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As a general common concept, underlying diverse methods used to compute generalized electronic excita-
tions in atoms and molecules, intermediate-state representations~ISR’s!, are considered and analyzed. Essen-
tially, an ISR results by representing the excitation energy operator in terms of so-called correlated excited
states~CES’s! or states derived thereof. Three different ISR schemes are compared, namely the biorthogonal
coupled-cluster~BCC! representation used in both the coupled-cluster linear response and equation-of-motion
coupled-cluster methods, a unitary coupled-cluster~UCC! representation, and the excitation class orthogonal-
ized~ECO! representation resulting from a Gram-Schmidt orthogonalization procedure for the CES. Moreover,
the relationship between the BCC scheme and the symmetry-adapted-cluster–configuration-interaction method
is discussed. The relevance of the ISR schemes, as opposed to the much simpler configuration-interaction~CI!
expansions, arises from two basic properties referred to as separability and compactness. The former property
is a sufficient condition for size-consistent results, while the latter allows one to use smaller explicit configu-
ration spaces than in comparable CI treatments. We show that the ECO and UCC representations are both
separable and compact, whereas a somewhat restricted compactness property applies in the BCC case.

PACS number~s!: 31.15.2p, 31.10.1z

I. INTRODUCTION

Propagator methods and related approaches are a natural
starting point for studying electronic transitions in atoms and
molecules. Here transitions are meant in a more generalized
sense, comprising, in addition to neutral excitations, ioniza-
tion, electron attachment, double ionization processes, etc.,
as well, that is, processes in which the number of electrons
may change. For an introduction, overview, and references to
the original literature the reader is referred to textbooks
@1–3# and various review articles@4–11#. In comparison
with the more conventional wave function approach, e.g., the
configuration-interaction ~CI! treatment, the propagator
methods have two basic advantages. First, the excitation en-
ergies and transition moments~spectral intensities! are deter-
mined directly, that is, without the necessity of performing
separate calculations for the initial and final states. Second,
these methods are potentially size-consistent~more precisely
size-intensive!, which means that for a system consisting of
separate~noninteracting! fragments the results do not depend
on whether the method is applied to the total system or to the
individual fragments. As is well known, this property is a
precondition for obtaining meaningful results in applications
to large molecules~for example, see@3#!.

Various computational schemes have been developed de-
riving from or being related to propagator theory. Roughly,
one may distinguish between so-called algebraic methods
and methods based on diagrammatic perturbation theory.
Well known algebraic approaches are the equation-of-motion
~EOM! method@4,9,12# and the essentially equivalent super-
operator formulation of propagators@6–8,10,13,14#. As an
example of diagrammatic approaches we mention the outer
valence Green’s function~OVGF! method @11,15# for the
electron propagator. A general procedure referred to as

algebraic-diagrammatic construction~ADC! has been used to
derive higher-order approximations within the diagrammatic
approach@16–19#.

In practice, most of the proposed approximation schemes
take on the form of an eigenvalue problem of a~not neces-
sarily Hermitian! secular matrix. Here, the physically inter-
esting quantities, such as the~generalized! excitation ener-
gies, are given essentially by the eigenvalues while the
associated transition moments are derived from the respec-
tive eigenvectors. What is the relationship of the various—at
first glance quite different—computational schemes? As an
explanatory, unifying concept one may regard the so-called
intermediate-state representations~ISR’s!. Basically,
intermediate-state representations result from representing
the excitation energy operator~shifted Hamiltonian! Ĥ2E0

N

~or a more general operator! in terms of a~complete! basis of
statesuC̃J&, which in a certain sense ‘‘mediate’’ between the
exact excited states uCn& ~of the considered
N,N61,N62, . . . , particle system! and the familiar
Hartree-Fock~HF! configurationsuFJ&5ĈJuF0

N& used, e.g.,
in the CI treatment. HereuF0

N& is the N-electron Hartree-
Fock ground state, andĈJ denote physical excitation opera-
tors ~of n50,61,62, . . . , electrons!. The intermediate
statesuC̃J& may be generated in specific ways from the so-
called correlated excited states~CES’s! ĈJuC0

