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Algebraic propagator approaches and intermediate-state representations.
I. The biorthogonal and unitary coupled-cluster methods

F. Mertins and J. Schirmer
Physikalisch-Chemisches Institut, University of Heidelberg, D-69120 Heidelberg, Germany
(Received 10 August 1995

As a general common concept, underlying diverse methods used to compute generalized electronic excita-
tions in atoms and molecules, intermediate-state representél®R's), are considered and analyzed. Essen-
tially, an ISR results by representing the excitation energy operator in terms of so-called correlated excited
states(CES’g or states derived thereof. Three different ISR schemes are compared, namely the biorthogonal
coupled-clustefBCC) representation used in both the coupled-cluster linear response and equation-of-motion
coupled-cluster methods, a unitary coupled-clugtiEC) representation, and the excitation class orthogonal-
ized (ECO) representation resulting from a Gram-Schmidt orthogonalization procedure for the CES. Moreover,
the relationship between the BCC scheme and the symmetry-adapted-cluster—configuration-interaction method
is discussed. The relevance of the ISR schemes, as opposed to the much simpler configuration-ir{téPaction
expansions, arises from two basic properties referred to as separability and compactness. The former property
is a sufficient condition for size-consistent results, while the latter allows one to use smaller explicit configu-
ration spaces than in comparable CI treatments. We show that the ECO and UCC representations are both
separable and compact, whereas a somewhat restricted compactness property applies in the BCC case.

PACS numbes): 31.15-p, 31.10+2z

[. INTRODUCTION algebraic-diagrammatic constructiohDC) has been used to
derive higher-order approximations within the diagrammatic
Propagator methods and related approaches are a natueglproaci{16—19.
starting point for studying electronic transitions in atoms and In practice, most of the proposed approximation schemes
molecules. Here transitions are meant in a more generalizédke on the form of an eigenvalue problem ofret neces-
sense, comprising, in addition to neutral excitations, ionizasarily Hermitian secular matrix. Here, the physically inter-
tion, electron attachment, double ionization processes, etcesting quantities, such as tiigeneralized excitation ener-
as well, that is, processes in which the number of electrongies, are given essentially by the eigenvalues while the
may change. For an introduction, overview, and references tassociated transition moments are derived from the respec-
the original literature the reader is referred to textbookdive eigenvectors. What is the relationship of the various—at
[1-3] and various review articlef4—11]. In comparison first glance quite different—computational schemes? As an
with the more conventional wave function approach, e.g., thexplanatory, unifying concept one may regard the so-called
configuration-interaction (Cl) treatment, the propagator intermediate-state representationgISR’s).  Basically,
methods have two basic advantages. First, the excitation emtermediate-state representations result from representing
ergies and transition momerspectral intensitigsare deter-  the excitation energy operat¢shifted Hamiltonian H— Ej§
mined directly, that is, without the necessity of performing (or a more general operajdn terms of a(completg basis of
separate calculations for the initial and final states. Secon@,tateq\ifﬁ, which in a certain sense “mediate” between the
these methods are potentially size-consistertre precisely exact excited states |¥,) (of the considered
size-intensivg which means that for a system consisting ofN N+1,N+2, ..., particle systeth and the familiar
. H ~ N
e e o e e e oo e FOOHE)confuralons )= CbY) use, o3,
fh the CI treatment. Her¢dg) is the N-electron Hartree-

individual fragments. As is well known, this property is a Fock ground state, and, denote physical excitation opera
recondition for obtaining meaningful results in applications ’ J . e
P g g P tors (of v=0,+1,%£2, ..., electron$. The intermediate

to large moleculegfor example, seg3]). ~ ; -
Various computational schemes have been developed getates|¥;) may be generated in specific ways from the so-
riving from or being related to propagator theory. Roughly,called correlated excited statéSES’y C,| V) obtained by
one may distinguish between so-called algebraic method@Pplying the physicalor more generalexcitation operators
and methods based on diagrammatic perturbation theor{s; to the exactN-electron ground stately) (with energy
Well known algebraic approaches are the equation-of-motioi) ). The use of correlated excited states as expansion mani-
(EOM) method[4,9,17 and the essentially equivalent super- folds has been considered for a long time in the context of
operator formulation of propagatof6—8,10,13,14 As an  propagator theor}20—22. Explicit use of intermediate-state
example of diagrammatic approaches we mention the outeepresentations has been made, for example, by Pedsad
valence Green’s functiotOVGF) method[11,15 for the  [23], by Mukherjee and KutzelnigtR4], and by the present
electron propagator. A general procedure referred to aauthors[25,26. Moreover, several methods extending the
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coupled-clustefCC) approach to the treatment ¢eneral-  energyE} . It is convenient to use the language of second
ized electronic excitations may be viewed as examples Ofjuantization, Whereg (cp) denote creationdestruction op-
intermediate-state representations. The latter methods corgrators associated with a suitably chosen basis of single-
prise the SAC-Clsymmetry-adapted-cluster—configuration- particle states(orbitaly |¢,). Usually, the set of orbitals
interaction approach of Nakatsuji and Hird@7-29, the |4} will be generated by a Hartree-Fock calculation for the
coupled-cluster linear respon@CLR) theory[30—36, and  N-electron ground state. According to the occupation num-
the related equation-of-motion coupled-clust&fOM-CC)  pers in the HF ground staje)), n,=1-n,=1,0, the or-
approact{37-39. bitals |¢,) are denoted as occupied orbitéts hole states

Clearly, a representation of the Hamiltonian or more gen-nq ynoccupied orbital®r particle states respectively. The
eral operators based on correlated excited states is distinct "

; - ) .hfamiltonianH of the system reads in second-quantized no-

more complicated than, e.g., the familiar Cl representation INation

terms of HF configurations. Thus it is legitimate to ask what

are the advantages of using the intermediate-state represen- = _ 1

tations. If one tries to analyze this issue beyond the naive ~ H=T+V=2 t,,cic,+ > > VpgrSpciese,, (1)

expectation that it should be good to inclu@gound state pa pars

correlation effects already in the expansion manifold used in . . .
L : . . wheret,, denote matrix elements of the single-particle part

the excitation problem, one is led to two basic propertlesf h pa Vo - d he C

eferred to as compaciness and separatfat2, As il o 1 SeCry SEer (ot (Ol SR T CO

be explained in more detail below, compactness means thféfJ 9 - 9 P '

the explicit configuration spaces required in the ISR methodfor™ of Ed. (1) H does not depend explicitly on the number

are smaller than those of comparable CI treatments. Thal lectrons, and thus may be used as well to describe the

separability property is a sufficient condition for the size-Ccorresponding systems 8= 1,N-2, ..., electrons. For the

consistency(more specifically, size-intensivityof the ISR~ PUrpose of using perturbation theory, the Hamiltonian may

methods. Essentially it means that in the secular problem fdP€ decomposed according to

a system consisting of noninteractifgeparablefragments, A A A

so-called local excitationgassociated with one of the sub- H=Ho+H, @

system$ are strictly decoupled from nonlocal excitations. . ; :

T);le interesting poi¥1t eIaboFr)ated further in this paper is tha![nto an unperturbeddiagona) one-particle part

these two properties are not obtained by simply adopting the .

