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Based on the constrained-search formulation of a coupled Hamiltonian, new formulas are given involving
the correlation-energy density functionalEc@r# and its kinetic componentTc@r#, starting from two relations of
Levy and Perdew. Consequences are examined of assuming~following earlier authors! the existence of a
Taylor series expansion ofEc

l@r# in the coupling parameterl. If one truncates the series at the linear term, one
finds thatEc@r# andTc@r# are homogeneous of degree zero with respect to coordinate scaling, and if local, they
are homogeneous of degree one in the density scaling. More generally, it is shown thatEc@r# andTc@r# are
linear combinations of homogeneous functionals of different specific degrees in coordinate scaling: 0,21,22,
23, . . . ,~12n!, . . . . If the functionals also are local, bothEc@r# andTc@r# are combinations of functionals
^rk& homogeneous inr of degreesk51,23 ,

1
3 ,0, . . . ,(42n)/3, . . . . Foratoms and molecules,k>0, and soEc

andTc take the formXc[r]5aN1b*r2/3~r !d3r1c*r1/3~r !d3r1d, wherea, b, c, andd are constants to be
determined. Numerical tests are given that demonstrate the effectiveness of such series of local functionals. We
also give definitions of density scaling, coordinate scaling, and homogeneities, and relations among them.

PACS number~s!: 31.15.2p

I. INTRODUCTION

The Hohenberg-Kohn universal functionalFl@r# is de-
fined within an extended domain via the constrained-search
formulation @1,2# by the prescription

Fl@r#5^CluT̂1lV̂eeuCl&

5Ts@r#1lJ@r#1lEx@r#1lEc
l@r#, ~1!

where Cl is the antisymmetricN-electron function that
yields r~r !, minimizes^(T̂1lV̂ee)&, and is an eigenstate of
some Hamiltonian of the form@3#

Ĥl5T̂1lV̂ee1V̂ne,l , ~2!

where

T̂5(
i51

N

2
1

2
“ i

2, ~3!

V̂ee5
1

2 (
i

(
jÞ i

ur i2r j u21, ~4!

and

V̂ne,l5(
i51

N

nl~r i !, ~5!

wherel is the coupling constant that measures the interac-
tion strength between electrons of the system. The
correlation-energy density functionalE c

l@r# can then be de-
fined as@4#

lEc
l@r#5^CluT̂1lV̂eeuCl&2^Cl50uT̂1lV̂eeuCl50&,

~6!

which can be decomposed into two components, namely, the
kinetic-energy partT c

l@r# and the potential-energy part
V c

l@r#:

lEc
l@r#5Tc

l@r#1lVc
l , ~7!

with

Tc
l@r#5^CluT̂uCl&2^Cl50uT̂uCl50&, ~8!

and

Vc
l@r#5^CluV̂eeuCl&2^Cl50uV̂eeuCl50&. ~9!

Here,r is any specificN andn representable electron den-
sity.

Some time ago, Levy and Perdew@4# derived two rela-
tions forE c

l@r# andT c
l@r#,

2lEc
l@r#2lE r~r !r•“S dEc

l@r#

dr~r ! Dd3r5Tc
l@r#, ~10!

and

E r~r !r•“S dEc
l@r#

dr~r ! Dd3r52Ec
l@r#1l

dEc
l@r#

dl
.

~11!

Eliminating the integral term between these equations, one
obtains@5#

Tc
l@r#52l2

dEc
l@r#

dl
. ~12!

Consequently, using Eq.~8!, we have@5,6#
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Ec@r#52E
0

1 dl

l2 Tc
l@r#52E

0

1 dl

l2 ~^CluT̂uCl&

2^Cl50uT̂uCl50&!. ~13!

If one takes the functional derivative of Eq.~12! with
respect tor~r !, multiples by r~r !r•¹, and then integrates
over all space, there results

E r~r !r•“S dTc
l@r#

dr~r ! Dd3r
52l2

d

dl H E r~r !r•“S dEc
l@r#

dr~r ! Dd3r J . ~14!

