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The nonlocal resonance model developed earlier for the description of low-energy inelastic and reactive
electron-HCl collisions has been adapted to the electron-HBr collision system. The parameters of the model
have been determined by fitting the eigenphase sum in the fixed-nuclei approximation to the data of anab initio
R-matrix calculation of Morgan, Burke, and collaborators. The Schwinger-Lanczos method has been employed
to solve the nuclear scattering problem with a nonlocal, complex, and energy-dependent effective potential.
Fully converged cross sections have been obtained on a dense grid of energies for many vibrational excitation,
deexcitation, and dissociative channels in both HBr and DBr. The computed cross sections are generally in
good agreement with experiment as far as data are available.

PACS number~s!: 34.80.2i, 34.80.Ht

I. INTRODUCTION

The collision of low-energy electrons with hydrogen ha-
lide molecules is a surprisingly involved process and contin-
ues to represent a challenge for electron-molecule collision
theory despite 20 years of research. The complexity of the
problem arises from the intricate interplay of shape reso-
nance effects, which efficiently couple the electron scattering
dynamics with the vibrational motion, with effects of the
long-range dipole potential, which couples the electronic
motion with nuclear rotations and causes a dramatic en-
hancement of threshold structures. Since the discovery of
threshold peaks in vibrational-excitation~VE! functions@1,2#
and pronounced cusp structures in the dissociative attach-
ment ~DA! cross sections@3# of HF and HCl, these unusual
threshold phenomena have been investigated in considerable
detail both experimentally and theoretically. Cross sections
for VE and DA in HX gases (X5F, Cl, Br, I! are required for
the modeling of laser plasma and are, therefore, also of con-
siderable applied interest@4,5#.

The VE cross sections in HF do not show a discernible
shape resonance, but exhibit pronounced threshold phenom-
ena@1,2,6–8#. In HCl, the shape resonance is clearly devel-
oped and reflected by a broad peak near 3 eV in the VE cross
sections@1,2,6–9#. In HBr, the shape resonance is even more
pronounced than in HCl and located at lower energy (. 1
eV! @10#. The intensity of the threshold peaks relative to the
shape resonance feature decreases from HF to HBr, which
seems to reflect the decrease of the dipole momentum
@1,2,10#. The unusual threshold phenomena observed in elec-
tron collision with HF and HCl have stimulated extensive
theoretical work. The threshold peaks ine1HF VE functions
have been explained by vibrational or rovibrational close-
coupling treatments based onab initio R-matrix calculations
@11–13#. For thee1HCl collision system the so-called non-
local resonance model, which can be derived either from the
Feshbach projection-operator formalism@14# or theR-matrix

formalism@15#, has provided a rather detailed description of
resonance and threshold features in VE and DA cross sec-
tions @16–18#. An alternative model is the effective-range
model of Teillet-Billy and Gauyacq@19#. Ab initio scattering
calculations of theR-matrix type, combined with the nona-
diabatic treatment of the vibrational motion, also have pro-
duced VE cross sections for HCl in good agreement with
experiment@20#. For a more complete account of the exten-
sive literature, we refer to recent review articles@15,21–23#.

Only very few theoretical studies have been concerned
with the electron-HBr collision system. The most compre-
hensive theoretical investigation to date has been performed
by Morgan, Burke, and collaborators using theab initio R-
matrix approach@24#. Based on the fixed-nuclei scattering
calculations including polarization effects, elastic electron
scattering cross sections and VE functions have been ob-
tained @24#. It seems that the DA process in HBr has not
theoretically been treated so far.