N& obtained by
applying the physical~or more general! excitation operators
ĈJ to the exactN-electron ground stateuC0

N& ~with energy
E0
N). The use of correlated excited states as expansion mani-

folds has been considered for a long time in the context of
propagator theory@20–22#. Explicit use of intermediate-state
representations has been made, for example, by Prasadet al.
@23#, by Mukherjee and Kutzelnigg@24#, and by the present
authors @25,26#. Moreover, several methods extending the
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coupled-cluster~CC! approach to the treatment of~general-
ized! electronic excitations may be viewed as examples of
intermediate-state representations. The latter methods com-
prise the SAC-CI~symmetry-adapted-cluster–configuration-
interaction! approach of Nakatsuji and Hirao@27–29#, the
coupled-cluster linear response~CCLR! theory@30–36#, and
the related equation-of-motion coupled-cluster~EOM-CC!
approach@37–39#.

Clearly, a representation of the Hamiltonian or more gen-
eral operators based on correlated excited states is distinctly
more complicated than, e.g., the familiar CI representation in
terms of HF configurations. Thus it is legitimate to ask what
are the advantages of using the intermediate-state represen-
tations. If one tries to analyze this issue beyond the naive
expectation that it should be good to include~ground state!
correlation effects already in the expansion manifold used in
the excitation problem, one is led to two basic properties
referred to as compactness and separability@25,26#. As will
be explained in more detail below, compactness means that
the explicit configuration spaces required in the ISR methods
are smaller than those of comparable CI treatments. The
separability property is a sufficient condition for the size-
consistency~more specifically, size-intensivity! of the ISR
methods. Essentially it means that in the secular problem for
a system consisting of noninteracting~separable! fragments,
so-called local excitations~associated with one of the sub-
systems! are strictly decoupled from nonlocal excitations.
The interesting point elaborated further in this paper is that
these two properties are not obtained by simply adopting the
CES representation. As will be seen, the orthonormalization
procedure imposed on the CE states plays a decisive role.

In this paper we compare three different intermediate-
state representations, namely the biorthogonal coupled clus-
ter ~BCC! representation used both in the CCLR@30–36# and
the EOM-CC methods@37–39#, the unitary coupled-cluster
~UCC! representation@23,24#, and the excitation class or-
thogonalized~ECO! representation resulting from a special
orthonormalization procedure for the correlated excited
states@25,26#. In particular, the compactness and separability
properties are analyzed. As will be seen, both the ECO and
UCC representations comply fully with these important re-
quirements, while a more restrictive compactness property
applies to the BCC representation. In a subsequent paper
@40# a similar analysis will be given of the EOM method for
N, N61, andN62 particles.

An outline of this paper is as follows. Section II is used to
introduce some basic definitions and, moreover, gives a brief
review of the familiar CI representation with regard to the
properties of interest here. The ensuing Secs. III, IV, and V
treat separately the cases of the ECO, BCC, and UCC repre-
sentations, respectively. A brief summary and some conclu-
sions are given in the final Sec. VI.

II. GENERAL ASPECTS OF INTERMEDIATE-STATE
REPRESENTATIONS

While the intermediate representations to be considered in
the following were originally brought forth in the context of
propagator theory, they may as well be introduced directly
without reference to propagators. Let us consider a system of
N electrons having a nondegenerate ground stateuC0

N& of

energyE0
N . It is convenient to use the language of second

quantization, wherecp
† (cp) denote creation~destruction! op-

erators associated with a suitably chosen basis of single-
particle states~orbitals! ufp&. Usually, the set of orbitals
ufp& will be generated by a Hartree-Fock calculation for the
N-electron ground state. According to the occupation num-
bers in the HF ground stateuF0

