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In this work the cross section for the coincident detection of two electrons following double ionization of
helium by fast electrons is analyzed. Structures arising in cross sections are associated with ionization mecha-
nisms. The role of electronic correlations is elucidated. The theory is compared with available experimental
data and suggestions for future experiments are made where results can be analyzed in terms of generalized
asymmetry parameters and directly linked with well studied asymmetry parameters for double photoionization.
Further, a method of calibrating relative (e,3e21e) cross sections to double photoionization cross sections is
proposed.

PACS number~s!: 34.80.Ht, 34.80.Dp

I. INTRODUCTION

Recent advances in coincidence detection technique have
rendered possible the measurement of fully differential
double-ionization cross sections of atoms by fast electron
impact. These so-called (e,3e) experiments have been per-
formed using argon and krypton targets@1–3#. The projectile
electrons suffer only very small momentum loss during the
collisions. The major aim of these studies is to investigate
electronic correlations in initial and final channels. In prin-
ciple, the (e,3e) technique can also be used to obtain an
estimate of the electron-momentum profile in the initial state.
Under the above described kinematical condition the (e,3e)
process is closely related to double ionization by one linearly
polarized photon~DPI! @4–7# and electronic correlations can
be equivalently studied by DPI methods. The (e,3e) tech-
nique, however, offers a different approach to electronic cor-
relations by assigning collisional ionization mechanisms to
structures arising in the cross section~see Ref.@8# and be-
low!. This gives a clear visual picture of the fragmentation
process.

The fully differential cross section of the (e,3e) process is
obtained by an energy- and angle-resolved detection of the
two ionized electrons in coincidence with deflected projec-
tile. For helium only the solid angle of the scattered projec-
tile has then to be resolved. Such measurements are unfortu-
nately hampered by low counting rates so that only some
specific atomic targets are experimentally accessible at
present. In particular, such experiments are not yet feasible
for the helium target, which constitutes the simplest case of
such reactions. Thus, one has to resort to the less technically
elaborate case, the so-called (e,3e21e) reaction, where only
two of the three electrons present in the final state are de-
tected in coincidence@9–11#. It is the aim of this work to
analyze possible arrangements and outcomes of an
(e,3e21e) experiment. Details of (e,3e) cross sections have
been investigated by numerous theoretical models@12–17,8#.
Since three electrons are present in the final channel different
types of experimental arrangements for (e,3e21e) experi-
ments are possible. For example, one could perform an
energy- and angle-resolved detection of the two ejected elec-
trons and integrate over the scattered projectile. Such cross
sections are

most suitable to analyze electronic correlations and colli-
sional ionization mechanisms. However, the analogy to DPI
cross sections is lost, since integration over the scattered
electron implicates an integration over the momentum-
transfer vector, which usually corresponds to the polarization
vector in DPI experiments. This kind of (e,3e21e) experi-
ments is addressed in Sec. III after a brief introduction to the
theoretical model. To restore the connection to DPI reactions
the momentum-transfer vector has to be fixed. This can be
achieved by integrating over one secondary electron and de-
termining the momenta of the other ionized electron and the
scattered projectile, simultaneously. In this case the cross
section of (e,3e21e) reactions can be calibrated to DPI data
and analyzed in terms of generalized asymmetry parameters
that connect to well known asymmetry parameters of DPI
reactions. In addition, as shown in Sec. IV, this case is ap-
propriate to systematically study the optical limit as well as
electronic correlations. The results of this work can also be
generalized to the case of double ionization by arbitrary,
structureless charged projectiles using the scaling formula
presented previously@17#. Atomic units are used throughout.

II. THEORETICAL CONSIDERATION

We consider the double ionization of the helium atom in
its singlet ground state by a fast electron with momentum
k i ~fast with respect to the Bohr velocity of the bound elec-
trons!. Further, we assume little momentum being transferred
from the projectile to the target atom so that a Born-type
approximation in the projectile-target potential can be em-
ployed @18–20#. The z axis is defined by the directionk i .
Assuming the nucleus to be infinitely heavy compared with
the electron mass, the multiple differential cross section for
the two atomic electrons ‘‘a’’ and ‘‘ b’’ being ejected into
directionsdVa anddVb with energiesEa andEb and for the
projectile being scattered into the solid angledV0 is given
by

d8s

dVadVbdV0dEadEb
5~2p!4

kakbk0
ki

uTfiu2 . ~1!
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The momenta of the ionized electrons are given by
ka5A2Ea, kb5A2Eb, whereas the momentum of the pro-
jectile electron in the final channel is labeled byk0 . The
two-particle transition matrix elementTfi can be expressed as
the sum of three terms,

Tfi5TT1Ta1Tb . ~2!

