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I. INTRODUCTION

In the last 20 years, there has been a growing interest in
the development of atomic and chemical techniques based on
relativistic quantum mechanics. This interest is partially fu-
eled by the development of experiments on highly charged
ions, where storage rings or atomic traps are utilized. Calcu-
lations involving high-Z species must properly account for
the direct and indirect effects of relativity@1#, and a four-
component description becomes necessary, particularly for
calculations of those atomic properties, which depend
strongly on the behavior of the wave function in the proxim-
ity of the nucleus. If inner-shell electrons are involved di-
rectly in the atomic process, the magnetic and retardation
effects become important, and eventually higher-order QED
effects come into play with the increase of the atomic num-
berZ.

Lithium is the simplest species in which the Pauli exclu-
sion principle forces the electronic wave function to form
two ~or more! space-separated electronic shells. This feature
makes lithium a natural testbed for atomic many body theo-
ries, since in very accurate calculations the electron correla-
tion effects have to be evaluated both for the outer~valence!
electron as well as within inner~core! shell itself. The objec-
tive of the present paper is to test the capacity of the new
version@2,3# of the multiconfiguration Dirac-Fock~MCDF!
package GRASP2 @4,5#. To facilitate the use of large
configuration-state expansions, the lower triangle of the
Hamiltonian matrix is stored in a sparse representation. Ei-
genvalues and eigenvectors are efficiently extracted by an
iterative procedure@6# based on the Davidson algorithm@7#.

The hyperfine interaction constants for the 2s 2S1/2, 2p
2P1/2, and 2p 2P3/2 states in lithium are known to be very
sensitive to the quality of the wave function, and for a long
time have been a natural test case for different theoretical
methods. The hyperfine constantA1/2 for the 2s

2S1/2 state of

3
7Li has been measured very accurately with the atomic-beam
magnetic-resonance technique@8#. The diagonal hyperfine
coupling constants for the 2p 2P1/2 and 2p

2P3/2 states have
been measured in an optical double-resonance experiment

@9#. The measurements for the 2p 2P3/2 state have later been
repeated with laser-induced fluorescence spectroscopy@10#,
and with the delayed-coincidence technique@11#.

II. THEORY

The theoretical approach employed is sketched below. A
more detailed description can be found elsewhere@12–15#,
and only a brief re´suméwill be given here. Except where
noted, atomic units are used in this paper.

A. MCDF

In the MCDF method@13#, the relativistic atomic state
functionC for a state labeledGPJM is represented as a sum
of symmetry-adapted configuration-state functions~CSF!

C~GPJM!5(
r
crF~g rPJM!. ~1!

Configuration mixing coefficientscr are obtained through
diagonalization of the Dirac Coulomb Hamiltonian

HDC5(
i
cai•pi1~b i21!c22Z/r i1(

i. j
1/r i j . ~2!

Configuration-state functionsF, which are eigenfunctions of
J2, Jz , and parityP, are constructed as linear combinations
of Slater determinants. In the restricted Dirac-Fock model a
Slater determinant is a product of one-electron Dirac orbitals

unkm&5
1

r S Pnk~r !xkm~ r̂ !

iQnk~r !x2km~ r̂ !
D , ~3!

wheren is the principal quantum number, andk andm are
the relativistic angular quantum number and itsz component,
respectively;k56( j1 1

2) for l5 j6 1
2, with l and j being the

orbital and total angular momenta of the electron.Pnk(r )
andQnk(r ) are the large and small component one-electron
radial wave functions, andxkm( r̂ ) is the spinor spherical
harmonic in thels j coupling scheme
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The radial functionsPnk(r ) andQnk(r ) are obtained as a
self-consistent-field solution of the one-electron Dirac-Fock
equation@13#.

