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Calculation of cross sections for vibrational excitation and dissociative attachment
in electron collisions with HBr and DBr
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The nonlocal resonance model developed earlier for the description of low-energy inelastic and reactive
electron-HCI collisions has been adapted to the electron-HBr collision system. The parameters of the model
have been determined by fitting the eigenphase sum in the fixed-nuclei approximation to the dath wiitam
R-matrix calculation of Morgan, Burke, and collaborators. The Schwinger-Lanczos method has been employed
to solve the nuclear scattering problem with a nonlocal, complex, and energy-dependent effective potential.
Fully converged cross sections have been obtained on a dense grid of energies for many vibrational excitation,
deexcitation, and dissociative channels in both HBr and DBr. The computed cross sections are generally in
good agreement with experiment as far as data are available.

PACS numbg(s): 34.80—i, 34.80.Ht

I. INTRODUCTION formalism[15], has provided a rather detailed description of
resonance and threshold features in VE and DA cross sec-
The collision of low-energy electrons with hydrogen ha-tions [16—18. An alternative model is the effective-range
lide molecules is a surprisingly involved process and continmodel of Teillet-Billy and Gauyac{l9]. Ab initio scattering
ues to represent a challenge for electron-molecule collisioalculations of theR-matrix type, combined with the nona-
theory despite 20 years of research. The complexity of theliabatic treatment of the vibrational motion, also have pro-
problem arises from the intricate interplay of shape resoduced VE cross sections for HCI in good agreement with
nance effects, which efficiently couple the electron scattering@xperimen{20]. For a more complete account of the exten-
dynamics with the vibrational motion, with effects of the sive literature, we refer to recent review articlé$,21-23.
long-range dipole potential, which couples the electronic Only very few theoretical studies have been concerned
motion with nuclear rotations and causes a dramatic enwith the electron-HBr collision system. The most compre-
hancement of threshold structures. Since the discovery diensive theoretical investigation to date has been performed
threshold peaks in vibrational-excitatiO¥E) functions[1,2] by Morgan, Burke, and collaborators using e initio R-
and pronounced cusp structures in the dissociative attachmratrix approacH24]. Based on the fixed-nuclei scattering
ment(DA) cross section§3] of HF and HCI, these unusual calculations including polarization effects, elastic electron
threshold phenomena have been investigated in consideraldeattering cross sections and VE functions have been ob-
detail both experimentally and theoretically. Cross sectionsained[24]. It seems that the DA process in HBr has not
for VE and DA in HX gases X=F, CI, Br, |) are required for theoretically been treated so far.
the modeling of laser plasma and are, therefore, also of con- In the present work we adapt the nonlocal resonance
siderable applied interef4,5]. model to the electron-HBr collision system. In the nonlocal
The VE cross sections in HF do not show a discernibleresonance model, th8S low-energy shape resonance ac-
shape resonance, but exhibit pronounced threshold phenoroeunts for the coupling of the electron scattering dynamics
ena[1,2,6—8. In HCI, the shape resonance is clearly devel-with the vibrational motion, while the threshold effects
oped and reflected by a broad peak near 3 eV in the VE crossaused by the long-range dipole potential are included via a
sectiond1,2,6—9. In HBr, the shape resonance is even morethreshold expansion of the energy-dependent width function
pronounced than in HCI and located at lower energy I  [23,25. As in previous applications, the rotational dynamics
eV) [10]. The intensity of the threshold peaks relative to theof the target molecule is neglected in the present work. This
shape resonance feature decreases from HF to HBr, whicdhould be a good approximation except for electron energies
seems to reflect the decrease of the dipole momentumwithin a few meV of the thresholfill]. The parameters of
[1,2,10. The unusual threshold phenomena observed in eledthe model are determined via a least-squares fit of the fixed-
tron collision with HF and HCI have stimulated extensive nuclei eigenphase sum as a function of energy and internu-
theoretical work. The threshold peaksdfrHF VE functions  clear distance to thab initio data of Fandreyest al.[24]. In
have been explained by vibrational or rovibrational close-addition, information on the bound-state potential-energy
coupling treatments based ab initio R-matrix calculations function of HBr~ at large internuclear distances obtained by
[11-13. For thee+HCI collision system the so-called non- large-scale multiconfiguration self-consistent-figfliCSCPH
local resonance model, which can be derived either from thand configuration-interactio(Cl) calculations[26] is taken
Feshbach projection-operator formali§i@] or theR-matrix ~ into account.