CES representation. As will be seen, the orthonormalization Ho=> epcgcp, 3

procedure imposed on the CE states plays a decisive role. P
In this paper we compare three_ different mtermedlate-whereéi denote the orbital energies, and an interaction part

state representations, namely the biorthogonal coupled clus-

ter (BCC) representation used both in the CCL30-34 and

the EOM-CC method$37-39, the unitary coupled-cluster

(UCC) re_presentat|0|{23,24], and the exqtauon class O whereV is the electronic repulsion anﬁ/=i’—lz|0 is a re-

thogonahzed(EC_O) representation resulting from a Spec_'aldsidual nondiagonal single-particle part.

orthonormalization procedure for the correlated excite Generalized excitation energies oN' electrons

stated25,26. In particular, the compactness and separability,n,, _ NN=*1 )

properties are analyzed. As will be seen, both the ECO an T

UCC representations comply fully with these important re-

guirements, while a more restrictive compactness property

applies to the BCC representation. In a subsequent paper ) . ) .
[40] a similar analysis will be given of the EOM method for @nd the associated excited stajs) ) may be obtained as

N, N+1, andN+2 particles. the eigenvalues and eigenfunctions, respectively, of the
An outline of this paper is as follows. Section Il is used to “shifted” Hamiltonian H—Ej :

introduce some basic definitions and, moreover, gives a brief R ) )

review of the familiar CI representation with regard to the (H=E)|¥N Y=w | TN ). (6)

properties of interest here. The ensuing Secs. lll, IV, and V

treat separately the cases of the ECO, BCC, and UCC repr8esides the energies, one is interested in spectral intensities

sentations, respectively. A brief summary and some concluderived from(generalizef transition moments

sions are given in the final Sec. VI.

H,=W+V, (4)

w,=EN' —E} (5

To=(¥NDVwY), (7)

IIl. GENERAL ASPECTS OF INTERMEDIATE-STATE

whereD®, r=N’—N, is a suitably chosen transition opera-
REPRESENTATIONS

tor, e.g., theN-electron dipole operator in the case of neutral
While the intermediate representations to be considered ixcitations (=0).

the following were originally brought forth in the context of ~ In general, the solution of the eigenvalue problgnre-

propagator theory, they may as well be introduced directlyguires one to introduce a basis set representatiod -6£(

without reference to propagators. Let us consider a system @fnd a subsequent treatment of the corresponding secular

N electrons having a nondegenerate ground slt\ﬂ@) of  equation. Let|¥;), J=1,2,..., denote a complete ortho-
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normal basis in the Hilbert space Nf electrons, giving rise 1h 2hlp 3h2p 4h3p 5hip -
to a Hermitian matrix representatigh of the Hamiltonian,

1h 0 1 1

|:||J:<‘i’|||:||‘i’J>- (8)
ohip |1 ]o ] 1|1

Using this basis set representation, KE6). is transformed
into the algebraic eigenvalue problem 3hzp | 1 f 1|01 [1

(H-EpDY=Y 2, Y'v=1 © thtp JEREEE
5hdp 1 1 0

for the matrixi— Eg‘i. Here() denotes the diagonal matrix
of excitation energie®, , andY denotes the matrix of eigen-

vectors. The transition moments can be obtained according _ o
to FIG. 1. Order relations of the CI matrikl in the case of

(N—1)-electron states. The numbers in the bBckio‘hdicate the
= (lowes) perturbation theoretical order; empty blocks vanish.
T,= 2 Y*F, (10
or of “first order” in the language of perturbation theory.
as the scalar product of tith eigenvectolY,, and the vector ~ Only the diagonal elements ¢f (and ofH - Ej1) contain

F of the transition moments the (HF) orbital energies, that is, zeroth-order contributions.
N - . A This “order structure” ofH is depicted in Fig. 1. Complete
Fi=(W,|D"|¥p) (1)  clI expansiongfull Cl) [41,42 are practical only for limited
) ) ~ one-particle basis sets and small systems. Usually the num-
defined with respect to the statgl). ber of CI configurations must be restricted. A systematical

Before turning to the intermediate representations it mayryncation scheme, leading to perturbation-theoretical consis-
be helpful to take a brief view of the familiar configuration- tency, is to include all configurations up to a certain excita-
interaction representation. To be more SpeCifiC we will CON+jon class. For examp|e' a Configuration space Comprising the
fine ourselves in the following to the case of excitations inclassesuzl, 2, and 3 allows for a consistent second-order
the (N—1)-electron systenfsingle-electron ionization but  gescription of the primary statgie., states essentially char-
the ensuing discussion can easily be generalized to anycterized as i states(or Koopmans statgh For a Hamil-
N'-electron stateésee Sec. Ill . A complete and orthonor-  tonjan containing one- and two-particle interaction, the gen-
mal set of CI configurationgor HF configurationsfor the  eral rule is that the consistent description of the primary
(N—1)-particle Hilbert space is given by the states states through ordern2 and 2m+ 1 requires one to include

~ AN the first 2n+1 classes in the CI configuration space. Stated
|®3)=Cy| D) (12 differently, the CI configuration spacdeginning atu=1
for n=1) grows in each even order of perturbation theo-
retical consistency by two excitation classes. As will be dis-
cussed below, the intermediate-state representations require
{éJ}E{ci ,c;cicj <] ;c;cgcicjck,a<b,i <j<ki...L. distin(itly smal_ler_(compacl configuration spaces for a com-
(13) parab'e description. o . _
As is well known, limited CI expansions fggeneralized
Here the subscripta,b,c, ..., andi,j,k,I, ..., refertoun- €lectronic excitations are not size-consistérere, more spe-
occupied and occupied orbitals, respectively; capitakifically, size-intensive This means that for a systefcon-

latin subscripts are used as a shorthand notation for th&sting of two noninteractingseparate parts A and B the
respective strings of single-particle indices: method gives different results for, say, a “local” excitation

J=(ab,c,...:,j.kl, ...). TheoperatorsC, are called ©ONA when applied tdS or to A alone[43]. The reason for
“physical” since their action on the HF ground state consiststhis behav!or is that the CI matrix is not “separable,” that is,
in removing electrons from occupied orbitals and ‘local” excitations, say, oA do not decouple from nonlocal
adding electrons into unoccupied orbitals. The excitatiorEXcitations involving bottA andB. The mixing of local and

operatorsC, decompose into obvious classes, referred tdionlocal configurations is introduced, for example, via the
as u-hole—(u—1)-particle excitations [ xh—(x—1)p], block H(1,3) containing matrix elements of the kind

u=1,2,3,...,N according to the numbew of destruction
operators. The class of an arbitrary excitatibmill be de- Hp,abijk= — SpkVabfij1— %piVabjk]— OpjVabyik] - (14)
noted by[ J].