B. Hyperfine interaction

The hyperfine structure of atomic energy levels~hereafter
abbreviated hfs! is caused by the interaction between the
electrons and the electromagnetic multipole moments of the
nucleus. Combined with measured hfs splittings, accurate
calculations of the electronic part of the interaction provide
an interesting tool for determining nuclear moments. This is
especially important for quadrupole moments, which are dif-
ficult to measure with direct nuclear techniques@16#. In cases
where reliable values of the nuclear moments are available, it
is possible to test atomic theory by comparing observed hy-
perfine structures with theoretically calculated ones. Theo-
retical studies of the hyperfine interaction have led to signifi-
cant improvements in our understanding of atomic structure
@12# in general, and have helped establish the applicability
and limitations of different computational methods designed
to account for correlation effects, the leading corrections to
the independent particle model. In accurate calculations of
hyperfine structures it is necessary to take relativistic effects
into account even for relatively light elements@17,18#. The
effects of relativity scale as the square of the atomic number
Z and can usually be treated as perturbations for light ele-
ments. These effects become important with increasing
atomic number, and, at some point, it becomes necessary to
employ a fully relativistic approach if accurate results are to
be expected@19#. This necessity is more pronounced in cal-
culations of hyperfine structures than other atomic proper-
ties, because the hyperfine interaction is sensitive to the form
of the calculated electronic wave functions close to the
nucleus, where direct and indirect effects of relativity@1# are
difficult to account for by quasirelativistic methods.

The hyperfine contribution to the Hamiltonian can be rep-
resented by a multipole expansion

Hhfs5 (
k>1

T~k!
•M ~k!, ~5!

whereT(k) andM (k) are spherical tensor operators of rank
k in the electronic and nuclear space, respectively@20#. The
k51 term represents the magnetic-dipole interaction and the
k52 term the electric quadrupole interaction. Higher-order
terms are much smaller and can often be neglected.

The electronic tensor operators are sums of one-particle
tensor operators

T~k!5(
j51

N

t~k!~ j !, k51,2. ~6!

The magnetic-dipole operatort(1) in nonrelativistic frame-
work takes the form@20#

t~1!5
a2

2 (
i51

N

$2l~1!~ i !r i
231gs

8
3 pd~r i !s

~1!~ i !

2gsA10@C~2!~ i !3s~1!~ i !#~1!r i
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The three terms in the equation~7! are usually called the
orbital, Fermi-contact, and spin-dipole terms, respectively.
In relativistic formulation the magnetic-dipole operator is
more compact@20#,

t~1!52 ia~ a • l C~1!!r22. ~8!

The electric quadrupole term has a common form in both the
relativistic and nonrelativistic formulation

t~2!52C~2!r23. ~9!

In the formulas abovea is the fine-structure constant,a is
the vector of the three Dirac matrices, andC(k) is a spherical
tensor with the components related to the spherical harmon-
ics as

Cq
~k!5A 4p

2k11
Ykq . ~10!

The reader is referred to our previous paper@15# for the
evaluation of the matrix elements of the hyperfine interaction
in the framework of symmetry adapted configuration-state
functions.

C. Multiconfiguration expansion

The configuration expansions were obtained with the ac-
tive space method in which configuration-state functions of a
particular parity and symmetry are generated by substitutions
from reference configuration to an active set of orbitals. The
active set is then increased systematically until the conver-
gence of the hyperfine constant is obtained. For smaller or-
bital sets employed in this study, the complete active space
~CAS! method was used, in which all electrons are subject to
substitutions within a particular active set. For larger orbital
sets the complete active space becomes prohibitively expen-
sive and certain limitations were needed to keep the number
of configuration-state functions below the limit acceptable by
the computer memory constraints. This was accomplished by
~1! restricting the electron substitutions to single and double
for the orbitals with high values of principal quantum num-
ber and by~2! excluding CSFs with weights smaller than a
certain threshold value. The effects of these restrictions were
later evaluated by separate configuration-interaction calcula-
tions. The actual sets employed are presented in Tables I, III,
and IV. All single, double, and triple substitutions have been
allowed to all orbitals with principal quantum numbers
n52,3,4,5. Forn56 only s,p,d,f,gsymmetries have been
permitted; theh and higher symmetries have been excluded.
Starting withn57 only single and double substitutions were
permitted and the set of orbital symmetries was systemati-
cally decreased until there were onlys orbitals ~14s, 15s)
added to the list.
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III. RESULTS

The value of the nuclear magnetic-dipole moment has
been adopted from the tables of Raghavan@21#. The nuclear
electric quadrupole moment has been taken from the paper of
Diercksenet al. @22#. The conversion from atomic units to
MHz used the factor of 1 a.u.5 6 579 683 900 MHz.