The transition amplitudesTT ,Ta ,Tb describe direct scatter-
ing off the nucleus, electrona, and electronb, respectively,
i.e.,

TT5 K cka ,kb
2 ~ra ,rb!,k iU22

r 0
U w~ra ,rb!,k0L

5
4p

q2
^cka ,kb

2 ~ra ,rb!u2uw~ra ,rb!&, ~3!

Ta5 K cka ,kb
2 ~ra ,rb!,k iU 1

ura2r0u
Uw~ra ,rb!,k0L

52
4p

q2
^cka ,kb

2 ~ra ,rb!uexp~ iq•ra!uw~ra ,rb!&, ~4!

Tb5 K cka ,kb
2 ~ra ,rb!,k iU 1

urb2r0u
Uw~ra ,rb!,k0L

52
4p

q2
^cka ,kb

2 ~ra ,rb!uexp~ iq•rb!uw~ra ,rb!&. ~5!

In Eqs.~3!–~5! the momentum-transfer vectorq5k i2k0 has
been introduced. The vectorsra ,rb ,r0 refer respectively to
the positions of the two target electrons and the projectile
with respect to the nucleus. The two-electron bound-state
wave function of He(1Se) is denoted byw(ra ,rb), whereas
the wave functioncka ,kb

2 (ra ,rb) describes two outgoing

electrons in the double continuum of the He21 atom. Within
an exact treatment of the motion of the two secondary elec-
trons the scattering amplitudeTT , given by Eq.~3!, vanishes
identically, since the wave functionscka ,kb

2 (ra ,rb) and

w(ra ,rb) are then eigenfunctions of the same Hamiltonian
for different eigenvalues. The exact forms of these wave
functions are, however, not known and the overlap of ap-
proximate expressions forcka ,kb

2 (ra ,rb) andw(ra ,rb) is, in
general, finite. Nevertheless, approximate initial- and final-
state wave functions can be orthogonalized by defining a
final-state wave function as

c̄ka ,kb
2 ~ra ,rb!5cka ,kb

2 ~ra ,rb!2
TT*

2
w~ra ,rb!. ~6!

Thus, the termTT , as given by Eq.~3!, vanishes when using
the wave functionc̄ka ,kb

2 (ra ,rb) to describe the final state of
the secondary electrons. Note, however, that the nonphysical
overlap ^cka ,kb

2 (ra ,rb)uw(ra ,rb)& still enters in the wave

function@Eq. ~6!#. Results obtained using orthogonalized and
nonorthogonalized final-state wave functions are, in general,
different anda priori it is not obvious which wave function
is the better approximation. Nevertheless, for declining mo-
mentum transfer, results of orthogonalized and nonorthogo-

nalized wave functions converge to the same limit. For small
momentum transferq the exponentials in Eqs.~4,5! can be
expanded with respect toq leading to the optical relation

Tfi52 iq^cka ,kb
2 ~ra ,rb!uq̂~ra1rb!uw~ra ,rb!&1O~q2!.

~7!

From ~7! it is clear that, to the first order inq, the (e,3e)
cross section is closely related to cross sections of double
photoionization by linearly polarized light in length formu-
lation. The electric vector is pointing into theq direction. In
the optical limit initial and final states are always orthogonal
because only the odd parity part of the final-state contributes
to the matrix element, and this odd-parity final state is auto-
matically orthogonal to the even initial state. The energy bal-
ance can be expressed as

Ei2e5E01Ea1Eb . ~8!

In Eq. ~8! the energies of the projectile electron in the initial
and final channels are designated byEi andE0 , respectively.
Further, the energy of the recoiling nucleus has been ne-
glected due to the massive nuclear mass. The positive bind-
ing energy of the target electrons is denoted bye'2.9037
a.u. The translational invariance of the whole experiment
leads to the conservation law of the linear momentum

q5ka1kb1k ion , ~9!

where k ion is the recoil momentum of the nucleus that is
assumed to be initially at rest.

