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An algebraic model of boson realization is proposed to study the vibrational spectra of a tetrahedral mol-
ecule, where ten sets of boson creation and annihilation operators are used to construct the Hamiltonian with
Td symmetry. There are two schemes in our model. The first scheme provides an eight-parameter fit to the
published experimental vibrational eigenvalues of methane with a root-mean-square deviation 11.61 cm21.
The second scheme, where the bending oscillators are assumed to be harmonic and the interactions between the
bending vibrations are neglected, provides a five-parameter fit with a root-mean-square deviation 12.42
cm21.

PACS number~s!: 33.20.Tp

I. INTRODUCTION

The characterization of highly excited vibrational states
has become one of the central goals in chemical physics.
There were two general methods used to describe molecular
vibrations. In the traditional approach the molecular Hamil-
tonian was parametrized in terms of internal coordinates@1#.
The potential was modeled by the force field constants with
many parameters due to poor knowledge of the large number
of force constants. Those parameters have to be determined
by fitting the spectroscopic data phenomenologically.

As an alternative, an algebraic approach has been pro-
posed for the study of polyatomic molecular spectra. The
first step toward the establishment of an algebraic approach
was given by Iachello, Levine, and their co-workers@2# with
the vibron model, where the rotation-vibration spectra of di-
atomic molecules are described in terms of a u~4! algebra.
Although this model was extended@3# to polyatomic mol-
ecules by introducing a u~4! algebra for each bond, it is
rather difficult to apply when the number of atoms in the
molecule becomes larger than four@4#.

Recently, an alternative technique@5# for the automatic
computation of symmetrized local mode basis functions was
used to provide a four-parameter potential model for the
stretching modes of octahedronXY6 that gave an excellent
fit to the published experimental vibrational eigenvalues of
SF6 , WF6, and UF6. An improved algebraic method@6#,
where the one-dimensional Morse oscillator was described
by the Lie algebra u~2!, was proposed to provide another
better fit to those experimental data with four parameters

plus one fixed parameterN that describes the anharmonic
property of the Morse potential. This algebraic approach was
extended to study the vibrational spectra, both stretching and
bending, of tetrahedral molecules@4#, where the interactions
between stretching and bending vibrations were neglected
and seven adjustable parameters plus two fixed parameters
Ni were used to fit the experimental data. This algebraic
method was also used to study the vibrational spectroscopy
and intramolecular relaxation of benzene@7#.

In this paper we proposed another algebraic model, the
boson-realization model, to study the vibrational spectra of
tetrahedral molecules, where ten coupled one-dimensional
anharmonic oscillators are described by ten sets of bosonic
creation and annihilation operators. The interbond interac-
tions and the interactions between stretching and bending
vibrations are expressed by theTd invariant combinations of
the products of one creation operator and one annihilation
operator such that the total number of vibrational quanta is
conservative. The symmetrized bases are used to simplify the
calculation. There are two schemes in our model. The first
scheme provides an eight-parameter fit to the published ex-
perimental vibrational eigenvalues of methane better than the
previous results. The results show that the bending oscilla-
tors are near harmonic ones, the interbond interactions be-
tween bending vibrations are quite weak, and the interactions
between stretching and bending vibrations are strong. Those
conclusions reflect the properties of the molecular structure
of methane. From the properties we propose our second
scheme where the bending oscillators are harmonic and there
is no interaction between the bending vibrations. The second
scheme provides a five-parameter fit to the experimental data
of methane with the root-mean-square deviation 12.42
cm21. It may be a model with the least parameters that well*Electronic address: MAZQ@BEPC3.IHEP.AC.CN
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fits the published experimental vibrational data of methane.
To some extent, our method is a generalization of that used
in Ref. @5#.