1050-2947/96/5@)/226210)/$10.00 53 2262 © 1996 The American Physical Society



53 CALCULATION OF CROSS SECTIONS FOR VIBRATIONAL ... 2263

The calculation of cross sections within the nonlocal reso-
nance approach requires the solution of the Lippmann- A(R,R';E)Zif dE'V4e (R x,(R[E—FE’
Schwinger(LS) equation involving energy-dependent, com- v
plex, and nonlocal effective potentials. This technical 1k )
problem was solved by Mdel and Domcké27] employing —&] X (RDVge (R, ©)
separable expansions of the nonlocal potentials. This ap-
proach made use of analytic solutiditareen’s functions and roEy — * (D Y\ ,
scattering stat@sof Morse potentials and is therefore not FRR ’E)_Zwivd'E‘fv(R)X”(R)X”(R Wie-e,(R):
immediately applicable for general potentials. Plessl. v @)
[28] have more recently developed a fully numerical and
thus generally applicable method. Alternatively, a time-The y, (R) are eigenstates of the target vibrational Hamil-
dependent approach has been implemented by Gertitschignian
and Domcke which is suitable for arbitrary potential func-

tions [18]. Here we discuss the implementation of yet an- Ho=Tn+ Vo(R), 5
other generally applicable method, the Schwinger-Lanczos

(SL) approacH29-31]. This iterative approach seems to be h? d?

well suited to treat scattering problems with complicated TN:_ﬂd_RZ’ (6)

nonlocal potential operators. We develop in the present work

a modification of the Schwinger-Lanczos approach whichwith eigenvalueg, . In Egs.(3) and(4) we have introduced
renders the computation considerably more efficient. Withan angle-averaged discrete-continuum matrix element which
this method, fully converged VE excitation cross sections folis defined via

many channels and DA cross sections for various initial vi-

brational levels have been obtained for both HBr and DBr. 5 5

We report here the most interesting data, hoping that this Va.el :f dQ|Vaud* @
may stimulate further experimental investigation of this little

studied collision system. Preliminary results of the present In order to compute cross sections for VE and DA, we
investigation have been reported[B2]. have to solve the Lippmann-Schwinger equatif23]

[ 94E) =G Vau vy + G5 (Va+F)lwse)  (®

Il. OUTLINE OF THE THEORY
and

The present modeling of resonance and threshold effects
in electron-HBr collision closely follows the approach devel- KDY =[K)+GH (Vg+F)[KH). 9
oped earlier for the electron-HCI syst¢ai]. Therefore only
a brief outline of the general theoretical framework will be Here |K) denotes a state of free radial nuclear motion and
given here. A more comprehensive exposition of the theoryG{" is the resolvent operator for the free radial nuclear mo-
can be found if23]. tion