N&, np512n̄p51,0, the or-
bitals ufp& are denoted as occupied orbitals~or hole states!
and unoccupied orbitals~or particle states!, respectively. The
HamiltonianĤ of the system reads in second-quantized no-
tation

Ĥ5T̂1V̂5(
pq

tpqcp
†cq1

1

2 (
pqrs

Vpqrscp
†cq

†cscr , ~1!

wheretpq denote matrix elements of the single-particle part
of the energy andVpqrs5^fpfquvuf rfs& denote the Cou-
lomb integrals arising from the electronic repulsion. In the
form of Eq. ~1! Ĥ does not depend explicitly on the number
of electrons, and thus may be used as well to describe the
corresponding systems ofN61,N62, . . . , electrons. For the
purpose of using perturbation theory, the Hamiltonian may
be decomposed according to

Ĥ5Ĥ01ĤI ~2!

into an unperturbed~diagonal! one-particle part

Ĥ05(
p

epcp
†cp , ~3!

wheree i denote the orbital energies, and an interaction part

ĤI5Ŵ1V̂, ~4!

whereV̂ is the electronic repulsion andŴ5T̂2Ĥ0 is a re-
sidual nondiagonal single-particle part.

Generalized excitation energies ofN8 electrons
(N85N,N61, . . . )

vn5En
N82E0

N ~5!

and the associated excited statesuCn
N8& may be obtained as

the eigenvalues and eigenfunctions, respectively, of the
‘‘shifted’’ Hamiltonian Ĥ2E0

N :

~Ĥ2E0
N!uCn

N8&5vnuCn
N8&. ~6!

Besides the energies, one is interested in spectral intensities
derived from~generalized! transition moments

Tn5^Cn
N8uD̂~r !uC0

N&, ~7!

whereD̂(r ), r5N82N, is a suitably chosen transition opera-
tor, e.g., theN-electron dipole operator in the case of neutral
excitations (r50).

In general, the solution of the eigenvalue problem~6! re-
quires one to introduce a basis set representation ofĤ2E0

N

and a subsequent treatment of the corresponding secular
equation. LetuC̃J&, J51,2, . . . , denote a complete ortho-
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normal basis in the Hilbert space ofN8 electrons, giving rise
to a Hermitian matrix representationH̃ of the Hamiltonian,

H̃IJ5^C̃I uĤuC̃J&. ~8!

Using this basis set representation, Eq.~6! is transformed
into the algebraic eigenvalue problem

~H̃2E0
N1!Y5Y V, Y†Y51 ~9!

for the matrixH̃2E0
N1. HereV denotes the diagonal matrix

of excitation energiesvn , andY denotes the matrix of eigen-
vectors. The transition moments can be obtained according
to

Tn5(
J
YnJ* F̃J ~10!

as the scalar product of thenth eigenvectorYn and the vector
F̃ of the transition moments

F̃ I5^C̃I uD̂~r !uC̃0
N& ~11!

defined with respect to the statesuC̃I&.
Before turning to the intermediate representations it may

be helpful to take a brief view of the familiar configuration-
interaction representation. To be more specific we will con-
fine ourselves in the following to the case of excitations in
the (N21)-electron system~single-electron ionization!, but
the ensuing discussion can easily be generalized to any
N8-electron states~see Sec. III D!. A complete and orthonor-
mal set of CI configurations~or HF configurations! for the
(N21)-particle Hilbert space is given by the states

uFJ&5ĈJuF0
N& ~12!

where ĈJ denote ‘‘physical’’ excitation operators from the
operator manifold

$ĈJ%[$ci ,ca
†cicj ,i, j ;ca

†cb
†cicjck ,a,b,i, j,k; . . . %.

~13!