The CI representation dff is a matrixH with the ele-  HereV,;;; denotes the antisymmetrized Coulomb integral.
mentsH,;=(®,|H|®,). The partitioning of the CI configu- Obviously these matrix elements allow for a coupling of a
rations into excitation classes generates a block structure afh configuration p) local onA and a $1-2p configuration
H=MH(ux,v)), p,v=1,... N. BecauseH contains (at (abijk) in which a hole onA is accompanied by a®22h
mos}) a two-body operator, the blocks$(u,v) vanish when (double excitation onB. By contrast to the CI treatment, the
|[u—v|>2. The nonvanishing matrix elements for intermediate-state representations are separable and, thus,
|u—v|=1,2 are linear expressions of the Coulomb integralssize-intensive, as will be discussed in the ensuing Sec. Ill.

where éJ denote “physical” excitation operators from the
operator manifold



53 ALGEBRAIC PROPAGATOR APPROACHSE ... . 1. ... 2143

I1l. EXCITATION CLASS ORTHONORMALIZED Here p” denotes the matrix of overlap integrals
INTERMEDIATE-STATE REPRESENTATION pﬁl‘]:<\_]f§,|\y§> of the precursor states of class
A. Gram-Schmidt orthogonalization For later use it is convenient to transfer the GS procedure
of correlated excited states (18,19 to the excitation operatoiS; themselves. This leads

The common starting point for the intermediate-state rep:[0 ECO operator€;, with the property that

resentations is the set of “correlated” excit states = =
¢E) By =), 20
0\ _ ~ N
¥3)=Cil¥o) 19 Note that any ECO operator is given by a linear combination
obtained by applying the excitation operat¢t8) to the cor- . R
related ground statblfg‘). As above we shall confine our- C,;= 2 a;kCx (21
selves for the moment to the case of excitations in the [K]’;[J]
(N—1)-electron system. The following treatment can be eas-
ily transferred to the other cases, as is briefly discussed inf excitation operators of the same and lower classes, where
Sec. Il D. As was shown by Manri@0] and Dalgaard21],  the coefficientsa;x are uniquely determined uwg‘>.
the CE state¢15) form a complete set ofN—1)-electron The ECO intermediate staté¥;) obtained by the GS
states, provided thgt¥ 5|®)#0 (see also Sec. IV Obvi-  procedurg(18,19 define a matrix representatidh— EN1 of
ously the CE states are not orthonormal. The overlap inteﬁ_EBl, where - N
grals
ain Hyy—Eg 813= (¥ |H—EQ| W3)=(¥g|C/TH,Cy]| D).
p=(¥|CC|¥5) (1) (22)

may be considered as the matrix elements of a generalizedote that in the last expressidﬁ'g is no longer explicit,
density matrixp. Orthonormal stateg¥;) may be obtained while the knowledge of ¥')) is required both to determine
by the symmetrical orthonormalizatioi$O) procedure ac- the ECO operators and to evaluate the secular matrix. For
cording to explicit expressions sg@5]. The resulting eigenvalue prob-
lem to be solved is as formulated by E@8). The question
— _ as to what is gained by using the more complicated ECO
WJ)ZEI |‘PIO>(£ s (17) representation instead of the CI representation will be ad-
dressed in the ensuing Secs. Il B and Il C.

However, the representation bf— Ey defined with respect
to these SO states is neither separable nor compact. This can B. Compactness property

be seen by inspecting, for example, thie/3h-2p coupling Practical computational schemes can be deduced from the
matrix elementH,, .,ijx. These matrix elements have con- general ECO representati¢@2) by introducing approxima-
tributions allowing for the coupling of local and nonlocal tions for the reference staf@ () and by truncating the ECO
configurationg 26], similar to the CI matrix elementd4). A configuration space. As in the Cl approximations, one may
different possibility of generating orthonormal states is theinvestigate the resulting truncation error. For this purpose we
Gram-Schmidt(GS) orthogonalization of successive excita- consider the block structure cﬁﬁ_Egl according to the
tion classes in which the CE states can be divided. Since thisycitation classesy=1, ... ,N)=of the ECO states. Unlike
procedure has been considered in some detail elsewhefig the CI matrix, there will be, in general, no vanishing
[25,26, we may confine ourselves here to a brief review ofp|gcks of H —EN1. However, the matrix elements of
its essgntlal features. The excitation class orthqgonahzed i _ EN1 are subject to well-behave@regular”) perturba-
termediate statelsl';) can be constructed recursively as fol- tion ex=pansions(see the discussion belowfor which the

lows: ; « P ; .
(i) Assume that the intermediate stakti‘sk) of the classes following (*canonical’) order relations apply:
1, ...w»—1 have been constructed. Then the st&lied) of (H—EN1)(p,v)=0(|n— v]). (23
class[J]=v are orthogonalized to all intermediate states o B
I\PK) of the lower classegK]< v according to This means that, for example, the coupling matrix element

Hp abijx between a b (u=1) state and a B-2p state
M apOy ~ ~ 0 (v=3) is of second ordefat least. This order structure of
) =1v3 ; )W W 5).- (18 H- EB‘; is schematically shown in Fig. 2.
[KI<[J] As a direct consequence of the order relati®2®), in the
. . i “ following referred to as canonical order relations, the error
(ii) The “precursor sta_tes#\lfj) of classv may then be  ihyroduced(for the primary statesby truncating the ECO
orthonormalized symmetrically among each other, yielding configuration space beyond classs of order 2Zn. Or stated
differently, a consistent treatment of the primary states
¥y = VN (o 12) 19 throggh order P and 2n+ 1 only requires one to take the
V) JE AT (19 configuration classeg=1, ... m+1 into account. This is
[J'1=[3] called the compactness property of the ECO intermediate-
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1h 2hlp 3h2p 4h3p 5hdp - -- Here, in accordance with the notation 5], we write
H Eol K+C whereK is the diagonal matrix ofzeroth-
h |0 |1 [2]3]4 ordeD HF ionization energies, whil€ comprises the first-
and higher-order contributions. The | perturbation expansions
Zhlp 110 1) 23 are “regular,” that is, they behave essentially like the usual
shap | 2 | 1|0 | 1] 2 ngleigh-Sc_h"rdinger pe_rturbation gxpangions fop ) and
Ep . respectively25]. This means, in particular, that the ab-
4h3p | 3 | 2| 1|0 |1 solute values of the occurring energy denominators are not
smaller than the energy gap between occupied and unoccu-
Ship 41312110 pied orbitals in théN-electron HF ground state. Provided that

these perturbation expansions converge sufficiently well, one
. may generate practical systematic approximation schemes by
FIG. 2. Order relations of the secular matkx Eq.(23), of the  truncating the perturbation series in E(29,30 at some low
ECO intermediate-state  representation in the case oprder. Such schemes have been derived previously by a pro-
(N—1)-electron states. The numbers in the blocksidhdicate the  cedure referred to as algebraic diagrammatic construction
(lowes) nonvanishing perturbation theoretical order. (ADC) from a reformulation of the familiar diagrammatic
i erturbation expansions for the various propagdtbés-19.
state representation. One should recall that a comparable (E\ the ADC schemes, the maximal order of perturbation
expansion comprises the firsh2- 1 excitation classes. A theory required for a consistenth-order description of the
similar order relation holds for the intermediate transmonpnmary states depends on the respective blodk $fC and
moments F. Forn=3, for exampleC(1,1), C(1,2), andC(Z 2) are
reqmred through third, second, and first order, respectively;

/IR N
Fy=(¥s[D[¥). (24) no other blocks are needed.
Let D denote an arbitrary(not necessarily physicalrh- N
(r—1)p operator. Then the order relation C. Separability
~ _ To discuss the size-consistency of the ECO intermediate
Fy=0([J]-n); [I]=r (25 representation we reconsider the separate fragments model

S consisting of two noninteracting parfs and B. We may
assume that the single-particle states are localizel onon

B, respectively. This allows us to specify the general excita-
tions J of S according toJ=(J,Jg) Where the “subexcita-
tions” J, and Jg refer to the fragment#\ and B, respec-
tively. As shown in[26], the obvious factorization

0= (W ¥3), (26) S, ) =1w5)ws) (31)

fulfills the canonical order relatio(23), that is,

holds for the stateg of class[J]=r.