The formulation is based on the projection-operator ap-
proach of scattering theoryl4] which provides a well- Gi=(E-Tn+in) 4 (10)
established framework for the description of resonances in
electron-molecule scatterin@3,33—37. We assume that the # being the usual positive infinitesimdl«/;&f@) and|K()
electronic Hilbert space is spanned by a single discrete ele@re scattering states in the effective potenti&l with
tronic state(which represents thé3* shape resonance for boundary conditions appropriate for electron scattering and
short internuclear distances and tR& " bound state of DA, respectively.
HBr ™~ for large internuclear distanceand a single orthogo- In the actual calculations it is convenient to absorb the
nal continuum. Assuming the diabaticif@8] of these elec- strong, but local, part/4(R) of the effective potential into
tronic states and projecting the time-independent Schrothe unperturbed problem. Applying the well-known two-
dinger equation on the discrete subspace, one obtains gwotential formula, Eqs(8) and(9) are rewritten as
effective equation describing nuclear dynamics in an energy-
dependent, complex, and nonlocal potential. Denoting by |lﬂfﬂz)):Gg+)Vd,ki|Ui>+G3+)F|¢é,+e)> (11
Vo(R) andV,4(R) the potential-energyPE) functions of the
target molecule and the discrete state, respectively, and ®nd
Vg« the discrete-continuum coupling matrix element, the ef-
fective potential readf23] [K™)=]Kg)+Gg FIK™), (12

where

and|Ky) is a scattering state in the potentig|(R).
The integral cross sections for electron scattering and DA

i
F(RR"E)=A(RR"E)= I (RR"E), @ e given by
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w3 (e To perform the fit of the data we must specify analytic ex-
0, 0,(E)= ?l<vf|V§Ef| Yae)l (14 pressions for the functions to be fitted. First we assume that
: the background ternd,, is R independent and can be de-

and scribed in accordance with the threshold law 38,40

473 Opy(E) = (ml4— aml2)+aE*+DbE. (21
opa(E)= 7|<Ui|vd,Ei|K(+)>|2- (15 . _

[ Here «=0.424 is the threshold expondi®8] corresponding

to the dipole momentum of HBrd=0.828 D [41]. After

Ill. CONSTRUCTION OF A MODEL FOR HBr some experimentation we found that the most stable fit is

) .. obtained when the discrete state potentg{R) is taken in
In the treatment of the theory outlined above, the collisionya torm of a single exponential

system is characterized by three functions, naniglyhe PE

function V(R) of the target molecule(i) the PE function V4(R)=D,e 2a1(R-Rol 1 Q, . (22)
V4(R) of the discrete state, andi) the discrete-continuum

coupling elemen¥/y ¢(R), or equivalently, the width func- The quantityQ; is related to the electron affinity of BA2]
tion and for HBr we have),=0.56 eV. It remains to specify the
width functionI'(R,E). Following the earlier proposal by

— 2 ' . - -
HRE=2lVecl (16 Domcke and Mudel[17] we parametrize this function as
For the PE function of th&*3 * state of HBr we adopt a I'(RE)=T(E)g(R) 23
Morse potential , ’
Vo(R)= Do(e*Zao(RfRo)_Ze*aO(RfRo)), 17) with

I'(E)=A(E/B)*e E/B 24
and the parametef®, and a are obtained by fitting spec- (B)=A( )e 249

troscopic constanf89] (Dy=3.92 eV,p=0.96 a.u- ) and  gnq

Ry=2.67 a.u...=0.995 58 amu. The specification of the two

other functionsVy4(R) andI'(R,E), is much more difficult. g(R)=e C(R-Ro), (25)

Both functions can in principle be obtained fromaminitio

calculation. Such calculations, though possible on currenhltogether we have seven parameters to be determined: two

computers, are very involved and have been performed onlgackground phase-shift parametees §nd b), two param-

for the simplest systems. To our knowledge there exists neters describing the discrete state poteriiglR) (D, and

calculation of the width functiol’(R,E) for HBr~. We can  4,), and three parameters, B, C describing the width

use, however, eXiStingb initio data for elastic Scattering in function F(R,E) The seven parameters have been deter-

the fixed-nuclei approximation to infer the required param-mined by a least-squares fit &,(R,E) to the ab initio

eters. This can be done as follojds’]: The eigenphase sum 2y + eigenphase sum ¢24]. The quality of the fit can be

in the vicinity of a resonance can be decomposed into educed from Fig. 1 showing treb initio data[24] in the

background and a resonant part range 0XE<4 eV and 2.5R<2.9 a.u. In the figure the

crosses are thab initio data of Fandreyeet al; the solid

Fsunl E,R) = 6o E,R) + Sied E,R), (18) lines represent our fit, the dashed line corresponds to the

equilibrium distance 2.67 a.u. The deduced values of the

model parameters ar®;=1.736 eV, «;=0.9871 a.u.?,

A=4.039 eV,B=4.615 eV, andC=0.1176 a.u.*.

