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An algebraic model of boson realization is proposed to study the vibrational spectra of a tetrahedral mol-
ecule, where ten sets of boson creation and annihilation operators are used to construct the Hamiltonian with
T4 symmetry. There are two schemes in our model. The first scheme provides an eight-parameter fit to the
published experimental vibrational eigenvalues of methane with a root-mean-square deviation 11'61 cm
The second scheme, where the bending oscillators are assumed to be harmonic and the interactions between the
bending vibrations are neglected, provides a five-parameter fit with a root-mean-square deviation 12.42
cm™ L

PACS numbgs): 33.20.Tp

[. INTRODUCTION plus one fixed parametdd that describes the anharmonic
property of the Morse potential. This algebraic approach was
The characterization of highly excited vibrational statesextended to study the vibrational spectra, both stretching and
has become one of the central goals in chemical physicdending, of tetrahedral moleculf4], where the interactions
There were two general methods used to describe molecul@etween stretching and bending vibrations were neglected
vibrations. In the traditional approach the molecular Hamil-and seven adjustable parameters plus two fixed parameters
tonian was parametrized in terms of internal coordinfiés N; were used to fit the experimental data. This algebraic
The potential was modeled by the force field constants withmethod was also used to study the vibrational spectroscopy
many parameters due to poor knowledge of the large numbemd intramolecular relaxation of benzeg.
of force constants. Those parameters have to be determined In this paper we proposed another algebraic model, the
by fitting the spectroscopic data phenomenologically. boson-realization model, to study the vibrational spectra of
As an alternative, an algebraic approach has been praetrahedral molecules, where ten coupled one-dimensional
posed for the study of polyatomic molecular spectra. Theanharmonic oscillators are described by ten sets of bosonic
first step toward the establishment of an algebraic approactreation and annihilation operators. The interbond interac-
was given by lachello, Levine, and their co-workE2$with  tions and the interactions between stretching and bending
the vibron model, where the rotation-vibration spectra of di-vibrations are expressed by tfig invariant combinations of
atomic molecules are described in terms of(4) walgebra. the products of one creation operator and one annihilation
Although this model was extendd@] to polyatomic mol-  operator such that the total number of vibrational quanta is
ecules by introducing a(4) algebra for each bond, it is conservative. The symmetrized bases are used to simplify the
rather difficult to apply when the number of atoms in thecalculation. There are two schemes in our model. The first
molecule becomes larger than fdur. scheme provides an eight-parameter fit to the published ex-
Recently, an alternative techniq(ig] for the automatic perimental vibrational eigenvalues of methane better than the
computation of symmetrized local mode basis functions wagrevious results. The results show that the bending oscilla-
used to provide a four-parameter potential model for theors are near harmonic ones, the interbond interactions be-
stretching modes of octahedrofiYy that gave an excellent tween bending vibrations are quite weak, and the interactions
fit to the published experimental vibrational eigenvalues ofbetween stretching and bending vibrations are strong. Those
SFs, WFg, and UFR;. An improved algebraic methofb], conclusions reflect the properties of the molecular structure
where the one-dimensional Morse oscillator was describedf methane. From the properties we propose our second
by the Lie algebra &), was proposed to provide another scheme where the bending oscillators are harmonic and there
better fit to those experimental data with four parameterss no interaction between the bending vibrations. The second
scheme provides a five-parameter fit to the experimental data
of methane with the root-mean-square deviation 12.42
*Electronic address: MAZQ@BEPC3.IHEP.AC.CN cm~L. It may be a model with the least parameters that well
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[a..85]=0,5, [a,.a5]=[a},a5]=0,
Iny=|ny,ny, ... N,
allny=vh,+1|....np_1,(Ne+1),Npsq,...)

aa|n>:\ﬁa| "'lna—li(na_l)!na+li >! (21)

where|n) denotes the common eigenstate of the phonon
number operatorbl, with the eigenvalues,, respectively.