A. 2s 2S1/2 state

Table I and Fig. 1 present the magnetic dipole constant
A for the ground state of lithium as a function of
configuration-space expansion. Figure 1 shows that 15
energy-optimized layers of orbitals were required to con-
verge theA value. As discussed in Sec. II C, the computa-
tional resources at our disposal did not allow us to include all
configuration-state functions arising from the orbital sets and
substitutions presented in Table I. The initial calculations
have been performed on a SUN SparcStation, where we were
forced to keep the number of CSFs below 3500, to avoid
disk swapping. To overcome this limitation we employed a
condensing procedure, which eliminates those configuration-
state functions, which contribute to the total wave function
less than a specified threshold value. Condensing was ap-
plied at then56 level with the threshold5 0.000 000 1. The
effect on the hfs occurred at the seventh decimal digit after
condensing. Similar condensing was further applied at the
n58 andn59 levels, where an IBM RISC 6000 workstation
was used, and the disk swapping limit was 4500. The calcu-
lations for the largest expansions were performed on a Cray
Y-MP, with no limits other than CPU quota. The condensing
procedure has to be very carefully executed, since the last
layers of orbitals contribute appreciably more to hfs than to
energy.

As the next step, we evaluated the effect of the configu-
rations, which were excluded from the CSF lists due to con-

FIG. 1. Magnetic-dipole constant~in MHz! for the 1s22s 2S1/2 state of3
7Li as a function of orbital set. The main figure shows the

blown-up tail portion corresponding to these orbital sets, for which principal quantum number of virtual orbitals is allowed to exceed 4. The
inset shows the full picture.

TABLE I. Diagonal magnetic-dipole hyperfine structure param-
eterA ~in MHz! for the 1s22s 2S1/2 state of 3

7Li as a function of the
increasing active set of orbitals. SDT means single, double, and
triple substitutions from the reference 1s22s configuration. The
SDT substitutions to 6s5p4d3 f2g orbital set are carried over to all
subsequent larger orbital sets. Column 3 gives the number of con-
figurations.

Active set Type NCF A1/2

DF SDT 1 289.216
2s1p SDT 8 286.443
3s2p1d SDT 79 390.475
4s3p2d1 f SDT 410 390.652
5s4p3d2 f1g SDT 1463 401.822
6s5p4d3 f2g SDT 2739 397.186
7s6p5d4 f3g SD 3102 401.291
8s7p6d5 f3g SD 3377 400.508
9s8p7d6 f3g SD 3285 400.892
10s9p8d6 f3g SD 3975 400.555
11s10p9d6 f3g SD 4282 401.166
12s11p9d6 f3g SD 4480 401.159
13s12p9d6 f3g SD 4613 401.204
14s12p9d6 f3g SD 4762 401.202
15s12p9d6 f3g SD 4834 401.204
CI1 7017 401.309
CI2 11789 401.305
Breit 401.336
Nuclear recoil 401.249
QED 401.714
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densing or restrictions imposed on the allowed substitutions.
To evaluate the effect of configurations resulting from triple
substitutions to orbitals with high principal quantum num-
bers it would be desirable to do a full configuration interac-
tion calculation in a CAS manner, i.e., with all single,
double, and triple substitutions into the full orbital set. The
number of configuration-state functions for such a case
amounts to 39911, and it would be extremely expensive,
even on a highly powerful system. We decided to perform a
stepwise procedure, where subsequent CI calculations are
done with expanding list of configuration-state functions.
Such a procedure is not only less expensive with regard to
the CPU but also provides an estimate of the precision of the
CI results. The CI1 entry in Table I was obtained by a config-
uration-interaction calculation, where~1! all single,
double, and triple substitutions to the set
1s,2s,2p, . . . ,6s,6p,6d,7s,8s, . . . ,14s,15s were allowed
and ~2! all single and double substitutions to the full active
set were allowed~no condensing!.