This paper is organized as follows. In Sec. II the vibra-
tional Hamiltonian of a tetrahedral molecule is introduced in
terms of ten sets of boson operators. In Sec. III the vibra-
tional functions are combined into the symmetrized bases
belonging to given rows of given irreducible representations
of Td . In these symmetrized bases the Hamiltonian becomes
a block matrix with eight parameters. The spurious states are
ruled out in the calculation. In Sec. IV, fitting the published
19 experimental data@4,8# for methane with the total number
of quantav<3, in our first scheme with eight parameters we
obtain the root-mean-square deviation of energy to be 11.61
cm21. Our second scheme provides a good five-parameter
fit. For comparison, the experimental data, the previous cal-
culated energies by the algebraic model@4# and the present
calculated results for methane ofv<3 in two schemes are
listed in Table II. The remaining calculated energies for
methane up tov53 by this boson-realization model in the
first scheme are also presented. The higher energy levels can
be calculated straightforwardly. In Sec. V we give some con-
clusions.

II. HAMILTONIAN

We begin with enumerating ten oscillators for anXY4
tetrahedral molecule such as that in Fig. 1. The atomX is
located at the centerO of the tetrahedron, and four atoms
Y at its verticesA, B, C, andD. The coordinate axesx,
y, andz point fromO to the centers of edgesAC, AD, and
AB, respectively. The first four equivalent oscillators de-
scribe the fundamental stretching modes (A1%F2), and the
other six equivalent ones describe the fundamental bending
modes. As is well known@9#, there are only five degrees of
freedom for the bending vibrations (E%F2), so that the six
bending oscillators must contain a spurious one. The spuri-
ous states related to the spurious degree of freedom should
be ruled out in the later calculation.

Now, for the 10 oscillators we introduce 10 sets of
bosonic operatorsaa

† andaa , 1<a<10, that satisfy the well
known relations

@aa ,ab
† #5dab , @aa ,ab#5@aa

† ,ab
† #50,

un&[un1 ,n2 , . . . ,n10&,

aa
† un&5Ana11u . . . ,na21 ,~na11!,na11 , . . . &

aaun&5Anau . . . ,na21 ,~na21!,na11 , . . . &, ~2.1!

whereun& denotes the common eigenstate of the phonon
number operatorsNa with the eigenvaluesna , respectively.

Na5aa
†aa , Naun&5naun&. ~2.2!

The first four bosonic operatorsaj
† ~or aj ), 1< j<4, de-

scribing the stretching vibrations, are the irreducible tensor
operators belonging to the representationsA1%F2 of Td .
The other sixam

† ~or am), 5<m<10, describing the bending
vibrations, are those belonging to the representationsA1

%E%F2 .
The energy of each oscillator depends upon the phonon

number. For simplicity we assume that all oscillators are the
Morse ones with two parametersv andx, so that the energy
of theath oscillator can be expressed in the operator form:

Es~Nj !5Nj$vs2xs~Nj11!%, 1< j<4

Eb~Nm!5Nm$vb2xb~Nm11!%, 5<m<10 ~2.3!

where the subscripts denotes the stretching vibration andb
the bending one. The null energy has been removed. Al-
though the Morse potential is known@10# to be not very
suitable for all anharmonic oscillators, the deviation can be
described by some more parameters that become important
for higher energy levels. It was pointed out by Iachello and
Oss@7# that the Po¨schl-Teller potential is much more appro-
priate than the Morse one to describe the bending vibrations.
However, the expression for the eigenvalues of the bound
states is identical for two potentials@7#.

As usual, neglecting the mixture of the states with differ-
ent total number of phonons, and assuming to take the inter-
actions up to the second order, we can express the interactive
potentials as the combinations of the products of one creation
operator and one annihilation operator. The character table,
the representation matrices of the generators, and the
Clebsch-Gordan coefficients of theTd group were explicitly
given in Ref.@4#. From that knowledge, there are obviously
only fiveTd invariant combinations in addition to the sum of
phonon number operators. The Hamiltonian now can be ex-
pressed in terms of the bosonic operators as follows:

FIG. 1. Schematic representation of anXY4 tetrahedral mol-
ecule.

