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Anisotropic interaction potential between a Rydberg electron and an open-shell ion
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We develop a theoretical description of the anisotropic interaction between a Rydberg electron and an ionic
core. An adiabatic formulation expresses the anisotropic nature of the interaction through angular-momentum
operators of the core and the Rydberg electron. Terms with odd tensorial structure, such as a vector hyperpo-
larization proportional tdfc/j, emerge in the long-range potential. Computed energies of neditD Ryd-
berg states are compared with recent experimental measurements. The vector term improves agreement be-
tween theory and experiment. The vector hyperpolarizability is calculated explicitly, along with some standard
polarizabilities of Ne'.

PACS numbsg(s): 34.20.Cf, 34.60tz

I. INTRODUCTION tain confirm the existence of vector terms proportional to

_ 175 A% term proportional td_.-/ is shown to arise in
. Wh||¢ numerous analyses have tregted a charged particleyses wheré . is a good quantum number, such as in low-
in the field of a closed-shell atom or igd—3], theory has 7 atomic Rydberg systems. Moreover, additional operators

contributed far less to the interpretation of the aniSOtrOpinith tensorial rankk=1 contribute in an important way to
interactions between a charge and an open-shell specigfer=3 r=4 r=5 andr~® potentials. All terms are given

Zygelman[4] published one of the most recent derivations ofexplicitly and can be subjected to direct experimental tests.
the interaction potential between a charge and an open-sheljyr final forms for the large-potential and effective Hamil-
core with unit angular momentumL{=1). The Ref.[4]  tonjan show that such terms arise naturally in conventional
analysis used somewhat unfamiliar methods to predict a difgerivations of the electron-ion interaction. Specifically, their
ferent, counterintuitive “spin-orbit-type potential,” propor- appearance is not contingent upon the introduction of a geo-
tional to metric (Berry’s) phase, nor on a non-Abelian gauge field of
the type used in Ref4].
[C. Furthermore, in Sec. Ill we compare calculated energy
e (1) levels, found by diagonalizing our parametrized effective
Hamiltonian in a Sturmian basis, with experimentally ob-
vyherer is the distance between the charge and the core anﬁmzdvl:ggrs :g:‘m rleossli/sd ?:E;?;ﬁfcggp iﬁm Ol? E[:rl]tés:ggv_
/" is the orbital angular-momentum operator of the chargeRydberg state energies, improving agreement between calcu-
particle with respect to the center of mass. This unusual pogted and observed energy levels. An alternative method for
tential, purely eleCtrOStatiC in nature despite the Spin'orbit'extracting po'arizabilities from measured Rydberg energy_
type structure, was not given fully in R¢#] and its physical  |evel spectra based on this diagonalization is discussed and
origin has remained somewhat unclear. For instance, a ge@pplied. Finally, a calculation of the vector hyperpolarizabil-

metric (Berry-typg phase arose in the R¢#] derivation, in ity term is presented along with the standard dipole scalar
addition to non-Abelian gauge fields that are representatiognd (second-ranktensor polarizabilities.

dependent.

.In S(_ac. I (_)f this paper we reformulate t.he conventional Il. ADIABATIC FORMULATION
adiabatic derivatior{5] of the larger potential between a
Rydberg electron and an open-shell ionic core. The adiabatic As in Ref.[5], we use an adiabatic representation of the
formulation is then improved in Sec. Il by developing an asymptotic close-couplingCC) equations for an electron in
effective radial Hamiltonian that can be treated diabaticallythe field of an ionic core. Only the radidistanceis treated
within a small physically relevant channel subspace. The tw@diabatically in this derivation, in contrast to Rp£J, which
derivations, which borrow techniques from a paper by Fandurther adiabatizes the angular coordinates of the charge, as
and MaceK 6], express the anisotropy of the long-range in-in standard molecular Born-Oppenheimer formulations. In
teractions in terms of tensorial operators that are appropriatgew of the fact that experimental Rydberg level spectra are
to the adiabatic and diabatic formulations. Specifically, thefrequently probed for nonpenetrating, high-states, we
anisotropy of the long-range adiabatic potential is expresseddopt the usualJ./)K coupling schem¢8] and ignore the
in terms of angular-momentum operators of the core and o$pin of the outermostRydberg electron.(The spin of the
the Rydberg electron, while the anisotropy of the effectiveoutermost electron is most important in the context of ex-
Hamiltonian is expressed in terms of a defined set of “unitchange, which we neglect hereAtomic units are used
tensorial operators” that also operate separately on the cotroughout this paper.
and the Rydberg electron, but correctly account for the cou- The interaction of a Rydberg electron with an ionic core is
pling between the diabatic channels. The final forms we obrepresented by a long-range coupling matrix characteristic of
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the standard close-coupling equations without exchange. Amtermediate channelg with potential energy difference de-
expansion of the total wave functiond” in an nominatorsJ,—U,. These contributions can be classified as
r-independent basi$¢;(w)}, formed from coupled core either degenerate or nondegenerate depending on whether an

states and orbital functions of the Rydberg electron, gives thantermediate channel is degenerate with the physically rel-
coupling matrix evant channeb atr—c (i.e.,U,=U ).

/i(/+1) 1

Vi =|—%7z—-

T +E; | 8+ Vi(r), 2) A. Nondegenerate contributions

In the nondegenerate case, for which no intermediate
where V;(r) are the electrostatic matrix elements channelv is degenerate with the physically relevant channel
(¢ilV|¢;), E; is the ionic energy level in channg) and 4 atr—= (e, E,#E,), this approach gives a long-range
/i is the orbltal angular momentum of the Rydberg electron! potenual(nondegenerate contributionwith the structure
In this paper matrix elements involve integrals over all coor-

. (2 (4
dinates ) (and traces over all sping the problem, except |y (r)=E,— E+ /#(/#j D + Ql;ﬁ S Q_fgi
for the radial coordinate of the Rydberg electron. . B 2r r=oo2rtr
The adiabatic potentialsl ,(r) and eigenvectorsb ,(r) ad, nad
il + —2(E-E)\N,—0,—
are obtained by solving the linear eigensystem at @ach + Put P ( 55 LY +0(r79),

whereH(r)=V<(r). Within this adiabatic representation where adnad denotes adiabatimonadiabatit Every term
{®,(r)} the radial close-coupling equations take the form in this potential can be written as a standard second-order

g ) perturbation sum, except for the diagonal quadru@ié{
[—1<I—+P(r)) —[EI—U(r)]}F(r)=O, 4 and hexadecapol®{) terms, which are diagonaffirst-