FIG. 1. Schematic representation of XY, tetrahedral mol-
ecule. N.,=ala,, N,n)=n,n). (2.2

a

fits the published experimental vibrational data of methane.

Ti me extent, our method i neralization of that ) . .
inOngf [%]e ent, our method is a generalization of that used The first four bosonic operatoeﬁr (or a)), 1s<j=<4, de-

This paper is organized as follows. In Sec. Il the vibra-Scribing the stretching vibrations, are the irreducible tensor

tional Hamiltonian of a tetrahedral molecule is introduced inOP€rators belonging to the representatignss F, of Ty.
terms of ten sets of boson operators. In Sec. Il the vibraThe other sixal, (or a,), 5<u =10, describing the bending
tional functions are combined into the symmetrized basewibrations, are those belonging to the representatidps
belonging to given rows of given irreducible representationstE&F,.
of T4. In these symmetrized bases the Hamiltonian becomes The energy of each oscillator depends upon the phonon
a block matrix with eight parameters. The spurious states amumber. For simplicity we assume that all oscillators are the
ruled out in the calculation. In Sec. IV, fitting the published Morse ones with two parametegsandx, so that the energy
19 experimental dat@,8] for methane with the total number of the ath oscillator can be expressed in the operator form:
of quantav <3, in our first scheme with eight parameters we
obtain the root-mean-square deviation of energy to be 11.61
cm™~ L. Our second scheme provides a good five-parameter E«N)=N{ws—x(N;+1)}, 1<j<4
fit. For comparison, the experimental data, the previous cal-
culated energies by the algebraic mop#&l and the present
calculated results for methane o&3 in two schemes are
listed in Table Il. The remaining calculated energies for
methane up tw =3 by this boson-realization model in the
first scheme are also presented. The higher energy levels ca . . . .
be calculated straightf%rwardly. In Sec. g/we givegsyome Conyvrhere th‘? subscripk denotes the strefching vibration abd
clusions. the bending one. The null energy has been removed. Al-
though the Morse potential is knowl0] to be not very
suitable for all anharmonic oscillators, the deviation can be
described by some more parameters that become important
We begin with enumerating ten oscillators for XY, for higher energy levels. It was pointed out by lachello and
tetrahedral molecule such as that in Fig. 1. The adrs  Oss[7] that the Pechl-Teller potential is much more appro-
located at the centeD of the tetrahedron, and four atoms priate than the Morse one to describe the bending vibrations.
Y at its verticesA, B, C, andD. The coordinate axes, However, the expression for the eigenvalues of the bound
y, andz point from O to the centers of edgessC, AD, and  states is identical for two potentig]Z].
AB, respectively. The first four equivalent oscillators de- As usual, neglecting the mixture of the states with differ-
scribe the fundamental stretching modés ¢ F,), and the ent total number of phonons, and assuming to take the inter-
other six equivalent ones describe the fundamental bendingctions up to the second order, we can express the interactive
modes. As is well know9], there are only five degrees of potentials as the combinations of the products of one creation
freedom for the bending vibrationE@®F,), so that the six operator and one annihilation operator. The character table,
bending oscillators must contain a spurious one. The spurithe representation matrices of the generators, and the
ous states related to the spurious degree of freedom shoutlebsch-Gordan coefficients of tig group were explicitly
be ruled out in the later calculation. given in Ref.[4]. From that knowledge, there are obviously
Now, for the 10 oscillators we introduce 10 sets of only five T4 invariant combinations in addition to the sum of
bosonic operatoraz anda,, 1= <10, that satisfy the well phonon number operators. The Hamiltonian now can be ex-
known relations pressed in terms of the bosonic operators as follows:

Ep(N) =N, {wp=xp(N,+1)}, 5=u<10 (2.3

II. HAMILTONIAN
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n="6 u=3
9 4 10
+a}| —as—agt X, a,—ai +H.c.]+)\5[ > a (2 a, +H.c.] . (2.9
n=7 =1 n=>5
|
It will be seen in the next section that the term with  ¢(Y(E,abcd), #'?(E,abcd), #M(F,,abed),
relates only to the spurious states so that it is not interesting,(2)(F, abcd), #(F,,abcd), ¢{P(Fy,abcd),
to us. Removing this term, we obtain the Hamiltonian con-4(2)(g. apcd), and ¢ (F,,abcd).
taining eight parameters. The term with describes the in- Similarly, for pure bending vibrations, briefly denote

teraction between stretching and bending vibrations. In theggom.ngn;ngnen;) by |abcde, where the vanishing
previous qlgebralc ap'proacﬂd] ten parameters were intro- n; (j=4) are neglected in this notation. Two kinds of states
duced to fit the experimental data, where two Spectroscopighqy|d not be confused: one with four numbers describes the
constantsN; and N, that are equal tows/xs—1 and  gyerching vibration, and the other with six numbers de-
wp/Xp—1 in our notations, were taken as fixed parametersgeripes the bending vibration. When b, c, d, e, andf are

one constraint was assumed to reduce one parameter, and e gitferent from each other, we also have 24 independent
interactions between stretching and bending vibrations wergatag spanning the regular representation spac@,of

neglected. In this meaning their algebraic approg€hin  compine them into the irreducible orthogonal bases, and de-
comparison with our model, introduced three more paramy i« them by #(A,abcde W(A,,abcded

eters B12, Bsg, andBs 9, fixed two parameterdl; and ((E abcdef, w‘VZ)(E,abcdeD, w(yl)(leadeeD,

N,, reduced one parameter by a constraint, and negleCteﬁyz)(Fz,abcdeD, JO(F, abcded, yO(F,.abcded,

one parametek, describing the interaction. 7 -
P 4 9 #?2(F,,abcded, andy!®)(F,,abcded. The explicit com-

binations of ¢,(I',abcd) and «,(I',abcde? can be ob-
Ill. IRREDUCIBLE BASES tained from us upon request.
For example, for the fundamental stretching vibrations

Since the Hamiltonian haby symmetry, each eigenfunc- §v=1) the irreducible bases are listed as follows:
tion can be combined such that it belongs to a given row o

an irreducible representation of . The states that belongto  #(A;,2000=2"%{|1000 +|0100 +|0010 +|0001)},
the same irreducible space as partners must correspond to the L

same energy11]. This degeneracy of the partners is called #i"(F5,1000=2"%{|1000 —|0100 +|0010 —|0001)},
the normal one. A symmetric perturbation never splits a nor- " .

mal degeneracy. The calculation for energy levels will be ¢3 (F2,1000=2"%{|1000—[0100 —[0100 +|0003)},
greatly simplified if those bases are used. w .

The vibrational state of a tetrahedral molecule is de- ¢3 (F2,1000=2""{|1000 +|0100 —[0010 —|0001)}.
scribed by the phonon numbertsg of the ten oscillators. The 3.1
first four ngmbersni describe the stretching .\/lbrat'|ons', and Similarly, the irreducible bases of the fundamental bending
the next six numbers, describe the bending vibrations. . . _

B~ : ; . vibrations p=1) are
Those states can be combined into the irreducible bases be-

longing to given rows of given irreducible representations, y(A;,100000=6"2%]100000 + |010000 +|001000
respectively. For the general vibrations, those states with

both stretching and bending vibrations should be further +/000100 +{000010 + 000003},

combined. (3.2)
Now, we discuss the combinations of the states for pure

stretching vibrations. Briefly denotén;n,n3n,000000 ¢<11>(E,1ooooQ=(2\/5)*1{2|1ooooo_ |010000

by |abcd), where the vanishing,, (u=5) are neglected in

this notation. Firstly assume that b, ¢, andd are all dif- —|001000 +2|000100

ferent from each other. Under the transformation$ pthere _ _

are 24 independent states that span the regular representation 000010 ~[000003},

space ofT 4. Through the standard group theory methibd]| ¢<21)(E’100000:2—1{|010000_ 1001000

they can be combined into orthogonal bases belonging to ten
irreducible representationsi(A;,abcd), ¢é(A,,abcd), 41000010 — 000002},
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¥V (F,,100000=2"%]010000 — 000010}, Inylmy=|(n+m)),
¥V (F,,100000 = 2~ +2(|001000 — 000003}, [(n+m))=|(ny+my),(N,+my), ... (Nt m10)>_(3