2174 53ZHONG-QI MA, XI-WEN HOU, AND MI XIE



H5(
j51

4

Es~aj
†aj !1 (

m55

10

Eb~am
†am!1l1 (

iÞ j51

4

ai
†aj1l2 (

mÞn55
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†D S (

m55

10

amD 1H.c.J . ~2.4!

It will be seen in the next section that the term withl5
relates only to the spurious states so that it is not interesting
to us. Removing this term, we obtain the Hamiltonian con-
taining eight parameters. The term withl4 describes the in-
teraction between stretching and bending vibrations. In the
previous algebraic approach@4# ten parameters were intro-
duced to fit the experimental data, where two spectroscopic
constantsN1 and N2 , that are equal tovs /xs21 and
vb /xb21 in our notations, were taken as fixed parameters,
one constraint was assumed to reduce one parameter, and the
interactions between stretching and bending vibrations were
neglected. In this meaning their algebraic approach@4#, in
comparison with our model, introduced three more param-
eters (B12, B5,6, andB5,10), fixed two parametersN1 and
N2 , reduced one parameter by a constraint, and neglected
one parameterl4 describing the interaction.

III. IRREDUCIBLE BASES

Since the Hamiltonian hasTd symmetry, each eigenfunc-
tion can be combined such that it belongs to a given row of
an irreducible representation ofTd . The states that belong to
the same irreducible space as partners must correspond to the
same energy@11#. This degeneracy of the partners is called
the normal one. A symmetric perturbation never splits a nor-
mal degeneracy. The calculation for energy levels will be
greatly simplified if those bases are used.

The vibrational state of a tetrahedral molecule is de-
scribed by the phonon numbersna of the ten oscillators. The
first four numbersnj describe the stretching vibrations, and
the next six numbersnm describe the bending vibrations.
Those states can be combined into the irreducible bases be-
longing to given rows of given irreducible representations,
respectively. For the general vibrations, those states with
both stretching and bending vibrations should be further
combined.

Now, we discuss the combinations of the states for pure
stretching vibrations. Briefly denoteun1n2n3n4000000&
by uabcd&, where the vanishingnm (m>5) are neglected in
this notation. Firstly assume thata, b, c, andd are all dif-
ferent from each other. Under the transformations ofTd there
are 24 independent states that span the regular representation
space ofTd . Through the standard group theory method@11#
they can be combined into orthogonal bases belonging to ten
irreducible representations:f(A1 ,abcd), f(A2 ,abcd),

fn
(1)(E,abcd), fn

(2)(E,abcd), fn
(1)(F2 ,abcd),

fn
(2)(F2 ,abcd), fn

(3)(F2 ,abcd), fn
(1)(F1 ,abcd),

fn
(2)(F1 ,abcd), andfn

(3)(F1 ,abcd).
Similarly, for pure bending vibrations, briefly denote

u0000n5n6n7n8n9n10& by uabcde f&, where the vanishing
nj ( j<4) are neglected in this notation. Two kinds of states
should not be confused: one with four numbers describes the
stretching vibration, and the other with six numbers de-
scribes the bending vibration. Whena, b, c, d, e, and f are
all different from each other, we also have 24 independent
states, spanning the regular representation space ofTd .
Combine them into the irreducible orthogonal bases, and de-
note them by c(A1 ,abcde f), c(A2 ,abcde f),
cn
(1)(E,abcde f), cn

(2)(E,abcde f), cn
(1)(F2 ,abcde f),

cn
(2)(F2 ,abcde f), cn

(3)(F2 ,abcde f), cn
(1)(F1 ,abcde f),

cn
(2)(F1 ,abcde f), andcn

(3)(F1 ,abcde f). The explicit com-
binations offn(G,abcd) and cn(G,abcde f) can be ob-
tained from us upon request.

