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We develop a theoretical description of the anisotropic interaction between a Rydberg electron and an ionic
core. An adiabatic formulation expresses the anisotropic nature of the interaction through angular-momentum
operators of the core and the Rydberg electron. Terms with odd tensorial structure, such as a vector hyperpo-

larization proportional toLW c•lW , emerge in the long-range potential. Computed energies of neonn510 Ryd-
berg states are compared with recent experimental measurements. The vector term improves agreement be-
tween theory and experiment. The vector hyperpolarizability is calculated explicitly, along with some standard
polarizabilities of Ne1.

PACS number~s!: 34.20.Cf, 34.60.1z

I. INTRODUCTION

While numerous analyses have treated a charged particle
in the field of a closed-shell atom or ion@1–3#, theory has
contributed far less to the interpretation of the anisotropic
interactions between a charge and an open-shell species.
Zygelman@4# published one of the most recent derivations of
the interaction potential between a charge and an open-shell
core with unit angular momentum (Lc51). The Ref. @4#
analysis used somewhat unfamiliar methods to predict a dif-
ferent, counterintuitive ‘‘spin-orbit-type potential,’’ propor-
tional to

LW c•lW

r 6
, ~1!

wherer is the distance between the charge and the core and
lW is the orbital angular-momentum operator of the charged
particle with respect to the center of mass. This unusual po-
tential, purely electrostatic in nature despite the spin-orbit-
type structure, was not given fully in Ref.@4# and its physical
origin has remained somewhat unclear. For instance, a geo-
metric ~Berry-type! phase arose in the Ref.@4# derivation, in
addition to non-Abelian gauge fields that are representation
dependent.

In Sec. II of this paper we reformulate the conventional
adiabatic derivation@5# of the large-r potential between a
Rydberg electron and an open-shell ionic core. The adiabatic
formulation is then improved in Sec. III by developing an
effective radial Hamiltonian that can be treated diabatically
within a small physically relevant channel subspace. The two
derivations, which borrow techniques from a paper by Fano
and Macek@6#, express the anisotropy of the long-range in-
teractions in terms of tensorial operators that are appropriate
to the adiabatic and diabatic formulations. Specifically, the
anisotropy of the long-range adiabatic potential is expressed
in terms of angular-momentum operators of the core and of
the Rydberg electron, while the anisotropy of the effective
Hamiltonian is expressed in terms of a defined set of ‘‘unit
tensorial operators’’ that also operate separately on the core
and the Rydberg electron, but correctly account for the cou-
pling between the diabatic channels. The final forms we ob-

tain confirm the existence of vector terms proportional to
r26. A r26 term proportional toLW c•lW is shown to arise in
cases whereLc is a good quantum number, such as in low-
Z atomic Rydberg systems. Moreover, additional operators
with tensorial rankk>1 contribute in an important way to
the r23, r24, r25, and r26 potentials. All terms are given
explicitly and can be subjected to direct experimental tests.
Our final forms for the large-r potential and effective Hamil-
tonian show that such terms arise naturally in conventional
derivations of the electron-ion interaction. Specifically, their
appearance is not contingent upon the introduction of a geo-
metric ~Berry’s! phase, nor on a non-Abelian gauge field of
the type used in Ref.@4#.

Furthermore, in Sec. III we compare calculated energy
levels, found by diagonalizing our parametrized effective
Hamiltonian in a Sturmian basis, with experimentally ob-
served levels forn510 Rydberg states of neon@7#. Inclusion
of the vector term results in a significant shift of the low-l
Rydberg state energies, improving agreement between calcu-
lated and observed energy levels. An alternative method for
extracting polarizabilities from measured Rydberg energy-
level spectra based on this diagonalization is discussed and
applied. Finally, a calculation of the vector hyperpolarizabil-
ity term is presented along with the standard dipole scalar
and ~second-rank! tensor polarizabilities.

II. ADIABATIC FORMULATION

As in Ref. @5#, we use an adiabatic representation of the
asymptotic close-coupling~CC! equations for an electron in
the field of an ionic core. Only the radialdistanceis treated
adiabatically in this derivation, in contrast to Ref.@4#, which
further adiabatizes the angular coordinates of the charge, as
in standard molecular Born-Oppenheimer formulations. In
view of the fact that experimental Rydberg level spectra are
frequently probed for nonpenetrating, high-l states, we
adopt the usual (Jcl )K coupling scheme@8# and ignore the
spin of the outermost~Rydberg! electron.~The spin of the
outermost electron is most important in the context of ex-
change, which we neglect here.! Atomic units are used
throughout this paper.

The interaction of a Rydberg electron with an ionic core is
represented by a long-range coupling matrix characteristic of
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the standard close-coupling equations without exchange. An
expansion of the total wave functionC in an
r -independent basis$f i(v)%, formed from coupled core
states and orbital functions of the Rydberg electron, gives the
coupling matrix

Vi j
CC~r !5S l i~ l i11!

2r 2
2
1

r
1Ei D d i j1Vi j ~r !, ~2!

where Vi j (r ) are the electrostatic matrix elements
^f i uVuf j&, Ei is the ionic energy level in channeli , and
l i is the orbital angular momentum of the Rydberg electron.
In this paper matrix elements involve integrals over all coor-
dinates (v) ~and traces over all spins! in the problem, except
for the radial coordinate of the Rydberg electron.

The adiabatic potentialsUm(r ) and eigenvectorsFm(r )
are obtained by solving the linear eigensystem at eachr

HCC~r !Fm~r !5Um~r !Fm~r !, ~3!

whereHCC(r )5VCC(r ). Within this adiabatic representation
$Fm(r )% the radial close-coupling equations take the form

F2
1

2 S I ddr 1P~r ! D 22@EI2U~r !#GF~r !50, ~4!

whereI is the identity matrix,F is the radial solution matrix,
and the nonadiabatic~derivative! coupling matrix is

Pmn~r !5 K FmU ]

]r
FnL 5S FT~r !

d

dr
F~r ! D

mn

. ~5!

Here the adiabatic channels are labeled by greek letters; they
converge asr→` to the ionic channels labeled by latin let-
ters.

For Rydberg systems with largen and l quantum num-
bers, the small values ofVi j (r ) compared toEi2Ej allow us

to perform the diagonalization ofHCC(r ) perturbatively. An
important step in this perturbative diagonalization is the in-
clusion of the diagonal matrix elementsVii (r ) in the unper-
turbed Hamiltonian@5#. This is completely general and trans-
parent when the long-range coupling matrix is written as

Vi j
CC~r !5S l i~ l i11!

2r 2
2
1

r
1Ei1Vii ~r ! D d i j1Vi j ~r !, ~6!

whereVi j (r ) are now purely off-diagonal contributions. Pro-
vided there are no degenerate states of the ion with opposite
parity @9,10#, this perturbative series gives a long-range adia-
batic potentialUm(r ). In addition, we include nonadiabatic
effects perturbatively using the post-adiabatic theory of Klar
and Fano@11–13#, which modifiesUm(r ) by

Ūm~r !.Um~r !2
1

2
~P2!mm12~E2Um!(

n

uPmnu2

Um2Un
.

~7!

where the perturbative conditionPmn
2 !uUm2Unu is always

satisfied for Rydberg systems with sufficiently largen
and l . The perturbative diagonalization ofHCC, up to sec-
ond order inVmn, produces terms involving summations over

intermediate channelsn with potential energy difference de-
nominatorsUm2Un. These contributions can be classified as
either degenerate or nondegenerate depending on whether an
intermediate channeln is degenerate with the physically rel-
evant channeln at r→` ~i.e.,Un5Um!.