2\=dr — - = - orden matrix elements of the ionic electric quadrupole and

) ) ] o ) ] ) hexadecapole operators. Explicit expressions for these terms
wherel is the identity matrixF is the radial solution matrix, ¢ infinite perturbation sums, over bound and continuum
and the nonadiabati@erivativg coupling matrix is states of the core, can be obtained along the lines of the
derivation given by Ref 5], although there are differences in

p,w(r):<q) —® > <I>T(r) d)(r) ) (5)  hotation, in coupling scheme, and in the multipoles that were
ar v included. Each tern@(?), Qifll, a,, B, BRY N, B,

and »,, depends on the various quantum numh]%r,s/ and
Here the adiabatic channels are labeled by greek letters; th‘W in a relatively complicated fashion that is difficult to ana-
converge as —o° to the ionic channels labeled by latin let-

lyze
ters.
For Rydberg systems with large and /7 quantum num- Ne
bers, the small values &f;;(r) compared td; — E; allow us Qiﬁ= < n Izl r¥P,(cosg;) v> , 9)

to perform the diagonalization dicc(r) perturbatively. An
important step in this perturbative diagonalization is the in-

clusion of the diagonal matrix elemens (r) in the unper- _ E Q(l)Q(l) (10
turbed Hamiltoniari5]. This is completely general and trans- Yu b= E -E,’
parent when the long-range coupling matrix is written as
" (/1) 1 S [/ (/D)= (7t D)] Mo (1)
Vij(r)= T—F+Ei+vii(r) 8ij+Vii(r), (6) =i (E,—E,)* my =

whereV;;(r) are now purely off-diagonal contributions. Pro- nad_ Q(l)Q

vided there are no degenerate states of the ion with opposite V; (E,—E )2, (12
parity [9,10], this perturbative series gives a long-range adia- a

batic potentialU ,(r). In addition, we include nonadiabatic

L)
effects perturbatively using the post-adiabatic theory of Klar 2 8Q,Quu (13)
and Fand11-13, which modifiesU ,(r) by vzu (E,—E )3’
— 1 [P,/ 202
- _Z(p2 _ py
Uu(N=Uu(1=5(P), +2AE-U 3 e > S ‘é , 14
vFE R

()

where the perturbative conditidﬁfw<|UM—U,,| is always

satisfied for Rydberg systems with sufficiently large (1) (3)

and /. The perturbative diagonalization &%, up to sec- 7= E 4QuQuu (15)
E,~E, -E,

ond order inV,,, produces terms involving summations over =

and
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In Eq. (9) N, denotes the number of ionic core electrons, Keeping powers of ~! up tor ~® and grouping terms of
while the subscripR refers the Rydberg electron. One con- the same tensorial structure allows us to present the long-
sequence of including nonadiabatic effects is the appearancange potentialnondegenerate contributions a form that

of an energy-dependent term in the long-range potential. Thismphasizes its anisotropic nature

energy dependence has generated a small controversy be-

cause different treatments disagree in multiplicative con-— 1 7,/,+t1) Cé{‘m

stants[1,3]. Referencd3] shows, however, that the energy- Yu(r)=E,.~ P 52 T2

dependent term of order ® can be written as an

/-dependent linear combination of  andr 8, implying Cgﬁm’(m] C?(‘lll) @
that the energy-dependent term can be regarded as a contri- 3 + /6 (37
bution of higher order than™®.
To reveal the operator structure and to clarify the depen- cggg_o) Cgfl,l) Cgf‘(lyl)y(zyz)y(m)] @ 2
dence of each term od, /, andK, we disentangle each Tl Tt 3 (-

term using recoupling algebra and place each in the form

5 6
Cilan . Caf(22.13]
+ 5

5 (-7, (20

; (—Dl(xW0.yky (16)

whereX( operates on the ionic core whi operates on ordern in r-L. and with a-multipole andb-multipole

the Rydberg electron. The validity of this derivation relies onconriputions, are given by

the fact that the infinite sum over intermediate states

Egs.(10)—(15) is itself a “scalar” object that contributes no . (—1)Het w2/ ,+1)(2k+1) )
multipolarity to any term. For example, the dipole polariz-  Ci{an) = A VAR RLIE {7 st ik
ability «, and theﬂf‘f’ term are proportional to the expecta- K et
tion value, in|u), of

Here the term<y/ by» corresponding t@ventensorial rank

a b k
x{a,b,k} ZJ FE(a,b)[J }
Yv iy [}

(r(cl)~rf;l))P(r’(cl)-r’fql)), 17) Jeo J,
NC
where P is a weighted(scalay projection operator. Using X{ yedol > r2C@(F )| v,
standard Wigner-Racah algebra this is recoupled into the =1 v
structure Ng
><< ’YV‘]V Z r:)C(b)(Fj) 7CJC>! (21)
2 (DM ePar I [rpe Par 1Y, (18) o

whereC®)(f;) are renormalized spherical harmonics and
in which terms appear with net multipole momentcting
on the core and Rydberg electron, respectively. Here the pro- X y z
jection operatorP has been factored into scalar operators {X’V'Z}:(O 0 O)
P. and Py that project onto the ionic core states and the
states of the Rydberg electron, respectively.

Following the spirit of the Fano-Mace€l6] treatment of
alignment and orientation, we replace the above tensori
structure by coupled angular-momentum operators of th ’ )
same rank. Each such replacement introduces a compens§RMpined into
ing ratio of reduced matrix elements

(22

is our condensed notation for j3symbols whose magnetic
fuantum numbers vanish. Terms that share the same tensorial
&ank and power of 1 but differ in multipole dependence are

n — n n
(el XR0. Y 0] 1) K (ag.by),(az.by), .. .1= Cklag by T Cklagby T 7 (23
> (_1)k<lu||\](k)W”M><JE:k)'/(k>>ﬂ
“ Mlde oA The matrix element$J{9. /1)  are
=2 CI¥- /M), (19 | |
ko . (30719, =((3e/ WKIIP-/9](3e/,)K)
Here the choice of the{?- /" operator representation is =(—1)Jet utK] C Tk K (339130
motivated by the fact that adiabatic potentials involve spe- 7 ek clive lI¥e
cific values ofJ; and /. In general, the choice of a par- ‘
ticular operator representation depends on whether the for- ><</MH/( )||/,L>, (29

mulation is adiabatic or diabatic. In the diabatic formulation o ) )

of Sec. Il a “unit tensorial operator” notation is defined that [14,19 and explicit expressions for particuldry(a,b)’s
correctly accounts for the coupling between the diabatidvith evenk in Eqg. (19) are given by

channels; this coupling cannot be represented by the angular- 3 5

momentum operator representation used in this section. I'(2,0=T,(4,0=1, (25)
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. . 1 and
F(L,)=TIg(2,2= E—E (26)

- LY=o SE—Fy) 29

I'8(1,9=2I}1,1), (27) 2(1, )—2(EV—EM)2_(EV—EM)3' 29
r81,1)= 6 ,— 8(E— E,U«)s, (28) The termC?{‘lyl) is the only one withodd tensorial rank
\/E 1 1 1 1 Ne N¢
Co =(—1)% J HCOF)| v,9 J rCOF) | yede ) -
1(1,2) ( ) <Jc||‘J£:1)||‘Jc>7§V Z(EV_E/.L)Z Jo J. J, Yede ;1 i (| vs34 ) { ¥odo jgl j ( J) Yede