The CI2 entry was obtained by a configuration-interaction
calculation, where~1! all single, double, and triple substitu-
tions to the set 1s,2s,2p, . . . ,7d,7f ,7g were allowed,~2! all
single, double, and triple substitutions to the set
1s,2s,2p, . . . ,6d,6f ,6g,7s,8s, . . . ,14s,15s were allowed,
and ~3! all single and double substitutions to the full active
set were allowed~no condensing!. The difference between
the results of the two CI calculations appeared at sixth figure,
so we refrained from extending the CSF list further. These
results also suggest that the triple substitutions involving or-
bitals of s symmetry with high principal quantum numbers
are mainly responsible for the difference between our con-
verged ‘‘scf’’ value of hfs constantA and the CI value. The
difference between the two CI calculations also provides an
estimate of the precision of our calculated hfs value within
the model employed in this study.

The three leading corrections to the CI value arise from
the nuclear motion effects, the Breit interaction, and the
QED effects. The Breit contribution is very difficult to cal-
culate in the direct calculation, even as a perturbation, due to
the extremely high CPU cost. The effect of the Breit interac-
tion on the calculated hfs constants has been estimated from
a series of CI calculations performed with the full orbital set
but condensed down to a small number of CSFs. The Breit
interaction has been treated as a perturbation to the Coulomb
Hamiltonian. The effect on the calculated hfs value is pre-
sented in Table II as a function of the size of the CI expan-
sion. It has to be mentioned here, that the condensing proce-
dure is based on Coulomb-only Hamiltonian matrix. Since
angular properties of the Breit operator are different than

those of the Coulomb energy operator, it is important that the
CI expansion arising from the condensing described above is
sufficiently large to include all important contributions. As
can be seen in Table II the MCDF hfs value is almost fully
recovered in the largest CI calculation and the Breit contri-
bution has saturated. The resulting Breit correction has been
obtained by employing the factor extrapolated from Table II.

The nuclear motion correction was evaluated by adding
the normal mass shift~NMS! and specific mass shift~SMS!
operators@23# to the Hamiltonian~2! and performing a series
of configuration-interaction calculations similar to those for
Breit interaction, i.e., by monitoring the correction to hfs
from SMS and NMS when configuration expansion was in-
creasing.

In the next step we tested the effect of leading QED ef-
fects. Our present code allows a post-scf evaluation of
second-order vacuum polarization and an estimate of the

TABLE II. Effect of the Breit interaction on the calculated diagonal magnetic-dipole hyperfine structure
parameterA ~in MHz! for the 1s22s 2S1/2 state of3

7Li as a function of configuration expansion. Column 1
gives the wave function composition threshold values and column 2 the number of configurations that
survived the condensing procedure.

Threshold NCF MCDF MCDF1Breit Correction Factor

0.001 69 394.040 394.104 0.064 1.0001634
0.0001 451 401.137 401.169 0.032 1.0000798
0.00001 1453 401.588 401.619 0.031 1.0000772

extrapolated 1.0000769

TABLE III. Diagonal magnetic-dipole hyperfine structure pa-
rameterA ~in MHz! for the 1s22p 2P1/2 state of3

7Li as a function of
the increasing active set of orbitals. SDT means single, double, and
triple substitutions from the reference 1s22p configuration. The
SDT substitutions to 6s5p4d3 f2g orbital set are carried over to all
subsequent larger orbital sets. Column 3 gives the number of con-
figurations.

Active set Type NCF A1/2

DF SDT 1 32.359
2s1p SDT 6 42.047
3s2p1d SDT 76 42.334
4s3p2d1 f SDT 403 46.725
5s4p3d2 f1g SDT 1454 45.948
6s5p4d3 f2g SDT 3697 46.065
7s6p5d4 f3g SD 4171 46.014
8s7p6d5 f3g SD 4662 45.892
9s8p7d6 f3g SD 5237 45.961
10s9p8d6 f3g SD 5111 45.967
11s10p9d6 f3g SD 4203 45.937
12s11p9d6 f3g SD 4233 45.965
13s12p9d6 f3g SD 4583 45.942
14s12p9d6 f3g SD 4300 45.943
15s12p9d6 f3g SD 4412 45.950
CI1 8102 45.955
CI2 12605 45.955
Breit 45.951
Nuclear recoil 45.956
QED 45.989
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self-energy operator added to the Dirac-Coulomb-Breit
Hamiltonian @24#. These are the two leading lowest-order
QED terms in the expansion in powers ofZa, and for the
system as light as neutral lithium the only two that could
play a significant role. After the Hamiltonian is diagonalized
the effect of vacuum polarization on hfs comes through the
wave function composition. The self-energy operator is
evaluated as a contribution to the eigenenergies only. The
combined effect of these two corrections on the total energy
is of the order of 0.001%, which is consistent with the results
obtained by other workers@25,26#. The effect of vacuum
polarization has been found to have negligible effect on the
calculated hyperfine constant, beyond the numerical preci-
sion of our code. The only non-negligible QED correction
arises from the anomalous magnetic moment of the electron,
for which the factor gs/25 1.001 159 652 193 has been used
@27#.