Here the subscriptsa,b,c, . . . , andi , j ,k,l , . . . , refer to un-
occupied and occupied orbitals, respectively; capital
latin subscripts are used as a shorthand notation for the
respective strings of single-particle indices:
J[(a,b,c, . . . ;i , j ,k,l , . . . ). The operatorsĈJ are called
‘‘physical’’ since their action on the HF ground state consists
in removing electrons from occupied orbitals and
adding electrons into unoccupied orbitals. The excitation
operatorsĈJ decompose into obvious classes, referred to
as m-hole–(m21)-particle excitations @mh–(m21)p],
m51,2,3,. . . ,N according to the numberm of destruction
operators. The class of an arbitrary excitationJ will be de-
noted by@J#.

The CI representation ofĤ is a matrixH with the ele-
mentsHIJ5^F I uĤuFJ&. The partitioning of the CI configu-
rations into excitation classes generates a block structure of
H5„H(m,n)…, m,n51, . . . ,N. BecauseĤ contains ~at
most! a two-body operator, the blocksH(m,n) vanish when
um2nu.2. The nonvanishing matrix elements for
um2nu51,2 are linear expressions of the Coulomb integrals,

or of ‘‘first order’’ in the language of perturbation theory.
Only the diagonal elements ofH ~and ofH2E0

N1) contain
the ~HF! orbital energies, that is, zeroth-order contributions.
This ‘‘order structure’’ ofĤ is depicted in Fig. 1. Complete
CI expansions~full CI ! @41,42# are practical only for limited
one-particle basis sets and small systems. Usually the num-
ber of CI configurations must be restricted. A systematical
truncation scheme, leading to perturbation-theoretical consis-
tency, is to include all configurations up to a certain excita-
tion class. For example, a configuration space comprising the
classesm51, 2, and 3 allows for a consistent second-order
description of the primary states@i.e., states essentially char-
acterized as 1h states~or Koopmans states!#. For a Hamil-
tonian containing one- and two-particle interaction, the gen-
eral rule is that the consistent description of the primary
states through order 2m and 2m11 requires one to include
the first 2m11 classes in the CI configuration space. Stated
differently, the CI configuration space~beginning atm51
for n51) grows in each even ordern of perturbation theo-
retical consistency by two excitation classes. As will be dis-
cussed below, the intermediate-state representations require
distinctly smaller~compact! configuration spaces for a com-
parable description.

As is well known, limited CI expansions for~generalized!
electronic excitations are not size-consistent~here, more spe-
cifically, size-intensive!. This means that for a systemS con-
sisting of two noninteracting~separate! partsA and B the
method gives different results for, say, a ‘‘local’’ excitation
on A when applied toS or to A alone@43#. The reason for
this behavior is that the CI matrix is not ‘‘separable,’’ that is,
‘‘local’’ excitations, say, onA do not decouple from nonlocal
excitations involving bothA andB. The mixing of local and
nonlocal configurations is introduced, for example, via the
block H(1,3) containing matrix elements of the kind

Hp,abi jk52dpkVab@ i j #2dpiVab@ jk#2dp jVab@ ik# . ~14!

HereVab@ i j # denotes the antisymmetrized Coulomb integral.
Obviously these matrix elements allow for a coupling of a
1h configuration (p) local onA and a 3h-2p configuration
(abi jk) in which a hole onA is accompanied by a 2p-2h
~double! excitation onB. By contrast to the CI treatment, the
intermediate-state representations are separable and, thus,
size-intensive, as will be discussed in the ensuing Sec. III.

FIG. 1. Order relations of the CI matrixH in the case of
(N21)-electron states. The numbers in the blocks ofH indicate the
~lowest! perturbation theoretical order ; empty blocks vanish.
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III. EXCITATION CLASS ORTHONORMALIZED
INTERMEDIATE-STATE REPRESENTATION

A. Gram-Schmidt orthogonalization
of correlated excited states

The common starting point for the intermediate-state rep-
resentations is the set of ‘‘correlated’’ excited~CE! states

uCJ
0&5ĈJuC0

N& ~15!

obtained by applying the excitation operators~13! to the cor-
related ground stateuC0

N&. As above we shall confine our-
selves for the moment to the case of excitations in the
(N21)-electron system. The following treatment can be eas-
ily transferred to the other cases, as is briefly discussed in
Sec. III D. As was shown by Manne@20# and Dalgaard@21#,
the CE states~15! form a complete set of (N21)-electron
states, provided that^C0