After Eq. ~11! is employed to eliminate the integral on the
right-hand side, this becomes

E r~r !r•“S dTc
l@r#

dr~r ! Dd3r522Tc
l@r#1l

dTc
l@r#

dl
.

~15!

Notice that Eqs.~11! and ~15!, respectively, involve only
E c

l@r# andT c
l@r#. These formulas all are exact identities.

II. FIRST-ORDER APPROXIMATIONS
FOR Ec†r‡ AND Tc†r‡

Following Levy and Perdew@4#, we first suppose that
E c

l@r# can be expanded in a Taylor series inl up to the first
order, i.e.,

Ec
l@r#5Ec

l501lS dEcl@r#

dl D
l50

5Ec
l501lEc8 . ~16!

Here Ec8 is by definition the l-independent derivative
(dEc

l[r]/dl)l50. However,E c
l50@r#50 @4#, so that

Ec
l@r#5l

dEc
l@r#

dl
, ~17!

and Eq.~11! becomes

E r~r !r•“S dEc
l@r#

dr~r ! Dd3r50, ~18!

as was already given by Levy and Perdew@4#. Inserting Eq.
~17! into Eq. ~12!, one finds

Tc
l@r#5

l

2

dTc
l@r#

dl
. ~19!

Combination of Eqs.~15! and ~19! gives

E r~r !r•“S dTc
l@r#

dr~r ! Dd3r50. ~20!

Equations~18! and~20! mean that in the first-order approxi-
mationE c

l@r# andT c
l@r# are homogeneous of degree zero in

coordinatescaling~see Appendix for discussion!.
Consider now the case thatE c

l@r# and T c
l@r# are local

functionals, which means~see Appendix! that

Ec
l@r#5E ec

l
„r~r !…d3r , ~21!

and

Tc
l@r#5E tc

l
„r~r !…d3r . ~22!

The locality condition then implies@7#

Ec
l@r#52

1

3 E r•“r~r !
dEc

l@r#

dr~r !
d3r , ~23!

and

Tc
l@r#52

1

3 E r•“r~r !
dTc

l@r#

dr~r !
d3r . ~24!

By partially integrating Eqs.~18! and ~20! and using the
above relations, one arrives at the conclusion thatE c

l@r# and
T c

l@r# are homogeneous of degree one with respect todensity
scaling, i.e.,

Ec
l@r#5E r~r !

dEc
l@r#

dr~r !
d3r ~25!

and

Tc
l@r#5E r~r !

dTc
l@r#

dr~r !
d3r . ~26!

See the Appendix for a discussion of homogeneity with re-
spect to coordinate scaling and homogeneity with respect to
density scaling. These are different concepts.

As shown in the Appendix, the only way a functionalX@r#
can be homogeneous of degree one in density scaling and
homogeneous of degree zero in coordinate scaling is for it to
be of the formX[r]5CN[r]5CN. The first-order assump-
tion of Eq. ~16! would therefore suggest that bothEc andTc
might be proportional toN. Indeed, actual data demonstrate
that these proportionalities hold roughly. This is shown in
Figs. 1 and 2, in whichEc andTc values are plotted against
N for the atoms He through Ar. The data forEc were ob-
tained from the very recent optimized-effective-potential
~OEP! calculation by Grabo and Gross@8#. The data forTc
were taken from Morrison and Zhao@9#. It is clear that the
homogeneities of Eqs.~18! and ~20! and ~25! and ~26! are
approximately satisfied.

One sees from the figures that there certainly is an ap-
proximate proportionality betweenEc and N and also be-
tweenTc andN, though, not surprisingly, the proportionality
assumption is better satisfied if one replacesN with N21.
Best fits giveEc520.0377N andEc520.040(N21), with
regression coefficients 0.957 and 0.984, respectively;
Tc50.0257N and 0.028~N21!, with regression coefficient
0.956 and 0.974, respectively.