The accuracy of the calculated hfs constant is of the order
of 0.01%. The precision of the calculation is limited by sev-
eral factors. There are several effects not accounted for by
the current model, which are negligible at our present level
of accuracy, but would have to be accounted for, especially
when heavier nuclei are involved. The Breit interaction effect
on radial wave functions becomes important for the orbitals
penetrating the proximity of heavy nuclei@28#. The dipole
distribution inside the nucleus due to nuclear structure~the
Bohr-Weisskopf correction@29#! may be expected to affect

theFermi-contactterm of the hfs, as compared to the point-
dipole model. Bohr and Weisskopf estimate that this effect
would lower theA value of the hfs of the 2s 2S1/2 state by
about 0.01% in the extreme situation where spin and orbital
nuclear magnetic moments are aligned@29#. The effect in-
creases withZ approximately asZ4/3 and certainly would
have to be considered for heavy nuclei@29,30#. We believe
that the largest error in our calculation comes from the con-
tributions of virtual orbitals neglected in our configuration
expansions, particularly those with higher symmetries. The
effect of omitted orbitals on the calculated hfs constant was
evaluated by Tonget al. @31# by performing anl extrapola-
tion. Since the correction arising from the extrapolation is
very small and its dependence on relativistic effects is neg-
ligible, we assume that thel extrapolation in the relativistic
framework would yield a similar value. If we add the esti-
mated contribution from neglected orbitals to our final value,
then the 401.765 MHz result for hyperfine magnetic-dipole
constantA is obtained. This value is in very good agreement
with the experimental resultA 5401.752 043 MHz obtained
with the atomic-beam magnetic-resonance method@8#.

B. 2p 2P1/2 state

The calculations for this level were done using a similar
approach to those for2S1/2. Table III presents the configu-
ration sets employed in MCDF steps. The configuration ex-
pansions generated for the two CI calculations used exactly
the same scheme as described in Sec. III A. The actual ex-
pansions are slightly larger due to a different symmetry of
the reference configuration. Our Breit value of hyperfine
constantA has been evaluated by scaling the mass-corrected
A value by a Breit factor obtained in a procedure similar to
that for the 2S1/2 state. The Breit factor for the2P1/2 state
was equal to 0.999 923 62. The nuclear motion corrections
were estimated in the same way as before. The final result
was obtained by employing the electron anomalous magnetic
moment correction. The procedure for this correction has to
be modified to account for the fact, that for thep symmetry
the hyperfine Hamiltonian involves theorbital interaction
between the magnetic moment generated by theorbital mo-
tion of the electronic cloud and the nucleus. In the nonrela-
tivistic framework this corresponds to theorbital term in the
hyperfine Hamiltonian~7!. For these states for which there is
nonzeroorbital term the QED correction is obtained by mul-
tiplying thespin-dipolarandFermi-contactterms with a fac-
tor gs/2, but not theorbital term. The relativistic hyperfine
Hamiltonian~8! does not separate out theorbital term. The
correction can be entered by simply ignoring this, when the
orbital term is expected to be small. Owing to the fact that
the nonrelativistic calculations for lithium have already been
performed, we applied the QED correction calculated in non-
relativistic framework. The relative difference between the
two above approaches amounts to 0.1% for the 2p 2P1/2 state
in lithium.