In the present work we adapt the nonlocal resonance
model to the electron-HBr collision system. In the nonlocal
resonance model, the2S low-energy shape resonance ac-
counts for the coupling of the electron scattering dynamics
with the vibrational motion, while the threshold effects
caused by the long-range dipole potential are included via a
threshold expansion of the energy-dependent width function
@23,25#. As in previous applications, the rotational dynamics
of the target molecule is neglected in the present work. This
should be a good approximation except for electron energies
within a few meV of the threshold@11#. The parameters of
the model are determined via a least-squares fit of the fixed-
nuclei eigenphase sum as a function of energy and internu-
clear distance to theab initio data of Fandreyeret al. @24#. In
addition, information on the bound-state potential-energy
function of HBr2 at large internuclear distances obtained by
large-scale multiconfiguration self-consistent-field~MCSCF!
and configuration-interaction~CI! calculations@26# is taken
into account.
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The calculation of cross sections within the nonlocal reso-
nance approach requires the solution of the Lippmann-
Schwinger~LS! equation involving energy-dependent, com-
plex, and nonlocal effective potentials. This technical
problem was solved by Mu¨ndel and Domcke@27# employing
separable expansions of the nonlocal potentials. This ap-
proach made use of analytic solutions~Green’s functions and
scattering states! of Morse potentials and is therefore not
immediately applicable for general potentials. Plesset al.
@28# have more recently developed a fully numerical and
thus generally applicable method. Alternatively, a time-
dependent approach has been implemented by Gertitschke
and Domcke which is suitable for arbitrary potential func-
tions @18#. Here we discuss the implementation of yet an-
other generally applicable method, the Schwinger-Lanczos
~SL! approach@29–31#. This iterative approach seems to be
well suited to treat scattering problems with complicated
nonlocal potential operators. We develop in the present work
a modification of the Schwinger-Lanczos approach which
renders the computation considerably more efficient. With
this method, fully converged VE excitation cross sections for
many channels and DA cross sections for various initial vi-
brational levels have been obtained for both HBr and DBr.
We report here the most interesting data, hoping that this
may stimulate further experimental investigation of this little
studied collision system. Preliminary results of the present
investigation have been reported in@32#.

II. OUTLINE OF THE THEORY

The present modeling of resonance and threshold effects
in electron-HBr collision closely follows the approach devel-
oped earlier for the electron-HCl system@17#. Therefore only
a brief outline of the general theoretical framework will be
given here. A more comprehensive exposition of the theory
can be found in@23#.

The formulation is based on the projection-operator ap-
proach of scattering theory@14# which provides a well-
established framework for the description of resonances in
electron-molecule scattering@23,33–37#. We assume that the
electronic Hilbert space is spanned by a single discrete elec-
tronic state~which represents the2S1 shape resonance for
short internuclear distances and the2S1 bound state of
HBr2 for large internuclear distances! and a single orthogo-
nal continuum. Assuming the diabaticity@38# of these elec-
tronic states and projecting the time-independent Schro¨-
dinger equation on the discrete subspace, one obtains an
effective equation describing nuclear dynamics in an energy-
dependent, complex, and nonlocal potential. Denoting by
V0(R) andVd(R) the potential-energy~PE! functions of the
target molecule and the discrete state, respectively, and by
Vd,k the discrete-continuum coupling matrix element, the ef-
fective potential reads@23#

Veff~R,R8;E!5Vd~R!d~R2R8!1F~R,R8;E!, ~1!

F~R,R8;E!5D~R,R8;E!2
i

2
G~R,R8;E!, ~2!

D~R,R8;E!5(
v

E E dE8Vd,E8~R!xv~R!@E2E8

2ev#
21xv* ~R8!Vd,E8

* ~R8!, ~3!

G~R,R8;E!52p(
v

E Vd,E2ev
~R!xv~R!xv* ~R8!Vd,E2ev

* ~R8!.

~4!

The xv(R) are eigenstates of the target vibrational Hamil-
tonian

H05TN1V0~R!, ~5!

TN52
\2

2m

d2

dR2
, ~6!

with eigenvalues«v . In Eqs.~3! and~4! we have introduced
an angle-averaged discrete-continuum matrix element which
is defined via

uVd,Eu25E dVkuVd,ku2. ~7!

In order to compute cross sections for VE and DA, we
have to solve the Lippmann-Schwinger equations@23#

ucd,E
~1 !&5G0

~1 !Vd,ki
uv i&1G0

~1 !~Vd1F !ucd,E
~1 !& ~8!

and

uK ~1 !&5uK&1G0
~1 !~Vd1F !uK ~1 !&. ~9!