(30

In contrast to the long-range potential presented in Eq/ (/,+1), the above summation shows that only even ten-
(8), the operator form of the anisotropic potential in E20)  sorial terms will appear in the anisotropic potentials.
possesses a very simple dependence on the various quantumwe can understand the vector potential in another way by
numbersJ.,/, andK. Along with the factorization of the recognizing thajBde can be written as
orbital angular momenturd” of the Rydberg electron from

information pertaining to the ionic core, all terms of the same [/ + )=/ (7 +D)]

eventensorial rankk share the same dependence. In addi- Bi= ; (E.—E,)2 QLQly

tion, all dependence oK appears in a single §-symbol e bR

originating from the matrix elementd®./®) and ac- (l[Frs 721 Tl ) (WPl T ol )

counts for the splitting of théK +J.|—|K—J.|+1 number => (32

5 .

of / levels of commonK. Unfortunately, the terms v a (E,~Ew

CEé‘l'bl) ’Cﬂézbz) .- that make Upcaﬁalvbl)v(a2~bz)~---] A" The commutator ofg and /2 is

not distinguishable from one another since they share the

same tensorial rank, power of *, and/” dependence. [Fr,/2]=i(/ XFr—FrX/) (33)
The angular-momentum representation of the long-range ’

potential in Eq.(20) immediately shows the appearance of agng with a little recoupling the vector contribution Bf¢

vector contribution whose structure is similar to a term pre-hecomes proportional to "

dicted by Zygelmari4]. Moreover, we are able to give an

explicit expression for each term and to explain its physical ([Tr. /21X Paif) - (FeX PerL). (34)

origin. For instance, the vector contribution depends on the

dipole moments of the ionic core and its existence hinges ogysjng

the centrifugal repulsion experienced by the Rydberg elec-

i i pad . o R N N TP P
tron. It is thﬁe presence of the,(/,+1) term in g% that [Fr,/ 21X PRl g=—2i(Fg- PrfR)/ +2iT (7 - PRI L)
makes theC7(; ;) term nonzero. Terms in the untransformed R R
potential in Eq.(8) without such an additionat’, depen- —2rgX Pglg, (39

dence are incapable of giving rise to odd tensorial contribu- 6 . ) )
tions such as't. /(). Specifically, if there is no additional W€ See that an> vector interaction proportional to

/, dependence the summation ovéy is easily performed:

~ 7 (FgXPer) (36
> (—1) M2/ ,+ {7 .a,7,} immediately appears. The existence of this vector interaction
v hinges on the presence of the centrifugal term Wimjﬂ. In
a b k addition, the right-hand side of E@33) indicates that the
X{7/,,b,7} [/ sy ] Rydberg electron exerts a torque on the ionic core.
S Cu Ly
aih k( a b k) ( Cw k) 2 B. Degenerate contributions
=(—-1 - . 1
(=1 0 0 0O0\0 O O @D The nature of the long-range effective potential changes

qualitatively when degenerate terms are considered. Degen-
Since each contribution to our long-range potentials involvegrate contributions appear when intermediate chanmels
a andb values that add up to an even number, the tensoriadhare the same threshdi=E ,, K value, and parity with
rank k must be even in this case. Thus, unless a particulathe physically relevant channelsatr—-oe. For simplicity we
term in Eq.(8) has some additional’, dependence, such as assume, however, that the intermediate orbital angular mo-
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mental , differ from | ,. A derivation similar to that given where theAn J(a,b)’s are
above produces a long-range adiabatic potential with the

structure
(2)
U, ()=, M(/ +1) Qi a_ﬂ
r 2r? 3 e
Q(4) B
+ =+ 6+O(r 8),

rd

where thea, andb, terms are explicitly

Q(Z)Q(Z)
A= ;M LA )=/ (7 1)
and
Q(Z)Q(4)

bu= % Sl A D=4

(37

(39)

(39

A3 (2,0=A% (40=1, (42)

2
LT+ 1))

(2 2= (43

AS(2,4=2A7,(2,2). (44)

Like the nondegenerate terms th@ﬁ;’b) exhibit a fac-
torization of contributions pertaining to the ionic core and
the Rydberg electron. In contrast to the nondegenerate case,
though, terms with the same tensorial rdakow differ in
their / dependence. This explicit dependence of the various
terms on the Rydberg electron angular momentum cannot be
neglected when measurements are performed on various sys-
tems.

Each term in this potential depends on quadrupole and/or
hexadecapole moments of the ionic core along with recipro-
cal powers of/,(/,+1)—/,(/,+1). As a consequence,

Again we recouple to reveal the tensorial structure andhese terms will tend to be fairly small in comparison to
then replace the tensorial structure with coupled angularthose in the nondegenerate case, but may still play an impor-
momentum operators of the same rank. Keeping powers dfnt role in accurately describing Rydberg spectra. The con-
r~1 up tor % and grouping terms of the same tensorial ranktribution to the vector term depends on quadrupole moments
allows us to present the long-range potenfidégenerate of the ionic core and, similar to the nondegenerate case,
contributiong in a form that emphasizes its anisotropic na-arises because of the centrifugal repulsion experienced the

ture:

1 /7,41 Do, DI4
_ - A + (22) 22)
Uun=E, AT ré ré

(D%, D34, DSA
(2,0 2(2,2 2(2 2
M i i }(J /2y,

6u

D3, DSX
(2,2) 3(2 4 /
+| = }(J VAW

(D4~ D3¥ Do~
4(2,2)+ 4(4,0)+ 4(62,4) <J((:4)./(4)>M

+
ré r°
Dok D~
(2,4 5 A5 6(24 (6
+_rG_<‘J5: )/ )>,u <‘J /1 )>;L

(QWw.

(40)

Here the '[ermsDk ap) corresponding to tensorial rark

ordern inr~?!

tributions are given by

- (=DM u(2k+1)(2/,+ 1)
RO L TN NS R R R

X(=1)/ 2/, +D{/ .a/ K07 L)

a b kjfa b k

X[/M /# /V}"]C Je ‘]C]
N¢

X< Yede '}’ch>

2, rict®()
X < Yede yCJC> )

N¢

b~(b)
El ryC®(F)

. and wnha—multipole andb-multipole con-

> A" (a,b)
/

(41)

Rydberg electron. In addition, we see that odd tensorial terms
with ranks of 3 and 5 arise in this case along with expected

even tensorial terms with ranks of 4 and 6. Even though the

degenerate contributions have been derived separately from
the nondegenerate ones, a full account of the interaction be-
tween a Rydberg electron and an anisotropic ionic core must
involve all terms in Eq(20) plus any terms not duplicated in

Eq. (37).