Next, we test the validity of the first-order approximation.
We may expandE c

l@r# to second order and use known data
to check whether the second-order term is smaller than the
first-order term. In place of Eq.~16!, write
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Ec
l@r#5lS dEcldl D

l50

1l2S 12 d2Ec
l

dl2 D
l50

5lEc81l2Ec9 .

~27!

Givenl51, Eq. ~27! becomes

Ec5Ec81Ec9 . ~28!

Inserting Eq.~27! into Eq. ~12!, one obtains

Tc
l@r#52l2S dEcldl D

l50

22l3S 12 d2Ec
l

dl2 D
l50

.

52l2Ec822l3Ec9 . ~29!

With l51, Eq. ~29! becomes

Tc52Ec822Ec9 . ~30!

Employing reference values ofEc @8# andTc @9#, from Eqs.
~28! and ~30! one can estimate magnitudes ofEc8 andEc9 .
Table I shows the results for the atoms from H to Ar. The
magnitude ofEc9 is roughly 20% of that ofEc8 , which shows
that Eq.~16! gives reasonably good approximations for both
E c

l@r# andT c
l@r#. Note that the only approximation here is

thatE c
l@r# is quadratic inl; no locality assumption has been

made.

III. GENERAL EXPANSIONS OF E c
l
†r‡ AND T c

l
†r‡

IN TERMS OF HOMOGENEOUS FUNCTIONALS

Now, following Görling and Levy @10#, let us make the
general postulate that there exists a full Taylor series expan-
sion ofE c

l in powers ofl,

FIG. 1. Correlation energyEc of neutral at-
oms as function of number of electronsN. See
text.

FIG. 2. Kinetic-energy contributionTc to cor-
relation energy of neutral atoms as a function of
number of electronsN. See text.

53 2213EXPANSIONS OF THE CORRELATION-ENERGY DENSITY . . .



Ec
l@r#5 (

n51

`
ln

n! S dnEc
l@r#

dln D
l50

5 (
n51

`
ln

n!
An@r#.

~31!

Then

l
dEc

l@r#

dl
5 (

n51

`
ln

~n21!!
An@r#. ~32!

Inserting this into Eq.~12!, one gets

Tc
l@r#52 (

n51

`
ln11

~n21!!
An@r#, ~33!

so that

l
dTc

l@r#

dl
52 (

n51

`
~n11!ln11

~n21!!
An@r#. ~34!

On insertion of Eqs.~31! and ~32! into Eq. ~11!, and Eqs.
~33! and ~34! into Eq. ~15!, there result

(
n51

`
ln

n! H E r~r !r•“S dAn@r#

dr~r ! Dd3r2~n21!An@r#J 50,

~35!

and

(
n51

`
ln11

~n21!! HEr~r !r•“S dAn@r#

dr~r ! Dd3r2~n21!An@r#J 50

~36!

for anyl. The important consequence is that

2E r~r !r•“S dAn@r#

dr~r ! Dd3r5~12n!An@r#. ~37!

This is to say, provided that the Taylor series of Eq.~31!
exists and admits of the operations we have made on it, the
nth component of the Taylor series forE c

l@r# andT c
l@r# is a

homogeneous functional of degree~12n! in coordinate scal-
ing; that is1

An@rg#5g12nAn@r#, n51,2,3,. . . , ~38!

where

rg5g3r~gr !. ~39!

In contrast, recall the fact that the kinetic-energy density
functionalTs@r# is homogeneous of degree two in coordinate
scaling@4#,

Ts@rg#5g2Ts@r#, ~40!

and that the exchange-energy density functionalEx@r# is ho-
mogeneous of degree one in coordinate scaling@4#,

Ex@rg#5gEx@r#. ~41!