Here uK& denotes a state of free radial nuclear motion and
G0
(1) is the resolvent operator for the free radial nuclear mo-

tion

G0
~1 !5~E2TN1 ih!21, ~10!

h being the usual positive infinitesimal.ucd,E
(1)& and uK (1)&

are scattering states in the effective potentialVeff with
boundary conditions appropriate for electron scattering and
DA, respectively.

In the actual calculations it is convenient to absorb the
strong, but local, partVd(R) of the effective potential into
the unperturbed problem. Applying the well-known two-
potential formula, Eqs.~8! and ~9! are rewritten as

ucd,E
~1 !&5Gd

~1 !Vd,ki
uv i&1Gd

~1 !Fucd,E
~1 !& ~11!

and

uK ~1 !&5uKd&1Gd
1FuK ~1 !&, ~12!

where

Gd
~1 !5~E2TN2Vd1 ih!21 ~13!

and uKd& is a scattering state in the potentialVd(R).
The integral cross sections for electron scattering and DA

are given by
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sv fv i
~E!5

4p3

ki
2 z^v f uVdEf

* ucd,Ei
~1 ! & z2 ~14!

and

sDA~E!5
4p3

ki
2 z^v i uVd,Ei

uK ~1 !& z2. ~15!

III. CONSTRUCTION OF A MODEL FOR HBr

In the treatment of the theory outlined above, the collision
system is characterized by three functions, namely,~i! the PE
function V0(R) of the target molecule,~ii ! the PE function
Vd(R) of the discrete state, and~iii ! the discrete-continuum
coupling elementVd,E(R), or equivalently, the width func-
tion

G~R,E!52puVd,Eu2. ~16!

For the PE function of theX1S1 state of HBr we adopt a
Morse potential

V0~R!5D0~e
22a0~R2R0!22e2a0~R2R0!!, ~17!

and the parametersD0 anda0 are obtained by fitting spec-
troscopic constants@39# (D053.92 eV,a050.96 a.u.21) and
R052.67 a.u.,m50.995 58 amu. The specification of the two
other functions,Vd(R) andG(R,E), is much more difficult.
Both functions can in principle be obtained from anab initio
calculation. Such calculations, though possible on current
computers, are very involved and have been performed only
for the simplest systems. To our knowledge there exists no
calculation of the width functionG(R,E) for HBr2. We can
use, however, existingab initio data for elastic scattering in
the fixed-nuclei approximation to infer the required param-
eters. This can be done as follows@17#: The eigenphase sum
in the vicinity of a resonance can be decomposed into a
background and a resonant part

dsum~E,R!5dbg~E,R!1d res~E,R!, ~18!

where the background termdbg is assumed to be a smooth
function of E andR and all the rapid changes are concen-
trated in the resonance termd res, which is given by the
Breit-Wigner formula with energy-dependent width and level
shift @17,25#

d res~R,E!52tan21S 1

2
G~R,E!

E2Vd~R!1V0~R!2D~R,E!
D .

~19!

Recently, Fandreyeret al. @24# have calculated the eigen-
phase sum dsum(R,E) for a range of R (2.0 a.u.
,R,3.1 a.u.! andE,0.8 Ry. By fitting these data the un-
known functionsVd(R) and G(R,E) can be obtained. As
soon as the widthG(R,E) is known, the level shift
D(R,E) can be calculated as

D~R,E!5
1

2p
PE

0

`G~R,E!

E2E8
dE8. ~20!

To perform the fit of the data we must specify analytic ex-
pressions for the functions to be fitted. First we assume that
the background termdbg is R independent and can be de-
scribed in accordance with the threshold law as@38,40#

dbg~E!5~p/42ap/2!1aEa1bE. ~21!

Herea50.424 is the threshold exponent@38# corresponding
to the dipole momentum of HBr (D50.828 D! @41#. After
some experimentation we found that the most stable fit is
obtained when the discrete state potentialVd(R) is taken in
the form of a single exponential

Vd~R!5D1e
22a1~R2R0!1Q1 . ~22!