NuF0
N&Þ0 ~see also Sec. IV!. Obvi-

ously the CE states are not orthonormal. The overlap inte-
grals

r IJ5^C0
NuĈI

†ĈJuC0
N& ~16!

may be considered as the matrix elements of a generalized
density matrixr. Orthonormal statesuC̄J& may be obtained
by the symmetrical orthonormalization~SO! procedure ac-
cording to

uC̄J&5(
I

uC I
0&~r21/2! IJ . ~17!

However, the representation ofĤ2E0
N defined with respect

to these SO states is neither separable nor compact. This can
be seen by inspecting, for example, the 1h/3h-2p coupling
matrix elementsH̄p,abi jk . These matrix elements have con-
tributions allowing for the coupling of local and nonlocal
configurations@26#, similar to the CI matrix elements~14!. A
different possibility of generating orthonormal states is the
Gram-Schmidt~GS! orthogonalization of successive excita-
tion classes in which the CE states can be divided. Since this
procedure has been considered in some detail elsewhere
@25,26#, we may confine ourselves here to a brief review of
its essential features. The excitation class orthogonalized in-
termediate statesuC̃J& can be constructed recursively as fol-
lows:

~i! Assume that the intermediate statesuC̃K& of the classes
1, . . . ,n21 have been constructed. Then the statesuCJ

0& of
class @J#5n are orthogonalized to all intermediate states
uC̃K& of the lower classes,@K#,n according to

uCJ
#&5uCJ

0&2 (
K

@K#,@J#

uC̃K&^C̃KuCJ
0&. ~18!

~ii ! The ‘‘precursor’’ statesuCJ
#& of classn may then be

orthonormalized symmetrically among each other, yielding

uC̃J&5 (
J8

@J8#5@J#

uCJ8
# &~r#21/2!J8J . ~19!

Here r# denotes the matrix of overlap integrals
rJ8J
#

5^CJ8
# uCJ

#& of the precursor states of classn.
For later use it is convenient to transfer the GS procedure

~18,19! to the excitation operatorsĈJ themselves. This leads
to ECO operatorsC̃J , with the property that

uC̃J&5C̃JuC0
N&. ~20!

Note that any ECO operator is given by a linear combination

C̃J5 (
K

@K#<@J#

aJKĈK ~21!

of excitation operators of the same and lower classes, where
the coefficientsaJK are uniquely determined byuC0

N&.
The ECO intermediate statesuC̃J& obtained by the GS

procedure~18,19! define a matrix representationH̃2E0
N1 of

Ĥ2E0
N , where

H̃IJ2E0
Nd IJ5^C̃I uĤ2E0

NuC̃J&5^C0
NuC̃I

†@Ĥ,C̃J#uC0
N&.

~22!

Note that in the last expressionE0
N is no longer explicit,

while the knowledge ofuC0
N& is required both to determine

the ECO operators and to evaluate the secular matrix. For
explicit expressions see@25#. The resulting eigenvalue prob-
lem to be solved is as formulated by Eqs.~9!. The question
as to what is gained by using the more complicated ECO
representation instead of the CI representation will be ad-
dressed in the ensuing Secs. III B and III C.

B. Compactness property

Practical computational schemes can be deduced from the
general ECO representation~22! by introducing approxima-
tions for the reference stateuC0

N& and by truncating the ECO
configuration space. As in the CI approximations, one may
investigate the resulting truncation error. For this purpose we
consider the block structure ofH̃2E0

N1 according to the
excitation classes (m51, . . . ,N) of the ECO states. Unlike
in the CI matrix, there will be, in general, no vanishing
blocks of H̃2E0

N1. However, the matrix elements of
H̃2E0

N1 are subject to well-behaved~‘‘regular’’ ! perturba-
tion expansions~see the discussion below!, for which the
following ~‘‘canonical’’! order relations apply:

~H̃2E0
N1!~m,n!50~ um2nu!. ~23!