A proof of the compactness property of the ECO interme-,
diate representation has been givefi2b]. The essential step
here was to show that the unitary matfxtransforming the
intermediate states into the exact energy eigenstates,

of the correlated excited states holds also for the ECO inter-
Q(u,v)=0(|u—v|). (27  mediate states, that is,

Here it is assume® can be organized in block®(u,v) I‘i’J 5 > |\If >|q, ). (32)
according to the excitation classes. Since A'B I8

ﬂ_ E}1=0Q7Q Q, (28 As an immediate consequence, the ECO intermediate rep-
o - resentation oH=H,+Hg is separable, which means that a
where() is the diagonal matrix of exact excitation energiespurely local excitationl=1, does not couple to nonlocal
[for which ,=0(0)], one may easily convince oneself that excitations of the typd=(JaJg). This leads to the follow-
the canonical order relatiof23) holds for the ECO secular ing block structure oH:
matrix H Eol A more direct proof of the compactness of
H Eol is given in Appendix A. &AA 0 0
The construction of the ECO statb!m depends solely ~ o ~
on the correlated ground stdt@()}. This suggests that per- H= O Hee ~ 0 : (33
turbation theory for|\IfN> can be used to generate well- 0 0 Hagas
defined perturbatlon expansions for the secular matrix ele-
r~nentsH.J Ey 6,y and the intermediate transition moments Obviously, the separablllty property also holds for the secu-
Fj: lar matrix H Eol Moreover, here the local blocks of
Na_ D)1~ H Eol are identical to the corresponding secular matrices
Eol=K+CH+C %+, (29 (H(A) Eo1®) and (H(B)—E 1(®)) obtained for the indi-
.~ - vidual systemsA and B, respectively. A similar property
Fy=FO+FP+.... (300 applies to the intermediate transition momefsse [26]).

T
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The intermediate transition momeﬁajA for a local excitation

J=J, is identical to the corresponding transition moment

IESAA) of subsysten,

Fy,=F®. (34)

Equationq33) and(34) establish the size-consisten@gten-

sity) of the ECO-ISR approach: the results obtained for, sa

A alone are identical to those obtained fot- B at any com-
mon level of approximation.

D. The ECO representations in other cases
and the relationship to propagators

The construction of intermediateN{1)-, (N*2)-,
(N£3)-, ...

2145

Gpo(@)=(Th|cy(w—H+EY+in) tcl[Wd). (42

Here 5 is a positive infinitesimal required to define the Fou-
rier transformation between time and energy representations.
G(w) is seen as consisting of two pas (w) andG* (w)
containing physical information on theN(1)- and the
(N+1)-particle systems, respectively. By inserting the

y(complete} set of intermediateN — 1)-particle statef¥;) on
t

he right hand side of Eq(41l) one arrives at the ECO
intermediate-state representation®f(w),
G (w)=f"(wl-K-C—in)™'f, (43

where —(K+C) is the ECO secular matrix given by Eq.
(22) andf is the matrix of intermediate transition moments

, particle states is completely analogous to the(‘i’3|cp|‘1'§>. An analogous expression is obtained for

procedure described in Sec. Il A. The corresponding correG* (w) by using the set of intermediaté¢ 1)-states. It is

lated excitations are defined as in Efj5) using the respec-
tive sets of physical excitation operators specified below.
(@ N+1 particle states:

{Ch={cl clclci clelcleic;, .. ). (35)

(b) N—2 particle states:
{éJ}={cicj ,c;cicjck,c;cgcicjckc,, . (36)

(c) N+2 particle states:
{Coy={cle] clelclei cichelcieic;, ..} (3D

readily seen that the solution of the ECO intermediate-state
eigenvalue probleniEgs. (9—11)] leads to the(diagonal
spectral representation

G (0)=x"(0l-Q-in) ', (44)
in which the physical content &6 () is explicit. HereQ)
is the diagonal matrix ofnegative ionization energies and
X denotes the matrix of the spectroscopic amplitudes
Xnp={¥alc,|¥p). In a similar way, the ECO intermediate
states folN andN=2 electrons may be used to obtain rep-
resentations of the polarization propagator and thé2h)
propagator, respectively. The reformulation of propagators in

Here the creation and destruction operators are associatddf form of Eq.(43) has been considered previously in the

with unoccupied(particle and occupiedhole) one-particle
states, respectively. Obvious index restrictions, e.g.b for
the setc!clc; are assumed.

For the case oN-particle states the definition of the cor-
related excitations has to be modified slightly according to

W) =Cyl wh)— [WE)W|Col W) (39)

context of the ADC method16-19. In this method the
matrix elements of the effective quantiti€andf are de-
termined indirectly by comparing the perturbation expansion
of the algebraic fornjfhere Eq.(43)] with the diagrammatic
perturbation series for the respective propagatbere

G (w)]. By performing this comparison successively
through higher orden of perturbation theory, systematic ap-
proximation scheme$ADC(n) schemek can be derived,

in order to ensure their orthogonality to the exact groundwvhich represent complete summations of the diagrammatic
state| ). The set of physical excitation operators here is Series through order and, moreover, infinite partial summa-

T IS

{Cy}={clc; .cicleici cleleleicier, ...} (39

Formally the orthogonalization of the staté¥) to the
N-electron ground state according to E§8) may be in-

tions of higher-order terms. While this procedure can easily
be performed for smatt and has led to useful computational
schemes, it becomes impractical at higher order due to the
rapidly increasing number of diagrams. The ECO-ISR intro-
duced as a closed-form version of the ADC allows for a

cluded in the general GS orthogonalization procedurdlirectaccess to the matrix elements ©fandf, but will be
(18,19 by regarding|¥}) as a zeroth excitation class useful also for deriving nonperturbative approximation
(v=0). For all cases, the partitioning of the correlated exci-Schemes.

tations into excitation classes=1,2,3,..., isobvious.

Finally we discuss the use of the intermediate states in
representing the various propagators. As an example let us

consider the one-particle Green'’s functi@lectron propaga-
tor) G(w). In energy representatio®(w) is a matrix of
elementq1]

Gpg(w)= G;q(w)+G;q(w), (40
where

Gpg(@)=(Vh|cl(0+H—EY—in) tc,|¥h), (41)

IV. BIORTHOGONAL COUPLED-CLUSTER
REPRESENTATION

A. General concept

Various methods have been developed extending the suc-
cessful coupled-cluster approach to the treatmer(geher-
alized excitation energies and transition moments. Besides
the CCLR theorn|30-34 and the related EOM-CC method
[37-39 the reader should be referred to the open-shell or
multireference(MR) coupled-cluster methodsee Mukher-
jee and Pal44] and references thergiand to methods com-
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bining propagator and coupled-cluster thept§—47. In the

g ) : . 1h 2hlp 3h2p 4h3p 5hdp---
following we will consider the CCLR theory in the form L

obtained by Koch and /dgensen[33] and the related mloli1l1]els
EOM-CC method as formulated by Stanton and Barf2gi.