Table III and Fig. 2 present the calculated value of hyper-
fine constantA for the 2p 2P1/2 state, compared with other
theoretical, as well as experimental results. With one excep-
tion, all theoretical values are larger than the experimental
value of Orthet al. @9# and are one to four standard devia-
tions outside their quoted error bar. This may be either coin-

TABLE IV. Diagonal magnetic-dipole hyperfine structure pa-
rameterA and electric quadrupole parameterB ~in MHz! for the
1s22p 2P3/2 state of3

7Li as a function of the increasing active set of
orbitals. SDT means single, double, and triple substitutions from the
reference 1s22p configuration. The SDT substitutions to
6s5p4d3 f2g orbital set are carried over to all subsequent larger
orbital sets. Column 3 gives the number of configurations. The elec-
tric quadrupole constants have been calculated using the semiex-
perimental value of nuclear quadrupole momentQ520.040 55 mb
from Refs.@32,22#.

Active set Type NCF A3/2 B3/2

DF SDT 1 6.4700 -0.22321
2s1p SDT 8 -3.2089 -0.22401
3s2p1d SDT 110 -0.0842 -0.18197
4s3p2d1 f SDT 645 -4.8560 -0.20925
5s4p3d2 f1g SDT 2478 -2.9822 -0.23478
6s5p4d3 f2g SDT 4181 -3.4256 -0.19591
7s6p5d4 f3g SDT 4994 -2.9329 -0.23538
7s6p5d4 f3g SD 3482 -2.9329 -0.23538
8s7p6d5 f3g SD 4076 -3.2309 -0.20106
9s8p7d6 f3g SD 4871 -3.0687 -0.22065
10s9p8d6 f3g SD 5078 -3.0840 -0.21147
11s10p9d6 f3g SD 5005 -3.0750 -0.21915
12s11p9d6 f3g SD 4221 -3.1005 -0.21915
13s12p9d6 f3g SD 4721 -3.0858 -0.21916
14s12p9d6 f3g SD 4268 -3.0913 -0.21916
15s12p9d6 f3g SD 4416 -3.0868 -0.21916
CI1 12883 -3.0771 -0.21903
Breit -3.0771 -0.21902
Nuclear recoil -3.0844 -0.21900
QED -3.1060 -0.21900
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FIG. 2. Magnetic-dipole constantA ~in MHz! for the 1s22p 2P1/2 state of3
7Li. The curve on the left-hand side shows the calculated,

uncorrected value of A as a function of orbital set. The point labeled MCDF represents the result of the present calculations corrected for
Breit, nuclear recoil, and QED effects; MCHF — calculation by Carlssonet al. @14#; FE-MCHF — finite-element MCHF calculation by
Sundholm and Olsen@16#; CCSD — coupled-cluster calculation by Ma˚rtensson-Pendrill and Ynnerman@33#; RMBPT — relativistic
many-body perturbation calculation by Blundellet al. @34#; Hy — Hylleraas calculation by Ahlenius and Larsson@35#; ODR — optical
double-resonance experiment by Orthet al. @9#.

FIG. 3. Magnetic-dipole constantA ~in MHz! for the 1s22p 2P3/2 state of3
7Li. The curve on the left-hand side shows the calculated,

uncorrected value ofA as a function of orbital set. The point labeled MCDF represents the result of the present calculations corrected for
Breit, nuclear recoil, and QED effects; MCHF — calculation by Carlssonet al. @14#; FE-MCHF — finite-element MCHF calculation by
Sundholm and Olsen@16#; CCSD — coupled-cluster calculation by Ma˚rtensson-Pendrill and Ynnerman@33#; RMBPT — relativistic
many-body perturbation calculation by Blundellet al. @34#; Hy — Hylleraas calculation by Ahlenius and Larsson@35#; ODR — optical
double-resonance experiment by Orthet al. @9#; DC — delayed-coincidence spectroscopy by Shimizuet al. @10#; LIF — laser-induced
fluorescence spectroscopy by Carlsson and Sturesson@11#.
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cidental or an artifact, but it is tempting to conclude that a
new experiment would be desirable for 2p 2P1/2 state of

3
7Li.