This means that, for example, the coupling matrix element
H̃p,abi jk between a 1h (m51) state and a 3h-2p state
(n53) is of second order~at least!. This order structure of
H̃2E0

N1 is schematically shown in Fig. 2.
As a direct consequence of the order relations~23!, in the

following referred to as canonical order relations, the error
introduced~for the primary states! by truncating the ECO
configuration space beyond classm is of order 2m. Or stated
differently, a consistent treatment of the primary states
through order 2m and 2m11 only requires one to take the
configuration classesm51, . . . ,m11 into account. This is
called the compactness property of the ECO intermediate-

53 2143ALGEBRAIC PROPAGATOR APPROACHES . . . . I . . . .



state representation. One should recall that a comparable CI
expansion comprises the first 2m11 excitation classes. A
similar order relation holds for the intermediate transition
moments

F̃J5^C̃JuD̂uC0
N&. ~24!

Let D̂ denote an arbitrary~not necessarily physical! rh-
(r21)p operator. Then the order relation

F̃J5O~@J#2r !; @J#>r ~25!

holds for the statesJ of class@J#>r .
A proof of the compactness property of the ECO interme-

diate representation has been given in@25#. The essential step
here was to show that the unitary matrixQ transforming the
intermediate states into the exact energy eigenstates,

QnJ5^CnuC̃J&, ~26!

fulfills the canonical order relation~23!, that is,

Q~m,n!5O~ um2nu!. ~27!

Here it is assumedQ can be organized in blocksQ(m,n)
according to the excitation classes. Since

H̃2E0
N15Q†V Q, ~28!

whereV is the diagonal matrix of exact excitation energies
@for whichvn>O(0)#, one may easily convince oneself that
the canonical order relation~23! holds for the ECO secular
matrix H̃2E0

N1. A more direct proof of the compactness of
H̃2E0

N1 is given in Appendix A.
The construction of the ECO statesuC̃J& depends solely

on the correlated ground stateuC0
N&. This suggests that per-

turbation theory foruC0
N& can be used to generate well-

defined perturbation expansions for the secular matrix ele-
mentsH̃IJ2E0

Nd IJ and the intermediate transition moments
F̃J :

H̃2E0
N15K1C~1!1C~2!1•••, ~29!

F̃J5F̃J
~0!1F̃J

~1!1•••. ~30!

Here, in accordance with the notation of@25#, we write
H̃2E0

N15K1C whereK is the diagonal matrix of~zeroth-
order! HF ionization energies, whileC comprises the first-
and higher-order contributions. The perturbation expansions
are ‘‘regular,’’ that is, they behave essentially like the usual
Rayleigh-Schro¨dinger perturbation expansions foruC0

N& and
E0
N , respectively@25#. This means, in particular, that the ab-

solute values of the occurring energy denominators are not
smaller than the energy gap between occupied and unoccu-
pied orbitals in theN-electron HF ground state. Provided that
these perturbation expansions converge sufficiently well, one
may generate practical systematic approximation schemes by
truncating the perturbation series in Eqs.~29,30! at some low
order. Such schemes have been derived previously by a pro-
cedure referred to as algebraic diagrammatic construction
~ADC! from a reformulation of the familiar diagrammatic
perturbation expansions for the various propagators@16–19#.
In the ADC schemes, the maximal order of perturbation
theory required for a consistentnth-order description of the
primary states depends on the respective block ofK1C and
F̃. For n53, for example,C(1,1), C(1,2), andC(2,2) are
required through third, second, and first order, respectively;
no other blocks are needed.

