in the Jacobi coordinatesRg,r;,) and

It is established that the wave functififec(r,,r,), when — considering ry,=&;—. Therefore, the exponential de-
employed to describe a continuum final state resulting frontrease of ionization cross sections when employing
an ionization process, leads to ionization cross sections ex¥'sc(r,,ry,) final state is removed by usingpssdra.rp) to
ponentially decreasing with decreasing small excess energjescribe the state of the final chanf#8,14]. Investigation
[20], a fact which is at variance with the Wannier theory andof the exact threshold behavior of the total cross section for
experimental finding. Here the origin of this shortcoming istwo-electron escape usingpss{r,.ry) for the final state is
investigated and it is shown how the coupling introduced bya mathematically involved task since in this case the normal-
Z;,j=a,b,ba, removes this deficiency. To this end we in- ization of ¥ p53(r4.rp) is required. Details of such a study
troduce hyperspherical momenta are planned to be published elsewhere.

(K2 12V o :E L
K:=(kz+kp)/2=E, tanB o and co®, =k, k.
b

(70 The normalization of an eigenfunctiofi(r;; ,R,) of the
From Egs.(68), (69), and (61) it is clear that the product Schralinger equation requires the functidn(r;; ,R,) to be
charges, given by Eq$67)—(69) are limited to the intervals bound in the whole six-dimensional spacg; (Ry), i.e.,
Z,,Zpe[—2Z,01;Z,,[0,1], i.e., a two-body interaction can ||¥(rj;,Ry)[|<e. On the other hand, Coulomb potentials
be screened by the presence of a third charged particle bi; /r;; are singular at the two-body collision pointg— 0.
does not change sign. Thus, expanding the wave functiorlence, the wave functio (r;; ,R,) must reveal certain
Wpssdrafp) [See Eq.(44)] in terms of Bessel functions properties to be reguldatr;;—0) and normalizable. In case
[29,30 and, for small excess energigs-0, taking leading W (r;;,R,) does not vanish at the two-body coalescence
order terms in excess energy we obtain points, these conditions are known as the Kato-cusp condi-
tions[33,34],

D. Kato-cusp conditions

lim Wpssdra,rp) -
E-0 av(rij Ry
(T) =ZjpiY(rj=0Ry), V(rij,Ry),

=30(2\ = Za£1)30(2V = Zpé2) 1 o(N2Zpaés),  (71) b Tnyo

whereJy(x),lo(Xx) are Bessel and modified Bessel functions,

respectively. A similar equation applies Wsc(r,,r,) with .

the replacemenf,= —Z=2,,Z,,=1. The Bessel function where ¥(r;;,R,) is the wave function averaged over a
Jo(x) has an oscillatory bound asymptotic behavior whereasphere of small radius,<1 around the singularity;; = 0.
the modified Bessel functiom,(x), corresponding to the Now we show that the wave functiolf ps3(r,,r,) as de-
electron-electron interaction, is unbound for large argumentgved in previous sections does satisfy the conditiof. To

X. Hence, to account for this behavior, the normalizationobtain an expression fo¥pgssd{r,,rp) at, e.g., the collision
IN.d? of the electron-electron Coulomb wave must decreas@oint (r,=0, ,/r,—=), we linearize¥ pgs{r,,r,) around
exponentially with vanishing excess energy. The ionizatiorr,=0,

(72
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xistsc(rb )= expliky-ry) shown to satisfy the Kato-cusp conditions and hence exposes
a regular behavior at all two-body collision points. This is a
X 1F1(iBa,1,—i[KaratKa ra]) direct consequence of all two-body interactions being ac-
. . counted for to infinite order bW 3(ry,,r,) on the two-body
X 1F1(1Bpa: 1=1[Koal batKpa: Mbal) energy shell, as shown above and in R§tg,35,38.
X D(ry), (73) The second remark concerns wave functiofs,o,
. which do not contain an explicit dependence on the interelec-
where./ = (2m)¥41;N;,j=a,b,ba, and tronic coordinates,,, e.g., the wave function given by Eq.

) (35). Strictly speaking, these wave functions do not satisfy
m (1 . the Kato-cusp condition at the electron-electron collision
— 2

D(rb)—ﬁﬂj1redcosa[1+|kbcos9+ apkplp(1+cosd)] POINt Ty .= 0 SINCEIW o/ 3T 15=0.