C. 2p 2P3/2 state

We slightly simplified the calculations for the2P3/2 level,
as compared to those described in Secs. III A and III B. The
MCDF calculations for the2P3/2 level were carried out in the
exactly similar manner as those for the2P1/2, but we per-
formed only one final configuration-interaction~CI! calcula-
tion. This simplification was based on the observation, that
the CI1/CI2 difference appeared in the sixth digit for both
2S1/2 and

2P1/2 states, while the experimental accuracy of
2P3/2 hfs constantA is in the third digit. The configuration
expansion generated for the CI1 calculation amounted to
12 883 CSFs, and that for CI2 calculation would become
very expensive computationally. The nuclear recoil and Breit
corrections were estimated in the same way as before, and
the multiplicative Breit factor for the magnetic dipole hyper-
fine constantA was equal to 1.000 000 2, while that for the
electric quadrupole constantB was equal to 0.999 967 7. The
QED correction for the hyperfine constantA for the 2P3/2
state has been evaluated in the same manner as that for
2P1/2, by employing the correction calculated in nonrelativ-
istic formalism.

Table IV and Fig. 3 present the calculated value of hyper-
fine constantA for the 2p 2P3/2 state, compared with other
theoretical, as well as experimental results. With one excep-
tion, all theoretical results land within the error bars quoted
by the two most recent experiments@10,11#, but the three
variational calculations are below~and well outside the error
bars of! the experimental value of Orthet al. @9#.

A possible explanation for the low values from the varia-
tional calculations is the neglected effects from orbitals with
high l quantum numbers. The importance of these orbitals is
best seen in the nonrelativistic formulation. If the neglected
orbitals with highl quantum numbers are taken into account,
the contribution to the hyperfine constant from theorbital

term will increase. For the2P3/2 state such an increase can
have large effect due to the strong cancellation betweenor-
bital andFermi-contactterms. In addition, the absence of the
orbitals with highl quantum numbers increases the contribu-
tions from configurations containing orbitals with lowl
quantum numbers, which in effect overestimates theFermi-
contactterm.

The last column in Table IV presents the calculated value
for electric quadrupole hyperfine constantB for the
2p 2P3/2 state. It has converged very well and it appears to
be in very good agreement with the semiexperimental value
of the nuclear quadrupole momentQ520.040 55 mb from
Refs.@32,22#, but the accuracy of the experimental value of
B is too low to draw any definite conclusion.

IV. CONCLUSIONS

We have calculated the magnetic-dipole hyperfine con-
stantsA for the three lowest states of lithium and the electric
quadrupole constantB for the 2p 2P3/2 state. They are com-
pared with available experimental and theoretical data in
Table V. The agreement between our calculation and experi-
ment for the hyperfine constantA of the ground state of
lithium is at the 0.01% level. Whenl -extrapolation correc-
tion is employed the agreement comes close to 0.003%. The
agreement with experiment indicates that the MCDF limit
has been obtained, and further progress is limited by the
precision of the determination of magnetic, retardation, ra-
diative, and nuclear size effects. The method seems to be
promising for studying QED and nuclear effects in high-Z
systems.
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TABLE V. Diagonal magnetic-dipole hyperfine structure constantsA ~in MHz! for the 1s22s 2S1/2,
1s22p 2P1/2, and 1s

22p 2P3/2 states and electric quadrupole constantB ~in MHz! for the 1s22p 2P3/2 state
of 3

7Li.

A B

Method 2S1/2
2P1/2

2P3/2
2P3/2 Reference

MCDF 401.71 45.99 -3.106 -0.2190 This work
MCHF 401.71 45.94 -3.098 -0.2148 Ref.@14#
MCHF 401.76 Ref.@31#
FE-MCHF 401.60 45.95 -3.113 -0.2146 Ref.@16#
CCSD 400.903 45.789 -2.879 -0.2160 Ref.@33#
RMBPT 402.47 45.96 -3.03 -0.2162 Ref.@34#
Hylleraas 46.01 -3.05 -0.1921 Ref.@35#
Hylleraas 401.79a Ref.@36#
Hylleraas 401.89a Ref.@37#
Experiment 401.752043 Ref.@8#

Experiment 45.914~25! -3.055~14! -0.221~29! Ref. @9#

Experiment -3.08~4! Ref.@10#
Experiment -3.08~8! Ref.@11#

a
Not corrected for relativistic effects.
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