III. „e,3e21e… REACTIONS

Due to the presence of three electrons in the final channel
an (e,3e21e) experiment can be carried out in different
ways. At first we consider the case where the two secondary
electrons are angle- and energy-resolved in coincidence with
the ion-charge state, i.e., the scattered electron is not de-
tected:

sa,b :5
d6s

dVadVbdEadEb

5E d8s

dVadVbdV0dEadEb
dV0 . ~10!

Cross sections obtained according to Eq.~10! are suitable to
analyze ionization mechanisms and electronic correlations,
as we will see below. However, these cross sections cannot
be related to fully differential DPI cross sections, e.g., as
given by Refs.@4–7#, since the integration involved in Eq.
~10! runs essentially over the momentum-transfer vectorq in
some limited interval. This would correspond to integration
over polarization vectors in DPI experiments@compare
Eq. ~7!#. Such DPI data are not available. (e,3e21e) cross
sections that compare with existing DPI data will be inves-
tigated in the next section. To analyze the structure ofsa,b

we employ for the wave functioncka ,kb
2 (ra ,rb) of the two

slow escaping electrons the same symmetric approximate ex-
pression, and its orthogonalized form, as used in a previous
work @8#:
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cka ,kb
2 ~ra ,rb!'~2p!23N exp~ ika•ra1 ikb•rb!1F1~ iaab,1,

2 i @kabr ab1kab•rab# !1F1~ iaTa,1,2 i @kar a

1ka•ra# !1F1~ iaTb,1,2 i @kbr b1kb•rb# !

~11!

with the normalization factor

N5exp~2paab/2!G~12 iaab!exp~2paTa/2!

3G~12 iaTa!exp~2paTb/2!G~12 iaTb!.

Here kab is the momentum conjugate to the interelectronic
coordinaterab5rb2ra . The Sommerfeld parameters are de-
fined as

aab5
1

2kab
, aTa5

22

ka
, aTb5

22

kb
. ~12!

The singlet ground state of helium is described by a
Hylleraas-type wave function that contains radial and angu-
lar correlations@21#, i.e.,

w~ra ,rb!'N$exp@2Car a2Cbr b#1exp@2Cbr a

2Car b#%exp@Cabura2rbu#, ~13!

whereN is normalization factor andCa , Cb , andCab are
positive real numbers used to minimize the binding energy of
He(1Se). As a prototype we examine the experimentally in-
vestigated collision geometry@11# in which the incident en-
ergy is fixed toEi55525 eV and one electron, say electron
a, is detected at a fixed angle perpendicular to the incident
direction. The energy transferred to the target is fixed to
Ea1Eb535 eV. Further, coplanar geometry is chosen in
which casek i ,ka andkb are linearly dependent. The angular
distribution of electronb has three limiting cases, namely,
Eb@Ea ,Eb5Ea or Ea@Eb . Basically, in all cases a maxi-
mum in the cross sectionsa,b is expected whenever the Be-
the sphere, as defined previously@8#, is approached, i.e.,
when the energy and momentum transferred to the target are
directly absorbed by the ionized electrons. As we integrate
overq to obtainsa,b @Eq. ~10!# the Bethe sphere conditions
@8# are not directly applicable. However, the integrated quan-
tity

kav~Va ,Vb ,Ea ,Eb!5E kion~Vo ,Va ,Vb ,Ea ,Eb!dVo

~14!

is well defined and indicates the average momentum trans-
ferred to the nucleus at certain geometry. Thus, a minimum
in kav(Vb) corresponds to a maximum in the angular distri-
bution sa,b(Vb). This is demonstrated in Fig. 1~a!, where
Eb534.8 eV@Ea50.2 eV. The minimum ofkav as function
of ub :5cos21k̂ i• k̂b is located atub'64°. Correspondingly,
the direct scattering off electronb that provides the main
contribution tosa,b(ub) peaks atub'70° @see Fig. 1~b!#.
This means, predominantly, that the projectile electron di-
rectly hits electronb, which escapes carrying away almost
the whole momentum transferred to the target. Electrona is
then shaken loose by the sudden change in the effective

nuclear charge. Hence, the direct projectile scattering off
electrona is almost structureless and yields a minor contri-
bution to the binary peak located atub'70° @compare Fig.
1~b!#. This double-ionization mechanism, as explicitly dem-
onstrated here, has been previously predicted in Ref.@3#.
Clearly, for He this mechanism depends strongly on the de-
scription of the initial state, which decides the amount of
shake-off@22,23# and is less sensitive to the electronic cor-
relations in the final state@8#. The actual shape ofsa,b(ub) is
determined by the coherent sum of the amplitudesTa and
Tb , as given by Eq.~2!. The interference of these amplitudes
is still remarkably strong due to the relatively small energy
separationEb2Ea . The caseEa@Eb yields similar results
@24# with the interpretation as above, except that the roles of
electrona and electronb are interchanged. It is important to