For example, for the fundamental stretching vibrations
(v51) the irreducible bases are listed as follows:

f~A1,1000!5221$u1000&1u0100&1u0010&1u0001&%,

f1
~1!~F2,1000!5221$u1000&2u0100&1u0010&2u0001&%,

f2
~1!~F2,1000!5221$u1000&2u0100&2u0100&1u0001&%,

f3
~1!~F2,1000!5221$u1000&1u0100&2u0010&2u0001&%.

~3.1!

Similarly, the irreducible bases of the fundamental bending
vibrations (v51) are

c~A1,100000!5621/2$u100000&1u010000&1u001000&

1u000100&1u000010&1u000001&%,

~3.2!

c1
~1!~E,100000!5~2A3!21$2u100000&2u010000&

2u001000&12u000100&

2u000010&2u000001&%,

c2
~1!~E,100000!5221$u010000&2u001000&

1u000010&2u000001&%,
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c1
~1!~F2,100000!5221/2$u010000&2u000010&%,

c2
~1!~F2,100000!5221/2$u001000&2u000001&%,

c3
~1!~F2,100000!5221/2$u100000&2u000100&%.

In those bases the HamiltonianH given in ~2.4! becomes
a block matrix with the submatricesH(G,v), whereG de-
notes the irreducible representation, andv is the total phonon
number. Obviously,H(E,1) is a 131 submatrix, but
H(A1,1) andH(F2,1) are 232 submatrices:

H~E,1!5vb22xb2l21l3 ,

H~A1,1!5S vs22xs13l1 2A6l5

2A6l5 vb22xb15l21l3
D ,

H~F2,1!5S vs22xs2l1 2A2l4

2A2l4 vb22xb2l22l3
D .

~3.3!

Note that the statec(A1,100000) represents the fundamental
spurious state and should be ruled out.

In the traditional approach, the higher excited states are
calculated by symmetrizing the products of the fundamental
vibrational states@9#. However, it may be more easy to use
the irreducible bases, subtracting the spurious states, for cal-
culating the excited states. In the following, we calculate the
excited states for the case with total phonon numberv52 in
detail. It is straightforward to calculate higher excited states
in this way.

Before calculation, we have to study an important prob-
lem of how to remove the spurious states. In the recent pa-
pers we see two methods of removal. Iachello and Oss@7#
placed the spurious states at the energies>10 times the en-
ergies of the physical states by the projection operators. This
method of removal is exact for harmonic bending vibrations
and acquires a small error for the anharmonic one. Instead,
Lemus and Frank@4# directly eliminated the spurious states
from both the space and the Hamiltonian. They demanded
the matrix elements of the Hamiltonian related with the fun-
damental spurious statec(A1,100000) vanishing. In our no-
tation, they introduced a constraint in addition tol550 that
was assumed in Ref.@4# at beginning:

vb22xb15l21l350 ~3.4!

so thatH(A1,1) in ~3.3! contains only one nonvanishing el-
ement.

In the present paper we develop the second method of
removal. First of all, it seems to us that the constraint~3.4! is
not necessary and reasonable because it restricts only the
energy of the fundamental spurious state to be vanishing, but
the energies of all other spurious states are nonvanishing.
Secondly, we have to answer the problem of how to identify
the spurious states. Generally speaking, a state is identified
as a spurious state if it containsc(A1,100000) as a factor. In
Ref. @4# ~p. 8327! the simply additive definition for the prod-
uct of two functions is used:

un&um&5u~n1m!&,

u~n1m!&5u~n11m1!,~n21m2!, . . . ,~n101m10!&.
~3.5!

When two statesun& and um& describe a pure stretching vi-
bration and a bending vibration, respectively,~3.5! is correct.
However, in the calculations of removing the spurious states,
both states describe bending vibrations where~3.5! may not
be suitable.