C. Separability

To discuss the size-consistency of the ECO intermediate
representation we reconsider the separate fragments model
S consisting of two noninteracting partsA andB. We may
assume that the single-particle states are localized onA or on
B, respectively. This allows us to specify the general excita-
tions J of S according toJ[(JAJB) where the ‘‘subexcita-
tions’’ JA and JB refer to the fragmentsA and B, respec-
tively. As shown in@26#, the obvious factorization

uCJAJB
0 &5uCJA

A &uCJB
B & ~31!

of the correlated excited states holds also for the ECO inter-
mediate states, that is,

uC̃JAJB
&5uC̃JA

A &uC̃JB
B &. ~32!

As an immediate consequence, the ECO intermediate rep-
resentation ofĤ5ĤA1ĤB is separable, which means that a
purely local excitationI[I A does not couple to nonlocal
excitations of the typeJ[(JAJB). This leads to the follow-
ing block structure ofH̃:

H̃5S H̃AA 0 0

0 H̃BB 0

0 0 H̃AB AB

D . ~33!

Obviously, the separability property also holds for the secu-
lar matrix H̃2E0

N1. Moreover, here the local blocks of
H̃2E0

N1 are identical to the corresponding secular matrices
(H̃ (A)2E0

N1(A)) and (H̃ (B)2E0
N1(B)) obtained for the indi-

vidual systemsA and B, respectively. A similar property
applies to the intermediate transition moments~see @26#!.

FIG. 2. Order relations of the secular matrixH̃, Eq. ~23!, of the
ECO intermediate-state representation in the case of
(N21)-electron states. The numbers in the blocks ofH̃ indicate the
~lowest! nonvanishing perturbation theoretical order.
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The intermediate transition momentF̃JA
for a local excitation

J[JA is identical to the corresponding transition moment
F̃JA
(A) of subsystemA,

F̃JA
5F̃JA

~A! . ~34!

Equations~33! and~34! establish the size-consistency~inten-
sity! of the ECO-ISR approach: the results obtained for, say,
A alone are identical to those obtained forA1B at any com-
mon level of approximation.

D. The ECO representations in other cases
and the relationship to propagators

The construction of intermediate (N11)-, (N62)-,
(N63)-, . . . , particle states is completely analogous to the
procedure described in Sec. III A. The corresponding corre-
lated excitations are defined as in Eq.~15! using the respec-
tive sets of physical excitation operators specified below.

~a! N11 particle states:

$ĈJ%5$ca
† ,ca

†cb
†ci ,ca

†cb
†cc

†cicj , . . . %. ~35!

~b! N22 particle states:

$ĈJ%5$cicj ,ca
†cicjck ,ca

†cb
†cicjckcl , . . . %. ~36!

~c! N12 particle states:

$ĈJ%5$ca
†cb

† ,ca
†cb

†cc
†ci ,ca

†cb
†cc

†cd
†cicj , . . . %. ~37!

Here the creation and destruction operators are associated
with unoccupied~particle! and occupied~hole! one-particle
states, respectively. Obvious index restrictions, e.g.,a,b for
the setca

†cb
†ci are assumed.

For the case ofN-particle states the definition of the cor-
related excitations has to be modified slightly according to

uCJ
0&5ĈJuC0

N&2uC0
N&^C0

NuĈJuC0
N& ~38!

in order to ensure their orthogonality to the exact ground
stateuC0

N&. The set of physical excitation operators here is

$ĈJ%5$ca
†ci ,ca

†cb
†cicj ,ca

†cb
†cc

†cicjck , . . . %. ~39!

Formally the orthogonalization of the statesuCJ
0& to the

N-electron ground state according to Eq.~38! may be in-
cluded in the general GS orthogonalization procedure
~18,19! by regarding uC0

N& as a zeroth excitation class
(n50). For all cases, the partitioning of the correlated exci-
tations into excitation classesn51,2,3,. . . , is obvious.

Finally we discuss the use of the intermediate states in
representing the various propagators. As an example let us
consider the one-particle Green’s function~electron propaga-
tor! G(v). In energy representationG(v) is a matrix of
elements@1#

Gpq~v!5Gpq
2 ~v!1Gpq

1 ~v!, ~40!

where

Gpq
2 ~v!5^C0

Nucq
†~v1Ĥ2E0

N2 ih!21cpuC0
N&, ~41!