With l51, Eq. ~31! becomes

Ec@r#5 (
n51

`
An@r#

n!
, ~42!

and Eq.~33! becomes

Tc@r#52 (
n51

`
An@r#

~n21!!
, ~43!

whereAn@r# is homogeneous of degree~12n! in coordinate
scaling. We conclude thatEc@r# andTc@r# must be combina-
tions of homogeneous functionals of various specific degrees
in coordinate scaling: 0,21,22, . . . ,~12n!, . . . .

As a confirmation of Eqs.~42! and ~43!, recall the rela-
tionship of Levy and Perdew@4#,

Ec@r#1Tc@r#5S dEc@rg#

dg D
g51

, ~44!

which holds only atg51. Using Eqs.~38! and ~42!, one
obtains

Ec@rg#5 (
n51

`
g12n

n!
An@r#. ~45!

This expansion was earlier generated by Levy and by Levy
and Görling @10, 11#.

Differentiating Eq.~45! with respect tog and settingg51,
we obtain

1In a paper that has appeared since the present paper was submit-
ted @Phys. Rev. A52, 4493 ~1995!#, A. Görling and M. Levy also
have derived this result.

TABLE I. Values of the Kohn-Sham correlation energyEc , its
kinetic componentTc , and expansion coefficients of the first- and
second-order Taylor series ofEc

l andTc
l for atoms from He to Ar

~atomic units!. Ec and Tc values from Refs.@8# and @9#, respec-
tively.

Atom Ec Tc Ec8 Ec9

He 20.042 0.037 20.047 0.005
Li 20.051 0.038 20.064 0.013
Be 20.093 0.074 20.112 0.019
B 20.129 0.095 20.163 0.034
C 20.161 0.12 20.202 0.041
N 20.188 0.15 20.226 0.038
O 20.261 0.19 20.332 0.071
F 20.322 0.24 20.404 0.082
Ne 20.376 0.30 20.452 0.076
Na 20.401 0.31 20.492 0.091
Mg 20.452 0.34 20.564 0.112
Al 20.491 0.35 20.532 0.141
Si 20.527 0.36 20.694 0.167
P 20.559 0.41 20.708 0.149
S 20.629 0.39 20.868 0.239
Cl 20.689 0.41 20.968 0.279
Ar 20.744 0.21a 21.278 0.543

aThe value ofTc for Ar is rather suspicious as discussed in Ref.@9#.
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S dEc@rg#

dg D
g51

5 (
n51

`
12n

n!
An@r#5Ec@r#1Tc@r#.

~46!

One can readily confirm that Eqs.~42! and ~43!, together
with the scaling property ofAn , satisfy various other identi-
ties ofEc@r# and its components proposed by Levy and Per-
dew @5,11#.

A. Case of local functionals

If one assumes thatAn@r# is a local functional, that is,

An@r#5E an„r~r !…d3r , ~47!

then ~see Appendix!

An@r#52
1

3 E r•“r~r !
dAn@r#

dr~r !
d3r . ~48!

Using Eqs.~37!, we will have

E r~r !
dAn@r#

dr~r !
d3r5

42n

3
An@r#, ~49!

which means that, if it is local,An@r# is a homogeneous
functional of degree~42n!/3 in density scaling, with
n51,2,3, . . . . Recall that for homogeneous systems under
the locality approximation,Ts@r# is homogeneous of degree
5
3 in density scaling, andEx@r# is homogeneous of degree43.
From the present derivation, we now know thatEc@r# and
Tc@r# are combinations of functionals homogeneous inr of
degrees: 1,23,

1
3,0,2

1
3, . . . .

Since the only form of a local functionalX@r# that is
homogeneous of degreek with respect to density scaling and
homogeneous of degreem53k23 ~see Appendix! in coor-
dinate scaling isC*rk~r !d3r ~see Appendix for a detailed
proof!, where C is a constant to be determined, if one

considers the Taylor expansion up to the third order, one
would have, for bothEc andTc ,

Xc@r#5aN1bE r2/3~r !d3r1cE r1/3~r !d3r . ~50!