Ill. BEYOND THE ADIABATIC APPROXIMATION

The potentials presented above are simply long-range
adiabatic potentials with some post-adiabatic corrections. In
this section we go beyond a pure adiabatic formulation and
derive an effective radial Hamiltonian with an interaction
potential that has a parametrized form, includes coupling,
and is valid for the typically large values ofin high-n and
-/ Rydberg systems. With such a Hamiltonian both energy
levels and dynamical information about Rydberg systems can
be found by solving a set of coupled radial equations where
the interaction of the Rydberg electron with the core is ac-
counted for by the parameters in the interaction potential. It
is preferable to stay away from a purely adiabatic formula-
tion since derivative couplings are numerically difficult to
handle near close avoided crossings, expected to occur ubig-
uitously in open-shell atoms with fine structure. However, it
is expected that such an effective Hamiltonian should yield
the same long-range adiabatic potentials presented in Sec. Il
in the limit of larger.

Here we partition the various diabatic channels intB a
set that is coupled together to form a total angular momen-
tum K (excluding the Rydberg electron spiand parity 7
and its complementar§ set. TheP set includes all channels
that converge to thresholds that are physically relevant to the
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description of a particular Rydberg system. With this parti-

tion the close-coupling equations take the form

d2 VvQQ VQP) (FQ

~2lge T E

VPQ VPP FP

) =0, (45

whereV is the coupling matriy/*C in Eq. (2). Eliminating
FQ[16], the effective Hamiltonian acting dA” can be writ-
ten formally as

1, d° 1
PP_ PP PP P P
Het == 517 gz +V7P-V Qh—@v@, (46)
where
1 d?
hQQ= — E| QQP —E|QQ4+VyRQ (47)

Since we are interested in highand -~ Rydberg sys-

2253

o pyt )=/ (/o t1)

2r? 199,

g°%=|Ep,~Eq+t
(51)

In the following development terms higher than second order

in the matrix VPQ and terms involving— 3 1°9d?/dr?
- epo(E,r)IQQ are neglected; these are one to two orders of

magnitude smaller than the first three terms in the effective
Hamiltonian of Eq.(50) for the cases studied here.

In contrast to the adiabatic formulation, this diabatic ap-
proach has only a nondegenerate case since all thresholds in
the P subspace are distinct from those in tQesubspace.
This separation between the and Q subspaces is due to
electrostatic splitting, which is large compared to the fine-
structure splitting within theP subspace. Thus we can ex-
pand the inverted matrix in Eq(50) in powers of
/p(/pyt1) =/ o(/ o+ 1)I12(Ep,~Eg)r?®. Using the same
approach as in Sec. Il, we perform a recoupling to reveal the

tems, the energl will always be near one of thresholds that tensorial structure, but we do not transform to the angular-

are split by fine structure in the subspace. Thug can be
written as

E=Ep,+Cp(E), (48)

where, for conveniencEp0 is chosen to be the energy of the

lowest threshold in thé® subspace andPO(E) is a small

energy-dependent parameter. In addition, it is reasonable 59
expect that the radial kinetic energy of a Rydberg electron i
a highn and 7 state will be a small quantity. Thus the

inverse of h°? can be expanded incp (E) and

— 1/21°°d?/dr2. Moreover, to ensure that the effective
Hamiltonian HF;fFf’(r) yields the same long-range adiabatic
potentials as in Sec. Il, we add and subtract the small qua

tity — 1/r+ /p (/p,+1)/2r* from E. Then,

1 Zp(/p,t1)

E:EPO_F+ 2r2 +€p0(E,r), (49)

where the parametesrpO(E,r) is simply Cp, minus the term

added and subtracted froe and /po is the orbital angular
momentum of the Rydberg electron in the lowest channel

converging toEpo.
Expanding in — 1/2199d?/dr®—ep (E,r)1°? and ne-

glecting terms higher than second order in the coupling ma-

trix VPQ, the effective Hamiltonian coupling thHe channels
is approximately

1 __d? 1
PP__ — PP +VPP4\PQ QP
Har=— 517 g +V 7+ VPO qoV
1 d?
—§|QQW—6PO(EJ)|QQ
+VPQ (G2 VQP (50
where

momentum representation used in Sec. Il since it cannot cor-
rectly account for the coupling between the diabatic chan-
nels. Specifically, neither the J%.,/®  operator
representation used in the adiabatic formulation nor the
L®. /(0 representation suggested by the presence of the
EC-Z term in the Ref[4] derivation correctly accounts for
the coupling between the diabatic channel§?. /™ re-
quires J.=J, and /,=/,., while L¥./® requires
=Lcand/,=/ . Thus thel;- 7 term predicted by Ref.

C
r14] will only appear provided. . is a good quantum number,

which will be approximately true for loviz atomic Rydberg
systems. However, we can readily identify a similar operator
structure, which we symbolically represent A§9.Y{ .
This procedure gives an effective Hamiltonian with the fol-

Nowing anisotropic structure

s

' 1d2+E 1 7/, +0)
ef |\ 2dr2" e 2r?

4 !’ 6 !
Colfy  Cof(11.22]
T pac .
r r

<XE:O) : Yg»),u/.t’

citty 250 | Catty
’ 1 1 ) »
+ r6 <X£:)'Y§?)>,u/ﬂ+ r3 I,.4
Cgﬁl{’l) (2,2,(1,3] 451&#0)
4),(4,4),(1, 2 2 '
+ I’G <X£: ).Y(R)>;L,u’+ r5
CifL(IéLZ) (1,3)]
44 4 4
r6 <X£: )'YE'{)>/L,M’1 (52)

where u and ¢ indicate channels within th® subspace,
while v refers to channels in th® subspace. The operator
structure of the coupling potential in this effective Hamil-
tonian is similar to that of the long-range potential in Eq.
(20). In fact, apart from there being no post-adiabatic contri-
butions, the various terms in this coupling potential can be
viewed as a generalization of the terms in E2).
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Here theCE(‘;’fb') are given by
Cpiatt) = (= 1)Kt de /0w (2k+ 1)[ (27,4 1)(27

+1)]1/2 E AN

2 P (ab)(—1) (27, +1)
Yvodvaly

a b k
x{/M,a/V}{/"V,b,/M,}[/ J

w Lu L
a b k Ne
X J ac(a(t. J
[Jé Je JVJ<'YC c izl ri (rl) Yv V>
NC
x<nyy ]21 rPC)(f)) yéJé>, (53)

while

(XYW =((3e/ KIXE - YR (37 ,)K)

=(=1)% W QXN WIYRN )
o K]

x{ o5 (54)
i/# 3k

X% and Y& are “unit tensorial operators(spatia) of rank

k operating on the core and Rydberg electron, respectivel

with reduced matrix elements given by

1 if A(Jg.k,J0)

JXPNgy = 55
(Jel X 9e) | 0 otherwise (59

and

Lif A/, K/ )

0 otherwise '’ (56)

<//MY(RK)||/M,>:[

whereA(X,y,z) denotes the condition of triangularity among
the quantum numbers,y, andz. Explicit expressions for
particularAEoV(a,b) are

A (20=A3 (4,0=1, (57)

4 _AB —
M1 =AR22- g . (58)
Apou(13=2A% ,(1,1), (59
6 _ [/V(/V+1)_/P0(/PO+1)]
Apov(l,l)— Z(EV_ EPO)Z (60)

appear in the various terms to show explicitly how the vector
term arises. The summation ov&r, in the vector term

2 (DA A D)= oyt DR+ D)

/Ml/v</yl/#,[1 1 1)

X , S

o o o/lo o ol 7 -
2/, +D|"?