FIG. 1. ~a! Average momentum transferred to the nucleuskav as
a function ofub5cos21k̂ i• k̂b . The collision geometry is chosen to
be Ei55525 eV, Ea1Eb535 eV, Ea50.2 eV, k i•ka50, and
(k i3ka)•kb50. ~b! Angular distributionsa,b(ub) with respect to
k̂ i @see Eq.~10!#. The collision geometry is the same as in~a!. An
orthogonal final-state wave function has been employed. The inco-
herent contributions ofTb , i.e., Tfi5Tb ~dashed curve! and of
Ta , i.e.,Tfi5Ta ~dotted!, are shown along with their coherent sum
~solid curve!.
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notice here thatkav does not vanish even on the Bethe
sphere. This is due to the fact that the momentum conserva-
tion law @Eq. ~9!# is the result of a translational invariance of
the system and does not account for internal degrees of free-

dom of the target initially at rest. The momentum distribution
of the nucleus in the initial bound state is exactly cancelled
to a zero linear momentum by the presence of the bound
electrons. When the electrons are directly ionized and no
momentum is transferred to the nucleus during the collision
the nucleus recoils with a momentum equal to the initial
binding momenta of the electrons before the collision. This
fact can be used to actually image the momentum distribu-
tion of the bound electrons~Compton profile!, as done in an
analogous way in (e,2e) experiments@25#.

Now we consider the case of equal-energy secondary
electronsEa5Eb . In this case, the scattering amplitudes
Ta ,Tb from electronsa and b are of the same order and
coincide atub590° due to symmetry@Fig. 2~a!#. That means
in this case that the projectile ionizes the two target electrons
simultaneously. From Eqs.~3!–~5! it is evident, however,
that only single-particle perturbation operators are present
and the projectile does not directly interact with the center-
of-mass of the two electrons. Thus, double ionization must
occur via a coherent superposition of the amplitudesTa and
Tb @Fig. 2~a!#. The cross sectionsa,b(ub) @Fig. 2~a!# exhibits
a minimum atub'72°. This minimum is due to interference
of Ta andTb and incidentally coincides with the minimum of
the average momentum transferred to the nucleuskav at
ub'72° @Fig. 2~b!#. This could be inferred from the structure
of the incoherent contributions ofTa andTb , which reveal
broad maxima aroundub594° andub584°, respectively. At
ub50 the cross section vanishes due the electron-electron
repulsion in the final state. Obviously, in the case of Figs.
2~a!–~c! the cross section is very sensitive to the weighting
of the coherent amplitudesTa andTb , which are determined
by the wave functionscka ,kb

2 (ra ,rb) and w(ra ,rb). There-

fore, the scattering amplitude from the nucleusTT , which is
mainly due to a poor description of the three-body state,
strongly affects the cross section because it considerably al-
ters the interference behavior@Fig. 2~c!#. Therefore, orthogo-
nalized and nonorthogonalized final-state wave functions
yield in this case quite different results. The experimental
finding is qualitatively reproduced by the orthogonalized

FIG. 2. ~a! Same collision geometry as in Fig. 1~b!; however,
Ea5Eb . Wave functions and curves are also the same as in Fig.
1~b!. ~b! The angular distribution of the average momentumkav for
the case depicted in~a!. ~c! The same collision arrangement as in
~a!. Results of orthogonalized~solid curve! and nonorthogonalized
~dotted curve! wave functions are displayed. Experimental data
~squares! have been provided by Ref.@11#. The relative experimen-
tal data have been normalized to theory atk̂ i• k̂b5cos(p/6). The
magnitude of the cross section calculated with the nonorthogonal-
ized form is equal to 1.7531025 a.u. atk̂ i• k̂b5cos(p/2).