Both versions lead to the same secular equations for the ex- 2hlp rfof1rj1f2
citation energies while differences remain in the treatment of

transition moments. The CCLR and EOM-CC methods are 8h2p 2ot
quite general and can be adopted to excitations in m3p [ 32101
N,N+1,N*2, ..., electron systems. For notational ease

we will consider the N— 1)-electron caséonization in the 5hdp 4 3 ]2117]0

following. Some remarks concerning the slightly more com-
plicated case of the neutral excitatiofia the N-electron
system will be given in Sec. VI D. The relationship between FIG. 3. Order relations of the secular matkik of the biorthogo-
the BCC representation and the SAC-CI method of Nakatsujj 5 coupled-cluster (BCC) representation in the case of

and Hirao[27-29 will be briefly addressed in the end of this (N—1)-electron states. The numbers in the blocksvbfindicate

section. the (lowesh nonvanishing perturbation theoretical order.
In the coupled-cluster method tih&electron ground state
is written in the form is used both in the CCLR and EOM-CC methods. Herés

the diagonal matrix of ionizatiorexcitation energies=and
X is the matrix of right-hand eigenvectors. An analogous

~ ) equation arises for the matri of the left-hand eigenvectors
where the so-called cluster operafbris given by a linear  of M reading =

combination of physical excitation operatdB9):

|wh)=expT)| DY), (45)

Y'M=0 Y, (52
N L X7= 1
T=> T7,=> TaClci+ > TabijC;CgCiCj+ e, (46)  and both equations can be combined
=1 a abiij
Y'M X=0, Y'X=1. (53)

Using the coupled-cluster ansd#5), the correlated excited ) ) )
[(N—1)-electror states take on the form Note that the left-hand and right-hand eigenvectors are bior-

thogonal but in general not normalized.
W) =Coexp(T)|®g) =exp(T)Cy| @) (47)
B. Compactness of the BCC representation

Note thatT and thus exp() commute with any physical As described by Stanton and Bartlg89] the matrix ele-
excitation operatoiC;. Equation(47) also shows that the ments ofM can be obtained quite efficiently once the cluster
correlated excited states result via a similarity tra”Sformatiorbperatorf_has been determined by a CC calculation for the
from the ccgmp_lete set of HF configurations. This proves thaj_glectron ground state. The biorthogonal coupled-cluster
the set{|W;)} is complete, since a similarity transformation representation gives rise to practical approximation schemes
does not lead to linear dependencies. according to the various ways of treating theelectron

Instead of orthogonalizing the statelsJ) as advocated in  ground state and by truncating the excitation manifold. Al-
Sec. Il B, here it is more natural to introduce the set ofthough the resulting methods are nonperturbative, it should

biorthogonal stateé¥;| obeying the relations be of interest to analyze the error introduced by restricting
the configuration space.
(TP =6;. (48 The order relations holding for the biorthogonal represen-

o _ tation M of H— EQ are shown in Fig. 3; their proof is given
The CC form of[¥;) allows one to write the bra states in Appendix A. It is seen that these order relations are less

(W] explicitly as stringent than the canonical order relatid@8) of the ECO
R . representation. The lower left triangular Bf is of the ca-
<TH=<(IJ’8'|C?exp(—T). (49 nonical form, but in the upper right triangle there are two

first-order blocks adjacent to the diagonal, as is the case in
The “mixed” representation oﬂ—Eg defined with respect the Cl representation. The consequence for the perturbation-
to the biorthogonal sets of states, leads to the non-Hermitiai1eoretical consistency of the resulfer the primary statés

secular matrixM, where is as follows: the consi;tency through ordep%ll and 2n
= requires one to include the excitation classes
M,;=(¥{|H-E}|PY) n=1, ... m+1 inthe configuration space. For example, if

) o R the configuration space comprises classes 1 and 2, the de-
=(<I>3‘|C|Texp(—T)[H,Cﬂexp(T)lCDQ). (50) scription of the primary states is consistent only through sec-
ond order and not to third order as in the ECO representa-
The resulting secular equation tion. This shows that a modified compactness property
applies the biorthogonal representation, which is somewhat
M X=X Q (51))  weaker than that of the ECO-ISR.



53 ALGEBRAIC PROPAGATOR APPROACHSE ... . 1. ... 2147

Similarly one may analyze the results for the transition
moments. In the EOM-CC approach the squared transition
moments are obtained from the left-hand and right-hand M= 0 Mgs Mgas . (61)
eigenvectors as 0 0 Magas

Maan 0 Mg

|<‘1’n||5|‘1’3'>|2=(2 XmFr)(z anFﬁ), (54)  Although here the local and nonlocal blocks are not strictly
[ J decoupled, the particular structure B shows that the ei-
genvalues oM, and Mgg are those of the entire matrix

where M. This shows that the results for the excitation energies are
NIAt A Nk size intensive. It should be noted that the right-hand eigen-
F\=(¥o|D'Ciexp(T)|Pg)*, (39 vectorsX, are locally correct, that is, all components refer-
. A ring to nonlocal configurations vanish for a local solution
Fj=(®|Clexp —T)D|¥g) (56)  n. In contrast, this does not hold for the left eigenvectors

Y,.
are intermediate transition moments associated with the BCCnW|th regard to the Spectra| intensities it should be noted
representation. While the componentsFof fulfill the ca-  that the intermediate quantitiés, [Eq. (55)] used in the
nonical order relation$25) for the transition momentésee  right-hand transition moments can lack the separability prop-

Appendix A), this is not the case for the componentsFof erty. Indeed, for a local configuratidn one finds

[corresponding to the correlated excited statEs)]. For a

usual transition operatdof lowest rank the order relations F, = FEA)+<‘1’§|6| |q;é>*<q;§|f)é|q;g>*_ (62)
of F areF;=0(u) for [J]=2u,2u+ 1. This means that the ALA A
i s (r) — * H -

right-hand trargrs)|t.|on momeﬁtn 21XjnF IS not compact. o \_glectron casédiscussed beloywhereC, does not
For exampleT,’ is not consistent through second ordier A

primary statepif the BCC space is truncated after the first chan.ge the number of electrons: the gepgnd;ontnbutmn on
two excitation classeghere h and zh-1p). The lack of e right-hand side need not Va”'sr(w0|DB|;I’0> does not
compactness is accompanied by another deficiency, name¥anish for symmetry reasons. Théh # F|(A): and, as a

the violation of size-consistency, as will be seen below. Inconsequence, the squared transition moment calculated ac-
the CCLR method33] the transition moments are calculated cording to Eq.(54) is not size-consistent. This was observed
in a size-consistent though more complicated way, whichalready by Kochet al. [48]. The left intermediate transition

shall not be analyzed here. momentsF; are separable, that i§; =F; (¥, Moreover,
N the left form of the transition moment is size-consistent, al-
C. Separability though the left eigenvectors can have nonlocal components.