A. Nondegenerate contributions

In the nondegenerate case, for which no intermediate
channeln is degenerate with the physically relevant channel
m at r→` ~i.e., EnÞEm), this approach gives a long-range
potential~nondegenerate contributions! with the structure

Ūm~r !5Em2
1

r
1
l m~ l m11!

2r 2
1
Qmm

~2!

r 3
2

am

2r 4
1
Qmm

~4!

r 5

1
bm
ad1bm

nad22~E2Em!lm2dm2hm

2r 6
1O~r28!,

~8!

where ad~nad! denotes adiabatic~nonadiabatic!. Every term
in this potential can be written as a standard second-order
perturbation sum, except for the diagonal quadrupoleQmm

(2)

and hexadecapoleQmm
(4) terms, which are diagonal~first-

order! matrix elements of the ionic electric quadrupole and
hexadecapole operators. Explicit expressions for these terms
as infinite perturbation sums, over bound and continuum
states of the core, can be obtained along the lines of the
derivation given by Ref.@5#, although there are differences in
notation, in coupling scheme, and in the multipoles that were
included. Each termQmm

(2) , Qmm
(4) , am , bm

ad, bm
nad, lm , dm ,

andhm depends on the various quantum numbersJc ,l , and
K in a relatively complicated fashion that is difficult to ana-
lyze

Qmn
~k!5K mU(

i51

Nc

r i
kPk~cosuRi!UnL , ~9!

am5 (
nÞm

2Qmn
~1!Qnm

~1!

En2Em
, ~10!

bm
ad5 (

nÞm

@ l n~ l n11!2l m~ l m11!#

~En2Em!2
Qmn

~1!Qnm
~1! , ~11!

bm
nad5 (

nÞm

4Qmn
~1!Qnm

~1!

~En2Em!2
, ~12!

lm5 (
nÞm

8Qmn
~1!Qnm

~1!

~En2Em!3
, ~13!

dm5 (
nÞm

2Qmn
~2!Qnm

~2!

En2Em
, ~14!

and

hm5 (
nÞm

4Qmn
~1!Qnm

~3!

En2Em
. ~15!
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In Eq. ~9! Nc denotes the number of ionic core electrons,
while the subscriptR refers the Rydberg electron. One con-
sequence of including nonadiabatic effects is the appearance
of an energy-dependent term in the long-range potential. This
energy dependence has generated a small controversy be-
cause different treatments disagree in multiplicative con-
stants@1,3#. Reference@3# shows, however, that the energy-
dependent term of orderr26 can be written as an
l -dependent linear combination ofr27 and r28, implying
that the energy-dependent term can be regarded as a contri-
bution of higher order thanr26.

To reveal the operator structure and to clarify the depen-
dence of each term onJc , l , andK, we disentangle each
term using recoupling algebra and place each in the form

(
k

~21!k^X~k!
•Y~k!&m , ~16!

whereX(k) operates on the ionic core whileY(k) operates on
the Rydberg electron. The validity of this derivation relies on
the fact that the infinite sum over intermediate statesn in
Eqs.~10!–~15! is itself a ‘‘scalar’’ object that contributes no
multipolarity to any term. For example, the dipole polariz-
ability am and thebm

ad term are proportional to the expecta-
tion value, inum&, of

~r c
~1!
•r R

~1!!P~r 8c
~1!
•r 8R

~1!!, ~17!

where P is a weighted~scalar! projection operator. Using
standard Wigner-Racah algebra this is recoupled into the
structure

(
k

~21!k@r c
~1!

^Pcr 8c
~1!#~k!

•@r R
~1!

^PRr 8R
~1!#~k!, ~18!

in which terms appear with net multipole momentk acting
on the core and Rydberg electron, respectively. Here the pro-
jection operatorP has been factored into scalar operators
Pc and PR that project onto the ionic core states and the
states of the Rydberg electron, respectively.

Following the spirit of the Fano-Macek@6# treatment of
alignment and orientation, we replace the above tensorial
structure by coupled angular-momentum operators of the
same rank. Each such replacement introduces a compensat-
ing ratio of reduced matrix elements

(
k

~21!k
^miX~k!

•Y~k!im&

^miJc
~k!
•l ~k!im&

^Jc
~k!
•l ~k!&m

5(
k
Ck^Jc

~k!
•l ~k!&m . ~19!

Here the choice of theJc
(k)
•l (k) operator representation is

motivated by the fact that adiabatic potentials involve spe-
cific values ofJc and l m . In general, the choice of a par-
ticular operator representation depends on whether the for-
mulation is adiabatic or diabatic. In the diabatic formulation
of Sec. III a ‘‘unit tensorial operator’’ notation is defined that
correctly accounts for the coupling between the diabatic
channels; this coupling cannot be represented by the angular-
momentum operator representation used in this section.

Keeping powers ofr21 up to r26 and grouping terms of
the same tensorial structure allows us to present the long-
range potential~nondegenerate contributions! in a form that
emphasizes its anisotropic nature

Ūm~r !5Em2
1

r
1
l m~ l m11!

2r 2
1
C0~1,1!
4m

r 4

1
C0@~1,1!,~2,2!#
6m

r 6
1
C1~1,1!
6m

r 6
^Jc

~1!
•l ~1!&m

1FC2~2,0!
3m

r 3
1
C2~1,1!
4m

r 4
1
C2@~1,1!,~2,2!,~1,3!#
6m

r 6 G ^Jc~2!
•l ~2!&m

1FC4~4,0!
5m

r 5
1
C4@~2,2!,~1,3!#
6m

r 6 G ^Jc~4!
•l ~4!&m . ~20!

Here the termsCk(a,b)
nm , corresponding toeventensorial rank

k, order n in r21, and with a-multipole andb-multipole
contributions, are given by

Ck~a,b!
nm 5

~21!2Jc1l m~2l m11!~2k11!

^l mi l ~k!i l m&^JciJc
~k!iJc&

$l m ,l m ,k%

3$a,b,k% (
gn ,Jn

Gk
n~a,b!H a b k

Jc Jc Jn
J

3K gcJcI(
i51

Nc

r i
aC~a!~ r̂ i !I gnJnL

3K gnJnI(
j51

Nc

r j
bC~b!~ r̂ j !I gcJcL , ~21!

whereC(a)( r̂ i) are renormalized spherical harmonics and

$x,y,z%5S x y z

0 0 0D ~22!

is our condensed notation for 3-j symbols whose magnetic
quantum numbers vanish. Terms that share the same tensorial
rank and power ofr21 but differ in multipole dependence are
combined into

Ck@~a1 ,b1!,~a2 ,b2!, . . . #
nm 5Ck~a1 ,b1!

nm 1Ck~a2 ,b2!
nm 1•••. ~23!

The matrix elementŝJc
(k)
•l (k)&m are

^Jc
~k!
•l ~k!&m5^~Jcl m!KuJc

~k!
•l ~k!u~Jcl m!K&

5~21!Jc1l m1KH Jc l m K

l m Jc k J ^JciJc
~k!iJc&

3^l mi l ~k!i l m&, ~24!

@14,15# and explicit expressions for particularGk
n(a,b)’s

with evenk in Eq. ~19! are given by

Gk
3~2,0!5Gk

5~4,0!51, ~25!
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Gk
4~1,1!5Gk

6~2,2!5
1

Em2En
, ~26!

Gk
6~1,3!52Gk

4~1,1!, ~27!

G0
6~1,1!5

6

2~En2Em!2
2

8~E2Em!

~En2Em!3
, ~28!

and

G2
6~1,1!5

3

2~En2Em!2
2

8~E2Em!

~En2Em!3
. ~29!