Although the effect of the polarization potential on the
threshold expansion df(E) and 6,(E) has not been taken
into account in Eqgs(21) and (24), the effect of the polariz-
ability of HBr is included in the parameters determined by

where the background ter,, is assumed to be a smooth
function of E andR and all the rapid changes are concen-
trated in the resonance terd.s, which is given by the
Breit-Wigner formula with energy-dependent width and level
shift[17,25

EF(R,E) fitting the ab initio eigenphase sum obtained in the static-
5,.{R.E)= —tan? 2 exchange-polarization approximatip®4]. The fact that the
resth E-V4(R)+Vy(R)—A(RE)/ ° 23+ shape resonance is located at lower energy and is nar-

(19 rower than the resonance @+HCI can to a large extent be
) attributed to the larger polarizability of HBr.
Recently, Fandreyeet al. [24] have calculated the eigen-  1q check the reliability of our model we performed a
phase sum é&,,{R,E) for a range of R (2.0 au. geries of fits in which thab initio data were modified by an
<R<3.1 a.u) andE<0.8 Ry. By fitting these data the un- aqgitional “noise.” It was observed that the parameters
known functionsVy4(R) and I'(R,E) can be obtained. As o B, D,, anda, are very stable with respect to changes
soon as the width['(R,E) is known, the level shift of the amplitude of the noise. The parame®@mescribing
A(R,E) can be calculated as the R dependence of the width functidi(R, E) is, however,
sensitive to minor changes of the data. The valu€ @ thus
A(R,E)ziPJwF(R'E,)dE’. (20) not very accurately determined by the availakle initio
2 E-E data.
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FIG. 1. The?=™" eigenphase sum for fixed-nuclei electron HBr FIG. 2. Potential-energy curves of the model. The dashed curve
scattering for the internuclear distances 2.4, 2.5, 2.6, 2.67, 2.8, ari@presents thé3 * ground-state potential energy of HBr, the dash-
2.9 a.u.(from bottom to top. Crosses are thab initio data of  dotted curve the potential-energy function of " discrete state
Fandreyeret al. [24]. The solid lines show the eigenphase sum of of HBr~. The full curve represents the adiabatic potential-energy
the present model, the dashed line corresponds to the equilibriufinction of the %™ shape resonanceR&3 a.u) and the ? "
distance 2.67 a.u. bound state of HBr (R=3 a.u), respectively.

. . IV. THE SCHWINGER-LANCZOS METHOD
Our calculations of VE cross sectigisee below have

shown, moreover, that the height and the width of the thresh- To calculate VE and DA cross sections, the LS equation
old peak in they =0—1 channel depend very sensitively on (8) or (9) must be solved. The potential operatoin these

the potential-energy function of HBr at large internuclear €quations is nonlocal, complex, and energy dependent, see
distances. The availablab initio electron-HBr scattering ES:(2)—(4). In some cases it is possible to approximte
data[24], extending only up t&R=3.1 a.u., are not sufficient PY & local complex potentigl35,43,44. It is well known,

to determine the HBF potential-energy function over the however, that th_e _nonlocallty &f is absolutely essential for
relevant range oR. To improve the model, we have modi- a correct description of the 'Fhreshold pez{k§,2_5|. There

fied the R dependence of the width function outside the €XISt Several methods of solving Ed8) and(9) with differ-

L . ent degrees of generality16,23,28. Here we use the
range covered by thab initio calculations of Ref[24] as Schwinger-Lanczc?s methg@29—3ﬂ8 which represents a
follows: for R>R, fairly general and very efficient method of solving the LS
equation.