Koch et al. [34,48 have shown that the excitation ener- AS can be readily verified, the corresponding intermediate
X . ' ] . ) . 1 . .
gies der|v|ng from b|orthogona| representat(@ﬁ)) are size- tranSItlon m0ment§J vanish for these nonlocal Conflgura-
consistent. Their proof may be briefly stated as follows. Thellons.
cluster operator of the separate fragment model can be writ-
ten as the sum D. The N-electron case

-”r:-i—AJrfrB (57) Finally we consider briefly the case &f electrons. To
achieve completeness here, generally the biorthogonal ex-
of the cluster operators of the two fragments, and, thusPansion manifolds must be extended by te&ac} ground
- ol ol s N\ _ N N _ N
exp(T) =exp(To)exp(Ts). A general correlated excitation State|¥g)=exp(T)|Pq) and(®g|exp(-T)=(Pg], respec-

|'w9) with J=(JaJg) factorizes according to tively. The resulting representation 6f—E{) takes on the
form
|W3)=exp(Ta)Cy,|P)expTe)Cy | P5),  (58) 0 b
. . M'= " (63
and an analogous relation holds for the biorthogonal states = |0 M

|}P§)A It is readily seen that the matrix element of
H=H,+ Hg taken with respect to a nonlocal configuration WhereM is as specified by E¢50) andv is a(row) vector

I=(l,lg) and a local configuration, say=J, vanishes: of matrix elements
(Wi IHIWS ) =E(®FICT |#8)5,,5,=0.  (59) vi=(®lexp(—T[H.ClexT)|®F).  (64)
The transposed matrix elements The secular matriM ' is used in the method of Stanton and

R o o Bartlett[39] (apart from the subtraction of the ground state
(W3 [H[WP, )=(P5lexp(—Te)Hgexp(Te)C |¥6) 8,5,  energyEy in the diagonal Obviously, for the excitation
(60) energies the roots &fl " andM are identical and the left- and
right-hand eigenvectors are trivially modified by adding a
however, need not vanish. Thus, one arrives at the followinganishing zeroth componeni’ has an additional eigen-
block structure ofM: value zero corresponding to the exact ground state. The
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right-hand eigenvectdX, is trivial: X|,= &y, ; while the cor-
responding left-hand eigenvectl, is given by

) 1
whereY, is obtained from the linear equation
Yi=—o ML (66)

This may be used to write the exact ground statgng in-
termediate normalizatigrin the form

<\I'B‘|:<q)3‘|+§|: <<I>c’?|é.*exp(—f)Y|o- (67)

Note that this representation has been termiAd in the
work of Koch et al.[33,34,48 [see Eq.(9) in [48]].

E. Relationship to the SAC-CI method

The (nonvariational SAC-Cl method of Nakatsuji and

Hirao [27-29 is based on the mixed representation

M SAC= (@ |H—EN|w9), (68)

where the CI configurationgl2) and the correlated excited

states in the CC parametrizatigd7) are used on the left-

and right-hand sides, respectively. To be specific we confine

ourselves, as above, to the case Nf(1)-electron states.
The overlap matrix

S|J:<(D||‘Pg> (69)

of the left- and right-hand basis functions is of lower trian-

gular form. The SAC-CI secular equatiofrgght-hand form
read
MEAX=S X 9, (70

where Q) is the diagonal matrix of excitatiofionization

energies anK denotes the matrix of right-hand eigenvec-

tors. An analogous equation applies to the ma¥fiof left-
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(®,|exp(=T)|®;)=0 for [J]>[I]. This shows that the sets
{®|[,[1]<pu} and{(¥;|,[1 1< u} differ only by a similarity
transformation. As a consequence, the BCC and SAC-CI
secular equationgtruncated after a given clasg) are
equivalent. In particular, the compactness properties of the
BCC representation apply as well to the SAC-CI method.
The SAC-CI equations are not separable, but, of course, the
equivalence to the BCC guarantees analogous size-
consistency properties.

V. UNITARY COUPLED-CLUSTER REPRESENTATION

An intermediate representation based on the unitary
coupled-cluster(UCC) approach has been considered by
Prasadet al. [23] and by Mukherjee and Kutzelnigd4].
Here theN-electron ground state is expressed in the CC form

|¥5)=exp )| DY), (74)

however, using an anti-Hermitian cluster operabor — o'
Usually o is written as

o=5-5', (75)
where the operato% (like 1A') is given by a linear combina-
tion of physical (N-electron excitation operators,

N
ézz ’Szz SaiC;Ci‘F 2 _ SabijC;CgCiCj‘f‘ e
=1 a,i a,b,l,j
(76)

Then, since S'  contains unphysical operators only,
S®{)=0. In contrast to the normal cluster operalor o
does not commute with physical excitation operators. The

intermediate state|sff ) considered by Mukherjee and Kut-
zelnigg(referred to in the following as unitary coupled clus-
ter states are obtained by applying the so-called consistent
operators exfr)C,exp(— o) to the exact ground state:

|‘173>=exq&)éjexq— &)I‘I’3'>=exp(&)éjld>9>- a7
7

hand eigenvectors. A mutual orthonormalization is obtained

according to
t

1<
ln
<

=1. (71)

Again we confine ourselves for the moment to the operators
C, of the (N—1)-particle case specified in E(.3). By defi-
nition, the UCC states result via a unitary transformation
from the HF configuration§3|d>§>, which shows that they

Althou_gh t_he SAC-CI equations differ from the BCC repre- torm a complete and orthonormal set. The UCC representa-
sentation in the use of the left-hand basis states, they give  of I—EN is given by the matrix elements
identical results for the energies, provided that the configu- ols9 y

ration spaces extend to the same excitation class and the

same treatment for exﬁS]{ is used. To see this, consider a

biorthogonal state of thath excitation class:

(Wi |=(®lexp(~T), [1]=p. (72
The expansion
(W= (‘1)||9XF(_%)|‘I)J><CDJ| (73

J

with respect to the CI configuration® ;) does not contain
configurations of higher classes thamu, because

|'=||J_EB‘5|J:<‘I=’|||:|_E’(;l|‘f’3>
=(®Y|ClTexp — &)H exp &),Cy]| DY)
(78)

Note that the ground state energ}) is no longer explicit in

the last line of Eq(78). Analogous to Eq(11), the interme-
diate transition moments for the UCC representation are de-
fined as

F”u=<\fu|6|w§>=<q>9|é§exq—&>6ex;x&ncbw.( )
79
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The UCC state$W,) and ECO intermediate staté¥;)  The associated transition moments can be derived from the
considered in Sec. Il are related by a unitary transformatioreiger]vectors oM and the intermediate trapsition moments
U, (W,|D|¥Y). While the excitation operator€; can be de-

- fined with respect to an appropriate basis of single-particle
Uy =(Wi[y). (80) statequsually ground state HF orbita)she ISR secular ma-
As shown in Appendix B, the blocks &f fulfill the canoni- trix elements and moments depend on the ekraamrelatg(_)l .
cal order relations: = ground state. Thus the calculation of the latter quantities in
practical computational schemes presupposes—besides trun-
U,;=0([11-[31). (81 cating the configuration space—a suitable approximation for
Vo).

