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Expansions of the correlation-energy density functionak [p] and its kinetic-energy component
T.[p] in terms of homogeneous functionals
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Based on the constrained-search formulation of a coupled Hamiltonian, new formulas are given involving
the correlation-energy density functiorl[p] and its kinetic componeri [p], starting from two relations of
Levy and Perdew. Consequences are examined of assufoihmving earlier authorsthe existence of a
Taylor series expansion &3[p] in the coupling parametex. If one truncates the series at the linear term, one
finds thatE [ p] andT[p] are homogeneous of degree zero with respect to coordinate scaling, and if local, they
are homogeneous of degree one in the density scaling. More generally, it is shoviy[ilaand T.[p] are
linear combinations of homogeneous functionals of different specific degrees in coordinate scalihg:2),
=3,...{1-n),... . If thefunctionals also are local, botf [p] and T [p] are combinations of functionals
<pk> homogeneous ip of degree3<=1,§,%,0, ...,(4-n)/3, ... . Foratoms and moleculeg=0, and scE.
and T, take the formX[p] =aN+bfp?3(r)d3 +cfp3(r)d® +d, wherea, b, c, andd are constants to be
determined. Numerical tests are given that demonstrate the effectiveness of such series of local functionals. We
also give definitions of density scaling, coordinate scaling, and homogeneities, and relations among them.

PACS numbsdis): 31.15-p

I. INTRODUCTION which can be decomposed into two components, namely, the
kinetic-energy partT2[p] and the potential-energy part
The Hohenberg-Kohn universal functionBl[p] is de- VA[pl:
fined within an extended domain via the constrained-search
formulation[1,2] by the prescription NEM pl1=TA p]+AVE, (7

FA[P]:<\P)\|:|—+)\\A/ee|\I}}\> with

=T pl+NI[p]+NE[p]+\EX p], 1 - ETES

S[p] [P] X[p] c[p] ( ) Té\[p]:<q,)\|-r|\l,)\>_<q,)\ O|T|\If}\ 0>, (8)
where ¥ is the antisymmetricN-electron function that
yields p(r), minimizes((T+\V,g)), and is an eigenstate of
some Hamiltonian of the forrf3]

and

. . R . VQ[P]:<\If}\|vee|q,)\>_<\P)\=O|Vee|q,)\=0>- 9
Hy=T+AVeetVien, (2
Here, p is any specificN and v representable electron den-
where sity.
Some time ago, Levy and Perddw] derived two rela-

_Ar:le - % v2 - tions for EX[p] and T[],
i= S N
—kEﬁ[p]—kfp(r)rV( EC[p])d3r=T§[p], (10
-1 op(r)
Veems 20 2 Iri—rjl %, (@)
i j#Fi
and
and
SEg[p] dEg[p]
) N fp(r)r-V( 5p(rp))d3r=—E§[p]+>\ d)\p.
Vnea= 2, m(Ti), (5) (11)

whereX is the coupling constant that measures the interacgggzzzEgg the integral term between these equations, one
tion strength between electrons of the system. The

correlation-energy density function&l}[p] can then be de- =
fined as{4] Thpl= A2 —5 . (12)

NEQLP]= (WM T+AVed U) = (WO T+ AVed W 79),
(6)  Consequently, using E¢8), we have[5,6]
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elpl=- | Semel-— | 5

—(\P)‘=O|'AF|‘I"‘=0)).

((PNT]w™)

13

If one takes the functional derivative of E¢L2) with

respect top(r), multiples by p(r)r-V, and then integrates

over all space, there results

N
Tc[P]) a3

f p(r)r-V(5

op(r)
d
:_)\ZJ[JP( Nr-v

A[p]) ]
G (14

After Eq. (11) is employed to eliminate the integral on the

right-hand side, this becomes

)\
J p(l’)l’~V< c[p]

op(r)
Notice that Egs.(11) and (15), respectively, involve only
EXp] and T 2[p]. These formulas all are exact identities.

x[/0]
d\

)d3 =—2TMp]+\
(15

Il. FIRST-ORDER APPROXIMATIONS
FOR E.[p] AND T [p]