Let us formally write the LS equation as

l@)=|u)+G4F|¢). (27)

The parameter®, and D have been adjusted in order to According to the SL method we define a set of states
optimize the agreement of the bound-state potential-energi}gﬁ} as
function of the model with theab initio MCSCF-CI

g(R)=e_C<R_R0)e_D(R_R1). (26)

1
potential-energy function of Chapmanal.[26], resulting in |g1)=|u){u|F|u)~ 2, (29)
R;=2.9 a.u. and=0.4 a.u. %
The PE curves of the model are shown in Fig. 2. The Bilgi+1)=GuF|g) — ailgi) — Bi-1/gi - 1) (29)

dashed curve represents the * ground-state potential en- ) ) ) . ,
ergy of HBr, the dash-dotted curve the PE function of the"Vhich diagonalizeF and tridiagonalizeé=GqyF,

25 * discrete state of HBr. The full curve represents the (9iFlg)y=45; (30)
adiabatic potential-energy function of tHf& " shape reso- HE T

nance R<3 a.u) and the 3% bound state of HBF

(R=3 a.u), respectively. The cusp near 3 a.u. arises from the (GIFGFlgi-1=Fi-1. 39
effect of the long-range dipole potential, sg&8] for a de- (gilFG4Flgi) =a;, (32)
tailed discussion. The bound-state part of the HBr

potential-energy function exhibits a shallow minimum near (0ilFG4F|gi+1)=Bi, (33

R=4.5 a.u., in agreement with thab initio MCSCF-CI
potential-energy curve of Chapman al. [26)]. (9ilFG4F|g;)=0, [|j—i|>1. (34)
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In the above equationis) is the unperturbed wave function, G=(1—G4F1no) 1Gy. (42)
G4 is the Green'’s function in the absenceFafandF is the
nonlocal interaction. Once the vectdig) have been con- The Schwinger-Lanczos method is then applied, as described
structed the solutiofip) may be written as above, to Eq(40).
\ To generate the nonlocal operater according to EQs.
(2)—(4), a set of vibrational stately,) is constructed by
|¢>:i21 ailg;), (39 diagonalizing the matrix representation ld§, in a suitable
basis of square-integrable functions. A discrete variable ap-
where the coefficienta; are given by simple algebraic rela- Proach(DVR) is employed for this purpose. Approximately
tions in terms ofe; and B; [30]. The Schwinger-Lanczos 100 DVR functions are required to get an accurate represen-
approach is iterative and does not require inversion of anjation of the target wave functiorifor details se¢45]). The
matrix. The numbemMN here denotes the total number of summations in Eqs3) and (4) are truncated at ma, Which
Lanczos steps. The number of Lanczos steps needed for tif€pends on the incident electron energy. It has been checked

method to converge depends on the “strength” of the operathatI'(R,E) andA(R,E) thus obtained are completely con-
tor E. verged both with respect to the DVR grid as well as the

In the specific case of the+HBr collision complex, asin Summation over target vibrational levels. This construction
e+HCI, the nonlocal potentiaF is strong and the conver- of I'(R,E) and the solution of the LS equation via the
gence of the Schwinger-Lanczos method with respedd to Schwinger-Lanczos approach are completely general proce-
relatively slow. In the present work we have implemented gdures and do not depend on special analytic forms of the
modification of the method which exhibits improved conver-potentialsVo(R) andVy(R), as has been the case in some
gence propertie$45]. We introduce a local approximation previous treatmentsl?].