(N1, | DT e

I ER P e BROR (61

is generally nonzero. In contrast, other terms that do not
possess this additional,(/,+ 1) dependence share the fol-
lowing summation over’,,:

/. a /)(/ b /M)
0o 0o o/lo 0 o0

a b Kk
e 7 7

:(_1)—a—b—/#r—/#+k

/2 (—1) %2/ ,+1)

0 0 0f
(62)

)
0 0 O

a b k)(/ / k)

%ince only values o andb that add up to an even number

appear in the various termk,must be even. Thus it is the
centrifugal term along with the dipole moments of the core
that give rise to the vector term.

A. Parametrization

Each of theCE(f:;‘g) terms depends on information that is

specific to the channejs andu’. Expressing eacﬁﬂé’fg) in
terms of quantities that are channel independent along with
others that are channel dependent defines a parametrization
of the effective Hamiltonian. Once such channel-independent
quantities(such as the scalar and tensor polarizabiljte®
determined for a particular Rydberg system, the effective
Hamiltonian can be used efficiently to describe the interac-
tion between a Rydberg electron and an anisotropic ionic
core. The effective Hamiltonian provides a systematic
method for going beyond lowest-order perturbation theory,
which is often used to compute shifts of highand -
Rydberg levels from hydrogenic levels. The effective Hamil-
tonian can also be used to improve upon the adiabatic ap-
proach presented in Sec. Il, if desired.

In low-Z atomic systems the spin-orbit interaction is
small compared to the electrostatic interaction. As a conse-
quence, the total orbital angular momentumand the total
spin S, of the core are approximately good quantum num-
bers. This means that lod atomic Rydberg systems possess

Once again, the operator representation of the effectiv@ S€t of quantum numbers that are apprgximately the same
Hamiltonian in Eq.(52) shows the appearance of a vectorfor all relevant channels. Decouplir@ﬂ(“a’j‘b) into /, J.,

term. Here we have retained the summations ovgithat

L., andS; we find
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k Lo L

CE&%F(—1>Jé*5c“c“u'<2k+1)[S 33
C c

,CJ [(2/ ,+1)(2/ +1)(23+1)(23} +1)]H2

c

‘ ‘ a b k][k L. Lg
X 2 AR (@D~ 2/ D78 HA b ,
n,L,.”, 0 /M, LV

Cu Vs
><<nCLC LV><nVL,,

With this decoupling the various terms in our effective where the angular facto%() is
Hamiltonian take on a parametrized form. For example,

00(1,1) is simply related to the standard dipole scalar polar- D (1) 2t SKI (2 12/ +1)(2T+ 1
izability . [21] through A =(=1) [(2/,+1)(27 ,+1)(23c+1)

N¢

21 rac@(r;) | n

N¢

]}:)1 r’C)(F))

nCLC> . (63

W Je Zu K|[2 Lo Le
o X(23i+1 : , ,
Sftul)()( Y(R0)>,u,u’ = ?Sr (64) ( ¢ )] /,U«/ ‘]C 2 SC ‘]C JC
' ' L Ly 2 L. 2 L
while C3¢4, and C3/{", are related, respectively, to the X g O’L O) / ( E 0 LC). (67)
guadrupole momen® and the second-rank tensor polariz- il ¢
ability o by ,
, o e 2 In addition, the vector terr@$¢{,(X)- YY), can be ex-
CoHYo(XP Y@ 0 ==QA, (65  pressed in terms of a vector hyperpolarizability by
and , I
C?#llfl)<xgl)'Y(R1)>MM’:BU<LC'/>;L;L” (68)
4 (XD Y@ & @
ColintXe™ YR D 2‘”7/#‘# (66) whereg, is defined by
|
V6 1 1 Lo L S
= c(t.
By [Lo(Lo+ 1) (2L + 1)]1/2n§-1; 2(E,— EPO)Z L, 1 1 Nelc |—Zl riCH(ryjin,L,
NC
X < nVLV jgl rJC(l)(fJ) nCLC> (69)
and

(Lo 7Y =([(LeS) o WIK Lo ZI[(LeS) I/ TKY = (— 1)Lt St 2+t 14K (23 +1)(230+ 1) VAL JLYIL )

I /u K
fo 3 K] (70

"

J S

Lc
C Cc

Our use of the terminology “hyperpolarizability” is intended
to emphasize the difference between the term involving
B, , Which varies ag ~®, from the more familiar terms in-

6uu’ 2 2 — (2)
Coth 22,131 X67 - YR Y= —Colp,- (72

volving as and a;, which vary ag ~ 4. Thus the effective diabatic Hamiltonian in parametrized
The remainingcgf‘(’i‘”l)’(zyz)] and Cgf‘(’l‘"l)](zyz)‘(lm terms ~ formis

are related, respectively, to the parametgrandcg [7] by

) 1 d? 1 /., +1) as 7

o R e A T 2 LT
CO[(ll (22]<X YRy =—1 (72)

Bo - - Q a’t (2)
and r_6<L LY — >ra A, (73
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N\

Here the choice of thd;.cf operator representation is ap- a9, zjc.
propriate since the general vector term in E8R) requires Hmag= — 24 3 (77)
/ =/, and since we are considering lavatomic Ryd-

berg systems wherk. is an approximately good quantum . ] )
number. where« is the fine-structure constant agg is theg factor

of the ionic core. The following calculations include these
relativistic contributions perturbatively. All energies are

_ ) shifted so that the state (3/2)4g, corresponds to zero en-
The study of higha and »~ Rydberg systems with low- ergy.

Z atomic numbers has now been reduced to the determina- Taple | compares our results for the various parameters

tion of a few parametersai,,Q. 8, , . . . ) that character- (e g., polarizabilities, quadrupole moment, and hyperpolariz-
ize the ionic cores of these systems. With these parametegilities) of Ne™ with those of Wardet al. [7]. The striking
energy levels and adiabatic potentidi®ating the radial co-  gifference between our results and those of Réf.is the
ordinate as a paramejeran be computed by diagonalizing goos improvement in the? associated with our parameters.
the effective Hamiltonian. In addition, dynamical informa- The fact that the>-squared per degree of freeddper pa-
tion can be obtained by solving a set of coupled radial equarametey is now approximatelypneis a clear indication that
tions. . o the anisotropic interaction potential correctly accounts for

The parameters that characterize the ionic cores of Rygne distribution of Rydberg energy levels. Columns 2, 3, and
berg systems can be computed from first principles or exz of Table Il compare the improved energy eigenvalues from
tracted from Rydberg energy levels. In this section we demgyr diagonalization with the measured energy levels of Ref.
onstrate how these parameters for'Nean be obtained from [7] for n=10 Rydberg states of neon with=5,6,7, and 8.
the n=10 Rydberg levels of neon with’'=5,6,7, and 8, This diagonalization utilized 40 radial Sturmian functions
which have been studied in recent experiments by Wargher channely= 1/(/+1), and all our parameters listed in
et al.[7]. This is accomplished by minimizing the weighted Taple |. These parameters reproduce all observed energy lev-
x? function, involving differences between the observed andsjs to better than 1 MHz.