(1) —n—1/2 _
¥ (F2,100000=2""4]100000 —|000100}. When two state$n) and|m) describe a pure stretching vi-

bration and a bending vibration, respectivéB.5) is correct.
However, in the calculations of removing the spurious states,
both states describe bending vibrations wh@.&) may not

In those bases the Hamiltoni&h given in (2.4) becomes
a block matrix with the submatricad(I',v), wherel’ de-
notes the irreducible representation, anig the total phonon

be suitable.
number. Obviously,H(E,1) is a Ix1 submatrix, but Borrowing the idea from Ref[7], we want to find an
H(A1,1) andH(F,1) are 2<2 submatrices: identification rule for the spurious state such that the spuri-
ous species are separated, if possible, from the physical spe-
H(E,D)=w,—2Xp— Ao+ A3, cies in the matrix form of the Hamiltonian. As is well known,

in the formalism of the boson realization the stdtes con-

ws—2Xs+ 3\, N tains a factor 1) ~ 2

H(A,1)=
(Asd) ( 265 wp—2Xp+ 5Np+ N3

In)=(n)"*4a")"0).

H(F,1)= Ws—2Xs— Nq 2\/5)\4 Therefore, we embed a factor in the definitich5) for the
2 2\2\, wp—2Xp—Np— N3/ product:
(3.3
1 (n,+myt ¥
Note that the staté(A;,100000) represents the fundamental [m)[m)= . n,m,! |(n+m)),
spurious state and should be ruled out.
In the traditional approach, the higher excited states are n+md=l(n.+m).(n-+m P
calculated by symmetrizing the products of the fundamental I D) =l(natmy),(nztmg), ... (M m1°)>'(3_6)

vibrational state$9]. However, it may be more easy to use

the irreducible bases, subtracting the spurious states, for cah terms of this definition we calculate the general spurious
cngtmg the excited states. In the following, we calculqte thestates and find that the off-diagonal elements of the Hamil-
excited states for the case with total phonon numbe® in - gnjan between the spurious species and the physical species
detail. It is straightforward to calculate higher excited statesinearly depend upoix, and\s, namely, under the condi-

in this way. tions thatx,=0 and\s=0 the spurious species are totally

Before calculation, we have to study an important prob-separated from the physical species in the matrix form of the
lem of how to remove the spurious states. In the recent pagamiitonian.

pers we see two methods of removal. lachello and [3$s  The condition5=0 is acceptable because it only appears
placed the spurious states at the energidd times the en- iy those off-diagonal elements. The conditimg=0 means
ergies of the physical states by the projection operators. Thig,at the bending vibrations are harmonic. Fortunately, to our
method of removal is exact for harmonic bending V'brat'onsknowledge in the known results, is quite small(e.g., see
and acquires a small error for the anharmonic one. Insteaqhefs_[&lz] and our results belowlt is interesting to notice

Lemus and Frank4] directly eliminated the spurious states {nat the first method7] of removal is exact also only for
from both the space and the Hamiltonian. They demandef|5monic bending vibrations.

the matrix elements of the Hamiltonian related with the fun- Now. we turn back to calculate the excited states with

damental spurious staig(A,100000) vanishing. In our no- ,— > \wheny =2, the stretching vibrational states are sepa-
tation, they introduced a constraint in additionng=0 that rated into five sets: $(A;,2000) ¢(1)(F2 2000)

was assumed in Reff4] at beginning: #(A;,1100), (E,1100), and ¢P(F,,1100), and the
bending vibrational states are separated into ten sets:
¥(A1,200000),  #Y(E,200000),  #P(F,,200000),
so thatH(A4,1) in (3.3) contains only one nonvanishing el- ¥(A1,100100), lp(vl)(E,lOOlOO), $(A1,110000),
ement. #M(E,110000), ¢M(F,,110000), {*)(F,,110000), and