Borrowing the idea from Ref.@7#, we want to find an
identification rule for the spurious state such that the spuri-
ous species are separated, if possible, from the physical spe-
cies in the matrix form of the Hamiltonian. As is well known,
in the formalism of the boson realization the statesun& con-
tains a factor (n!)21/2:

un&5~n! !21/2~a†!nu0&.

Therefore, we embed a factor in the definition~3.5! for the
product:

un&um&5)
m

H ~nm1mm!!

nm!mm!
J 1/2u~n1m!&,

u~n1m!&5u~n11m1!,~n21m2!, . . . ,~n101m10!&.
~3.6!

In terms of this definition we calculate the general spurious
states and find that the off-diagonal elements of the Hamil-
tonian between the spurious species and the physical species
linearly depend uponxb and l5 , namely, under the condi-
tions thatxb50 andl550 the spurious species are totally
separated from the physical species in the matrix form of the
Hamiltonian.

The conditionl550 is acceptable because it only appears
in those off-diagonal elements. The conditionxb50 means
that the bending vibrations are harmonic. Fortunately, to our
knowledge, in the known resultsxb is quite small~e.g., see
Refs.@6,12# and our results below!. It is interesting to notice
that the first method@7# of removal is exact also only for
harmonic bending vibrations.

Now, we turn back to calculate the excited states with
v52. Whenv52, the stretching vibrational states are sepa-
rated into five sets: f(A1,2000), fn

(1)(F2,2000),
f(A1,1100), fn

(1)(E,1100), andfn
(1)(F2,1100), and the

bending vibrational states are separated into ten sets:
c(A1,200000), cn

(1)(E,200000), cn
(1)(F2,200000),

c(A1,100100), cn
(1)(E,100100), c(A1,110000),

cn
(1)(E,110000), cn

(1)(F2,110000), cn
(3)(F2,110000), and

cn
(1)(F1,110000). For the mixture statesCn(G

PG1^ G2 ,v) of stretching and bending vibrations with
v52, we have to combine the stretching states
fn(G1 ,v51) and the bending statescn(G2 ,v51) by the
Clebsch-Gordan coefficients ofTd .

In terms of the definition~3.6!, direct calculation shows
that there are five sets of spurious states withv52, belong-
ing to the following irreducible representations: twoA1 , one
E, and twoF2 . In the following we list only one spurious
state for each irreducible representation space:
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f~A1,1000!c~A1,100000!,

$c~A1,200000!1c~A1,100100!12c~A1,110000!%/A35$c~A1,100000!%
2,

$c2
~1!~E,200000!1c2

~1!~E,100100!1c2
~1!~E,110000!%/A35c~A1,100000!c2

~1!~E,100000!,

f3
~1!~F2,1000!c~A1,100000!,

$c3
~1!~F2,200000!1A2c3

~1!~F2,110000!%/A35c~A1,100000!c3
~1!~F2,100000!. ~3.7!

Removing the spurious states, we obtain the physical states belonging to given irreducible representations. There are five
states belonging to representationA1 , five sets of states belonging toE, seven sets belonging toF2 , and three sets belonging
to F1 . Only one state for each irreducible representation space is listed in the following:

f 1~A1,2!5f~A1,2000!,

f 2~A1,2!5f~A1,1100!,

f 3~A1,2!5$c~A1,200000!2c~A1,100100!%/A2,

f 4~A1,2!5$c~A1,200000!1c~A1,100100!2c~A1,110000!%/A3,

f 5~A1,2!5 (
n51

3

fn
~1!~F2,1000!cn

~1!~F2,100000!/A3,

f 1~E,2!5f2
~1!~E,1100!,

f 2~E,2!5$c2
~1!~E,200000!2c2

~1!~E,100100!%/A2,

f 3~E,2!5$c2
~1!~E,200000!1c2

~1!~E,100100!22c2
~1!~E,110000!%/A6,

f 4~E,2!5f~A1,1000!c2
~1!~E,100000!,

f 5~E,2!5$f1
~1!~F2,1000!c1

~1!~F2,100000!2f2
~1!~F2,1000!c2

~1!~F2,100000!%/A2,

f 1~F2,2!5f3
~1!~F2,2000!,

f 2~F2,2!5f3
~1!~F2,1100!,

f 3~F2,2!5$A2c3
~1!~F2,200000!2c3

~1!~F2,110000!%/A3,

f 4~F2,2!5c3
~3!~F2,110000!,

f 5~F2,2!5f3
~1!~F2,1000!c1

~1!~E,100000!,

f 6~F2,2!5f~A1,1000!c3
~1!~F2,100000!,

f 7~F2,2!5$f1
~1!~F2,1000!c2

~1!~F2,100000!1f2
~1!~F2,1000!c1

~1!~F2,100000!%/A2,

f 1~F1,2!5f3
~1!~F1,110000!,

f 2~F1,2!5f3
~1!~F1,1000!c2

~1!~E,100000!,

f 3~F1,2!5$f1
~1!~F2,1000!c2

~1!~F2,100000!2f2
~1!~F2,1000!c1

~1!~F2,100000!%/A2,

where the number 2 in the argument denotesv52. Those states belonging to the same irreducible representation will be mixed
by the Hamiltonian.
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Directly calculating the Hamiltonian matrixH in those bases, we obtain a block matrix with 535 submatrix forA1 ,
535 submatrix forE, 737 submatrix forF2 , and 333 submatrix forF1:

H~A1,2!5S 2vs26xs 2A3l1 0 0 2A3l4

2A3l1 2vs24xs14l1 0 0 22l4

0 0 C1 2A2/3xb 4l4

0 0 2A2/3xb C2 0

2A3l4 22l4 4l4 0 C3

D ,

H~E,2!5S 2vs24xs22l1 0 0 0 4l4

0 C1 2xb /A3 0 4l4

0 2xb /A3 C4 0 0

0 0 0 C512l3 0

4l4 4l4 0 0 C3

D ,

H~F2,2!5S 2vs26xs 2l1 0 0 0 2l4 2A2l4

2l1 2vs24xs 0 0 0 2l4 22A2l4

0 0 C6 0 2A2l4 0 0

0 0 0 C7 0 0 4l4

0 0 2A2l4 0 C312l3 0 0

2l4 2l4 0 0 0 C5 0

2A2l4 22A2l4 0 4l4 0 0 C3

D ,

H~F1,2!5S 2vb24xb22l2 22A2l4 0

22A2l4 C312l3 0

0 0 C3

D ,
where C152vb25xb22l222l3 , C252vb2(14/3)xb
22l212l3 , C35vs22xs1vb22xb2l12l22l3 , C4
52vb2(13/3)xb22l212l3 , C55vs22xs1vb22xb
13l12l22l3 , C652vb2(16/3)xb22l2 , andC752vb
24xb22l222l3 .

IV. PURE VIBRATIONAL SPECTRA

Now, we are going to fit the experimental data by our
boson-realization model. Methane is a typical molecule with
Td symmetry. To our knowledge, there are 4 data forv51, 7
data forv52 and 8 data forv53. In our first scheme we fit
those 19 data to determine the eight parameters~Table I, the
first scheme! with the root-mean-square energy deviation

11.61 cm21, where the standard deviation is calculated un-
weightedly:

s25
1

1928(i
19

~n i
~calc!2n i

~expt!!2 ~4.1!

From the results we come to three conclusions.
~i! Sincexb is relatively small, the bending oscillators are

near harmonic ones.
~ii ! The interbond interactions between bending vibrations

are quite weak.
~iii ! The interactions between stretching and bending vi-

brations are strong.

TABLE I. Parameters in the Hamiltonian obtained by the least square fitting~cm21).