=1+ apkyly. (74) E. Asymptotic behavior

_ From the asymptotic properties of the product charges
Z;,j=a,b,ba [Egs. (58)—(60)] it is obvious that the con-
structed wave functionV pg3dra,ry,,rpa) takes asymptoti-
cally the forms given by Eqs(50), (51), and (53), in the
respective limits and hence solves the corresponding asymp-

In deriving Eq.(74) we take thez axes ask, and define
cosf=ky,- T, . Note that in the limit ¢,—0;r,/r,—) and
to leading order the Sommerfeld parameggrtends toay,

[see Eq(58)]. Therefore, we arrive at

o (ol totic Schralinger equation$12). The same asymptotic con-
( DS3C b a ) ditions, as given by Eq12), have been imposed on the wave
rp rp=0 function derived in Ref[8]. Hence, the wave function pre-
L sented here and that given in R¢8] differ only with a
=Zp /) explika-Ta) constant phase factor in the subspacés. To explicitly
X (F1(i Bay L~ i[Kaf st Kq-To]) show_that th_e part of the three-body Sdiirger equation
not diagonalized by pssdra,rp.fpa) falls faster than the
X 1F1(i Bpa, L, = i[Kpal bat Kpa: Mpbal) Coulomb potential in the asymptotic regios we drop the
approximation(45) and write instead for the exact solution
=ZyWpsadrp="01ra). (79 the general ansatz:
The Kato-cusp conditions at r{=0,r,/r,—) and \17(51, . ée):‘ITDssc(fa,fb,rba)(l—F)- (76)

(rpa=0,R3/ry,,—>) can be shown to be fulfilled in an
analogous way. Two important remarks are due here. Followtpon substitution of76) in Eq. (40) a differential equation

ing the procedure above, the wave functidiy(r,,r,) is is obtained for the arbitrary functioR(&,, . .. &),
|
Hint Hunid) Vosad(Ta . A — —
( dl —mIX) Dsgd a b ba)](l—F)—Z E+Vl|n\PDsgc'Vl+V2|n\PDsgc'V2+i(ka‘vl+kb'V2) F=O (77)
Wpsadla:lb:lba)

The differential operators appearing in Eq77) have the formsV1=E?Zl(Vagj)agj,V2=E?:l(ngj)agj, and
A=E?=1(Aa+Ab)<9§j+Eﬁj=1[(Va§i) “(Vag)) + (Vo) - (V1)) 19,9, The differential operatoH  has the explicit form:

= = (Kpa+ oa)  [(Ko+ Pb)9g,— (Ka+ Fa) 9g 10, + Foa: [(Ko+ P 9, = (Ka+ Fa) g, 1,

+(Kat+Ta) Tadg dg,+ (Kot Tp) Todg,de + (Kpat Toa) - [Fode,~Tade, +27hade 10¢,+ Toar (Tode,~Tade)).  (78)

The coordinateéj ,j=a,b,ba occurring in Eq.(78) have to be expressed in terms of the coordiné@és which can be done
using symbolic computational programs. L

The exact solution of the Schiimger equatior{40) can be replaced bWpssdra.rp.rba,) Only if the functionF=0 is a
solution of Eq.(77), which is the case if the norm of the inhomogeneous operator inN&y.is negligible. Thus, we can
restrict the discussion to the study of the inhomogeneous term

R— (Hint Himi) Ypsada b lba)

(79
Wpsadlab:lba)

Note that derivatives of confluent hypergeometric functions with respect to the first argument can be performed by using the
series expansion, which is continuously convergent for the parameters used here and exchange summation and derivation. Now
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the termR depends on the product chargijsj =a,b,ba. The asymptotic behavior d® for large interparticle separations,
i.e., in the Redmond asymptotic, is controlled by the fact that the product chargesa,b,ba are constant in this limit. This
could be immediately seen by employing the parametrization

ra=rat, rp=rpt, andry,=ry.t, (80)

wherer ,,r,,I',, @re nonvanishing, positive real constants ansl a positive real parameter which goes to infinity for large
interparticle separation, e.g., we can take the paraneteibe the hyper-radius, thus the Coulomb potential is of the order
1k. In the asymptotic regior’ the termR has the form

- . F1G B[ Zo(TuiTy Toa) ]+ 1,2— ik
M R= 1| (7 P o) (o 7 ookt e T Toal] 222 o)
toe  too 1F1(Bp[Zp(ra.rp.rpa) ], 1,—iKpéo)

o o (R P 2L B 20T T o0 1+ 12 Ky
alla:p:Tpa)(RaTly lFl(iﬁa[Zb(r_a-r_b1r_ba)]’1’_ika§1)