computed energy levels, with respect to the parameters |n order to ascertain whether the RET] experiment has

r

B. Numerical results using a Sturmian basis set

OZSaataQnva"_ . _ o actually observed effects of the vector hyperpolarizability
To diagonalize the effective Hamiltonian we use a com-+erm g, we have repeated the same analysis described in
plete basis of radial Sturmians the preceding paragrapéxceptthat 8, was constrained to
(N—/—1)1]12 vanish. The resulting refitted parameters are gi\_/e_n in Table |
SO =|————| e TRy I N (41, (except of course for the omitted,). The coefficientg;,
(n+/)! ' which represents the gyromagnetic ratio of the N&P5,)

(74 level, changes by the greatest amount in this fit, going from
1.342 to 1.307. Inspection of E¢77) shows that the tenso-
rial structure of they; term is similar to that of thgs, term,

So it is reasonable that the new fit modifigg in order to

where thel (" 1)(¢r) are associated Laguerre polynomials
defined by

n

n+k\ (—x) “mock up” the effects of the omitted vector hyperpolariz-
LI = . | (75)  ability. Note also that the value af; expected inLS cou-
v=0 -V 14

pling is precisely 4/3(lts value could be measured indepen-
dently to test the fitted value in Table I, e.g., by a linear

eeman effect measurementolumns 2, 5, and 6 of Table
Il compare the energy eigenvalues obtained from these fitted
parameters, witlB, constrained to vanish, with the measured
levels of Ref[7]. The larger discrepancies between observed

Ho ¥ =EOV, (76) ~ and computed energies appear in states with lowealues,
the largest of which is-1.43 MHz in (3/2)1®4,. The new
whereHq and O are the effective Hamiltonian and overlap least-squares fit omittingg, results iny?=27.5. Thus the
matrices in the Sturmian badi$7]. We use a Sturmian basis x? per degree of freedom is roughly four times worse than in
set, in contrast to the perturbative calculation scheme devethe fit including 8,. This strongly suggests that the Ward
oped by Ref[7], in part because of its simplicity and in part et al. [7] experiment has indeed observed the vector hyper-
because it naturally incorporates coupling to the continuunpolarizability.
states. Figures 1 and 2 display two sets of adiabatic potentials for
In order to compare the computed energies with experineon that exhibit qualitative differences. In Fig. 1 the adia-

mentally observed energies, relativistic contributions must béatic potentials correspond ti7=9/2" and are labeled
added to the energies obtained from the nonrelativistic effecfrom top to bottom with {.,/)=(1/2,5), (3/2,5), and
tive Hamiltonian. Since the experimentally observed spin(3/2,3). The absence of avoided crossings and the smoothly
splittings are only partially resolved, all spin-orbit and ex- decaying behavior of the derivative couplings justify the use
change terms are neglected. The dominant relativistic contrief an adiabatic treatment. Other sets of adiabatic potentials
butions come from thg* term in the kinetic energy of the for different symmetries can differ in a crucial manner. For
Rydberg electron and the magnetic interaction between thmstance, Fig. 2 shows a set of adiabatic potentials corre-
Rydberg electron and the ionic core given by sponding toK™=11/2" that are labeled from top to bottom

and ¢ is a parameter chosen to enhance convergence. Aft
we write Fp as a linear combination of these Sturmian func-
tions, the close-coupling equation fB, becomes a gener-
alized eigenvalue problem
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TABLE |. Comparison of fitted(experimental and theoretical parameters for NeL refers to length
form andV refers to velocity form. The value @ in column 5(marked with an asterigks based on pure

LS coupling.

Present fit
Parameter Present fit withot, Ward et al. Theoretical
ag 1.30182) 1.30116) 1.302813) 1.23 )
1.19 (V)
1272
a; —0.02593) —0.02613) —0.0245) —0.0374 ()
—0.0396 )
-0.035"
Q —0.2040205) —0.2040011)) —0.204035) —0.1964°¢
—0.20325) °
—-0.2117"
B, 0.0592) 0 0.04529) 0.0678 ()
0.0719 V)
7 -0.101) -0.101) —0.2924) -1.444
d; 1.34312) 1.30724) 1.35421) 4/3 *
Cg 0.2745) 0.2643) 0.55)
x° 7.1 27.5 35.7
8Referencd 19].
bReferencd13].
‘Referencd 18].
dReferencd 20].

with (J¢,”)= (1/2,5), (3/2,7), and (3/2,5). Here the pres- bypasses numerical difficulties associated with derivative
ence of a close avoided crossing and a corresponding shagouplings in an adiabatic formulation by essentially treating
derivative coupling introduce numerical difficulties in a pure the dynamics adiabatically only within ti@ subspace. This

adiabatic formulation. The effective Hamiltonian approachapproach preserves the simple form of a set of coupled di-

TABLE Il. Comparison of calculatedwith and without3,) and experimentally observed energies in
(MHz) of n=10 Rydberg neon witd.=3/2 and/'=5,6,7, and 8AE=E s Eyc.

States Eops[7] Ecalc AE E% ;0 AER,=0
Hop —145.5877) —145.63 0.05 —144.15 -1.43
Hiip 2142.6710) 2142.60 0.07 2142.81 -0.14
Hian —6022.2419) —6022.02 0.22 —6022.66 0.42
Lo/ —5267.1%35) —5267.38 0.23 —5266.64 —-0.51
1172 —356.3q24) —356.18 -0.12 —355.91 -0.39
137 800.525) 800.50 0.02 800.55 -0.03
15/ —4131.3615) —4131.35 -0.01 —4131.10 -0.26
Ko —3838.0635) —3838.50 0.44 —3838.26 0.20
K1a —646.418) —646.37 -0.04 —646.36 -0.05
Kiso 0 0 0 0 0
K17/ —3205.0116) —3204.97 -0.04 —3204.68 -0.33
Liap —3073.1435) —3073.64 0.50 —3073.56 0.42
L1sp —883.098) —883.04 —-0.05 —883.08 -0.01
L1z —494.045) —494.04 0.00 —494.05 0.01
Ligp —2693.4118) —2693.38 -0.03 —-2693.14 -0.27
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FIG. 2. Adiabatic potentials and derivative couplings for Ryd-
berg neon. The adiabatic potentidls,(r) (solid lineg correspond
=11/27 and are labeled from top to bottom with

FIG. 1. Adiabatic potentials and derivative couplings for Ryd-
berg neon. The adiabatic potentidls,(r) (solid lineg correspond -
to K™=9/2 and are labeled from top to bottom with to K/ o .
(3.,/)=(1/2,5,(3/2,5), and (3/2,3). The derivative couplings Je:/)=(1/2.9,(3/27), and (3/2,5). The derivative couplings