The termC1(1,1)
6m is the only one withodd tensorial rank

k (k51)

C1~1,1!
6m 5~21!2Jc

A6
^JciJc

~1!iJc&
(

gn ,Jn

1

2~En2Em!2 H 1 1 1

Jc Jc Jn
J K gcJcI(

i51

Nc

r iC
~1!~ r̂ i !I gnJnL K gnJnI(

j51

Nc

r jC
~1!~ r̂ j !I gcJcL .

~30!

In contrast to the long-range potential presented in Eq.
~8!, the operator form of the anisotropic potential in Eq.~20!
possesses a very simple dependence on the various quantum
numbersJc ,l , andK. Along with the factorization of the
orbital angular momentuml of the Rydberg electron from
information pertaining to the ionic core, all terms of the same
eventensorial rankk share the samel dependence. In addi-
tion, all dependence onK appears in a single 6-j symbol
originating from the matrix element̂Jc

(k)
•l (k)&m and ac-

counts for the splitting of theuK1Jcu2uK2Jcu11 number
of l levels of commonK. Unfortunately, the terms
Ck(a1 ,b1)
nm ,Ck(a2 ,b2)

nm ,... that make upCk@(a1 ,b1),(a2 ,b2),...#
nm are

not distinguishable from one another since they share the
same tensorial rank, power ofr21, andl dependence.

The angular-momentum representation of the long-range
potential in Eq.~20! immediately shows the appearance of a
vector contribution whose structure is similar to a term pre-
dicted by Zygelman@4#. Moreover, we are able to give an
explicit expression for each term and to explain its physical
origin. For instance, the vector contribution depends on the
dipole moments of the ionic core and its existence hinges on
the centrifugal repulsion experienced by the Rydberg elec-
tron. It is the presence of thel n(l n11) term in bm

ad that
makes theC1(1,1)

6m term nonzero. Terms in the untransformed
potential in Eq.~8! without such an additionall n depen-
dence are incapable of giving rise to odd tensorial contribu-
tions such asJc

(1)
•l (1). Specifically, if there is no additional

l n dependence the summation overl n is easily performed:

(
l n

~21! l n~2l n11!$l m ,a,l n%

3$l n ,b,l m% H a b k

l m l m l n
J

5~21!a1b2kS a b k

0 0 0D S l m l m k

0 0 0D . ~31!

Since each contribution to our long-range potentials involves
a andb values that add up to an even number, the tensorial
rank k must be even in this case. Thus, unless a particular
term in Eq.~8! has some additionall n dependence, such as

l n(l n11), the above summation shows that only even ten-
sorial terms will appear in the anisotropic potentials.

We can understand the vector potential in another way by
recognizing thatbm

ad can be written as

bm
ad5 (

nÞm

@ l n~ l n11!2l m~ l m11!#

~En2Em!2
Qmn

~1!Qnm
~1!

5 (
nÞm

^mu@ r̂ R ,lW 2#•rWcun&^nu r̂ R8•rWc8um&

~En2Em!2
. ~32!

The commutator ofr̂ R and lW
2 is

@ r̂ R ,lW
2#5 i ~ lW 3 r̂ R2 r̂ R3lW ! ~33!

and with a little recoupling the vector contribution ofbm
ad

becomes proportional to

~@ r̂ R ,lW
2#3PRr̂ R8 !•~rWc3PcrWc8!. ~34!

Using

@ r̂ R ,lW
2#3PRr̂ R8522i ~ r̂ R•PRr̂ R8 !lW 12i r̂ R~ lW •PRr̂ R8 !

22r̂ R3PRr̂ R8 , ~35!

we see that anr26 vector interaction proportional to

;lW •~rWc3PcrWc8! ~36!

immediately appears. The existence of this vector interaction
hinges on the presence of the centrifugal term withinbm

ad. In
addition, the right-hand side of Eq.~33! indicates that the
Rydberg electron exerts a torque on the ionic core.

B. Degenerate contributions

The nature of the long-range effective potential changes
qualitatively when degenerate terms are considered. Degen-
erate contributions appear when intermediate channelsn
share the same thresholdEn5Em, K value, and parity with
the physically relevant channelsm at r→`. For simplicity we
assume, however, that the intermediate orbital angular mo-
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menta l n differ from lm. A derivation similar to that given
above produces a long-range adiabatic potential with the
structure

Um~r !5Em2
1

r
1
l m~ l m11!

2r 2
1
Qmm

~2!

r 3
1
am

r 4

1
Qmm

~4!

r 5
1
bm

r 6
1O~r28!, ~37!

where theam andbm terms are explicitly

am5 (
nÞm

2Qmn
~2!Qnm

~2!

l m~ l m11!2l n~ l n11!
~38!

and

bm5 (
nÞm

4Qmn
~2!Qnm

~4!

l m~ l m11!2l n~ l n11!
. ~39!

Again we recouple to reveal the tensorial structure and
then replace the tensorial structure with coupled angular-
momentum operators of the same rank. Keeping powers of
r21 up to r26 and grouping terms of the same tensorial rank
allows us to present the long-range potential~degenerate
contributions! in a form that emphasizes its anisotropic na-
ture:

Um~r !5Em2
1

r
1
l m~ l m11!

2r 2
1
D0~2,2!
4m

r 4
1
D1~2,2!
4m

r 4
^Jc

~1!
•l ~1!&m

1FD2~2,0!
3m

r 3
1
D2~2,2!
4m

r 4
1
D2~2,4!
6m

r 6 G ^Jc~2!
•l ~2!&m

1FD3~2,2!
4m

r 4
1
D3~2,4!
6m

r 6 G ^Jc~3!
•l ~3!&m

1FD4~2,2!
4m

r 4
1
D4~4,0!
5m

r 5
1
D4~2,4!
6m

r 6 G ^Jc~4!
•l ~4!&m

1
D5~2,4!
6m

r 6
^Jc

~5!
•l ~5!&m1

D6~2,4!
6m

r 6
^Jc

~6!
•l ~6!&m . ~40!

Here the termsDk(a,b)
nm corresponding to tensorial rankk,

ordern in r21, and witha-multipole andb-multipole con-
tributions are given by

Dk~a,b!
nm 5

~21!k12Jc1l m~2k11!~2l m11!

^l mi l ~k!i l m&^JciJc
~k!iJc&

(
l n

Dmn
n ~a,b!

3~21! l n~2l n11!$l m ,a,l n%$l n ,b,l m%

3H a b k

l m l m l n
J H a b k

Jc Jc Jc
J

3K gcJcI(
i51

Nc

r i
aC~a!~ r̂ i !I gcJcL

3K gcJcI(
j51

Nc

r j
bC~b!~ r̂ j !I gcJcL , ~41!

where theDmn
n (a,b)’s are

Dmn
3 ~2,0!5Dmn

5 ~4,0!51, ~42!

Dmn
4 ~2,2!5

2

l m~ l m11!2l n~ l n11!
, ~43!

Dmn
6 ~2,4!52Dmn

4 ~2,2!. ~44!

Like the nondegenerate terms theseDk(a,b)
nm exhibit a fac-

torization of contributions pertaining to the ionic core and
the Rydberg electron. In contrast to the nondegenerate case,
though, terms with the same tensorial rankk now differ in
their l dependence. This explicit dependence of the various
terms on the Rydberg electron angular momentum cannot be
neglected when measurements are performed on various sys-
tems.