If, however, one considers the expansion up to the fourth
order, then one would have

Xc@r#5aN1bE r2/3~r !d3r1cE r1/3~r !d3r1d, ~51!

wherea, b, c, andd are coefficients to be determined some-
how. For atoms and molecules,n values greater than 4 are
not allowed, because exponential decay of the density then
will cause divergence.

Figures 3 and 4 show the results forEc andTc , respec-
tively, obtained using least squares to determine the coeffi-
cients in Eq.~50!. The correlation coefficients for the two
figures are 0.997 and 0.984, respectively. The results in Figs.
3 and 4 show quite conclusively that Eq.~50! is a rather good
approximation. Note in particular the decreasing values of
the coefficients in the series. Notice also, however, that Eqs.
~42! and~43!, with all An local, very probably are not exact,
because it has been previously demonstrated thatExc@r# is
not completely local and for all the nonlocality to be con-
tained in the exchange would be most unlikely@12#. Note
also that the values ofEc@r# we have used here are not the
exact Kohn-Sham values, and for larger atoms, for instance,
Ar, very accurate numerical calculations ofTc have not yet
been achieved.

Since Eqs.~42! and ~43! predict thatEc@r# and Tc@r#
share the same expansion coefficients, in Fig. 5, we report
the results when they are fitted together in the form of Eq.
~51! with one set of coefficients as predicted from Eqs.~42!

FIG. 3. Curve ofEc vs N. The fitted curve is
Ec520.0603N10.0175*r2/3d3r20.000 53*r1/3d3r .
The correlation coefficient is 0.997.
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and~43!. The accuracy is remarkable, confirming the general
validity of Eqs. ~42! and ~43! and a surprising accuracy for
the local approximation.

B. More general cases

If one supposes that the functionals ofAn@r# take form

An@r#5E an„r ,r~r !,“r~r !…d3r . ~52!

Then the following identity holds~see Appendix!:

An@r#1
1

3 E d3r r•“r~r !
dAn@r#

dr~r !

5
1

3 E d3r Fr j~r !
]an

]r j~r !
2r•

]an
]r G . ~53!

Integrating Eq.~37! by parts, and using this identity, one thus
obtains

FIG. 4. Curve ofTc vs N. The fitted curve is
Tc50.037 77N20.010 02*r2/3d3r10.000 39*r1/3d3r .
The correlation coefficient is 0.984.

FIG. 5. Curves ofEc vs N andTc vs N. The
fitted curves are Ec520.0532N
10.0121*r2/3d3r 20.0003*r1/3d3r 20.0070,
Tc 50.0532N 22 30.0121*r2/3d3r 13
30.0003*r1/3d3r14 30.0070.
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An@r#5
3

42n E d3rr~r !
dAn@r#

dr~r !

1
1

42n E d3r Fr j~r !
]an

]r j~r !
2r•

]an
]r G . ~54!

In the generalized-gradient-approximation framework, in
which An@r# is expressed as

An@r#5E an„r~r !,“r~r !…d3r , ~55!

Eq. ~54! becomes

An@r#5
3

42n E d3rr~r !
dAn@r#

dr~r !

1
1

42n E d3r Fr j~r !
]an

]r j~r !
G . ~56!

In the weighted-density-approximation approach,An@r# takes
the form

An@r#5E an„r ,r~r !…d3r . ~57!

Here, Eq.~54! becomes

An@r#5
3

42n E d3rr~r !
dAn@r#

dr~r !
2

1

42n E d3r F r• ]an
]r G .

~58!