The quantityQ1 is related to the electron affinity of Br@42#
and for HBr we haveQ150.56 eV. It remains to specify the
width function G(R,E). Following the earlier proposal by
Domcke and Mu¨ndel @17# we parametrize this function as

G~R,E!5G~E!g~R!2, ~23!

with

G~E!5A~E/B!ae2E/B ~24!

and

g~R!5e2C~R2R0!. ~25!

Altogether we have seven parameters to be determined: two
background phase-shift parameters (a and b!, two param-
eters describing the discrete state potentialVd(R) (D1 and
a1), and three parametersA, B, C describing the width
function G(R,E). The seven parameters have been deter-
mined by a least-squares fit ofdsum(R,E) to the ab initio
2S1 eigenphase sum of@24#. The quality of the fit can be
deduced from Fig. 1 showing theab initio data @24# in the
range 0,E,4 eV and 2.5,R,2.9 a.u. In the figure the
crosses are theab initio data of Fandreyeret al.; the solid
lines represent our fit, the dashed line corresponds to the
equilibrium distance 2.67 a.u. The deduced values of the
model parameters areD151.736 eV, a150.9871 a.u.21,
A54.039 eV,B54.615 eV, andC50.1176 a.u.21.

Although the effect of the polarization potential on the
threshold expansion ofG(E) anddbg(E) has not been taken
into account in Eqs.~21! and ~24!, the effect of the polariz-
ability of HBr is included in the parameters determined by
fitting the ab initio eigenphase sum obtained in the static-
exchange-polarization approximation@24#. The fact that the
2S1 shape resonance is located at lower energy and is nar-
rower than the resonance ine1HCl can to a large extent be
attributed to the larger polarizability of HBr.

To check the reliability of our model we performed a
series of fits in which theab initio data were modified by an
additional ‘‘noise.’’ It was observed that the parameters
A, B, D1 , anda1 are very stable with respect to changes
of the amplitude of the noise. The parameterC describing
theR dependence of the width functionG(R,E) is, however,
sensitive to minor changes of the data. The value ofC is thus
not very accurately determined by the availableab initio
data.
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Our calculations of VE cross section~see below! have
shown, moreover, that the height and the width of the thresh-
old peak in thev50→1 channel depend very sensitively on
the potential-energy function of HBr2 at large internuclear
distances. The availableab initio electron-HBr scattering
data@24#, extending only up toR53.1 a.u., are not sufficient
to determine the HBr2 potential-energy function over the
relevant range ofR. To improve the model, we have modi-
fied the R dependence of the width function outside the
range covered by theab initio calculations of Ref.@24# as
follows: for R.R1

g~R!5e2C~R2R0!e2D~R2R1!. ~26!

The parametersR1 and D have been adjusted in order to
optimize the agreement of the bound-state potential-energy
function of the model with theab initio MCSCF-CI
potential-energy function of Chapmanet al. @26#, resulting in
R152.9 a.u. andD50.4 a.u.21.

The PE curves of the model are shown in Fig. 2. The
dashed curve represents the1S1 ground-state potential en-
ergy of HBr, the dash-dotted curve the PE function of the
2S1 discrete state of HBr2. The full curve represents the
adiabatic potential-energy function of the2S1 shape reso-
nance (R<3 a.u.! and the 2S1 bound state of HBr2

(R>3 a.u.!, respectively. The cusp near 3 a.u. arises from the
effect of the long-range dipole potential, see@23# for a de-
tailed discussion. The bound-state part of the HBr2

potential-energy function exhibits a shallow minimum near
R54.5 a.u., in agreement with theab initio MCSCF-CI
potential-energy curve of Chapmanet al. @26#.

IV. THE SCHWINGER-LANCZOS METHOD

To calculate VE and DA cross sections, the LS equation
~8! or ~9! must be solved. The potential operatorF in these
equations is nonlocal, complex, and energy dependent, see
Eqs. ~2!–~4!. In some cases it is possible to approximateF
by a local complex potential@35,43,44#. It is well known,
however, that the nonlocality ofF is absolutely essential for
a correct description of the threshold peaks@17,25#. There
exist several methods of solving Eqs.~8! and~9! with differ-
ent degrees of generality@16,23,28#. Here we use the
Schwinger-Lanczos method@29–31# which represents a
fairly general and very efficient method of solving the LS
equation.