FIG. 3. Angular distributionsa,b(ub) in the caseEa57 eV for
(e,3e21e) on He(1S). The experimental setup is the same as in
Fig. 2~a!. Calculations using orthogonalized~solid curve! and non-
orthogonalized~dotted curve! wave functions are depicted along
with experimental data~squares! @11#. Experimental data are rela-
tive. The magnitude of the cross section calculated with the nonor-
thogonalized form is equal to 2.57331024 a.u. at k̂ i• k̂b
5cos(p/2).
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form that seems to better fit the experimental data.
The intermediate situation between the cases displayed in

Fig. 1~a! and Fig. 2~c! is shown in Fig. 3. The agreement
with the data is satisfactory. From the above arguments it is
comprehensible that the termTT does not severely affect the
cross section as in Fig. 2~c!. The ionization amplitudeTb
provides the major contribution toTfi in the vicinity of the
maximum. This leads to the interpretation as in Figs. 1~a!–
~b!. The scattering termTa , although smaller thanTb ~i.e.
uTbu.uTau), still considerably interferes withTb .

IV. ASYMMETRY PARAMETERS
FOR „e,3e21e… REACTIONS

In the preceding section it was shown how information on
the double-ionization process can be extracted fromsa,b .
However, the link to DPI reactions through the optical limit
Eq. ~7! is lost after integrating overq. To compare with well
studied DPI data and to analyze partial waves contributing to
the cross section, it is, therefore, appropriate to fixq and
measure the angular distribution of one secondary electron,
i.e.,

s q,a :5
d6s

dVadV0dEadE0

5E d8s

dVadVbdV0dEadE0
dVb . ~15!

Hereafter, all angles are measured with respect toq̂,
which defines thez axis. The cross sectionsq,a is propor-
tional to the cross sectionsd6s/(dVadV0dEadEb) and
d6s/(d3qdVadEa). The latter one reveals the connection to
DPI measurements with linear polarized light, where only
one photoelectron is resolved in energy and angle
d3sDPI/(dVadEa), the so-called asymmetry-parameter ex-
periments@6,26–28#.

Due to the cylindrical symmetry ofs q,a(Va) with re-
spect toq the cross sectionsq,a @Eq. ~15!# can be param-
etrized in the form@29#

d6s

dVadV0dEadE0
54p (

l 50

`

Bl Pl ~ q̂• k̂a!, ~16!

where Bl (q,Ea) are angle-independent coefficients and
Pl (q̂• k̂a) are Legendre polynomials. The coefficient
B0(q,Ea) is related to integrated cross sections. This follows
from the relations

d4s

dV0dEadE0
54p (

l 50

`

Bl
4p

2l 11

3 (
m52l

l E dVa Yl m~ k̂a!Yl m* ~ q̂!

516p2(
l 50

`

Bl (
m52l

l
1

2l 11
d l 0dm0 , ~17!

which lead to

B0~q,Ea!5
1

16p2

d4s

dV0dEadE0
. ~18!

Thus, it is advantageous to renormalize the coefficientsBl to
B0 to end up with dimensionless generalized asymmetry pa-
rametersBl

s5Bl /B0:

s q,a5
1

4p

d4s

dV0dEadE0
(
l 51

`

@11Bl
s Pl ~cosua!#. ~19!

The equivalent parametrization ofd3sDPI/(dVadEa) is lim-
ited to two terms due to the definite angular momentum im-
parted to the system by the photon and to the polarization
vector entering bilinearly in the cross section, i.e., the polar-
ization vector actually defines an axis rather than a direction,

d3sDPI

dVadEa
54p (

l 50

`

Bl
DPIPl ~cosua!

5
1

4p

ds

dEa
@11bP2~cosua!#.

~20!

Here ua refers to the emission angle of the photoelectron
with respect to the polarization vector which can be chosen
to coincide withq̂. Hence, the angular distributions of pho-
toelectrons are essentially characterized by only one param-
eter, theasymmetry parameterbP@21,2#. Thus, the com-
parison of the asymmetry parametersBl

s andb gives direct
information on the optical limit. To establish a relation be-
tweenBl andBl

DPI we consider a DPI and a (e,3e) reactions
leading to the same final state of secondary electrons, i.e.,
ka
DPI5ka andkb

DPI5kb , whereka
DPI ,kb

DPI are the momenta of
electrons produced in a DPI process. Assuming length for-
mulation the cross section, given by Eq.~20!, reads

d3sDPI

dVadEa
54p2avkakbE z^cka ,kb

2 ~ra ,rb!uq̂~ra1rb!uw~ra ,rb!& z2dVb , ~21!
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wherev is the light frequency anda is the fine-structure
constant. According to Eqs.~7,1,21! the parametersBl tend
to scaled DPI-expansion coefficientsB̄l

DPI in the optical limit,
where

B̄l
DPI5~2p!4

4k0
kiq

2av
Bl
DPI . ~22!