An obvious approach to deriving approximation schemes
from the general ISR formulation is to use perturbation
theory for|Wg). This leads to perturbation expansions of the
1 82) ISR secular matrix elements and transition moments which

may be truncated in a systematical way at finite order. The
~ o~ ADC(n) schemes for the various propagators arise in such a
betweenH and the(compact ECO-ISR matrixH, one may oy from the ECO representation considered in Sec. IIl. An-
establish the canonical order relations l4f and thus the other possibility is to exploit the powerful coupled-cluster
compactness property of the UCC representation. Similarlyparametrization, | ¥}) =exp(T)|®}), of the N-electron
we arrive at the order relatior&5) for the intermediate UCC  ground state. This is the starting point for the BCC represen-
transition moment$ related to the ECO-ISR moments ac- tation used in the CCLR and EOM-CC methods. The unitary
cording to - CC formulationg W) = exp(6)| gy of the ground state and
excitation operators of the form ex@)C,exp(— o) are used
u'. (83  in the UCC representation.
. - The relevance of the ISR as a means of deriving approxi-
Here the moment§; (F;) are collected in the row vector mation schemes is due to the two basic properties referred to
F (F). as compactness and separability:

As an obvious generalization of the proof given here, we (i) Compactness means that the explicit configuration
may state that the compactness property holds for(ier- spaces are systematically smaller than those of comparable
mediate representation differing from the ECO-IS@r the  Cl expansions. For a consistent treatment, say, of the main
UCC-ISR by a unitary transformatiotJ if U fulfills the  excitation energies through ordem2-1, the configuration
canonical order relationg81). Here the “identity” of the  space of a compact representation can be truncated after the
configurations] in the two sets of states is reflected by theclass v=m+1, whereas a comparable Cl expansion must
fact that the diagonal elements; are of zeroth order. extend through clasg=2m+1. This rule applies to the

The separability property of the UCC representation isusual electronic Hamiltonian consisting of a one-body and a
almost trivial. Again, the cluster operatér of the separate two-body part. It can readily be generalized to abody

As one may easily convince oneséfiee Appendix ¢ the
canonical order relations hold for the produtB of two
matrices if they hold foA andB. Using the relation

[T

=Y

1T
Ic

F=

[ T2

fragment model decomposes into the sum Hamiltonian[26].
o (i) Separability is a sufficient condition for size-
o=0)t 03 (84  consistentmore specifically, size-intensiyeesults. An ISR

method is separable if, for a system of separate fragments,
of the.cluster op_erators of the fragments, and the UCC statqfe secular matrix of the total system decomposes into a
factorize according to block-diagonal form consisting of “local” blocks associated
= = = with each fragment plus an additional block corresponding to
|W'A'B>:|W'A>|q"s>' (89) nonlocal excitations. Moreover, a local block must be iden-

) ) ) tical to the secular matrix associated with the separated frag-
One may readily convince oneself that the resulting blockyent. |n a similar way, this property can be introduced in the

structure foH is the same as the oneﬁfgiven in Eq.(33).  intermediate transition moments.
It should be emphasized once more that these two key
VI. CONCLUDING REMARKS properties are only potentially inherent in the ISR methods.

. . Their validity depends critically on the procedure adopted to
As a general common concept underlying diverse propag

gator and related methods, intermediate-state representatiog;

manifolds (intermediate stat¢sare constructed from corre- used in the CCLR and EOM-CC methods exhibits a some-

lated excited states obtained by applyiegg., physicalex-  \hat restricted compactness property, as explained in Sec.
citation operatorsC, to the exactN-electron ground state |y The ECO representations, arising from Gram-Schmidt
|¥5). Generalized excitation energies are given as the eigemyrthogonalization with respect to the excitation classes, fully
values of the ISR secular matrM, that is, the matrix rep- comply with these properties as do the unitary CC represen-
resentation of the excitation energy operaghifted Hamil-  tations considered in Sec. V.

tonian H— EJ with respect to the intermediate states;). Another property of interest is the invariance of the ISR
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with respect to independent unitary transformations of occu- A< ):CT ...cle .. .¢ (A3)
pied and virtual orbitals. Orbital transformations of this kind #¥omh bnt ”

induce classwise unitary transformations of the physical eXHenotes an arbitrary operator of rapk that is A( Jis a
~ 1 M

citation operator<:,. As an immediate conclusion, the in- nroquct of creation andu destruction operators. Accord-
variance property holds for the ECO-ISR, BCC, and UCCing to the Baker-Hausdorff formula we may write

schemes, provided that the configuration space comprises all

configurations through a given excitation cldsgstematical A " - - ~ 1 . A~ A

truncation. expl—T)A, exp(T)=A ) t[Aw, T]+ E[[A(“) T1.T]
The proofs of compactness and separability given here

and elsewhere presuppose the use of an exact ground state +.. (A4)

|WwY). Therefore the results cannot be transferred simply to N .

representations based on an approximate ground state wa@viously the commutatdrA ), T,] is an operator of rank
function. For example, in the case where the operator mang.+ v—1. Similarly, [[A,),T,],T,] is an operator of rank
fold used in the ground state CC treatment is smaller thap,+ v+ p— 2, etc. This means that commutation withdoes
that used in the excited state calculation, the factorizatiomogt increase the rank; commutation Wﬁf) increases the
according to Eq(58) is valid, whereas Eq(59) is no longer  rank by 1, but also increases due (#1) the perturbation
StriCtly fulfilled. As should be I’ecalled, the perturbation theo-theoretica| order of the resumng operator by 1; genera"y, the
retical approach to the ECO representation giving rise to thgommutation withT, enhances both the rank and the order
ADC(n) approximation schemdsee Sec. ll| Bis separablg by v—1. Inserting the Baker-Hausdorff expansiohd) in
and compact at all orders, as one may easily verify. This the matrix elementA2), we see that all contributions must
finding applies to any separable ground state perturbanoganish for which the rank of ...[A,.T],...T]] is

theory. smaller than the residual rarfkl]—[J]| of the respective

The compactness and separability conditions do not Smgl%(citationAoperator§:| ,&,. The rank of physical excitation

out a unique representation, as the example of the ECO an L . .
UCC representations shows. As shown in Sec. V these rePerator<C; is given by the respective clags]. This allows

resentations differ by a nontrivial unitary transformatidn us to conclude the order relation
fulfilling the so-called canonical order relatio(81). More- LI A (xp0\ e B
over, U adopts the separablilock-diagonal form in the (WA =0([H=[I=w) for |[1] [J]|>le5)
case of the separate fragment model. Obviously any repre-

sentation differing from the ECQor UCC) representations  This result may readily be applied to the matrix elements of
by such a compact and separable unitary transforméti®  he HamiltonianH = Ho+H,. While being an operator of

itse_lf compact and sepa_rable. In this sense the two ﬁqpertiqgnkﬂzz, I:|| itself is of first order of perturbation theory;
define a class of equivalent representations. Despite th'ﬁence

equivalence there may be interesting differences with respect
to their use in practical computational schemes. (U HIYH=0([1]1-[J]|-1) for [1]-[I]=2.
(AB)
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the more stringent canonical order relatigas shown in Fig.
APPENDIX A: PROOF OF THE ORDER RELATIONS FOR 3) can be deduced. To see this we consider a matrix element
THE BCC AND THE ECO REPRESENTATIONS of H— Eg,