Let us formally write the LS equation as

uw&5uu&1GdFuw&. ~27!

According to the SL method we define a set of states
$ugi&% as

ug1&5uu&^uuFuu&2
1
2, ~28!

b i ugi11&5GdFugi&2a i ugi&2b i21ugi21&, ~29!

which diagonalizeF and tridiagonalizeFGdF,

^gi uFugj&5d i , j , ~30!

^gi uFGdFugi21&5b i21 , ~31!

^gi uFGdFugi&5a i , ~32!

^gi uFGdFugi11&5b i , ~33!

^gi uFGdFugj&50, u j2 i u.1. ~34!

FIG. 1. The2(1 eigenphase sum for fixed-nuclei electron HBr
scattering for the internuclear distances 2.4, 2.5, 2.6, 2.67, 2.8, and
2.9 a.u. ~from bottom to top!. Crosses are theab initio data of
Fandreyeret al. @24#. The solid lines show the eigenphase sum of
the present model, the dashed line corresponds to the equilibrium
distance 2.67 a.u.

FIG. 2. Potential-energy curves of the model. The dashed curve
represents the1S1 ground-state potential energy of HBr, the dash-
dotted curve the potential-energy function of the2S1 discrete state
of HBr2. The full curve represents the adiabatic potential-energy
function of the 2S1 shape resonance (R<3 a.u.! and the 2S1

bound state of HBr2 (R>3 a.u.!, respectively.
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In the above equationsuu& is the unperturbed wave function,
Gd is the Green’s function in the absence ofF, andF is the
nonlocal interaction. Once the vectorsugi& have been con-
structed the solutionuw& may be written as

uw&5(
i51

N

ai ugi&, ~35!

where the coefficientsai are given by simple algebraic rela-
tions in terms ofa i and b i @30#. The Schwinger-Lanczos
approach is iterative and does not require inversion of any
matrix. The numberN here denotes the total number of
Lanczos steps. The number of Lanczos steps needed for the
method to converge depends on the ‘‘strength’’ of the opera-
tor F.

In the specific case of thee1HBr collision complex, as in
e1HCl, the nonlocal potentialF is strong and the conver-
gence of the Schwinger-Lanczos method with respect toN
relatively slow. In the present work we have implemented a
modification of the method which exhibits improved conver-
gence properties@45#. We introduce a local approximation
F loc to the nonlocal operatorF and employ the Schwinger-
Lanczos procedure for the difference potentialF2F loc .

The local approximationF loc is introduced as follows.
GenerallyF acts on a wave functionw as

^RuFuw&5E F~R,R8;E!w~R8!dR8. ~36!

Let us expand the wave functionw(R8) into a Taylor series
around a pointR. Then

^RuFuw&5E F~R,R8;E!@w~R!1w8~R!~R2R8!1 1
2w9~R!

3~R82R!21•••#dR8. ~37!

If the wave functionw(R) does not change very rapidly with
R the higher terms in Eq.~37! can be neglected andFuw& can
be approximated by@46#

^RuFuw&'E F~R,R8;E!dR8w~R!5F loc~R,E!w~R!.

~38!

F loc(R,E) here is a local complex energy-dependent poten-
tial. It is also possible to include higher terms in Eq.~37! but
for our purposes this is not necessary.

Having obtained the local complex potentialF loc we can
write the LS equation~27! as

uw&5uu&1GdF locuw&1Gd~F2F loc!uw&. ~39!

Applying again the two-potential formula, Eq.~27! is rewrit-
ten as

uw&5uv&1Gd~F2F loc!uw&, ~40!

where

uv&5~12GdF loc!
21uu& ~41!

and

G5~12GdF loc!
21Gd . ~42!

The Schwinger-Lanczos method is then applied, as described
above, to Eq.~40!.