A typical example is depicted in Fig. 4~a!. The momentum
transfer is moderate and the optical limit is approached. Con-
sequently, orthogonalized and nonorthogonalized final-state
wave functions yield almost the same (e,3e21e) results, as
predicted above. All cross sections are symmetric with re-
spect toua5p. In addition,d3sDPI/(dVadEa) is symmetric
to the line perpendicular to the polarization vector. The

FIG. 4. ~a! Cross sectionsq,a(ua), as defined by Eq.~15!, as a function ofua5cos21q̂• k̂a . The incident energy isEi58 keV. The
scattered projectile is detected under an angle of 1° with respect tok i and with energyE057.8 keV. The momentum transfer is then
q50.509 a.u. The secondary electron is detected with energyEa50.01 eV. Results of orthogonalized~dashed curve! and nonorthogonalized
~solid curve! wave functions are shown. The dotted curve displays the corresponding DPI cross section, as given by Eq.~20!, but with
coefficientsB̄l

DPI @see Eq.~22!#. The DPI asymmetry parameter is equal tob50.297 28.~b! The asymmetry coefficientBl as a function of
l @compare Eq.~16!#. The collision geometry is chosen as in~a!. For DPI we obtainB0

DPI/4p51.3431023, B2
DPI/4p50.398431023 ~note

b5B2
DPI/B0

DPI50.297). ~c! The asymmetry coefficientBl as function ofl for the same collision arrangement as in~a!; however, the
secondary electrons are emitted with equal energies. An orthogonalized wave function is used to describe the final state of the two secondary
electrons.B0

DPI/4p59.0431024, B2
DPI/4p520.4931024. ~d! The same as~c! but the final-state wave function is not orthogonal to the

initial bound state of He(1Se).
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latter symmetry is destroyed in the case of the (e,3e21e)
reaction since, unlike the situation in DPI where the polar-
ization vector defines an axis leading to the reflection sym-
metry atua590° and 270°,q fixes a direction. This fact is
reflected byB1

DPI being identically zero, whereasB1 @Eq.
~15!# is finite @Fig. 4~b!#. Apart from this differenceBl and
B̄l
DPI , l Þ1 are almost equal, as can be seen in Fig. 4~b!.

Thus, the asymmetry parameterB1
s5B1 /B0 can be inter-

preted as indicator for the ‘‘memory’’ of the ionized electron
to the initial incident direction. The parameterB2

s is directly
linked tob. To understand its physical meaning we assume
q!1,B1

s!1. If b ~and correspondinglyB2
s) vanishes electron

a has an isotropic angular distribution that reflects the sym-
metry of the initial target state, and hence, this electron is
emitted by a shake-off process, whereas the other electron is
knocked out after a direct encounter with the projectile. This
case occurs whenEb /Ea!1 @see Figs. 4~a, b!#. Reversal of
the roles of the two secondary electrons, i.e.,Ea /Eb!1,
leads tob52, which means that electrona is directly ion-
ized by a binary collision with the projectile, and hence,
appears predominantly under the directionq. In these two
cases the ejected electrons are weakly correlated. However, a
negative value ofb indicates that electrona is emitted under
a direction considerably different fromq ~perpendicular to
q for b521). In this case the double ionization occurs via
electronic correlations. That stronger electronic correlations
lead to a negative value ofB2 is evident by comparing Fig.
4~a! and Figs. 4~c!,~d!, where the two target electrons escape
with equal energies. However, since the excess energy is
relatively highEa1Eb5120 eV the electronic correlation is
less prominent when the two electrons are separated in
angles. This situation changes drastically for lower excess
energies andB2

s tends to21. From the preceding we con-
clude that the asymmetry parameterB2

s is a measure for the
electronic correlations.

As obvious from Eq.~19!, the coefficientB0 determines
the absolute value of the cross section. Thus, relative
(e,3e21e) cross sections can be calibrated to DPI data by
extrapolating the coefficientB0 to the quantityB̄0

DPI, as de-
fined by Eq.~22!.