IV. CONCLUDING REMARKS

In summary, in this paper, we have examined the conse-
quences of two exact relations, Eqs.~12! and ~15!, for the
correlation energy density functionalEc@r# and its kinetic
componentTc@r#. Working from known identities and the
assumption thatE c

l@r# can be expanded in a Taylor series in
l, we have arrived at the conclusion thatEc@r# andTc@r# are
expressible as combinations of homogeneous functionals of
different degrees in coordinate scaling, starting from 0,21,
22, . . . ,~12n!, . . . . Furthermore, we have shown that
whenEc and Tc are local functionals, for atoms and mol-
ecules, they are linear combinations of homogeneous func-
tionals of the density of degrees, 1, 2/3, 1/3, and 0. More
specifically,Ec and Tc each has the form ofXc[r]5aN
1b*r2/3~r !d3r1c*r1/3~r !d3r1d, wherea, b, c, andd are
constants. Numerical results show the effectiveness of such
series of local functionals.

It may be noted that some of the ‘‘allowed’’ components
in these various series could vanish identically, or could be
very small. Thus from Eq.~7! and the results we have ob-
tained, the potential componentVc of the correlation energy
density functional can be expressed as a combination of ho-
mogeneous functionals. Morrison and Parr@13# recently sug-
gested that the principal component ofVc is approximately a
local homogeneous functional of degree one in the density,
and the principal component ofTc is approximately a local
homogeneous functional of degree zero in the density. These
homogeneities accord with the results we here found in the

present paper. A final interesting point is that terms^r4/3& are
missing from the expressions we have obtained forEc and
Tc . This is traceable to the presumption@4# that asl ap-
proaches zero,Ec goes to zero.
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APPENDIX: SCALING, HOMOGENEITY, AND LOCALITY
PROPERTIES OF DENSITY FUNCTIONALS

1. Scaling and homogeneity
The homogeneity property of a density functional is re-

lated to a scaling process. In density functional theory, there
are two types of scalings that are met. One is the density
scaling, and the other is the coordinate scaling.

(i) Density scaling. A functional is homogeneous of de-
greek in ~or ‘‘with respect to’’! density scaling if the func-
tionalQ@r# satisfies following condition:

Q@zr#5zkQ@r#. ~A1!

Another definition of the homogeneity with respect to den-
sity scaling is

E r~r !
dQ@r#

dr~r !
d3r5kQ@r#. ~A2!

These two definitions are equivalent except whenk50. If
k50, Eq.~A1! implies Eq.~A2!, but Eq.~A2! does not nec-
essarily yield Eq.~A1!. Instead, one then has

dQ@zr#

dz
50, ~A3!

which means that

Q@zr#5X@r#, ~A4!

whereX@r# is an arbitrary function or functional ofr such
that

E r~r !
dX@r#

dr~r !
d3r50. ~A5!

This implies only thatdX/dr is orthogonal tor, so thatX@r#
is not necessarily a constant. As an example, one may have

X@r#5E u“r~r !u
r~r !

d3r . ~A6!

(ii) Coordinate scaling. Homogeneity of a functionalQ@r#
of degreem in coordinate scaling is defined as

Q@rg#5gmQ@r#, ~A7!
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where

rg~r !5g3r~gr !. ~A8!

It has been proved@14# that, for any well-behavedQ@r# that
obeys Eq.~A7!,

2E r~r !r•“S dQ@r#

dr~r ! Dd3r5mQ@r#. ~A9!

Notice that equivalence of Eqs.~A7! and ~A9! also requires
mÞ0. If m50, it can be shown that Eq.~A7! implies Eq.
~A9!, but from Eq. ~A9!, one cannot derive Eq.~A7!. In-
stead, one obtains

dQ@rg#

dg
50, ~A10!

which means that

Q@rg#5Y@r#, ~A11!

whereY@r# is an arbitrary functional such that

E r~r !r•“
dY@r#

dr~r !
d3r50. ~A12!

Y@r# is not necessarily a constant. For instance, one might
have

Y@r#5E u“r~r !u
r4/3~r !

d3r . ~A13!

2. Locality

A energy density functionalQ@r# is local if it can be ex-
pressed in the form

Q@r#5E q„r~r !…d3r , ~A14!

whereq is a function of the densityr~r !. It has been shown
@7,12# that for any well-behaved local functionalQ@r#,

2
1

3 E r•“r~r !
dQ@r#

dr~r !
d3r5Q@r#. ~A15!