To generate the nonlocal operatorF according to Eqs.
~2!–~4!, a set of vibrational statesuxv& is constructed by
diagonalizing the matrix representation ofH0 in a suitable
basis of square-integrable functions. A discrete variable ap-
proach~DVR! is employed for this purpose. Approximately
100 DVR functions are required to get an accurate represen-
tation of the target wave functions~for details see@45#!. The
summations in Eqs.~3! and ~4! are truncated atvmax which
depends on the incident electron energy. It has been checked
thatG(R,E) andD(R,E) thus obtained are completely con-
verged both with respect to the DVR grid as well as the
summation over target vibrational levels. This construction
of G(R,E) and the solution of the LS equation via the
Schwinger-Lanczos approach are completely general proce-
dures and do not depend on special analytic forms of the
potentialsV0(R) andVd(R), as has been the case in some
previous treatments@17#.

It has been found that the introduction ofF loc can sub-
stantially reduce the number of recursion steps needed for
convergence of the Schwinger-Lanczos procedure@45#. This
is particularly true in the energy range of the threshold peaks,
where the computation of fully converged cross sections may
require very highN.

V. RESULTS

A. HBr

Integral VE cross sections for the 0→1, 0→2, and
0→3 channels are shown in Fig. 3. Thev50→1 cross sec-
tion exhibits an intense and narrow threshold peak as well as
a shape resonance feature near 1 eV impact energy, in quali-
tative agreement with the experimental data of Rohr@10#.
The absolute value of the calculated integral 0→1 cross sec-
tion at the resonance peak near 1 eV impact energy is smaller
by a factor of about 5 than the value reported by Rohr. This
is shown in Fig. 4~a!.

The intensity of the threshold peak relative to the shape
resonance peak is larger in the present calculation than in
Rohr’s experiment. It should be noted, however, that the in-
tensity and width of the threshold peak are very sensitive to
changes of the input data of the model. Because of the lim-
ited accuracy of theab initio data and the limitations of the
fitting procedure, there is some uncertainty in the model pa-
rameters and the present results should therefore not be con-
sidered as a reliable prediction of the intensity and shape of
the threshold peak. On the experimental side, the determina-
tion of accurate cross sections very close to threshold is no-
toriously difficult, see, e.g., the discussion in Ref.@21#. The
determination of the precise intensity and width of the
threshold peak in the 0→1 channel of HBr is thus still an
open problem. The present calculations strongly support,
however, the existence of a pronounced threshold peak in
agreement with Rohr’s experiment.

We find no intense threshold peaks in thev50→2 and
higher channels. This confirms the conclusion of Azriaet al.
@47# that the threshold peaks reported by Rohr@10# for the
higher channels are due to Br2 ions.
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The presentv50→1 cross section is in qualitative agree-
ment with the calculation of Fandreyeret al. @24#, although
we find a narrower threshold peak and our shape resonance
feature is located at lower energy. The two calculations are
compared in Fig. 4~b!; the solid line represents our results,
the dashed line that of Fandreyeret al. @24#. For the
v50→2 channel, on the other hand, we find a completely
different shape of the excitation function than the calculation
of Fandreyeret al. Considering the excellent agreement of
the fixed-nuclei eigenphase sum of the present model with
the data of Fandreyeret al. ~see Fig. 1!, it appears probable
that the nonadiabatic treatment of the vibrational motion in

@24# has not been fully converged. Whether this reflects a
fundamental limitation of theR-matrix approach of Ref.@24#
or merely a technical problem of the calculation is beyond
our judgment.

Although the absolute values of our VE cross sections
differ from the values reported by Rohr@10#, it appears that
the relative values of the calculated cross sections for differ-
ent VE channels are in very good agreement with the experi-
mental data. Since the absolute values of the cross sections in
the threshold region are less reliable than that in the reso-
nance region~1.0 – 1.5 eV! we compare their values at en-
ergies at which they attain their maxima in this region. The
ratios of VE cross sections calculated in this way are shown
in Table I. The agreement with the experimental values@10#
is very good.