Each term in this potential depends on quadrupole and/or
hexadecapole moments of the ionic core along with recipro-
cal powers ofl m(l m11)2l n(l n11). As a consequence,
these terms will tend to be fairly small in comparison to
those in the nondegenerate case, but may still play an impor-
tant role in accurately describing Rydberg spectra. The con-
tribution to the vector term depends on quadrupole moments
of the ionic core and, similar to the nondegenerate case,
arises because of the centrifugal repulsion experienced the
Rydberg electron. In addition, we see that odd tensorial terms
with ranks of 3 and 5 arise in this case along with expected
even tensorial terms with ranks of 4 and 6. Even though the
degenerate contributions have been derived separately from
the nondegenerate ones, a full account of the interaction be-
tween a Rydberg electron and an anisotropic ionic core must
involve all terms in Eq.~20! plus any terms not duplicated in
Eq. ~37!.

III. BEYOND THE ADIABATIC APPROXIMATION

The potentials presented above are simply long-range
adiabatic potentials with some post-adiabatic corrections. In
this section we go beyond a pure adiabatic formulation and
derive an effective radial Hamiltonian with an interaction
potential that has a parametrized form, includes coupling,
and is valid for the typically large values ofr in high-n and
-l Rydberg systems. With such a Hamiltonian both energy
levels and dynamical information about Rydberg systems can
be found by solving a set of coupled radial equations where
the interaction of the Rydberg electron with the core is ac-
counted for by the parameters in the interaction potential. It
is preferable to stay away from a purely adiabatic formula-
tion since derivative couplings are numerically difficult to
handle near close avoided crossings, expected to occur ubiq-
uitously in open-shell atoms with fine structure. However, it
is expected that such an effective Hamiltonian should yield
the same long-range adiabatic potentials presented in Sec. II
in the limit of larger .

Here we partition the various diabatic channels into aP
set that is coupled together to form a total angular momen-
tum K ~excluding the Rydberg electron spin! and parityp
and its complementaryQ set. TheP set includes all channels
that converge to thresholds that are physically relevant to the
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description of a particular Rydberg system. With this parti-
tion the close-coupling equations take the form

F2
1

2
I
d2

dr2
2EI1SVQQ VQP

VPQ VPPD G S FQ

FPD 50, ~45!

whereV is the coupling matrixVCC in Eq. ~2!. Eliminating
FQ @16#, the effective Hamiltonian acting onFP can be writ-
ten formally as

Heff
PP52

1

2
I PP

d2

dr2
1VPP2VPQ

1

hQQ
VQP, ~46!

where

hQQ52
1

2
I QQ

d2

dr2
2EIQQ1VQQ. ~47!

Since we are interested in high-n and -l Rydberg sys-
tems, the energyE will always be near one of thresholds that
are split by fine structure in theP subspace. ThusE can be
written as

E5EP0
1cP0~E!, ~48!

where, for convenience,EP0
is chosen to be the energy of the

lowest threshold in theP subspace andcP0(E) is a small
energy-dependent parameter. In addition, it is reasonable to
expect that the radial kinetic energy of a Rydberg electron in
a high-n and -l state will be a small quantity. Thus the
inverse of hQQ can be expanded incP0(E) and

2 1/2 I QQd2/dr2 . Moreover, to ensure that the effective
HamiltonianH eff

PP(r ) yields the same long-range adiabatic
potentials as in Sec. II, we add and subtract the small quan-
tity 2 1/r1 l P0

(l P0
11)/2r 2 from E. Then,

E5EP0
2
1

r
1
l P0

~ l P0
11!

2r 2
1eP0~E,r !, ~49!

where the parametereP0(E,r ) is simply cP0 minus the term

added and subtracted fromE and l P0
is the orbital angular

momentum of the Rydberg electron in the lowest channel
converging toEP0

.

Expanding in2 1/2 I QQd2/dr22eP0(E,r )I
QQ and ne-

glecting terms higher than second order in the coupling ma-
trix VPQ, the effective Hamiltonian coupling theP channels
is approximately

Heff
PP.2

1

2
I PP

d2

dr2
1VPP1VPQ

1

gQQ
VQP

1VPQ
F2

1

2
I QQ

d2

dr2
2eP0~E,r !I QQG

~gQQ!2
VQP, ~50!

where

gQQ5FEP0
2EQ1

l P0
~ l P0

11!2l Q~ l Q11!

2r 2
G I QQ.

~51!

In the following development terms higher than second order

in the matrix VPQ and terms involving2 1
2 I

QQd2/dr2

2eP0(E,r )I
QQ are neglected; these are one to two orders of

magnitude smaller than the first three terms in the effective
Hamiltonian of Eq.~50! for the cases studied here.

In contrast to the adiabatic formulation, this diabatic ap-
proach has only a nondegenerate case since all thresholds in
the P subspace are distinct from those in theQ subspace.
This separation between theP andQ subspaces is due to
electrostatic splitting, which is large compared to the fine-
structure splitting within theP subspace. Thus we can ex-
pand the inverted matrix in Eq.~50! in powers of
l P0

(l P0
11)2l Q(l Q11)/2(EP0

2EQ)r
2 . Using the same

approach as in Sec. II, we perform a recoupling to reveal the
tensorial structure, but we do not transform to the angular-
momentum representation used in Sec. II since it cannot cor-
rectly account for the coupling between the diabatic chan-
nels. Specifically, neither the Jc

(k)
•l (k) operator

representation used in the adiabatic formulation nor the
Lc
(k)
•l (k) representation suggested by the presence of the

LW c•lW term in the Ref.@4# derivation correctly accounts for
the coupling between the diabatic channels.Jc

(k)
•l (k) re-

quires Jc5Jc8 and l m5l m8, while Lc
(k)
•l (k) requires

Lc5Lc8 andl m5l m8. Thus theL
W
c•lW term predicted by Ref.

@4# will only appear providedLc is a good quantum number,
which will be approximately true for low-Z atomic Rydberg
systems. However, we can readily identify a similar operator
structure, which we symbolically represent asXc

(k)
•YR

(k) .
This procedure gives an effective Hamiltonian with the fol-
lowing anisotropic structure

Heff
mm85S 2

1

2

d2

dr2
1Em2

1

r
1
l m~ l m11!

2r 2
D dmm8

1FC0~1,1!
4mm8

r 4
1
C0@~1,1!,~2,2!#
6mm8

r 6
G ^Xc

~0!
•YR

~0!&mm8

1
C1~1,1!
6mm8

r 6
^Xc

~1!
•YR

~1!&mm81FC2~2,0!
3mm8

r 3
1
C2~1,1!
4mm8

r 4

1
C2@~1,1!,~2,2!,~1,3!#
6mm8

r 6
G ^Xc

~2!
•YR

~2!&mm81FC4~4,0!
5mm8

r 5

1
C4@~2,2!,~1,3!#
6mm8

r 6
G ^Xc

~4!
•YR

~4!&mm8, ~52!

wherem and m8 indicate channels within theP subspace,
while n refers to channels in theQ subspace. The operator
structure of the coupling potential in this effective Hamil-
tonian is similar to that of the long-range potential in Eq.
~20!. In fact, apart from there being no post-adiabatic contri-
butions, the various terms in this coupling potential can be
viewed as a generalization of the terms in Eq.~20!.
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Here theCk(a,b)
nmm8 are given by

Ck~a,b!
nmm8 5~21!k1Jc1Jc81l m8~2k11!@~2l m11!~2l m8

11!#1/2 (
gn ,Jn ,l n

LP0n
n ~a,b!~21! l n~2l n11!

3$l m ,a,l n%$l n ,b,l m8%H a b k

l m8 l m l n
J

3H a b k

Jc8 Jc Jn
J K gcJcI(

i51

Nc

r i
aC~a!~ r̂ i !I gnJnL

3K gnJnI(
j51

Nc

r j
bC~b!~ r̂ j !I gc8Jc8L , ~53!

while

^Xc
~k!
•YR

~k!&mm85^~Jcl m!KuXc
~k!
•YR

~k!u~Jc8l m8!K&

[~21!Jc81l m1K^JciXc
~k!iJc8&^l miYR

~k!i l m8&

3H Jc l m K

l m8 Jc8 k J . ~54!