Following Levy and Perdew4], we first suppose that

E X p] can be expanded in a Taylor series\imip to the first
order, i.e.,

dEg(p]

EMp1=E)O+a| T

) =EX"°+\E.. (16
A=0

Here E; is by definition the \-independent derivative
(dEMN p]/dN), 0. However,EX=%[p]=0 [4], so that

dE}
EMM=A—E%Q, (17)
and Eq.(11) becomes
SEX
f p(r)r~V<W[r’;])d3r=0, (18

as was already given by Levy and Perdell Inserting Eq.
(17) into Eq.(12), one finds

v A dTyp]
Telpl=5 —g— (19
Combination of Eqs(15) and(19) gives
A[p]) .
f p(Nr-v 0 d°r (20
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Eé[p]=f eX(p(r))d?r, (21)
and
Té[p]=f ta(p(r))dr. (22
The locality condition then implief7]
N __l c[p]
Eclprl= 3fr Vp(r) 5p(1) dr, (23
and
Prpl=—= [ r-vp) OTelp (24)
clp 3 ) .

By partially integrating Eqs(18) and (20) and using the
above relations, one arrives at the conclusion Eiiip] and
T\ p] are homogeneous of degree one with respedettsity
scaling, i.e.,

SEX
EﬁMZJPU%E%§d% (25
and
STelp] |
miel= | o) S o (26

See the Appendix for a discussion of homogeneity with re-
spect to coordinate scaling and homogeneity with respect to
density scaling. These are different concepts.

As shown in the Appendix, the only way a functiondlp]
can be homogeneous of degree one in density scaling and
homogeneous of degree zero in coordinate scaling is for it to
be of the formX[p]=CN[p] = CN. The first-order assump-
tion of Eq.(16) would therefore suggest that bdiy and T,
might be proportional tdN. Indeed, actual data demonstrate
that these proportionalities hold roughly. This is shown in
Figs. 1 and 2, in whiclE, and T, values are plotted against
N for the atoms He through Ar. The data f&y, were ob-
tained from the very recent optimized-effective-potential
(OEP calculation by Grabo and Gro$8]. The data forT,
were taken from Morrison and Zhd®]. It is clear that the
homogeneities of Eq418) and (20) and (25) and (26) are
approximately satisfied.

One sees from the figures that there certainly is an ap-
proximate proportionality betweeB, and N and also be-
tweenT_; andN, though, not surprisingly, the proportionality
assumption is better satisfied if one repladesvith N—1.
Best fits giveE,= —0.037N andE.= —0.040(N— 1), with
regression coefficients 0.957 and 0.984, respectively;
T.=0.025N and 0.028\—-1), with regression coefficient

Equationg(18) and(20) mean that in the first-order approxi- 0.956 and 0.974, respectively.

mationE \[p] and T 2[p] are homogeneous of degree zero in

coordinatescaling(see Appendix for discussign
Consider now the case th&»3[p] and TX[p] are local
functionals, which mean&ee Appendixthat

Next, we test the validity of the first-order approximation.
We may expandE X[p] to second order and use known data
to check whether the second-order term is smaller than the
first-order term. In place of Eq16), write



53 EXPANSIONS OF THE CORRELATION-ENERGY DENSM. ..

2213

0 -
] ? a
-0.104 @
] a
-0.204 @
-0.301
: a
ENUR o
<040 = FIG. 1. Correlation energf, of neutral at-
w ] o oms as function of number of electrohs See
0.501 text.
] @
: [c]
-0.607]
0.70 @
: [c]
-0.80 e e R SIS
0 2.5 5 7.5 10 125 15 175 20
N
dE} 1 d’E} T.=—E.—2E!. (30)
Eg[p]=>\< d;) +>\2(§ d)\; =\E.+\2E/. ¢ ¢
A=0 A=0 Employing reference values &; [8] and T, [9], from Egs.
(27) (28 and (30) one can estimate magnitudes Bf andE;.
Givena=1, Eq.(27) becomes Table | shows the results for the atoms from H to Ar. The
' =0 magnitude ofe; is roughly 20% of that oE, which shows
E=E'+E". (29 that Eq.(16) gives reasonably good approximations for both
¢ e e EXp] and T2[p]. Note that the only approximation here is
Inserting Eq.(27) into Eq. (12), one obtains tha:jEé[p] is quadratic in\; no locality assumption has been
made.
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dn /o 2 d\ IN TERMS OF HOMOGENEOUS FUNCTIONALS
=—N\2E.-2\3EL. (29 Now, following Galing and Levy[10], let us make the
general postulate that there exists a full Taylor series expan-
With =1, Eq.(29) becomes sion of E} in powers ofX,
0.507
0.40] =l
0.353 , e
0.303 a °
~ 0.25]
3 ] e
i‘: . FIG. 2. Kinetic-energy contributioffi. to cor-
= 0.204 a relation energy of neutral atoms as a function of
] number of electrondl. See text.
0.157 a
a
0.10 a
0.05]
] [c] a
e S T e e S e L L
0 2.5 5 7.5 10 125 15 175