In the present paper we develop the second method of'"(F1,110000). For the mixture statesW (I
removal. First of all, it seems to us that the constré®™) is el’y®I',,v) of stretching and bending vibrations with
not necessary and reasonable because it restricts only the=2, we have to combine the stretching states
energy of the fundamental spurious state to be vanishing, but,(I';,v=1) and the bending stateg,(I',,v=1) by the
the energies of all other spurious states are nonvanishing:lebsch-Gordan coefficients 8.
Secondly, we have to answer the problem of how to identify In terms of the definition3.6), direct calculation shows
the spurious states. Generally speaking, a state is identifidtiat there are five sets of spurious states with2, belong-
as a spurious state if it contaiggA;,100000) as a factor. In ing to the following irreducible representations: t¥e, one
Ref.[4] (p. 8327 the simply additive definition for the prod- E, and twoF,. In the following we list only one spurious
uct of two functions is used: state for each irreducible representation space:

wb_sz+5)\2+)\3:0 (34)
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$(A1,1000 (A;,100000,
{4(A,200000+ ¢(A;,100100+ 24(A;,110000}/ 3= { y(A;,100000}2,
() (E,200000 + #4P(E, 100100+ 4 (E, 110000}/ 3= ( A1,100000 451 ( E, 100000,
@S (F,,1000 4(A;,100000,

{Y(F,,200000+ v2 45 (F,,110000}/ 3= (A1,100000 52 (F 5,100000. (3.7

Removing the spurious states, we obtain the physical states belonging to given irreducible representations. There are five
states belonging to representatiép, five sets of states belonging g seven sets belonging t,, and three sets belonging
to F,. Only one state for each irreducible representation space is listed in the following:

f1(A1,2)=#(A1,2000,
f2(A1,2)=#(A1,1100,
f3(A1,2) ={/(A1,200000 - y(A;,100100}/ 2,

f4(A1,2) ={1(A;,200000 + y(A;,100100 — ¢(A,,110000}/ /3,

3

fs(A1,2)=;l #V(F,,1000 4V (F,,100000/ /3,

f1(E,2)= ¢SV (E,1100,
f,(E,2)={yY(E,200000 — 45V (E, 100100}/ /2,
f3(E,2) ={yY(E,200000 + 5P (E, 100100 — 24P (E, 110000}/ /6,
f4(E,2)= ¢(A;,1000 45" (E,100000,
f5(E,2)={${P(F,,1000 y{V(F,,100000 — 5 (F,,1000 5 (F ,,100000}/ /2,
f1(F2,2) = ¢5(F»,2000,
fo(F2,2) =¢S5 (F 1100,
f3(F2,2) ={\2yY(F,,200000 — ¢ (F,,110000}/4/3,
f4(F2,2) =45 (F,,110000,
f5(F,2) = ¢S5 (F,,1000 ¢ (E,100000,
fo(F2,2)= ¢p(A1,1000 45" (F,,100000,
f1(F2,2)={$\Y(F,,1000 45" (F,,100000 + ¢V (F,,1000 ¢4 (F ,,100000}/ /2,
f1(F1,2)= ¢§”(F,,110000,
fo(F1,2) = ¢S5 (F1,1000 5P (E,100000,
f3(F1,2) ={ " (F,,1000 y5P(F,,100000 — 5V (F,,1000 44V (F,,100000}/ 42,

where the number 2 in the argument denates2. Those states belonging to the same irreducible representation will be mixed
by the Hamiltonian.
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Directly calculating the Hamiltonian matrikd in those bases, we obtain a block matrix witlx5 submatrix forA,,
5X5 submatrix forE, 7X7 submatrix forF,, and 3x 3 submatrix forF:

2wg— 6Xq 2.3\ 0 0 23\,
23\, 2ws—4Xst+ 4N, 0 0 — 2\,
H(A,2)= 0 0 Ci V23, 4\ |,
0 0 —213x, C, 0
23\, — 2\, 4\, 0 Cs
2w— AXs— 2\, 0 0 0 M,
0 C,  —x/\3 0 a\,
H(E,2) = 0 ~x,/\3  Cy4 0 o |,
0 0 0 Cs+2Ng O
4\, 4\, 0 0 Cs
20— 6Xs 2\ 0 0 0 A, 2\2\,
2\ 2ws—4xgs O 0 0 A, —2\2\,
0 0 Cs 0 2y2n, © 0
H(F,2)= 0 0 0 G 0 0 an, ,
0 0 2J2n, 0 Cz+2n; O 0
2\, W 0 0 0 Cs 0
2V2N,  —2y2n, 0 4, 0 0 Cs
20p—4Xp—2N; —2\2\, O
H(F.,2)= —2\2\, Cs+2N\; O |,
0 0 Cs

where C;=2w,—5X,—2\,—2\3, C,=2w,—(14/3)x, 11.61 cm !, where the standard deviation is calculated un-
—2X5+2N\3, C3=ws— 2%t wp—2X,—A1—Ap— A3, C,  weightedly:
=2wb—(13/3)xb—2)\2+2)\3, C5=a)s— 2XS+ wb_sz

+3)\1_)\2_)\3, C6=2wb—(16/3)xb—2)\2, andC7=2wb

—4AxX,— 2N~ 2\ 3. o2

1 19
=g g (M7 vT)? (4.1

IV. PURE VIBRATIONAL SPECTRA .
From the results we come to three conclusions.

Now, we are going to fit the experimental data by our (i) Sincex, is relatively small, the bending oscillators are
boson-realization model. Methane is a typical molecule withnear harmonic ones.

T4 symmetry. To our knowledge, there are 4 dataferl, 7 (i) The interbond interactions between bending vibrations
data forv =2 and 8 data fov = 3. In our first scheme we fit are quite weak.
those 19 data to determine the eight paramefEable |, the (iii) The interactions between stretching and bending vi-

first schemg with the root-mean-square energy deviationbrations are strong.

TABLE |. Parameters in the Hamiltonian obtained by the least square fiitimg?).

Scheme Stretching Bending Interac.
Wg XS )\1 (OF) Xb )\2 )\3 )\4 rms
First 2986.74 77.96 3455 1508.37 —6.635 —-596 —-0.90 —203.73 11.61

Second 2086.24 7655 33.60 1525.85 —201.65 1242
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TABLE II. Experimental datd8], algebraic calculatiof4], and our calculation results for the vibration
spectra {=<3) of methangcm™1).

v=1

r F, E Ay F,
Expt. [8] 1310.0 1533.0 2916.5 3019.4
Calc.[4] 1303.7 1520.4 2918.4 3027.2
Scheme 1 1305.7 1526.7 2934.5 3019.0
Scheme 2 1307.8 1525.9 2933.9 3017.6

v=2 andF,
Expt. [8] 2614.0 2830.4 4223.0 4319.0 4549.0 5861.0 6004.7
Calc.[4] 2610.5 2841.5 4222.0 4330.9 4547.7 5856.7 6014.5
Scheme 1 2610.1 2840.1 4226.7 4308.4 4546.9 5855.8 6011.2
Scheme 2 2614.3 2833.6 4228.8 4309.5 4543.5 5855.3 6008.6

v=3 andF,
Expt. [8] 4123.0 5775.0 5861.0 7514.0 8604.0 8807.0 8900.0 9045.0
Calc.[4] 4123.9 5759.9 5868.7 7534.9 8603.0 8794.1 8910.0 9034.5
Scheme 1 4136.9 5759.3 5858.4 7513.8 8601.9 8805.3 8915.9 9035.7
Scheme 2 4140.1 5754.6 5851.2 7534.4 8603.3 8804.1 8913.0 9031.4