The calculated DA cross section is compared with experi-
ment in Fig. 5. The solid line represents our calculation,
while the dashed line gives the relative experimental results
of Abouaf and Teillet-Billy @48#, normalized at the peak
value of the cross section to the present data. The shape of
the calculated DA profile is in good agreement with experi-
ment~considering that the experiment contains contributions
from rotationally hot molecules! @48#. The characteristic
Wigner cusps at the openings of VE channels are very well
reproduced by the calculation. The calculated peak value of
4.5 Å2 is considerably larger than in HCl, in agreement with
experimental estimates@Christophorou, Compton, and Dick-

FIG. 3. Integral VE cross section for thev50→1, v50→2,
andv50→3 channels.

FIG. 4. ~a! Integral VE cross section for thev50→1 channel.
The solid line shows results of the present calculation whereas the
dashed line with diamonds shows the experimental results of Rohr
@10# scaled by the factor 0.2.~b! Integral VE cross section for the
v50→1 channel. The solid line shows results of the present cal-
culation whereas the dashed line shows that of Fandreyeret al.
@24#.

TABLE I. Ratios of VE cross sections.

sa /sb Experiment Calculation

0→2/0→1 0.2 0.21
0→3/0→1 0.05 0.07
0→4/0→1 0.02 0.02
0→5/0→1 0.006 0.009
0→3/0→2 0.24 0.32
0→4/0→3 0.33 0.36
0→5/0→4 0.37 0.39
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son@49# report two peak values of the DA cross section: 4.0
Å 2 ~folded! and the probably more reliable unfolded value
2.7 Å2 @49##. The enhanced DA cross section compared with
HCl reflects the longer lifetime of the2S1 shape resonance
of HBr.

VE and deexcitation cross sections of hydrogen halides
are of relevance for the modeling of gas laser plasmas@4,5#.
We have therefore also computed inelastic and superelastic
cross sections for HBr molecules in the vibrationally excited
levelsv51,2,3. In Fig. 6 we show the cross sections for the
transitions 1→0, 1→2, and 1→3. Because of the excitation
of the target molecule, the vibrational thresholds are shifted
to lower energies. The 1→2 VE cross section exhibits a
threshold peak which is, however, lower and broader than the
corresponding peak in the 0→1 transition. We do not find
threshold peaks in the higher transitions
1→v, v53,4,5,. . . .

The calculated VE and deexcitation cross sections for the
second excited vibrational state of the target molecule are
shown in Fig. 7. The threshold structures are reduced in in-
tensity and it is hardly possible to speak of threshold peaks in
the transitions 2→3, 2→4, etc.

In Fig. 8 the calculated DA cross sections are shown for
the three initial vibrational statesv in50, 1, and 2. The cal-
culation confirms the results known from the experiment on
HCl @50# that even a small fraction of vibrationally excited
molecules in the target gas can considerably increase the DA
cross section. Here, for instance, the DA cross section for the
first excited state reaches a value higher than 60 Å2. For
v52, the DA process becomes exothermic and the DA cross
section diverges forE→0.

The high efficiency and accuracy of our approach allow
us to investigate very detailed structures in cross sections.
One such structure is observed in the elastic and the 0→1
VE cross sections in the vicinity of the DA threshold. The
0→1 VE cross section exhibits a very deep minimum just

below the DA threshold. Rapid changes are observed at the
same energy in the resonant part of the elastic cross section,
as shown in Fig. 9. This narrow resonance feature reflects a
quasibound level in the shallow well of the HBr2 potential
at large internuclear distances~cf. Fig. 2!. The accurate cal-
culation of this feature is a demanding task as far as the
solution of the scattering equations is concerned. Moreover,
the position and width of this window resonance are very
sensitive to the PE functions and the discrete-continuum cou-
pling function at large internuclear distances. The experi-
mental observation of such resonance features would thus

FIG. 5. DA cross section from the ground vibrational state.
Solid line— present calculation, dashed line—experimental results
of Abouaf and Teillet-Billy@48# normalized at the peak value of the
cross section.

FIG. 6. Integral VE cross sections for thev51→0, v51→2,
and v51→3 channels for vibrationally excited HBr molecules
(v in51).
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provide very detailed information on the HBr2 system.
The present model for electron-HBr scattering does not

predict the oscillatory fine structure below the DA threshold
observed in the 0→1 and 0→2 excitation functions of the
e1HCl system@9,21#. However, the accuracy of theab initio
data@24# and the accuracy of the present fitting procedure are
not sufficient to allow definitive predictions of fine details,
and such structures might exist. In any case, the present cal-
culations indicate that the measurement of VE excitation
functions of HBr with high sensitivity and good energy reso-
lution would be a very worthwhile undertaking.