P,.(r)/30 are given by broken linesPiop magdr), dashed: P,.(r)/30 are given. by broken linesPp migad ), dashed;
Prmiddle, bottork "), dotted andPyqp horton( 1), dot-dashed. Pmiddte, botion(T), doted; andPiop poror(r), dot-dashed.

abatic equations in the subspace while still incorporating a (1)c() connects states of the opposite parity that differ by
physically useful parametrization of the long-range interac—; mgst one orbital and such thAL,=0,+1 (except for
tions. . L . _ L.=0toL.=0 transition$ andAS.=0. Thus only the’S,

While an adiabatic formulation can suffer from numerical 25 54 20 final states are needed. which are generated
difficulties, adiaba.tic potentials can be used to qualitativelyfro;n the ground state bys2-np, 2p’—>ns, and Z—nd
qnderstand both simple and CO”_‘P'e_X spectra. The wave fun%'ubstitutions. Excitations of theslcore are ignored since
tion of_a qulberg el_ect_ron moving in the presence of thes‘?hese give negligible contributions to reduced dipole matrix
potentials will be distributed among the various channelselements These final states of Neare represented by
(pathg. The combination of amplitudes from the various 252p° 252p5np 2522p*ns, and 222p*nd configurations
paths can result in interference and consequently compl%hich' can be ,constructéc{including the ground stat’e
spectra. The degree to which this takes place depends on tB 2205 from a product of N&* states 22p° or 2522p*
coupling between channels and whether the channels supp%rﬁd an outes, p, or d electron. These N& configuratior;s
strongly overlapping series converging to the various thrGShélre referred tc,) a;shysicaltarget 'states The summations over
olds. The adiabatic potentials in Figs. 1 and 2 converging t%ound and continuum states of Naré accomplished using
the Py, and Py, states of neon may give rise to such com- eigenchanneR-matrix method[22]. This allows us to
plex spectra. This present effective Hamiltonian approach i%:onstruct a complete set of orthogonél basis functions, van-
well suited to the description of such phenomena, especiall}/shin insid ) . . L
. . . - ! g inside theR-matrix sphere of radiusy. Such func
in conjunction with multichannel quantum-defect theory. tions represent a bound spectrum and a discretized con-

. o tinuum of Ne'.
C. Calculation of vector hyperpolarizability The target states of Né are calculated using the multi-

In this subsection we discuss the calculation of the reconfiguration Hartree-Fock approximati¢®3], where both
duced dipole matrix elements necessary to evaluate the vespectroscopic and correlation orbitals are included. First,
tor hyperpolarizabilitys, along with the standard dipole sca- spectroscopic orbitalssl 2s, and 2 are optimized on a
lar polarizability «s and the second-rank tensor polarizability single 2522p* configuration. Then, a correlatiord3rbital is
a, of Ne*. The theoretical values fag, o, andB, are  optimized on 22p° 3P°, whose configuration-interaction
presented in both length and velocity form in Table | for (Cl) expansion includes the main perturbes®2p®3d P°.
comparison with other theoretical and experimental results.Finally, 3s and 3 correlation orbitals are optimized on

Here reduced dipole matrix elements are calculated foRs?2p* 3P, where singly and doubly excited configurations
the ground state of N&(2s?2p°® 2P°). The dipole operator allowed by parity and spin-angular-momentum coupling
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TABLE Ill. Theoretical and experimental energi¢24] in wherer. is the greater of the radial and s coordinates,
cm™* (upper and lower entries in first column, respectiyety @, are occupation numbers of spectroscopic orbitals repre-
some Né* states, relative to the ground stats’2p® °P, and  senting the 8°2p* target, and\,, are Lagrange multipliers

shortened CI expansions for each of these states. needed to orthogonalize the outer-electron and target orbitals
(including the correlation orbitalsAll new “box” orbitals
Energy Composition are forced to vanish at tHe-matrix surface. These constitute

a complete orthogonal basis, representing an electron outside
the residual N&" ion. Those orbitals, which have positive
energiesE, > — Zg4lro+ I(I+1)/2r§, describe not only
bound states but also represent a discretized continuum of
the Ne" spectrum.

The ground state of N&is constructed from an antisym-

0.0 2522p* 3P 2s2p*(®D)3d °P 2s2p*(?P)3d 3P
0.0 0.98605 0.00410 0.00160

25559 22p* D 2s2p*(®P)3d D 2s5?2p?('D)3p?(°P)D

25521 0.98406 0.00672 0.00176 metrized product of the target states and outer-electron orbit-
a1 61 o 21 e 1 als. The energies and atomic wave functions of Nee just
53096  Z°2p" 'S 2p” S 2572p°("9)3d°("S) 'S gjgenvalues and eigenvectors, respectively, of the Hamil-
55427 0.95453 0.03386 0.00303 tonian. The ionization energy of Ng2s22p° 2P°) obtained
in this calculation is 334 460 cmt, whereas the experimen-
203471 32p°°P 2s?2p%(°D)3d °P  2s?2p*(*P)3d °P tal value is 331 350 cm?. A better check of accuracy based
204589  0.97417 0.01000 0.00397 on an analysis of errors in quantum defects provides infor-
mation about the whole Rydberg series, not just one member.
291435 22p° 'P 2s°2p(°D)3d ‘P 2s°2p%(*P)3d 'P The theoretical and experimental effective quantum numbers
289159  0.96629 0.01300 0.00314 of a 2p electron in 322p° ?P° are 0.573 and 0.572, respec-

tively, giving a difference of 0.001 in the quantum defect.
The final 2S, 2P, and 2D states are constructed in the
rules are included. We then set up an initial, long Cl expansame way as the ground state. However, a similar estimate of
sion for eachL S term in the 2%2p* and 22p°® configura-  errors can only be made for the lowest eigenstates whose
tion, including all allowedby parity andL S-symmetry con- atomic wave functions fit inside 7 Bohr radii and thus repre-
servation rulessingly and doubly excited configurations of sent physical states of Ne For the lowest, even-parity state
2s, 2p, 3s, 3p, and 3 orbitals. After diagonalizing a 2s2p® 2S we obtain an excitation energy of 215 953 ¢in
Hamiltonian, this initial CI set is condensed; from each ei-where as the experimental energy is 217 050. The corre-
genvector representing a physical target state, we delesponding error in the quantum defect is only 0.01, well
those configurations whose weight is less than 0.0005. In theithin the range of errors expected for such a strongly cor-
final step, extra configurations representing the target polarelated state. Note thas2p® Sis correlated predominantly

ization are added. These are constructed from single-electrqpitn g 2522p*3d2S perturber, which contributes nearly 25%
excitations from 8°2p* and 22p®, involving a change in  of the C| expansion. No similar error analysis can be carried

the parity as 8—2p, 2p—3s, and —3d. Table Ill oyt for higher excited states, of course, since those no longer
shows energies and dominant configurations for each physiit into the R-matrix box.