Note that ‘‘well-behavedness’’ requiresr to vanish strongly
at infinity @12#.

3. Relationship between homogeneity and locality

Theorem 1. If Q@r# is local, homogeneity in coordinate
scaling is equivalent to homogeneity in density scaling.

Proof. SupposeQ@r# is homogeneous of degreek in den-
sity scaling. From Eqs.~A2! and~A15!, it follows thatQ@r#
is homogeneous of degree 3k23 in coordinate scaling. Con-
versely, if one suppose thatQ@r# is homogeneous of degree
m in coordinate scaling, then using Eqs.~A9! and ~A15!, it
follows thatQ@r# is homogeneous of degree~m13!/3 in den-
sity scaling. In general, in the locality assumption, homoge-

neities of degreek in density scaling and degreem in coor-
dinate scaling are related by

3k5m13. ~A16!

Theorem 2. If Q@r# is local and homogeneous with respect
to coordinate scaling and density scaling, it has the form

Q@r#5CE rk~r !d3r , ~A17!

whereC is the constant to be determined. The homogeneity
in density scaling isk; the homogeneity in coordinate scaling
is m53k23.

Proof. If kÞ0, we have both Eq.~A2! and Eq.~A14!.
Taking functional derivative of Eq.~A2! with respect to the
density, and sincedQ[r]/dr5dq/dr, one has

r
d2q

dr2
2~k21!

dq

dr
50. ~A18!

The only solution of above equation for the well-behaved
functionalQ@r# is Eq. ~A17!.

If k50, however, according to Eq.~A16!, m523. By
using Eqs.~A9! and ~A15!, there results

E r~r !
dQ@r#

dr~r !
d3r50. ~A19!

Using the same procedure as above, one hasq„r~r !…5const,
which is a special case ofk50 in Eq. ~A17!.

Comments. Note that the equivalence of the two kinds of
scaling does not in general hold ifQ@r# is not local. Notice
also that it has been well known that in the local density
approximation~LDA ! the kinetic-energy density functional
Ts@r# and the exchange-only density functionalEx@r# are ho-
mogenous of degree53 and

4
3, respectively, with respect to

density scaling. According to above theorem, the only forms
of them are

Ts@r#5CFE r5/3~r !d3r ~A20!

and

Ex@r#5CXE r4/3~r !d3r , ~A21!

respectively, whereCF and CX are constants to be deter-
mined.

4. Functional expansions

It has been shown recently@7# that a well-behaved func-
tional can be expanded in terms of its functional derivatives
up to a constant. IfQ@r# takes a form

Q@r#5E q„r ,r~r !,“r~r !…d3r , ~A22!

whereq is a function ofr , r~r !, and¹r~r !, then@7#
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Q@r#1
1

3 E d3r r•“r~r !
dQ@r#

dr~r !

5
1

3 E d3r Fr j~r !
]q

]pj~r !
2r•

]q

]r G , ~A23!

where

r j[
]r~r !

]xj
. ~A24!

Equation~A23! includes two important special cases. One is
the gradient expansion approximation or the generalized gra-
dient approximation, in whichQ@r# takes the form

Q@r#5E q„r~r !,“r~r !…d3r . ~A25!

Here Eq.~A23! becomes

Q@r#1
1

3 E d3r r•“r~r !
dQ@r#

dr~r !
5
1

3 E d3r Fr j~r !
]q

]r j~r !
G .

~A26!

The other case is the so-called weighted-density approxima-
tion, in whichQ@r# has the form

Q@r#5E q„r ,r~r !…d3r , ~A27!

whereq is only a function ofr and r~r !. Equation~A23!
consequently becomes

Q@r#1
1

3 E d3r r•“r~r !
dQ@r#

dr~r !
52

1

3 E d3r F r• ]q

]r G .
~A28!
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