N



2214

TABLE |. Values of the Kohn-Sham correlation enerBy, its

kinetic component ., and expansion coefficients of the first- and

second-order Taylor series Bf and T2 for atoms from He to Ar
(atomic unit3. E. and T, values from Refs[8] and[9], respec-
tively.

Atom E. T E. EY

He —0.042 0.037 —0.047 0.005
Li —0.051 0.038 —0.064 0.013
Be —0.093 0.074 —0.112 0.019
B -0.129 0.095 -0.163 0.034
C -0.161 0.12 —-0.202 0.041
N —-0.188 0.15 —-0.226 0.038
(o) —-0.261 0.19 —0.332 0.071
F —0.322 0.24 —0.404 0.082
Ne —0.376 0.30 —0.452 0.076
Na —0.401 0.31 —0.492 0.091
Mg —0.452 0.34 —0.564 0.112
Al —-0.491 0.35 —-0.532 0.141
Si —-0.527 0.36 —0.694 0.167
P —0.559 0.41 —0.708 0.149
S —0.629 0.39 —0.868 0.239
Cl —0.689 0.41 —0.968 0.279
Ar —0.744 0.2% —1.278 0.543

#The value ofT, for Ar is rather suspicious as discussed in R8f.

-3, (RN 5
Eclpl= 2, m( ) o—n; = Anlp]
(31
Then
dEf[p] <« A"
= oy Adel (32
Inserting this into Eq(12), one gets
*® n+1
A o= —
Telpl== 2 i=gy7 Adlel. (33
so that
dTilp] <« (n+DA"FE
ax :—nzl WAn[p]- (34

On insertion of Eqs(31) and (32) into Eq. (11), and Egs.
(33) and (34) into Eq. (15), there result

> )\—”p(r)r-V((SA"[p])d3r—(n—l)An[p]]=0,

A=1 N! op(r)
(39
and
oAt SAnlp]
2 (n—l)!Up(”r‘V( 5p(r) )dsr_(”_l)A“[p]]zo
(36)

for any \. The important consequence is that
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SALP]| o
—fpmr-V( =0 )dSr—(l—n)An[p]. 37

This is to say, provided that the Taylor series of E8{)
exists and admits of the operations we have made on it, the
nth component of the Taylor series fBR[p] andT2[p] is a
homogeneous functional of degréle-n) in coordinate scal-
ing; that i

An[py] = 'yl_nAn[P]i

n=1.23,..., (39)

where

py="73p(¥r). (39)
In contrast, recall the fact that the kinetic-energy density
functional T p] is homogeneous of degree two in coordinate
scaling[4],

Tdp,1=7"Tdpl, (40)
and that the exchange-energy density functidbigp] is ho-
mogeneous of degree one in coordinate scdlifig

Exlp,]= yEilp]. (41)
With A\=1, Eqg.(31) becomes

A
edpl= 3, 210, 2

n=1 .

and Eq.(33) becomes
o Adlp]

Tdel==2 =g (43)

whereA,[p] is homogeneous of degré&—n) in coordinate
scaling. We conclude th&[p] andT.[p] must be combina-
tions of homogeneous functionals of various specific degrees
in coordinate scaling: 6,1,—2, ... (1-n),... .