To formulate the above heuristically stated argument in a
mathematical language we note that with increasing momen-
tum transfer, results with orthogonalized and non-
orthogonalized wave functions diverge from each other and
an increasing number of partial waves is required to fit the
cross sections@24#. This behavior occurs, however, very
slowly. More extensive calculations@24# show that for
q,1 the significant contributions to the series, given by Eq.
~19!, originate from the first three terms. Thus, assuming
Bl
s50,;l .2 the series given by Eq.~19! takes on the form

sq,a5
1

4p

d4s

dV0dEadE0
@11ae3eP1~cosua!

1be3eP2~cosua!#. ~23!

In order to express Eqs.~19! and ~20! in unified form we
introduced in Eq. ~23! the redefinition ae3e[B1

s ,
be3e[B2

s . From Eq.~19! it is clear that, under the assump-
tion Bl

s50,;l .2, only three measurements are necessary

to fix the parameters ae3e,be3e and d4s/
dV0dEadE0 and hence the whole angular distribution
sq,a(Va). The most appropriate geometries under which
these measurements can be conducted are, the secondary
electrona is detected under a direction perpendicular toq
@s' :5sq,a(cosua50)#, parallel to q @s↑↑ :5sq,a(cosua
51!#, and antiparallel toq @s↑↓ :5sq,a(cosua521)#. From
a simple algebraic manipulation the following relations for
the asymmetry parameters can be derived:

be3e5
222x

112x
, ~24!

ae3e5
3

2

s↑↑2s↑↓
s↑↑1s↑↓12s'

, ~25!

d4s

dV0dEadE0
5
4p

3
~s↑↑1s↑↓12s'! , ~26!

where x:52s' /(s↑↑1s↑↓). Note that Eqs.~24!–~26! are
also applicable to DPI processes. From Eq.~25! it is evident
thatae3e characterizes the ‘‘memory’’ of the ejected electron
to the incident direction and thus vanishes identically for a
DPI reaction (s↑↓[s↑↑). From Eq.~24! it is obvious that
the asymmetry parameterbe3e is limited to the interval
be3eP@21,2#. In case the secondary electrons are predomi-
nantly ejected along theq direction (x→0) be3e takes on the
valuebe3e52 signifying double ionization by single-binary
collision of the projectile with electrona and a shake-off of
electronb. If electrona is shaken loose from anS state its
angular distribution is isotropic, and hence,be3e50, as can
be deduced from Eq.~24!. In both cases (be3e52,be3e50)
emitted secondary electrons are weakly correlated. In con-
trast, if x→` electrona is ejected mainly perpendicular to
q, in which case a strong correlation between secondary
electrons is acquired, leading tobe3e521, as can be seen
from Eq. ~24!.

A major advantage of expressing (e,3e21e) cross sec-
tions in terms of generalized asymmetry parameters is that it
allows a detailed insight into the optical limit. For example
from Fig. 4~a! one could conclude that DPI and
(e,3e21e) cross sections are still substantially different and
the optical limit is not quite reached yet. However, Fig. 4~b!
reveals that the only difference between DPI and
(e,3e21e) reactions in this geometry is the existence of the
direction q, i.e., a nonvanishing value ofB1 or ae3e @Eq.
~25!#. Apart from that, absolute values of cross sections and
the amount of electronic correlations described byB0 and
B2 , respectively, are much the same for DPI and
(e,3e21e) reactions. This means the various respects in
which the optical limit is approached can be studied by com-
paring DPI and (e,3e21e) asymmetry parameters. This
comparison yields far more detailed information on differ-
ences between DPI and (e,3e21e) reactions than the con-
ventional optical formula, given by Eq.~7!.

V. CONCLUSIONS

In this work integrated cross sections in (e,3e) reactions
have been analyzed. When integrating over the angular dis-
tributions of the scattered projectile, two ionization mecha-
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nisms are dominant according to the energy sharing of the
ionized electrons. It has been explicitly shown that a knock-
out collision of a fast ejected electron and a shake-off of the
slower one is the dominant mechanism in an asymmetric-
energy sharing@3#. For equal-energy sharing the two elec-
trons are ionized simultaneously. In addition, an experimen-
tal setup has been proposed that is most suitable to study
(e,3e21e) cross sections in terms of generalized asymmetry
parameters. The connection of these asymmetry parameters
to their counterparts in a DPI reaction has been worked out.
The comparison of DPI with (e,3e21e) asymmetry param-
eters allows a detailed insight into the optical limit. Finally, it
should be stressed that the analysis of this work is valid only

in the range of validity of the Born approximation for the
projectile-target interaction.
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