Scheme Stretching Bending Interac.

vs xs l1 vb xb l2 l3 l4 rms

First 2986.74 77.96 34.55 1508.37 26.635 25.96 20.90 2203.73 11.61

Second 2986.24 76.55 33.60 1525.85 2201.65 12.42
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From these conclusions, we propose our second scheme
where the bending oscillators are harmonic (xb50) and
there is no interaction between the bending vibrations
(l25l350). The second scheme provides a five-parameter
fit to the experimental data of methane with the root-mean-
square deviation 12.42 cm21 ~see Table I, the second
scheme!. Recall that Ref.@4# presented a seven-parameter fit
with the root-mean-square deviation 12.16 cm21.

For comparison, we list in Table II the 19 experimental
data, the calculation results from the algebraic model@4#, and
our results in two schemes for the vibrational spectra
(v<3) of methane.

In terms of the eight parameters in the first scheme or the
five parameters in the second scheme, it is straightforward to
calculate the rest of the vibrational spectra for methane. After
removing the spurious states, forv52, there are 5 states with
A1 , 5 sets of states withE, 7 sets of states withF2 , and 3
sets of states withF1 . For v53, there are 13 states with
A1 , 4 states withA2 , 14 sets of states withE, 25 sets of
states withF2 , and 15 sets of states withF1 . Except for the
states withF2 andv52 that were listed in Table II, the rest
of the calculation results in the first scheme are listed as
follows.

v52, A1 2614.3 3057.9 4297.7 5807.6 5974.4

v52, E 2616.5 3055.6 4326.3 4461.2 6038.2

v52, F1 2832.4 4324.8 4545.7

v53, A1 3913.0 4158.5 4586.8 5514.9 5601.8 5861.8 5992.3

7100.9 7295.4 7567.2 8587.8 8749.0 8994.0

v53, A2 4141.8 4588.6 5852.6 7564.8

v53, E 4142.0 4157.5 4591.3 5526.7 5621.8 5828.1 5858.1

5990.1 7160.1 7299.4 7334.5 7502.1 7566.1 8838.7

v53, F2 3917.6 3930.3 4136.9 4365.5 4378.3 5514.3 5589.1

5619.9 5633.9 5759.3 5831.1 5858.4 6075.8 6078.6

7074.8 7134.5 7255.9 7300.1 7331.0 7379.4 7513.8

8601.9 8805.3 8915.9 9035.7

v53, F1 3919.4 4148.3 4369.1 5605.1 5632.4 5753.6 5840.8

5854.3 6075.8 7158.7 7291.3 7334.8 7383.0 7539.3

8941.9

TABLE II. Experimental data@8#, algebraic calculation@4#, and our calculation results for the vibration
spectra (v<3) of methane~cm21).

v51

G F2 E A1 F2

Expt. @8# 1310.0 1533.0 2916.5 3019.4
Calc. @4# 1303.7 1520.4 2918.4 3027.2
Scheme 1 1305.7 1526.7 2934.5 3019.0
Scheme 2 1307.8 1525.9 2933.9 3017.6

v52 andF2

Expt. @8# 2614.0 2830.4 4223.0 4319.0 4549.0 5861.0 6004.7
Calc. @4# 2610.5 2841.5 4222.0 4330.9 4547.7 5856.7 6014.5
Scheme 1 2610.1 2840.1 4226.7 4308.4 4546.9 5855.8 6011.2
Scheme 2 2614.3 2833.6 4228.8 4309.5 4543.5 5855.3 6008.6

v53 andF2

Expt. @8# 4123.0 5775.0 5861.0 7514.0 8604.0 8807.0 8900.0 9045.0
Calc. @4# 4123.9 5759.9 5868.7 7534.9 8603.0 8794.1 8910.0 9034.5
Scheme 1 4136.9 5759.3 5858.4 7513.8 8601.9 8805.3 8915.9 9035.7
Scheme 2 4140.1 5754.6 5851.2 7534.4 8603.3 8804.1 8913.0 9031.4
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V. CONCLUSIONS

In this paper we describe ten coupled one-dimensional
anharmonic oscillators of a tetrahedral molecule by ten sets
of bosonic creation and annihilation operators. The ten oscil-
lators are divided into two classes: stretching and bending
oscillators. The energy levels of those oscillators are de-
scribed by four parameters under the assumption of the
Morse potential for stretching vibration and the Po¨schl-Teller
potential for the bending vibrations:vs , xs , vb , and xb .
The interbond interactions and the interactions between
stretching and bending vibrations are supposed to beTd in-
variant and to preserve the total numberv of vibrational
quanta so that four parametersl i , 1< i<4, have to be in-
troduced.