B. DBr

In order to investigate the isotope effect which is known
to be pronounced in DA to hydrogen halides@50,51# we have
calculated VE and DA cross sections also for DBr molecules.
The VE cross sections for the DBr molecule in the ground
vibrational state are shown in Fig. 10. The corresponding DA
cross sections are shown in Fig. 11. In contrast to the HBr
case we observe here a pronounced threshold peak also in the
0→2 channel. Threshold peaks are again absent in the
higher transitions. The value of the 0→1 VE cross section at
the peak is lower than that for HBr, reaching only 12 Å2.

FIG. 7. The same as in Fig. 6 butv in52. FIG. 8. DA cross sections for three initial vibrational states of
HBr (v in50, 1, and 2!.
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The cross section of dissociative electron attachment to
DBr is considerably lower than that of HBr. The two DA
cross sections are compared in Fig. 12. The dashed line rep-
resents the DA cross section in HBr, whereas the solid line
gives the DA cross section in DBr. The isotope effect is very
pronounced in this case~a factor of.4.5!, but less pro-
nounced than in HCl, where a factor of. 10 is predicted by
theory @17#. This reflects again the longer lifetime of the
DBr2 collision complex compared to DCl2.

VI. CONCLUSION

In this paper we have reported on extensive calculations
of the vibrational-excitation cross sections and of dissocia-
tive attachment cross sections for low-energy electrons col-
liding with HBr and DBr molecules. The nonlocal resonance
model which has been developed for the description of VE
and DA in electron-HCl collisions@17,18,25# has been used.
The parameters of the model were obtained by fitting theab
initio fixed-nuclei scattering data of Fandreyeret al. @24#.
The nuclear scattering dynamics in the complex and nonlocal
effective potential of the resonance state has been treated in

FIG. 10. Integral VE cross sections for DBr: 0→1, 0→2, and
0→3 channels.

FIG. 9. Structure in VE cross sections (0→0—upper line and
0→1 —lower line! of HBr in the vicinity of the DA threshold.

FIG. 11. DA cross sections for two initial vibrational states of
DBr (v in50 and 1!.

FIG. 12. DA cross sections for DBr—solid line. The dashed line
shows the DA cross section for HBr.
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the Schwinger-Lanczos approach@29–31#.
The results of the present calculations are in good agree-

ment with experiment, as far as data are available. The ab-
solute values of the calculated 0→v VE cross sections are
significantly smaller than the values reported by Rohr@10#.
The fact that the relative cross sections for different channels
agree very well with Rohr’s data strongly indicates that the
absolute normalization of the experimental data@10# should
be reconsidered. The calculations confirm the existence of a
pronounced threshold peak in the 0→1 channel of HBr, in
qualitative agreement with the measurement of Rohr@10#,
and the absence of threshold peaks in higher channels, as
suggested by Azriaet al. @47#. The calculated DA cross sec-
tion appears to be in excellent agreement with the measure-
ment of Abouaf and Teillet-Billy@the apparent shift of the
experimental profile to lower energies~see Fig. 5! arises
from thermal rotational excitation of the target molecules,

which is not considered in the calculation#. We have made
predictions of various VE and deexcitation cross sections for
vibrationally excited target molecules, as well as of HBr-DBr
isotope effect. These data could potentially be useful for the
modeling of discharges containing HBr or DBr molecules.

The predictions of the present work rely on theab initio
fixed-nuclei scattering data of@24# and depend on the valid-
ity of the fitting procedure, that is, the adequacy of the non-
local resonance model. More extensive and more accurate
experimental data are needed to either verify these predic-
tions or to reveal the need of improved calculations.
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@29# J. Horáček and T. Sasakawa, Phys. Rev. A28, 2151~1983!; A

30, 2274~1984!; Phys. Rev. C32, 70 ~1985!.
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