From these conclusions, we propose our second scheme In terms of the eight parameters in the first scheme or the
where the bending oscillators are harmonig,€0) and five parameters in the second scheme, it is straightforward to
there is no interaction between the bending vibrationsalculate the rest of the vibrational spectra for methane. After
(A2=A\3=0). The second scheme provides a five-parametefemoving the spurious states, o 2, there are 5 states with
fit to the experimental data of methane with the root-meanAl, 5 sets of states witk, 7 sets of states witk,, and 3
square deviation 12.42 cnt (see Table I, the second sets of states withF,. Forv=3, there are 13 states with
sc_:heméa Recall that Ref{4] preser)ted a seven-parameter fit A, 4 states withA,, 14 sets of states witE, 25 sets of
with the root-mean-square deviation 12.16 chn states withF,, and 15 sets of states with, . Except for the

; Forhcom?ar:so_n, we Illst Ifn Tabrlle l'I thg 19 exper;m%ntal states withF, andv =2 that were listed in Table I, the rest
ata, the calculation results from the algebraic medRland ¢ 0 cajculation results in the first scheme are listed as
our results in two schemes for the vibrational spectraroIIOWS

(v=3) of methane.

v=2, A; 26143 3057.9 4297.7 5807.6 5974.4
v=2, E 26165 3055.6 4326.3 4461.2 6038.2
v=2, F; 28324 4324.8 4545.7

A, 3913.0
7100.9
4141.8
4142.0

5990.1

3917.6
5619.9
7074.8
8601.9
3919.4
5854.3
8941.9

4158.5
7295.4
4588.6
4157.5
7160.1

3930.3
5633.9
7134.5
8805.3
4148.3
6075.8

4586.8
7567.2
5852.6
4591.3
7299.4

4136.9
5759.3
7255.9
8915.9
4369.1
7158.7

5514.9
8587.8
7564.8
5526.7
7334.5

4365.5
5831.1
7300.1
9035.7
5605.1
7291.3

5601.8
8749.0

5621.8
7502.1

4378.3
5858.4
7331.0

5632.4
7334.8

5861.8
8994.0

5828.1
7566.1

5514.3
6075.8
7379.4

5753.6
7383.0

5992.3

5858.1
8838.7

5589.1
6078.6
7513.8

5840.8
7539.3
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V. CONCLUSIONS weak, the interactions between the stretching and bending
In this paper we describe ten coupled one-dimensiona ibrations are strong, and the bending oscillators are quite
bap P ear harmonic ones. These conclusions are different from the

anharmo.nlc osc]IIators of alte.tra.hedral molecule by ten Se.tﬁrevious model[4]. From these conclusions we proposed
of bosonic creation and annihilation operators. The ten oscil:

- . ) . . another five-parameter fit in the second scheme with the
lators are divided into two classes: stretching and bendmgoot-mean-square energy deviation 12.42 ¢m To our
oscillators. The energy levels of those oscillators are de'knowledge it may be the model with tHe Ieaét parameters
scribed by four parameters under the assumption of th ! . Lo
Morse potential for stretching vibration and thésebl-Teller Egzh\gﬁ! fits the experimental vibration spectra<(3) of
potential for the bending vibrationgos, X5, wp, andx,. :

The interbond interactions and the interactions between The interaction between vibrational and rotational mo-
stretching and bending vibrations are supposed td bia- tions plays an important role in describing the abundant ex-

variant and to preserve the total numherof vibrational perimental data of vibrorotational energy spectra of a tetra-

X ) hedral molecule. We will study it by the boson-realization
?rlégztcaejo that four parametexs, 1<i<4, have to be in- model elsewhere.

In the first scheme_ of the boson-_reallzatlo_n mt_)del with ACKNOWLEDGMENTS
eight parameters we fit the 19 experimental vibrational data
for methane, and obtain the root-mean-square energy devia- This work was supported by the National Natural Science
tion to be 11.61 cm'. From the obtained parameters, we Foundation of China and Grant No. LWTZ-1298 of the Chi-
see that the interactions between the bending vibrations arese Academy of Sciences.
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