Foc to the nonlocal operatdf and employ the Schwinger- It has been found that the introduction Bf,. can sub-

Lanczos procedure for the difference potenfiat F . stantially reduce the number of recursion steps needed for
The local approximatiorF,.. is introduced as follows. convergence of the Schwinger-Lanczos procedd&. This

GenerallyF acts on a wave functiop as is particularly true in the energy range of the threshold peaks,

where the computation of fully converged cross sections may
, , , require very high\.
(RIFl¢)= | F(R,R";E)e(R")dR'. (36)
) . ) V. RESULTS
Let us expand the wave functiggn(R’) into a Taylor series
around a poinR. Then A. HBr
Integral VE cross sections for the-01, 0—2, and
<R||:|(P>:f F(RR";:E)[¢(R)+¢'(R(R-R)+1¢"(R) 0— 3 channels are shown in Fig. 3. The=0—1 cross sec-
tion exhibits an intense and narrow threshold peak as well as
Y(R' —R)2+---1dR’. 3 a ;hape resonance feature near 1 eV impact energy, in quali-
( ) ] @7 tative agreement with the experimental data of REi0].

R the higher terms in Eq37) can be neglected arid| o) can  tion at the resonance peak near 1 eV impact energy is smaller
be approximated bj46] by a factor of about 5 than the value reported by Rohr. This

is shown in Fig. 4a).
The intensity of the threshold peak relative to the shape
<R|F|<P>”f F(R,RE)dR ¢(R)=Fo(R,E) o(R). resonance peak is larger in the present calculation than in
(38)  Rohr’s experiment. It should be noted, however, that the in-
tensity and width of the threshold peak are very sensitive to
Fioc(R,E) here is a local complex energy-dependent potenchanges of the input data of the model. Because of the lim-
tial. It is also possible to include higher terms in E87) but  ited accuracy of theb initio data and the limitations of the

for our purposes this is not necessary. fitting procedure, there is some uncertainty in the model pa-
Having obtained the local complex potenti&). we can  rameters and the present results should therefore not be con-
write the LS equatiori27) as sidered as a reliable prediction of the intensity and shape of
the threshold peak. On the experimental side, the determina-

l¢)=[u)+GgFiod @) + Ga(F —Fiod) | @) (39  tion of accurate cross sections very close to threshold is no-

toriously difficult, see, e.g., the discussion in Rgfl]. The

Applying again the two-potential formula, E@7) is rewrit-  getermination of the precise intensity and width of the

ten as threshold peak in the-©1 channel of HBr is thus still an
_ . open problem. The present calculations strongly support,
|#)=[0)+Gu(F~Fioc) @), (40 however, the existence of a pronounced threshold peak in
where agreement with Rohr’s experiment.

We find no intense threshold peaks in the0—2 and
[v)=(1—G4F 00 " Yu) (41) higher channels. This confirms the conclusion of Azial.
[47] that the threshold peaks reported by Rgh@] for the
and higher channels are due to Brions.
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FIG. 3. Integral VE cross section for the=0—1, v=0—2,
andv =0—3 channels.

The present =0—1 cross section is in qualitative agree-
ment with the calculation of Fandreyet al. [24], although
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FIG. 4. (a) Integral VE cross section for the=0—1 channel.
The solid line shows results of the present calculation whereas the
dashed line with diamonds shows the experimental results of Rohr
[10] scaled by the factor 0.2Zb) Integral VE cross section for the
v=0—1 channel. The solid line shows results of the present cal-
culation whereas the dashed line shows that of Fandreyat.
[24].

[24] has not been fully converged. Whether this reflects a
fundamental limitation of th&®-matrix approach of Ref24]

or merely a technical problem of the calculation is beyond
our judgment.

Although the absolute values of our VE cross sections
differ from the values reported by RohtQ], it appears that
the relative values of the calculated cross sections for differ-
ent VE channels are in very good agreement with the experi-
mental data. Since the absolute values of the cross sections in
the threshold region are less reliable than that in the reso-
nance regior(1.0 — 1.5 ey we compare their values at en-
ergies at which they attain their maxima in this region. The
ratios of VE cross sections calculated in this way are shown
in Table I. The agreement with the experimental valud
is very good.