Xc
(k) andYR

(k) are ‘‘unit tensorial operators’’~spatial! of rank
k operating on the core and Rydberg electron, respectively,
with reduced matrix elements given by

^JciXc
~k!iJc8&5H 1 if D~Jc ,k,Jc8!

0 otherwise
~55!

and

^l miYR
~k!i l m8&5H 1 if D~ l m ,k,l m8!

0 otherwise
, ~56!

whereD(x,y,z) denotes the condition of triangularity among
the quantum numbersx,y, and z. Explicit expressions for
particularLP0n

n (a,b) are

LP0n
3 ~2,0!5LP0n

5 ~4,0!51, ~57!

LP0n
4 ~1,1!5LP0n

6 ~2,2!5
1

EP0
2En

, ~58!

LP0n
6 ~1,3!52LP0n

4 ~1,1!, ~59!

LP0n
6 ~1,1!5

@ l n~ l n11!2l P0
~ l P0

11!#

2~En2EP0
!2

. ~60!

Once again, the operator representation of the effective
Hamiltonian in Eq.~52! shows the appearance of a vector
term. Here we have retained the summations overl n that

appear in the various terms to show explicitly how the vector
term arises. The summation overl n in the vector term

(
l n

~21! l n@ l n~ l n11!2l P0
~ l P0

11!#~2l n11!

3S l m 1 l n

0 0 0 D S l n 1 l m8

0 0 0 D H 1 1 1

l m8 l m l n
J

5~21!12l mF23 l m~ l m11!

~2l m11! G1/2d l ml m8
~61!

is generally nonzero. In contrast, other terms that do not
possess this additionall n(l n11) dependence share the fol-
lowing summation overl n :

(
l n

~21! l n~2l n11!S l m a l n

0 0 0 D S l n b l m8

0 0 0 D
3H a b k

l m8 l m l n
J

5~21!2a2b2l m82l m1kS a b k

0 0 0D S l m8 l m k

0 0 0D .
~62!

Since only values ofa andb that add up to an even number
appear in the various terms,k must be even. Thus it is the
centrifugal term along with the dipole moments of the core
that give rise to the vector term.

A. Parametrization

Each of theCk(a,b)
nmm8 terms depends on information that is

specific to the channelsm andm8. Expressing eachCk(a,b)
nmm8 in

terms of quantities that are channel independent along with
others that are channel dependent defines a parametrization
of the effective Hamiltonian. Once such channel-independent
quantities~such as the scalar and tensor polarizabilities! are
determined for a particular Rydberg system, the effective
Hamiltonian can be used efficiently to describe the interac-
tion between a Rydberg electron and an anisotropic ionic
core. The effective Hamiltonian provides a systematic
method for going beyond lowest-order perturbation theory,
which is often used to compute shifts of high-n and -l
Rydberg levels from hydrogenic levels. The effective Hamil-
tonian can also be used to improve upon the adiabatic ap-
proach presented in Sec. II, if desired.

In low-Z atomic systems the spin-orbit interaction is
small compared to the electrostatic interaction. As a conse-
quence, the total orbital angular momentumLc and the total
spin Sc of the core are approximately good quantum num-
bers. This means that lowZ atomic Rydberg systems possess
a set of quantum numbers that are approximately the same

for all relevant channels. DecouplingCk(a,b)
nmm8 into l , Jc ,

Lc , andSc we find
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Ck~a,b!
nmm8 5~21!Jc81Sc1Lc1l m8~2k11!H k Lc Lc

Sc Jc Jc8
J @~2l m11!~2l m811!~2Jc11!~2Jc811!#1/2

3 (
nn ,Ln ,l n

LP0n
n ~a,b!~21! l n~2l n11!$l m ,a,l n%$l n ,b,l m8%H a b k

l m8 l m l n
J H k Lc Lc

Ln a b J
3K ncLcI(

i51

Nc

r i
aC~a!~ r̂ i !I nnLnL K nnLnI(

j51

Nc

r j
bC~b!~ r̂ j !I ncLcL . ~63!

With this decoupling the various terms in our effective
Hamiltonian take on a parametrized form. For example,

C0(1,1)
4mm8 is simply related to the standard dipole scalar polar-

izability as @21# through

C0~1,1!
4mm8^Xc

~0!
•YR

~0!&mm852
as

2
, ~64!

while C2(2,0)
3mm8 and C2(1,1)

4mm8 are related, respectively, to the
quadrupole momentQ and the second-rank tensor polariz-
ability a t by

C2~2,0!
3mm8^Xc

~2!
•YR

~2!&mm852QAmm8
~2! ~65!

and

C2~1,1!
4mm8^Xc

~2!
•YR

~2!&mm852
a t

2
Amm8

~2! , ~66!

where the angular factorAmm8
(2) is

Amm8
~2!

5~21!2Jc81Lc1Sc1K@~2l m11!~2l m811!~2Jc11!

3~2Jc811!#1/2H Jc l m K

l m8 Jc8 2 J H 2 Lc Lc

Sc Jc Jc8
J

3S l m8 l m 2

0 0 0D YS Lc 2 Lc

2Lc 0 Lc
D . ~67!

In addition, the vector termC1(1,1)
6mm8^Xc

(1)
•YR

(1)&mm8 can be ex-
pressed in terms of a vector hyperpolarizabilitybv by

C1~1,1!
6mm8^Xc

~1!
•YR

~1!&mm85bv^LW c•lW &mm8, ~68!

wherebv is defined by

bv[
A6

@Lc~Lc11!~2Lc11!#1/2 (nn ,Ln

1

2~En2EP0
!2 H 1 Lc Lc

Ln 1 1 J K ncLcI(
i51

Nc

r iC
~1!~ r̂ i !I nnLnL

3K nnLnI(
j51

Nc

r jC
~1!~ r̂ j !I ncLcL ~69!

and

^LW c•lW &mm85^@~LcSc!Jcl m#KuLW c•lW u@~LcSc!Jc8l m8#K&5~21!Lc1Sc12Jc81l m111K@~2Jc11!(2Jc811!] 1/2^LciLc
~1!iLc&

3^l mi l ~1!i l m8&H Lc Jc Sc

Jc8 Lc 1 J H Jc l m K

l m8 Jc8 k J . ~70!

Our use of the terminology ‘‘hyperpolarizability’’ is intended
to emphasize the difference between the term involving
bv , which varies asr26, from the more familiar terms in-
volving as anda t , which vary asr24.

The remainingC0@(1,1),(2,2)#
6mm8 and C2@(1,1),(2,2),(1,3)#

6mm8 terms
are related, respectively, to the parametersh andc6 @7# by

C0@~1,1!,~2,2!#
6mm8 ^Xc

~0!
•YR

~0!&mm852h ~71!

and

C2@~1,1!,~2,2!,~1,3!#
6mm8 ^Xc

~2!
•YR

~2!&mm852c6Amm8
~2! . ~72!

Thus the effective diabatic Hamiltonian in parametrized
form is

Heff
mm85S 2

1

2

d2

dr2
1Em2

1

r
1
l m~ l m11!

2r 2 D dmm82
as

2r 4
2

h

r 6

1
bv

r 6
^LW c•lW &mm82FQr 3 1

a t

2r 4
1
c6
r 6GAmm8

~2! . ~73!
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Here the choice of theLW c•lW operator representation is ap-
propriate since the general vector term in Eq.~52! requires
l m5l m8 and since we are considering low-Z atomic Ryd-
berg systems whereLc is an approximately good quantum
number.