As a confirmation of Eqs(42) and (43), recall the rela-
tionship of Levy and Perdeyw],

dE,
Ec[p]+TC[p]=( d[f ’]) )

; (44)
y=1

which holds only aty=1. Using Eqgs.(38) and (42), one
obtains

* 1-n

Edp,]=2,

=1 Nl

Anlp]. (45)

This expansion was earlier generated by Levy and by Levy
and Galing [10, 11.

Differentiating Eq.(45) with respect toy and settingy=1,
we obtain

lin a paper that has appeared since the present paper was submit-
ted [Phys. Rev. A52, 4493(1995], A. Garling and M. Levy also
have derived this result.



.
(46)

One can readily confirm that Eq§42) and (43), together

with the scaling property oA, satisfy various other identi-
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dE[p.] “ 1-n considers the Taylor expansion up to the third order, one
(d—y) => — Adlp]=Edp]+Tdp]. would have, for bottE, and T,
Y -1 n=1 .

Xc[p]=aN+bfp2/3(r)d3r+cf pY¥(r)d%r. (50

ties of E.[p] and its components proposed by Levy and Per-

dew[5,11].

A. Case of local functionals

If one assumes tha[p] is a local functional, that is,

Adpl= [ anp(na, @7
then (see Appendix
Adpl=—3 f r-Vp(r) 52)”([3] . 49
Using Eqs.(37), we will have
[ o0 o -2 age, w9

which means that, if it is localA,[p] is a homogeneous

functional of degree(4—n)/3 in density scaling, with

If, however, one considers the expansion up to the fourth
order, then one would have

xc[p]=aN+bfp2’3(r)d3r+cf pYi(r)d3r+d, (51)

wherea, b, ¢, andd are coefficients to be determined some-
how. For atoms and molecules,values greater than 4 are
not allowed, because exponential decay of the density then
will cause divergence.

Figures 3 and 4 show the results fiég and T, respec-
tively, obtained using least squares to determine the coeffi-
cients in Eq.(50). The correlation coefficients for the two
figures are 0.997 and 0.984, respectively. The results in Figs.
3 and 4 show quite conclusively that E§0) is a rather good
approximation. Note in particular the decreasing values of
the coefficients in the series. Notice also, however, that Egs.
(42) and(43), with all A, local, very probably are not exact,

n=1,2,3 ... . Recall that for homogeneous systems undeibecause it has been previously demonstrated Eydp] is
the locality approximationT ([ p] is homogeneous of degree not completely local and for all the nonlocality to be con-

2 in density scaling, an&,[p] is homogeneous of degrée
From the present derivation, we now know th&{p] and
T.[p] are combinations of functionals homogeneous iof
degrees: £,30,—3,... .

Since the only form of a local functionaX[p] that is

homogeneous of degréewith respect to density scaling and

homogeneous of de%reB=3k—3 (see Appendixin coor-

dinate scaling isC[p“(r)d® (see Appendix for a detailed

tained in the exchange would be most unlikéh2]. Note
also that the values d&[p] we have used here are not the
exact Kohn-Sham values, and for larger atoms, for instance,
Ar, very accurate numerical calculations Bf have not yet
been achieved.

Since EQgs.(42) and (43) predict thatE [p] and T [p]
share the same expansion coefficients, in Fig. 5, we report
the results when they are fitted together in the form of Eq.

proof), where C is a constant to be determined, if one (51) with one set of coefficients as predicted from E@)
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FIG. 4. Curve ofT; vs N. The fitted curve is
T.=0.037 7N—-0.010 07 p?3d®r +0.000 39 p*3d®r .
The correlation coefficient is 0.984.
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and(43). The accuracy is remarkable, confirming the general 1 A p]
validity of Egs.(42) and (43) and a surprising accuracy for Anlp]+ 35 f drr-Vp(r) — 3p(1)

the local approximation.