In the first scheme of the boson-realization model with
eight parameters we fit the 19 experimental vibrational data
for methane, and obtain the root-mean-square energy devia-
tion to be 11.61 cm21. From the obtained parameters, we
see that the interactions between the bending vibrations are

weak, the interactions between the stretching and bending
vibrations are strong, and the bending oscillators are quite
near harmonic ones. These conclusions are different from the
previous model@4#. From these conclusions we proposed
another five-parameter fit in the second scheme with the
root-mean-square energy deviation 12.42 cm21. To our
knowledge, it may be the model with the least parameters
that well fits the experimental vibration spectra (v<3) of
methane.

The interaction between vibrational and rotational mo-
tions plays an important role in describing the abundant ex-
perimental data of vibrorotational energy spectra of a tetra-
hedral molecule. We will study it by the boson-realization
model elsewhere.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China and Grant No. LWTZ-1298 of the Chi-
nese Academy of Sciences.

@1# J. L. Dunham, Phys. Rev.41, 721 ~1932!.
@2# F. Iachello and R. D. Levine, J. Chem. Phys.77, 3046~1982!;

O. S. van Roosmalen, F. Iachello, R. D. Levine, and A. E. L.
Dieperink, ibid. 79, 2515~1983!; F. Iachello, A. Leviatan and
A. Mengoni, ibid. 95, 1449~1991!.

@3# O. S. van Roosmalen, I. Benjamin, and R. D. Levine, J. Chem.
Phys.81, 5986~1984!; F. Iachello, S. Oss, and L. Viola,ibid.
101, 3531~1994!.

@4# R. Lemus and A. Frank, J. Chem. Phys.101, 8321~1994!.
@5# L. Halonen and M. S. Child, J. Chem. Phys.79, 559 ~1983!.
@6# F. Iachello and S. Oss, Phys. Rev. Lett.66, 2976 ~1991!; A.

Frank and R. Lemus,ibid. 68, 413 ~1992!.
@7# F. Iachello and S. Oss, J. Mol. Spectrosc.153, 225 ~1992!;

Chem. Phys. Lett.205, 285 ~1993!; J. Chem. Phys.99, 7337
~1993!.

@8# D. L. Gray and A. G. Robiette, Mol. Phys.37, 1901~1979!; G.
Herzberg,Molecular Spectra and Molecular Structure II~Van
Nostrand Reinhold, New York 1945!; J. C. Hilico, J. Phys.
~Paris! 31, 289 ~1970!; B. Bobin and G. Guelachvili, J. Phys.
~Paris! 39, 33 ~1978!.

@9# P. R. Bunker,Molecular Symmetry and Spectroscopy~Aca-
demic Press, New York, 1979!.

@10# I. M. Mills and A. G. Robiette, Mol. Phys.56, 743 ~1985!.
@11# E. P. Wigner,Group Theory and Its Application to the Quan-

tum Mechanics of Atomic Spectra, English version, translated
by J. J. Griffin~Academic Press, New York, 1959!; M. Hamer-
mesh,Group Theory and Its Application to Physical Problems
~Addison-Wesley, Reading, MA, 1962!.

@12# T. Lukka, E. Kauppi, and L. Halonen, J. Chem. Phys.102,
5200 ~1995!.

2180 53ZHONG-QI MA, XI-WEN HOU, AND MI XIE