B. Numerical results using a Sturmian basis set

The study of high-n and -l Rydberg systems with low-
Z atomic numbers has now been reduced to the determina-
tion of a few parameters (as ,a t ,Q,bv , . . . ) that character-
ize the ionic cores of these systems. With these parameters
energy levels and adiabatic potentials~treating the radial co-
ordinate as a parameter! can be computed by diagonalizing
the effective Hamiltonian. In addition, dynamical informa-
tion can be obtained by solving a set of coupled radial equa-
tions.

The parameters that characterize the ionic cores of Ryd-
berg systems can be computed from first principles or ex-
tracted from Rydberg energy levels. In this section we dem-
onstrate how these parameters for Ne1 can be obtained from
the n510 Rydberg levels of neon withl 55,6,7, and 8,
which have been studied in recent experiments by Ward
et al. @7#. This is accomplished by minimizing the weighted
x2 function, involving differences between the observed and
computed energy levels, with respect to the parameters
as ,a t ,Q,bv ,... .

To diagonalize the effective Hamiltonian we use a com-
plete basis of radial Sturmians

Snl
~z!~r !5F ~n2l 21!!

~n1l !! G1/2e2zr /2~zr ! l 11Ln2l 21
~2l 11! ~zr !,

~74!

where theLn2l 21
(2l 11)(zr ) are associated Laguerre polynomials

defined by

Ln
~k!~x!5 (

n50

n S n1k

n2n
D ~2x!n

n!
~75!

and z is a parameter chosen to enhance convergence. After
we writeFP as a linear combination of these Sturmian func-
tions, the close-coupling equation forFP becomes a gener-
alized eigenvalue problem

HeffC5EOC, ~76!

whereHeff andO are the effective Hamiltonian and overlap
matrices in the Sturmian basis@17#. We use a Sturmian basis
set, in contrast to the perturbative calculation scheme devel-
oped by Ref.@7#, in part because of its simplicity and in part
because it naturally incorporates coupling to the continuum
states.

In order to compare the computed energies with experi-
mentally observed energies, relativistic contributions must be
added to the energies obtained from the nonrelativistic effec-
tive Hamiltonian. Since the experimentally observed spin
splittings are only partially resolved, all spin-orbit and ex-
change terms are neglected. The dominant relativistic contri-
butions come from thep4 term in the kinetic energy of the
Rydberg electron and the magnetic interaction between the
Rydberg electron and the ionic core given by

Hmag52
gJ
2

a2
JW c•lW

r 3
, ~77!

wherea is the fine-structure constant andgJ is theg factor
of the ionic core. The following calculations include these
relativistic contributions perturbatively. All energies are
shifted so that the state (3/2)10K15/2 corresponds to zero en-
ergy.

Table I compares our results for the various parameters
~e.g., polarizabilities, quadrupole moment, and hyperpolariz-
abilities! of Ne1 with those of Wardet al. @7#. The striking
difference between our results and those of Ref.@7# is the
80% improvement in thex2 associated with our parameters.
The fact that thex2-squared per degree of freedom~per pa-
rameter! is now approximatelyone is a clear indication that
the anisotropic interaction potential correctly accounts for
the distribution of Rydberg energy levels. Columns 2, 3, and
4 of Table II compare the improved energy eigenvalues from
our diagonalization with the measured energy levels of Ref.
@7# for n510 Rydberg states of neon withl 55,6,7, and 8.
This diagonalization utilized 40 radial Sturmian functions
per channel,z5 1/(l 11) , and all our parameters listed in
Table I. These parameters reproduce all observed energy lev-
els to better than 1 MHz.

In order to ascertain whether the Ref.@7# experiment has
actually observed effects of the vector hyperpolarizability
term bv , we have repeated the same analysis described in
the preceding paragraphexceptthat bv was constrained to
vanish. The resulting refitted parameters are given in Table I
~except of course for the omittedbv). The coefficientgJ ,
which represents the gyromagnetic ratio of the Ne1(2P3/2)
level, changes by the greatest amount in this fit, going from
1.342 to 1.307. Inspection of Eq.~77! shows that the tenso-
rial structure of thegJ term is similar to that of thebv term,
so it is reasonable that the new fit modifiesgJ in order to
‘‘mock up’’ the effects of the omitted vector hyperpolariz-
ability. Note also that the value ofgJ expected inLS cou-
pling is precisely 4/3.~Its value could be measured indepen-
dently to test the fitted value in Table I, e.g., by a linear
Zeeman effect measurement.! Columns 2, 5, and 6 of Table
II compare the energy eigenvalues obtained from these fitted
parameters, withbv constrained to vanish, with the measured
levels of Ref.@7#. The larger discrepancies between observed
and computed energies appear in states with lower-l values,
the largest of which is21.43 MHz in (3/2)10H9/2. The new
least-squares fit omittingbv results inx2527.5. Thus the
x2 per degree of freedom is roughly four times worse than in
the fit includingbv . This strongly suggests that the Ward
et al. @7# experiment has indeed observed the vector hyper-
polarizability.

Figures 1 and 2 display two sets of adiabatic potentials for
neon that exhibit qualitative differences. In Fig. 1 the adia-
batic potentials correspond toKp59/22 and are labeled
from top to bottom with (Jc ,l )5(1/2,5), (3/2,5), and
(3/2,3). The absence of avoided crossings and the smoothly
decaying behavior of the derivative couplings justify the use
of an adiabatic treatment. Other sets of adiabatic potentials
for different symmetries can differ in a crucial manner. For
instance, Fig. 2 shows a set of adiabatic potentials corre-
sponding toKp511/22 that are labeled from top to bottom
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with (Jc ,l )5 (1/2,5), (3/2,7), and (3/2,5). Here the pres-
ence of a close avoided crossing and a corresponding sharp
derivative coupling introduce numerical difficulties in a pure
adiabatic formulation. The effective Hamiltonian approach

bypasses numerical difficulties associated with derivative
couplings in an adiabatic formulation by essentially treating
the dynamics adiabatically only within theQ subspace. This
approach preserves the simple form of a set of coupled di-

TABLE I. Comparison of fitted~experimental! and theoretical parameters for Ne1. L refers to length
form andV refers to velocity form. The value ofgJ in column 5~marked with an asterisk! is based on pure
LS coupling.

Present fit
Parameter Present fit withoutbv Wardet al. Theoretical

as 1.3018~2! 1.3011~6! 1.3028~13! 1.23 (L)
1.19 (V)
1.27 a

a t 20.0259~3! 20.0261~3! 20.026~5! 20.0374 (L)
20.0396 (V)

20.035 b

Q 20.204020~5! 20.204001~11! 20.20403~5! 20.1964c

20.2032~5! c

20.2117b

bv 0.059~2! 0 0.045~29! 0.0678 (L)
0.0719 (V)

h 20.10~1! 20.10~1! 20.29~24! 21.44 d

gJ 1.342~12! 1.307~24! 1.354~21! 4/3 *

c6 0.274~5! 0.264~3! 0.5~5!

x2 7.1 27.5 35.7

aReference@19#.
bReference@13#.
cReference@18#.
dReference@20#.

TABLE II. Comparison of calculated~with and withoutbv) and experimentally observed energies in
~MHz! of n510 Rydberg neon withJc53/2 andl 55,6,7, and 8.DE5Eobs2Ecalc.