TheAdlag’\lrarr]maUc per.turbz.atlon theory for the cluster op- (WA - E(’§'|\If5’>=<®3‘|crexr(—T)[H,CJ] exp(T)Id)Q).
eratorT=X__,T, makes it evident that thep-vh partsT, (A7)
are (at least of the orderv—1, o

~ The commutatof H,C;] has a contribution that is of rank
T,=0(v—1). (A1) [J]1+1 and is of first order of perturbation theory. As above
R we may conclude that
For example, the double excitation pdr contains only .
first- and higher-order terms. Note that the relatié) be- (VI H-EQ|¥H=0([11-[J]) for [1]=[J]. (A8)
comes ftrivial for T; (appearing actually in second-order . N0 N .
Mdller-Plesset perturbation theontet us now consider the Since (Wi |Eg|W )=Egdy;, this result also holds for the

matrix element representation of itself.
With the help of this result for the biorthogonal represen-
(‘I’HAW|‘1’9> :(@mél‘rexq —?)Aw)exp(?)éﬂ@(ﬁ‘). tation one may easily prove the canonical order relati@gs
(A2) for the ECO intermediate states. For this purpose we decom-

pose an arbitrary matrix elemeHt; as follows by inserting
where twice the biorthogonal resolution of the identity:
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tions (80) for the lower left triangle [(I [=[J]) of U. Since
1
(B |H) = E (T WRN W[ H[WD(WL[Wy). U is unitary they must also hold for the remaining part
(A9) [I]<[J] as shown in Appendix C.

Since|:| is a Hermitian matrix we may confine ourselves to =~ APPENDIX C: ORDER RELATIONS IN A UNITARY
the case[l]>[J] By construction, the intermediate states MATRIX

|W,) are orthogonal to the correlated excited states) of
lower classeq,K]<[I]. Thus the summation ovéf on the
right-hand side of Eq(A9) is restricted by K]=[1]. Simi-
larly, we may conclude a restrictigriL ]<[J] for the sum-

Let us consider a unitary matrid with a block structure
e mv=1,2 ..., andassume that the block of the lower
Ieft triangle fqu|IIs the canonical order relatiori81):

mation overl. This follows from U,,=0(pn—v) for u=v. (Cy
(WEW5) = (DN Clexp — T)C;|wh) (A10)  We will prove that, as a consequence of unitarity, the canoni-
. cal order relations hold for the entire matrix:
=(®g|CLCy|@p). (A11) U, =0(lu—s]). 2
SinceC; is a linear combination of excitation operators of Let Uy, k=1,2,. .., denote the columns of blocks &f.

classesu<[J], this matrix element vanishes [L]>[J].

Altogether, the summation on the right-hand side of &) From the orthogonality o, andU, one may readily con-

clude thatU, ,=O(1). This means that the canonical order
is restricted according tEK]>[I]>[J] [L]. Using the or- relations hold for the first two columng; and U,. Now

der relations(A8) for (Wy[H|W?) we may conclude that i orthogonality to U; can only be fulfilled if
every summation term and thus the hole sum is at least of th L=0(2) andU, ==0(1). Proceeding in such a way one

order[1]—[J]. We note that the minimum value is indeed 1y may successively show the canonical order relations for all
adopted, since fqu] [1] and[L]=[J] the overlap matrix  ¢ojymns ofU. The proof can be completed in a formally

elements(W| W) and(W{|W¥,) are of zeroth order. correct manner as follows. Assume thatefers to the first
column for which the canonical order relation is violated,
APPENDIX B: COMPACTNESS OF THE UNITARY that is,
TRANSFORMATION RELATING THE ECO
AND THE UCC REPRESENTATIONS U;j=0(j—i—d) for i<] (€3
Let us consider an arbitrary matrix element of the unitaryand leti be a row for which the deviatiod, 0<d<j—i is
matrix U with [1]1=[J]: maximal. If the maximal deviation occurs in more than one
o . - column, then is assumed to be the largest row index. Now
Uyy=(D|Clexp — &) Cyexp(a)|p). (B1)  consider the product of the columkk andU; :

Here we use the form of Eq&20,21) for |\if3) and the UCC
L ; / : . Ufu.=> Ul Uy (C4)
ground stat€74). Similar to the considerations in Appendix =T 4 ki =K
A, we may now argue as follows: The unitary coupled cluster
operator is given by a suir=="_. &, of vp-vh contribu-

tions &, (also referred to as contributions of ramk. As in =UlyY;; +k2_ Ul Uy

the case of the usual CC operafofsee Eq(Al)], one may ko1

show by perturbation theory that the order relation
. + > UL Uy C5
o,=0(v—1) (B2) & =i =X (€5

holds for these parts. Using the Baker-Hausdorff formula weThe first term (T1) on the right-hand side is of order
obtain j—i—d [since U;=1+0(1)]. The last term(T3) on the
L right-hand side is of the ordgr-i, since all blocks involved
A Ay 2 o . A Ao oa fulfill the canonical order relations; the minimal order is
exp(— 0)Coexpl(0) = Cy+[Cy, 01+ 5[[Cy 0], 0]+ - adopted fok=j. The order analysis of the second te(Ti2)
(B3)  on the right-hand side is easily performed by partitioning the
summation into two contributions correspondingktai and
A commutator[B a,] increases both the rank of a given k>i, respectively:

operatorB and its perturbation theoretical ord@t least by

v—1 (see Appendix A For example, each commutator in- _ . k)4 .
volving o, increases the rank by 1, concomittantly adding T2) g‘@ O(i=k0(j ~k=dj) g‘. Olk=1)

one order of perturbation theory. In the overlap matrix ele- k<i k<]

ment U,; only those terms from the expansi@B3), for X O(j —k—djy). (C6)

which the rank increment is at leddt]—[J], may contrib-
ute. This means that the nonvanishing contributions are dtlered;,<j—k denotes the deviation of the blotk; from
least of the ordefl]—[J]. Thus we have shown the rela- the canonical order relation. In the first contribution the
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may assume the valud; the lowest possible order would The proof given here can be readily generalized to the
arise fromk=i—1 andd;; _;=d. By assumptiond;<d for  following assertion. Let andV be two(quadrati¢ matrices

i = A
the second contribution. Thus we arrive at the following re-with a block structure as considered above for which the

sult for the order ofT2): orthogonality relation
(T2)=0(1)O(j—i+1-d)+0O(j—i—d")
=0(j—i+2-d)+0O(j—i—d"), (C? gT\é:ng:i (C8)

where d’<d. This shows that neithefT2) nor (T3) can
compensate for the lowest-order contribution(®). From  holds. If the canonical order relations are fulfilled for the

the orthogonality olJ; andU; we must conclude thadl; is  |ower left triangle of blocks ofU andV they hold for the
at least of the ordej—i—d+1 in contradiction to the as- entire matrices. - -

sumption(C3).
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