B. More general cases

If one supposes that the functionalsAflp] take form

1 J' & fda, 53
An[p]=f an(r,p(r),Vp(r)d3. (52
Integrating Eq(37) by parts, and using this identity, one thus
Then the following identity hold¢see Appendix obtains
0.75
0.50
0.257

FIG. 5. Curves ofe, vs N and T, vs N. The
fitted curves are E.,=—-0.053N
+0.0121f p?3d3 —0.0003 p*'3d’r —0.0070,
T =0.053N -2 x0.0121p?%d% +3
% 0.0003f p*'3d®r +4 x0.0070.
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3 5 AL p] present paper. A final interesting point is that texpf¥®) are
Anlp]l= 2-n f d°rp(r) Sp(r) missing from the expressions we have obtainedHprand
p T.. This is traceable to the presumptipd] that as\ ap-

d3

da, proaches zerd:, goes to zero.

da,

4 n

In the generalized-gradient-approximation framework, in
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Anlp]
n[P]__fdg ( ) n( )

APPENDIX: SCALING, HOMOGENEITY, AND LOCALITY
PROPERTIES OF DENSITY FUNCTIONALS

(56)

+—fd3 {pj(r) ](r)

In the weighted-density-approximation approagh,p] takes
the form

1. Scaling and homogeneity
The homogeneity property of a density functional is re-
lated to a scaling process. In density functional theory, there
are two types of scalings that are met. One is the density
scaling, and the other is the coordinate scaling.
An[P]:f a,(r,p(r))dr. (57) () D_ensity“ scaling A functjonal is homogeneous of de-
greek in (or “with respect to”) density scaling if the func-
tional Q[ p] satisfies following condition:

QlZp]={Qlp]. (A1)
3 5An[p] 1 3 &an
Anlpl= 71— | d7rp(r) 5p(r)  4-n drir- —=. Another definition of the homogeneity with respect to den-
(58)  Sity scaling is

Here, Eq.(54) becomes

IV. CONCLUDING REMARKS f p(r ) oQle] dgl’—kQ[p] (A2)

op(r)
In summary, in this paper, we have examined the conse-
quences of two exact relations, Eq&2) and (15), for the These two definitions are equivalent except wiken0. If

correlation energy density function&[p] and its kinetic ¥=0: EQ-(Al) implies Eq.(A2), but Eq.(A2) does not nec-
componentT [p]. Working from known identities and the ©€SSarily yield Eq(AL). Instead, one then has

assumption thakE X[p] can be expanded in a Taylor series in dQ[¢ ]
\, we have arrived at the conclusion ti&&a{ p] and T [p] are P , (A3)
expressible as combinations of homogeneous functionals of Sdr
different degrees in coordinate scaling, starting from 1, which means that
.{1-n),... . Furthermore, we have shown that
when E; and T, are local functionals, for atoms and mol- Qlzp]=X[p], (A4)

ecules, they are linear combinations of homogeneous func-
tionals of the density of degrees, 1, 2/3, 1/3, and 0 IV|0“3t/vherex[p] is an arbitrary function or functional gf such

specifically, E. and T, each has the form oK.[p]= that

+bprIS(I’)dsl’+Cfp1/3(r)d3r+d wherea, b, c, andd are

constants. Numerical results show the effectiveness of such SX[p]

series of local functionals. f p(r) o) dr=0. (AS)

It may be noted that some of the “allowed” components

in these various series could vanish identically, or could berhijs implies only thatsX/dp is orthogonal tgp, so thatX[p]

very small. Thus from Eq(7) and the results we have ob- s not necessarily a constant. As an example, one may have
tained, the potential componevit of the correlation energy

density functional can be expressed as a combination of ho- [Vp(r)]
mogeneous functionals. Morrison and Fdr8] recently sug- [ ]:f W
gested that the principal component\4fis approximately a

local homogeneous functional of degree one in the density, (ii) Coordinate scalingHomogeneity of a functionad[p]

and the principal component df; is approximately a local of degreem in coordinate scaling is defined as
homogeneous functional of degree zero in the density. These

homogeneities accord with the results we here found in the Qlp,]=y"Qlp], (A7)

d3r. (AB)
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where neities of degred in density scaling and degree in coor-
dinate scaling are related by
p(N=7p(yr). (A8B)
3k=m+3. (A16)
It has been provefil4] that, for any well-behave®]p] that
obeys Eq(A7), Theorem 2If Q[p] is local and homogeneous with respect

to coordinate scaling and density scaling, it has the form

S

—Jp(l’)l’~V( 5QEf)])d3r=mQ[p]. (A9)
P Qlpl=C f pk(rd®r, (A17)