States Eobs @7# Ecalc DE E calc
bv50 DEbv50

H9/2 2145.58~77! 2145.63 0.05 2144.15 21.43
H11/2 2142.67~10! 2142.60 0.07 2142.81 20.14
H13/2 26022.24~19! 26022.02 0.22 26022.66 0.42
I 9/2 25267.15~35! 25267.38 0.23 25266.64 20.51
I 11/2 2356.30~24! 2356.18 20.12 2355.91 20.39
I 13/2 800.52~5! 800.50 0.02 800.55 20.03
I 15/2 24131.36~15! 24131.35 20.01 24131.10 20.26
K11/2 23838.06~35! 23838.50 0.44 23838.26 0.20
K13/2 2646.41~8! 2646.37 20.04 2646.36 20.05
K15/2 0 0 0 0 0
K17/2 23205.01~16! 23204.97 20.04 23204.68 20.33
L13/2 23073.14~35! 23073.64 0.50 23073.56 0.42
L15/2 2883.09~8! 2883.04 20.05 2883.08 20.01
L17/2 2494.04~5! 2494.04 0.00 2494.05 0.01
L19/2 22693.41~18! 22693.38 20.03 22693.14 20.27
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abatic equations in theP subspace while still incorporating a
physically useful parametrization of the long-range interac-
tions.

While an adiabatic formulation can suffer from numerical
difficulties, adiabatic potentials can be used to qualitatively
understand both simple and complex spectra. The wave func-
tion of a Rydberg electron moving in the presence of these
potentials will be distributed among the various channels
~paths!. The combination of amplitudes from the various
paths can result in interference and consequently complex
spectra. The degree to which this takes place depends on the
coupling between channels and whether the channels support
strongly overlapping series converging to the various thresh-
olds. The adiabatic potentials in Figs. 1 and 2 converging to
the P1/2 andP3/2 states of neon may give rise to such com-
plex spectra. This present effective Hamiltonian approach is
well suited to the description of such phenomena, especially
in conjunction with multichannel quantum-defect theory.

C. Calculation of vector hyperpolarizability

In this subsection we discuss the calculation of the re-
duced dipole matrix elements necessary to evaluate the vec-
tor hyperpolarizabilitybv along with the standard dipole sca-
lar polarizabilityas and the second-rank tensor polarizability
a t of Ne

1. The theoretical values foras , a t , andbv are
presented in both length and velocity form in Table I for
comparison with other theoretical and experimental results.

Here reduced dipole matrix elements are calculated for
the ground state of Ne1(2s22p5 2Po). The dipole operator

r (1)Cq
(1) connects states of the opposite parity that differ by

at most one orbital and such thatDLc50,61 ~except for
Lc50 to Lc50 transitions! andDSc50. Thus only the2S,
2P, and 2D final states are needed, which are generated
from the ground state by 2s→np, 2p→ns, and 2p→nd
substitutions. Excitations of the 1s core are ignored since
these give negligible contributions to reduced dipole matrix
elements. These final states of Ne1 are represented by
2s2p6, 2s2p5np, 2s22p4ns, and 2s22p4nd configurations,
which can be constructed~including the ground state
2s22p5) from a product of Ne21 states 2s2p5 or 2s22p4,
and an outers, p, or d electron. These Ne21 configurations
are referred to asphysicaltarget states. The summations over
bound and continuum states of Ne1 are accomplished using
the eigenchannelR-matrix method@22#. This allows us to
construct a complete set of orthogonal basis functions, van-
ishing inside theR-matrix sphere of radiusr 0 . Such func-
tions represent a bound spectrum and a discretized con-
tinuum of Ne1.

The target states of Ne21 are calculated using the multi-
configuration Hartree-Fock approximation@23#, where both
spectroscopic and correlation orbitals are included. First,
spectroscopic orbitals 1s, 2s, and 2p are optimized on a
single 2s22p4 configuration. Then, a correlation 3d orbital is
optimized on 2s2p5 3Po, whose configuration-interaction
~CI! expansion includes the main perturber 2s22p33d 3Po.
Finally, 3s and 3p correlation orbitals are optimized on
2s22p4 3P, where singly and doubly excited configurations
allowed by parity and spin-angular-momentum coupling

FIG. 1. Adiabatic potentials and derivative couplings for Ryd-
berg neon. The adiabatic potentialsUm(r ) ~solid lines! correspond
to Kp59/22 and are labeled from top to bottom with
(Jc ,l )5(1/2,5),(3/2,5), and (3/2,3). The derivative couplings
Pmn(r )/30 are given by broken lines:Ptop, middle(r ), dashed;
Pmiddle, bottom(r ), dotted andPtop,bottom(r ), dot-dashed.

FIG. 2. Adiabatic potentials and derivative couplings for Ryd-
berg neon. The adiabatic potentialsUm(r ) ~solid lines! correspond
to Kp511/22 and are labeled from top to bottom with
(Jc ,l )5(1/2,5),(3/2,7), and (3/2,5). The derivative couplings
Pmn(r )/30 are given by broken lines:Ptop, middle(r ), dashed;
Pmiddle, bottom(r ), dotted; andPtop,bottom(r ), dot-dashed.
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rules are included. We then set up an initial, long CI expan-
sion for eachLS term in the 2s22p4 and 2s2p5 configura-
tion, including all allowed~by parity andLS-symmetry con-
servation rules! singly and doubly excited configurations of
2s, 2p, 3s, 3p, and 3d orbitals. After diagonalizing a
Hamiltonian, this initial CI set is condensed; from each ei-
genvector representing a physical target state, we delete
those configurations whose weight is less than 0.0005. In the
final step, extra configurations representing the target polar-
ization are added. These are constructed from single-electron
excitations from 2s22p4 and 2s2p5, involving a change in
the parity as 2s→2p, 2p→3s, and 2p→3d. Table III
shows energies and dominant configurations for each physi-
cal target state in the condensed basis. Comparing with ex-
periment@24#, our relative energies are accurate to at least
5%.

As in previous eigenchannelR-matrix calculations
@22,25#, a discretized basis of outer-electron orbitalsns,
np, nd, n f , andng are used. These are solved for inside the
R-matrix sphere of radiusr 057 Bohr radii. The size ofr 0 is
chosen to match all physical target states and the ground
state of Ne1 and to ensure an exponential decay of
rPnl(r ), wherePnl(r ) are the ground-state radial functions.
Radial functions for an outer electron are obtained from a
Hartree equation

S 2
1

2

d2

dr2
1
l ~ l11!

2r 2
2
Z

r
1VH~r ! DPnl~r !

5EnlPnl~r !1(
n8

lnn8Pn8 l~r !,

where

VH~r !5(
n8

qn8 lF E
0

r0 1

r.
Pn8 l
2

~s!dsG ,

where r. is the greater of the radialr and s coordinates,
qn8 l are occupation numbers of spectroscopic orbitals repre-
senting the 2s22p4 target, andlnn8 are Lagrange multipliers
needed to orthogonalize the outer-electron and target orbitals
~including the correlation orbitals!. All new ‘‘box’’ orbitals
are forced to vanish at theR-matrix surface. These constitute
a complete orthogonal basis, representing an electron outside
the residual Ne21 ion. Those orbitals, which have positive
energiesEnl.2 Zeff/r 01 l ( l11)/2r 0

2 , describe not only
bound states but also represent a discretized continuum of
the Ne1 spectrum.

The ground state of Ne1 is constructed from an antisym-
metrized product of the target states and outer-electron orbit-
als. The energies and atomic wave functions of Ne1 are just
eigenvalues and eigenvectors, respectively, of the Hamil-
tonian. The ionization energy of Ne1(2s22p5 2Po) obtained
in this calculation is 334 460 cm21, whereas the experimen-
tal value is 331 350 cm21. A better check of accuracy based
on an analysis of errors in quantum defects provides infor-
mation about the whole Rydberg series, not just one member.
The theoretical and experimental effective quantum numbers
of a 2p electron in 2s22p5 2Po are 0.573 and 0.572, respec-
tively, giving a difference of 0.001 in the quantum defect.