The calculated DA cross section is compared with experi-
ment in Fig. 5. The solid line represents our calculation,
while the dashed line gives the relative experimental results
of Abouaf and Teillet-Billy [48], normalized at the peak
value of the cross section to the present data. The shape of
the calculated DA profile is in good agreement with experi-
ment(considering that the experiment contains contributions
from rotationally hot moleculgs[48]. The characteristic
Wigner cusps at the openings of VE channels are very well
reproduced by the calculation. The calculated peak value of
4.5 A? is considerably larger than in HCI, in agreement with
experimental estimatd€hristophorou, Compton, and Dick-

TABLE |. Ratios of VE cross sections.

we find a narrower threshold peak and our shape resonange /. Experiment Calculation

feature is located at lower energy. The two calculations are

compared in Fig. &); the solid line represents our results, 0—2/0—1 0.2 0.21
the dashed line that of Fandreyet al. [24]. For the 0—-3/0—1 0.05 0.07
v=0—2 channel, on the other hand, we find a completely0—4/0—1 0.02 0.02
different shape of the excitation function than the calculatior0—5/0— 1 0.006 0.009
of Fandreyeret al. Considering the excellent agreement of 0—3/0—2 0.24 0.32
the fixed-nuclei eigenphase sum of the present model witlh— 4/0—3 0.33 0.36
the data of Fandreyeat al. (see Fig. 1, it appears probable 0—5/0-4 0.37 0.39

that the nonadiabatic treatment of the vibrational motion in
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FIG. 5. DA cross section from the ground vibrational state. ,5
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cross section. S
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) <3l
son[49] report two peak values of the DA cross section: 4.0 » 1 b i
A2 (folded) and the probably more reliable unfolded value T
0

2.7 A% [49]]. The enhanced DA cross section compared with

HCI reflects the longer lifetime of thé3 * shape resonance

of HBr. 1.8 T T T T T T T T T
VE and deexcitation cross sections of hydrogen halides

are of relevance for the modeling of gas laser plaspids. e
We have therefore also computed inelastic and superelastic 14 1—3 ]
cross sections for HBr molecules in the vibrationally excited 12 | .
levelsv=1,2,3. In Fig. 6 we show the cross sections for the k i
transitions 1-0, 1—2, and 1- 3. Because of the excitation
of the target molecule, the vibrational thresholds are shifted 0.8 - T
to lower energies. The 12 VE cross section exhibits a 06 | .
threshold peak which is, however, lower and broader than the o k i
corresponding peak in the-81 transition. We do not find
threshold peaks in the higher transitions 0.2 I 1
l—v, v=345,.... 0 Y S S N N N N E—

The calculated VE and deexcitation cross sections for the o o5 1 15 2 25 3 385 4 45 5
second excited vibrational state of the target molecule are
shown in Fig. 7. The threshold structures are reduced in in- Electron energy [eV]

tensity and it is hardly possible to speak of threshold peaks in
the transitions 2-3, 2—4, etc. , FIG. 6. Integral VE cross sections for the=1—0, v =1—2,
In Fig. 8 the calculated DA cross sections are shown fong ;=13 channels for vibrationally excited HBr molecules
the three initial vibrational states,=0, 1, and 2. The cal- (, —1),
culation confirms the results known from the experiment on
HCI [50] that even a small fraction of vibrationally excited below the DA threshold. Rapid changes are observed at the
molecules in the target gas can considerably increase the Dgame energy in the resonant part of the elastic cross section,
cross section. Here, for instance, the DA cross section for thas shown in Fig. 9. This narrow resonance feature reflects a
first excited state reaches a value higher than 60 Bor  quasibound level in the shallow well of the HBmpotential
v=2, the DA process becomes exothermic and the DA crosat large internuclear distancésf. Fig. 2. The accurate cal-
section diverges foE— 0. culation of this feature is a demanding task as far as the
The high efficiency and accuracy of our approach allowsolution of the scattering equations is concerned. Moreover,
us to investigate very detailed structures in cross sectionshe position and width of this window resonance are very
One such structure is observed in the elastic and thel0  sensitive to the PE functions and the discrete-continuum cou-
VE cross sections in the vicinity of the DA threshold. The pling function at large internuclear distances. The experi-
0—1 VE cross section exhibits a very deep minimum justmental observation of such resonance features would thus
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FIG. 7. The same as in Fig. 6 bu},=2. FIG. 8. DA cross sections for three initial vibrational states of
HBr (vi,=0, 1, and 2.
provide very detailed information on the HBrsystem. B. DBr