Notice that equivalence of Eq6A7) and (A9) also requires

m#0. If m=0, it can be shown that EqA7) implies Eq. whereC is the constant to be determined. The homogeneity

(A9), but from Eq.(A9), one cannot derive EqA7). In-  in density scaling i&; the homogeneity in coordinate scaling
stead, one obtains is m=3k—3.
Proof. If k#0, we have both Eq(A2) and Eq.(Al14).
dQlp,] Taking functional derivative of EqA2) with respect to the
dy =0, (A10) density, and sincéQ| p]/ sp=dqg/dp, one has
. 2
which means that pg_pg_(k_ 1) j_gzo' (A18)
Qlp,1=Ylpl, (AL1)
The only solution of above equation for the well-behaved
whereY|[p] is an arbitrary functional such that functional Q[p] is Eq. (A17).
If k=0, however, according to EqA16), m=—3. By
J p(r)r'VtiEIr))] 4 =0, (A12) using Egs(A9) and (A15), there results
aQlp] .
Y[p] is not necessarily a constant. For instance, one might f p(r) Sp(r) d*r=0. (A19)
have
Using the same procedure as above, oned{ag ))=const,
Y[p]= [Vo(n) d3r (A13) which is a special case &=0 in Eq.(Al7).
p™3(1) ' CommentsNote that the equivalence of the two kinds of
scaling does not in general hold@[ p] is not local. Notice
2. Locality also that it has been well known that in the local density

. . . n approximation(LDA) the kinetic-energy density functional
A energy density functionaQ[p] is local if it can be ex- T p] and the exchange-only density functiof[p] are ho-

pressed in the form mogenous of degreé and 3, respectively, with respect to
density scaling. According to above theorem, the only forms
alp1= [ atera, (a4 of them are
whereq is a function of the density(r). It has been shown Ts[p]ZCFf p(r)d3r (A20)
[7,12] that for any well-behaved local function@l[p],
and
1 ol
-2 f r-Vp(r) fff)] ¢°r=Qlpl.  (A15)
g Exlp]=Cx f p¥¥(r)dr, (A21)
Note that “well-behavedness” requirgsto vanish strongly
at infinity [12]. respectively, whereCr and Cy are constants to be deter-
mined.
3. Relationship between homogeneity and locality
Theorem 11f Q[p] is local, homogeneity in coordinate 4. Functional expansions
scaling is equivalent to homogeneity in density scaling. It has been shown recenty] that a well-behaved func-

Proof. SupposeQ[p] is homogeneous of degréein den-  tional can be expanded in terms of its functional derivatives

sity scaling. From Eq9A2) and(A15), it follows thatQ[p] up to a constant. IQ[p] takes a form
is homogeneous of degre&33 in coordinate scaling. Con-

versely, if one suppose th&[p] is homogeneous of degree B 3

m in coordinate scaling, then using E4A9) and (A15), it Qlpl= | a(r.p(r),Vp(r)d’r, (A22)
follows thatQ[ p] is homogeneous of degrém+3)/3 in den-

sity scaling. In general, in the locality assumption, homogewhereq is a function ofr, p(r), andVp(r), then[7]



53 EXPANSIONS OF THE CORRELATION-ENERGY DENSM. .. 2219

Qlpl+ = jda” Vp(r) 5QE:’)] Here Eq.(A23) becomes
1 oQ[p] 1 9
J J - 3pp. Tl 3
=§fd3r{p;(r) T((qr)_r' a—?, (n23 Qlrlt3 Jd Vo) 5o =3 Jd [”l( " I (r)}
: (A26)
where

The other case is the so-called weighted-density approxima-
tion, in whichQ[p] has the form

op(1) (A24)
%, Qlpl= f q(r,p(r))d?r, (A27)

Equation(A23) includes two important special cases. One is _ _ _
the gradient expansion approximation or the generalized gravhereq is only a function ofr and p(r). Equation(A23)

pPji=

dient approximation, in whicl®Q[p] takes the form consequently becomes
1 1 d
Qlpl+ 5 f d*rr-Vp(r) QEP)] -3 f d%[r. a_ﬂ
Qo) [ aon Vornr. (29 n28)
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