The final 2S, 2P, and 2D states are constructed in the
same way as the ground state. However, a similar estimate of
errors can only be made for the lowest eigenstates whose
atomic wave functions fit inside 7 Bohr radii and thus repre-
sent physical states of Ne1. For the lowest, even-parity state
2s2p6 2S we obtain an excitation energy of 215 953 cm21,
where as the experimental energy is 217 050. The corre-
sponding error in the quantum defect is only 0.01, well
within the range of errors expected for such a strongly cor-
related state. Note that 2s2p6 2S is correlated predominantly

with a 2s22p43d2S perturber, which contributes nearly 25%
of the CI expansion. No similar error analysis can be carried
out for higher excited states, of course, since those no longer
fit into theR-matrix box.

Our final results are obtained with 11 orbitals for each
angular momentuml . However, a different number of the
box orbitals was initially used to test convergence of the
dipole scalar polarizability. For the2S and 2P symmetries,
whose calculations consume the least computer CPU time
and memory, we increased the number of box states to 13.
This changed the scalar polarizability by about 2%. We also
tested the importance ofg waves, since these, along withf
waves, were neglected in earlier theoretical calculations@18#.
Theg waves were found to contribute about 3% to the scalar
dipole polarizability and even greater effects are expected
from f waves. Therefore, these are kept in the present calcu-
lations. Our final value of the scalar polarizability is 1.23 a.u.
in length form and 1.19 a.u. in velocity form. The scalar
polarizability in length form differs by about 6% with experi-
mental results and by about 3% with other theoretical results
~see Table I!. In velocity form, the scalar polarizability dif-
fers by about 9% with experimental results and by about 6%
with theoretical results. The slightly better results obtained in
Ref. @18# can be attributed to the use of a fully variational
method to generate Ne1 states, where the infinite summation
over Rydberg series and continua is implicitly included,
whereas our method uses a CI approach that is in general
slower converging.

TABLE III. Theoretical and experimental energies@24# in
cm21 ~upper and lower entries in first column, respectively! of
some Ne21 states, relative to the ground state 2s22p4 3P, and
shortened CI expansions for each of these states.

Energy Composition

0.0 2s22p4 3P 2s2p4(2D)3d 3P 2s2p4(2P)3d 3P
0.0 0.98605 0.00410 0.00160

25559 2s22p4 1D 2s2p4(2P)3d 1D 2s22p2(1D)3p2(3P)1D
25521 0.98406 0.00672 0.00176

53096 2s22p4 1S 2p6 1S 2s22p2(1S)3d2(1S) 1S
55427 0.95453 0.03386 0.00303

203471 2s2p5 3P 2s22p3(2D)3d 3P 2s22p3(2P)3d 3P
204589 0.97417 0.01000 0.00397

291435 2s2p5 1P 2s22p3(2D)3d 1P 2s22p3(2P)3d 1P
289159 0.96629 0.01300 0.00314
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IV. SUMMARY

The impetus for this work was our desire to understand
the physical origin of a nonrelativistic ‘‘spin-orbit-type’’ po-
tential predicted by Zygelman@4# to exist in Rydberg sys-
tems. This unusual potential, purely electrostatic in nature
despite the spin-orbit-type structure, was not given fully in
the Ref.@4# derivation and until now its physical origin has
remained unclear. The present study has not only clarified the
physical origin of this potential but it has also spawned a
reformulation and extension of existing theory to permit a
description of Rydberg electron motion in the field of an
anisotropic core.

Section II of this paper reformulates the conventional
adiabatic derivation of the large-r interaction potential be-
tween a Rydberg electron and an open-shell ionic core. The
use of recoupling algebra and a transformation to an angular-
momentum operator representation reveals the anisotropic
nature of the interaction. The resulting potential immediately
shows the appearance of a vector contribution similar in
structure to that predicted in Ref.@4#. The vector contribution
depends on dipole matrix elements of the ionic core; its ex-
istence hinges on the centrifugal repulsion experienced by
the Rydberg electron. Explicit expressions for all terms are
given, in forms suitable to eitherab initio calculation or
semiempirical analysis of experimental spectra. An addi-
tional type of vector hyperpolarizability, not considered in
Ref. @4#, is predicted to occur in Rydberg systems with de-
generate channels converging to the same ionization thresh-
old. This ‘‘degenerate vector hyperpolarizability’’ interaction
leads to an even stronger anisotropic potential at large dis-
tances, proportional tor24.

Section III derives an effective Hamiltonian that can be
treated diabatically within a small, physically relevant chan-
nel subspace. The anisotropic nature of the interaction poten-
tial is expressed through a defined set of ‘‘unit tensorial op-
erators’’ that correctly account for the coupling between the
diabatic channels. The vector term was shown to be propor-
tional to LW c•lW , as predicted in Ref.@4#, in low-Z atomic
Rydberg systems. We leave the problem of elucidating the
qualitative nature of this vector term in the long-range po-
tential for future studies. We note, however, that a term of
this tensorial structure,ALW c•lW , was introduced into atomic
spectroscopy by Trees and Racah, on semiempirical grounds
and without explicit derivation@26,27#.

This Hamiltonian was applied to the study of low-Z Ry-
dberg systems where the parametrization resulted in a sim-
plified description of the interaction. The effective Hamil-
tonian was diagonalized in a Sturmian basis set and its
parameters were fitted to match recent experimental observa-
tions. This procedure determines the parameters~e.g., polar-
izabilities, quadrupole moment, and hyperpolarizabilities! of

Ne1 in terms of then510 Rydberg level energies of neon.
This analysis provides improved values for the parameters,
as evidenced by an 80% reduction in thex2 associated with
the parameters presented in Ref.@7#. The r26 potential term
involving the vector hyperpolarizability significantly im-
proves agreement between the computed and observed en-
ergy levels.

Adiabatic potentials for Rydberg channels of neon, com-
puted with the effective Hamiltonian, show close avoided
crossings that imply the existence of complex multichannel
spectra. Such systems can be described effectively by using
the effective Hamiltonian in conjunction with multichannel
quantum defect theory.

Finally, Sec. IV presents a quantitative,ab initio calcula-
tion of the vector hyperpolarizabilitybv for an anisotropic
ion. The calculated value for Ne1 is in reasonably good
agreement with the value deduced from recent measurements
of Ne Rydberg levels. Future experimental and theoretical
studies will help greatly to better understand the importance
of the vector hyperpolarizability and other anisotropic inter-
actions in Rydberg systems. Candidate systems must have
anisotropic cores and, if possible, should be more polarizable
than Ne1, such as Si, P, Cl, and Ar.

A recent experiment of Ekstromet al. @28# utilized an
atom interferometer to measure the ground-state scalar polar-
izability of sodium to an accuracy of 0.3%. This unusually
accurate technique permitted Ref.@28# to test theoretical po-
larizability calculations quite stringently. Tests of this type
are important, as atomic theory plays a vital role in the in-
terpretation of many phenomena, including atomic parity-
violation experiments. The present analysis demonstrates
how high-precision measurements of Rydberg spectra, when
combined with an appropriate description of the long-range
multipole interactions, can determine ionic multipole mo-
ments to even higher accuracy than was achieved by Ref.
@28#. Atomic theory can thus play two key roles in the analy-
sis: ~i! formulation of thestructureof the long-range inter-
action between an electron and the ionic core, which has
been the main theme of the present paper, and~ii ! ab initio
calculation of the relevant multipole moments. We have cal-
culated three of these moments here at a relatively crude
level of approximation. This shows that these moments can
be quantitatively evaluated, even terms such as the vector
hyperpolarizability; we anticipate that they can be deter-
mined to much higher accuracy in future experimental and
theoretical studies.
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