The present model for electron-HBr scattering does not |, orqer 1 investigate the isotope effect which is known

predict the oscillatory fine structure below the DA threshold,, pronounced in DA to hydrogen halid&®,53 we have

observed in the 0-1 and 0-2 excitation functions of the  ¢5|cylated VE and DA cross sections also for DBr molecules.
e+HCl system9,21]. However, the accuracy of theb initio  The VE cross sections for the DBr molecule in the ground

data[24] and the accuracy of the present fitting procedure argjprational state are shown in Fig. 10. The corresponding DA
not sufficient to allow definitive predictions of fine details, cross sections are shown in Fig. 11. In contrast to the HBr
and such structures might exist. In any case, the present cajase we observe here a pronounced threshold peak also in the
culations indicate that the measurement of VE excitatior)—2 channel. Threshold peaks are again absent in the
functions of HBr with high sensitivity and good energy reso- higher transitions. The value of the-91 VE cross section at
lution would be a very worthwhile undertaking. the peak is lower than that for HBr, reaching only 12.A
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FIG. 11. DA cross sections for two initial vibrational states of
DBr (v;,=0 and 1.

The cross section of dissociative electron attachment to
DBr is considerably lower than that of HBr. The two DA
cross sections are compared in Fig. 12. The dashed line rep-
resents the DA cross section in HBr, whereas the solid line
gives the DA cross section in DBr. The isotope effect is very
pronounced in this casé factor of =4.5), but less pro-
nounced than in HCI, where a factor ef 10 is predicted by
theory [17]. This reflects again the longer lifetime of the
DBr~ collision complex compared to DCI

VI. CONCLUSION

In this paper we have reported on extensive calculations
of the vibrational-excitation cross sections and of dissocia-
tive attachment cross sections for low-energy electrons col-
liding with HBr and DBr molecules. The nonlocal resonance
model which has been developed for the description of VE
and DA in electron-HCI collision§17,18,25 has been used.
The parameters of the model were obtained by fittingathe
initio fixed-nuclei scattering data of Fandreyetral. [24].

The nuclear scattering dynamics in the complex and nonlocal
effective potential of the resonance state has been treated in
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FIG. 12. DA cross sections for DBr—solid line. The dashed line

shows the DA cross section for HBr.
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the Schwinger-Lanczos approai@9—31]. which is not considered in the calculatiotwe have made
The results of the present calculations are in good agregsredictions of various VE and deexcitation cross sections for
ment with experiment, as far as data are available. The ahvibrationally excited target molecules, as well as of HBr-DBr
solute values of the calculated-fv VE cross sections are isotope effect. These data could potentially be useful for the
significantly smaller than the values reported by RA@0].  modeling of discharges containing HBr or DBr molecules.
The fact that the relative cross sections for different channels The predictions of the present work rely on thie initio
agree very well with Rohr’s data strongly indicates that thefixed-nuclei scattering data $24] and depend on the valid-
absolute normalization of the experimental det@] should jty of the fitting procedure, that is, the adequacy of the non-
be reconsidered. The calculations confirm the existence of gcal resonance model. More extensive and more accurate
pronounced threshold peak in the-Q channel of HBr, in  experimental data are needed to either verify these predic-

qualitative agreement with the measurement of Rd,  tions or to reveal the need of improved calculations.
and the absence of threshold peaks in higher channels, as

suggested by Azriat al. [47]. The calculated DA cross sec-
tion appears to be in excellent agreement with the measure-
ment of Abouaf and Teillet-Billy{the apparent shift of the
experimental profile to lower energigsee Fig. % arises This work has been supported by the Deutsche For-
from thermal rotational excitation of the target molecules,schungsgemeinschatt.
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