T et 7oy 0B Z0(Ta T Toa) 1+ 1.2 et
b 1Tb:ba)(Kpat Mpa) X =———— :
o Y 2 R Bod Zo(Ta To o Tha) . L iKpaa)

Therefore, the wave functioW pgac is an asymptotic solution in the regint€. To prove that the wave function is also an
asymptotic solution in the subspac&s, one could proceed as above and investigate the Reimthe subspace?, . This is
straightforward but cumbersome. We investigate instead the asymptotic behavior of the wave Mmgliein <, . Let us
consider the limit (,—o,r,/r,—0); the same consideration applies to the other limits. The wave furidtjgy: expanded
at (r,/r,—0,),—o) reads

—0O(t™2). (81)

lim Wpsac=(27) FNaexplik; -1 +iK - R,) 1F1(iaa, 1,—iKaéy)

(ra/rp)—0rp—o
2

ra
b

xexr{ =i EInkb§2H 1+ i—{(l-”a' ") Inéz— (3+TaTy) Ing,
Ky 2 ky

r
240
Kpa Mp

Note that in Eq.(82) terms of the ordeO(r,/r,) can be counted for. As our imposed conditiofggs.(58)—(60), and
neglected since they appear in the wave function and hend®&7)] are limits, there will naturally be other different func-
correspond to terms in the Schiinger equation falling off  tions extrapolating between these limits. However, there is
faster than the Coulomb potential. Concluding, it has beemo physical or mathematical reason to believe that, for ex-
shown that the wave functiotf ps3ra."oba)lz, .z, z,,S@N  ample, the simplest choice of the expansion matrix 1,
asymptotic solution of the Schimger equation on the mani- which leads to the wave functioff;¢, given by Eq.(16), is

fold . 7. more unique than the matrix used to construct the wave func-

tion ¥pgac.
F. Uniqueness

This work aims at diagonalizing the total potential exactly IV. CONCLUSIONS AND OUTLOOK
by using wave functions of the analytical form given by Eq.
(44). By doing so we are still left with an additional freedom
of splitting the total potential in the way given by E@7)
and requiring(49). The decisive point is now each choice of

the matrix. 7, given by Eq.(47), will enter in the remaining,

In this paper a method has been presented which, in a
three-body Coulomb continuum problem, separates internal,
body-fixed properties from space-fixed properties and allows
for introduction of three-body interactions in a mathematical
. ' S . way. An example of applying the theory has been given b
not dlagonallzed, part of the kinetic energy as given by Eq or)(structing aF\)Nave fuprﬁ:%;ongfor two co)r/ninuum elegtrons ir?
(79. In this sense, the theory pre_sented here is a sel the field of a nucleus. It has been shown that the wave func-
consistent theory; the best choice.of will minimize the  tjon can be designed to solve the time-independent ‘Schro
remainder ternR. Hence, this work should be considered aninger equation asymptotica”y and to account for properties
a starting point for systematic, more elaborate models whergf the total potential surface. The applicability of the present
the remaindeR is first minimized by the method given here model to physical reactions has already been demonstrated in
and then investigated, e.g., numerically. Here we have chog previous work 13,14 where calculations of ionization am-
sen.Z such that the remaindeR falls off faster than the plitudes for electron-impact ionization of atomic hydrogen
Coulomb potential in the asymptotic regio¥ and the Wan- and helium have been performed. Results turn out to be in
nier configuration and the Kato-cusp conditions are acgood agreement with experiments over a surprisingly wide



J. BERAKDAR 53

2326

range of collision geometriegl3,14,37. However, due to wave functions. This can lead to totally different analytical

technical problems we were obliged to make the approximabehavior of the effective product charges as they were intro-
tion that the total potential is conserved only along paths oHuced in Sec. Il.
free particles. The full numerical implementation of the wave

function presented here is the subject of current research.

Note that comparing results oF pg3c and W5 allows for

direct estimate of the strength of three-body coupling. Be-

sides, deviations of results obtained by employiigsac | am largely indebted to John Briggs for many encourag-
from experiment gives direct information on the strength ofing and clarifying discussions. | also would like to thank

the remainder parR. Finally, it should be noted that the Hubert Klar, Jan-Michael Rost, Steve Buckman, and Pat
wave function derived in Sec. Il is valid only for two con- O’Mahony for many helpful suggestions and comments. This
tinuum electrons in the field of a nucleus. Applications towork was supported by the Alexander von Humboldt Foun-
other three-particle systems require the detailed knowledgdation and the Australian National University under Contract
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