cal target state in the condensed basis. Comparing with ex- our final results are obtained with 11 orbitals for each
periment[24], our relative energies are accurate to at 'eashngular momentum. However, a different number of the
5%. ) ) ) ) ) box orbitals was initially used to test convergence of the
As in previous eigenchanneR-matrix calculations  gipole scalar polarizability. For th&S and 2P symmetries,
[22,25, a discretized basis of outer-electron orbitals,  \yhose calculations consume the least computer CPU time
np, nd, nf, andng are used. These are solved for inside theang memory, we increased the number of box states to 13.
R-matrix sphere of radius,=7 Bohr radii. The size ofgis  This changed the scalar polarizability by about 2%. We also
chosen to match all physical target states and the groun@sted the importance of waves, since these, along with
state of Ne" and to ensure an exponential decay ofwaves, were neglected in earlier theoretical calculatiaB%
rPy(r), whereP,(r) are the ground-state radial functions. The g waves were found to contribute about 3% to the scalar
Radial functions for an outer electron are obtained from &ipole polarizability and even greater effects are expected

Hartree equation from f waves. Therefore, these are kept in the present calcu-
1d® 101+1) Z lations. Our final value of the scalar polarizability is 1.23 a.u.
s — — V(1) | Py(T) in length form and 1.19 a.u. in velocity form. The scalar
2dr2" 2r2 ¢ 'H nl

polarizability in length form differs by about 6% with experi-
mental results and by about 3% with other theoretical results
=EnPu(r)+ 2 AnPan(r), (see Table)l In velocity form, the scalar polarizability dif-
n’ fers by about 9% with experimental results and by about 6%
with theoretical results. The slightly better results obtained in

where Ref. [18] can be attributed to the use of a fully variational
method to generate Nestates, where the infinite summation
over Rydberg series and continua is implicitly included,
whereas our method uses a Cl approach that is in general
slower converging.

ol
Vi(n=2 qnn“ r—Pﬁ,.(S)ds
n’ 0o l>
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IV. SUMMARY Ne* in terms of then=10 Rydberg level energies of neon.

The impetus for this work was our desire to understanolTh|s analysis provides improved values for the parameters,

) > > DU U . . as evidenced by an 80% reduction in teassociated with
the physical origin of a nonrelativistic “spin-orbit-type” po- ; 5 )
tential predicted by ZygelmaP4] to exist in Rydberg sys- the parameters presented in Réfl. Ther ~° potential term

tems. This unusual potential, purely electrostatic in naturé.nvOIVing the vector hyperpolarizability significantly im-
despite the spin-orbit-type structure, was not given fully inProves agreement between the computed and observed en-

the Ref.[4] derivation and until now its physical origin has ergy levels.

remained unclear. The present study has not only clarified theutézlavt;sﬁCtr?:tg?rgiltfvgoLgmﬁg:w?a%hasnhnoevlvs ;L;SO:\}O?SQJ
physical origin of this potential but it has also spawned P '

reformulation and extension of existing theory to permit aCrossings that imply the existence of complex multichannel

description of Rydberg electron motion in the field of an fﬁ;cg;fae'cﬁ'ythZ§itﬁgﬁazaﬂ] tz:?)r?'iif:rtligidvﬁ&eﬂxﬁilzhgﬁrLIJSIIng
anisotropic core. J

Section Il of this paper reformulates the conventionalquTl?r::lﬂ1 dgfee(;Ct|31e?2;ents a quantitativa initio calcula-
adiabatic derivation of the large-interaction potential be- Y VP q

tween a Rydberg electron and an open-shell ionic core. ThgOn of the vector hyperpolarlzabnl_wl{ for an anisotropic
on. The calculated value for Neis in reasonably good

use of recoupling algebra and a transformation to an anguIaF- ;

momentum operator representation reveals the anisotrop reement with the value deduced frqm recent measurem_ents
nature of the interaction. The resulting potential immediatelyO N.e Rydberg levels. Future experimental and .theoret|cal
shows the appearance of a vector contribution similar instudles will help greatly to better understand the importance

structure to that predicted in Ré#l]. The vector contribution of t_he vector hyperpolarizability and_ ather anisotropic inter-
. actions in Rydberg systems. Candidate systems must have

depends on dipole matrix elements of the ionic core; its ex: nisotropic cores and, if possible, should be more polarizable
istence hinges on the centrifugal repulsion experienced b han Ne*, such as Si. P, Cl. and Ar.

the Rydberg electron. Explicit expressions for all terms are A recent experiment of Ekstroret al. [28] utilized an

given, in forms suitable to eitheab initio calculation or atom interferometer to measure the ground-state scalar polar-
semiempirical analysis of experimental spectra. An addi- 9 P

. . 0 .
tional type of vector hyperpolarizability, not considered in izability of SOd'.um to an accuracy of 0.3%. This l_JnusuaIIy
Ref. [4], is predicted to occur in Rydberg systems with de-accurate technlque_ pe”“”?‘*d RQBJ to test theoretlcql po-

generate channels converging to the same ionization thresf@”ng'“ty calculations .qmte stringently. T_ests of Fh's type
old. This “degenerate vector hyperpolarizability” interaction are important, as atomic theory plays a vital role in the in-

leads to an even stronger anisotropic potential at large gigerpretation of many phenomena, |nclud|ng. atomic parity-
y) violation experiments. The present analysis demonstrates

tances, proportional to™ . X -
prop how high-precision measurements of Rydberg spectra, when

Section Il derives an effective Hamiltonian that can beCombined With an aporopriate descrintion of the lond-range
treated diabatically within a small, physically relevant chan- PRrop P g-rang

nel subspace. The anisotropic nature of the interaction po'[erﬁ]ju't'poIe interactions, can determine ionic multipole mo-

tial is expressed through a defined set of “unit tensorial Op_ments to even higher accuracy than was achieved by Ref.

erators” that correctly account for the coupling between the[zg]' Atomic theory can thus play two key roles in the analy-

diabatic channels. The vector term was shown to be propoﬁ's:. (i) formulation of thestructure of th_e Ic_)ng-range ir_1ter-
i L . . : i action between an electron and the ionic core, which has
tional to L.-/, as predicted in Refl4], in low-Z atomic

A been the main theme of the present paper, @ndb initio
Rydberg systems. We leave the problem of elucidating th@ g cyjation of the relevant multipole moments. We have cal-
qualitative nature of this vector term in the long-range po-cjated three of these moments here at a relatively crude
tential for future studies. We note, however, that a term Ofieye| of approximation. This shows that these moments can
this tensorial structuréAL.-/, was introduced into atomic be quantitatively evaluated, even terms such as the vector
spectroscopy by Trees and Racah, on semiempirical groundigperpolarizability; we anticipate that they can be deter-

and without explicit derivatior26,27. mined to much higher accuracy in future experimental and
This Hamiltonian was applied to the study of |G&vRy- theoretical studies.
dberg systems where the parametrization resulted in a sim- ACKNOWLEDGMENTS
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