Gpq
1 ~v!5^C0

Nucp~v2Ĥ1E0
N1 ih!21cq

†uC0
N&. ~42!

Hereh is a positive infinitesimal required to define the Fou-
rier transformation between time and energy representations.
G(v) is seen as consisting of two partsG2(v) andG1(v)
containing physical information on the (N21)- and the
(N11)-particle systems, respectively. By inserting the
~complete! set of intermediate (N21)-particle statesuC̃J& on
the right hand side of Eq.~41! one arrives at the ECO
intermediate-state representation ofG2(v),

G2~v!5 f †~v12K2C2 ih!21f , ~43!

where2(K1C) is the ECO secular matrix given by Eq.
~22! and f is the matrix of intermediate transition moments

^C̃JucpuC0
N&. An analogous expression is obtained for

G1(v) by using the set of intermediate (N11)-states. It is
readily seen that the solution of the ECO intermediate-state
eigenvalue problem@Eqs. ~9–11!# leads to the~diagonal!
spectral representation

G2~v!5x†~v12V2 ih!21x, ~44!

in which the physical content ofG2(v) is explicit. HereV
is the diagonal matrix of~negative! ionization energies and
x denotes the matrix of the spectroscopic amplitudes
xnp5^CnucpuC0

N&. In a similar way, the ECO intermediate
states forN andN62 electrons may be used to obtain rep-
resentations of the polarization propagator and the 2p(2h)
propagator, respectively. The reformulation of propagators in
the form of Eq.~43! has been considered previously in the
context of the ADC method@16–19#. In this method the
matrix elements of the effective quantitiesC and f are de-
termined indirectly by comparing the perturbation expansion
of the algebraic form@here Eq.~43!# with the diagrammatic
perturbation series for the respective propagator@here
G2(v)]. By performing this comparison successively
through higher ordern of perturbation theory, systematic ap-
proximation schemes@ADC(n) schemes# can be derived,
which represent complete summations of the diagrammatic
series through ordern and, moreover, infinite partial summa-
tions of higher-order terms. While this procedure can easily
be performed for smalln and has led to useful computational
schemes, it becomes impractical at higher order due to the
rapidly increasing number of diagrams. The ECO-ISR intro-
duced as a closed-form version of the ADC allows for a
direct access to the matrix elements ofC and f , but will be
useful also for deriving nonperturbative approximation
schemes.

IV. BIORTHOGONAL COUPLED-CLUSTER
REPRESENTATION

A. General concept

Various methods have been developed extending the suc-
cessful coupled-cluster approach to the treatment of~gener-
alized! excitation energies and transition moments. Besides
the CCLR theory@30–36# and the related EOM-CC method
@37–39# the reader should be referred to the open-shell or
multireference~MR! coupled-cluster methods~see Mukher-
jee and Pal@44# and references therein! and to methods com-
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bining propagator and coupled-cluster theory@45–47#. In the
following we will consider the CCLR theory in the form
obtained by Koch and Jo”rgensen @33# and the related
EOM-CC method as formulated by Stanton and Bartlett@39#.
Both versions lead to the same secular equations for the ex-
citation energies while differences remain in the treatment of
transition moments. The CCLR and EOM-CC methods are
quite general and can be adopted to excitations in
N,N61,N62, . . . , electron systems. For notational ease
we will consider the (N21)-electron case~ionization! in the
following. Some remarks concerning the slightly more com-
plicated case of the neutral excitations~in the N-electron
system! will be given in Sec. VI D. The relationship between
the BCC representation and the SAC-CI method of Nakatsuji
and Hirao@27–29# will be briefly addressed in the end of this
section.

In the coupled-cluster method theN-electron ground state
is written in the form

uC0
N&5exp~ T̂!uF0

N&, ~45!

where the so-called cluster operatorT̂ is given by a linear
combination of physical excitation operators~39!:

T̂5(
i51

N

T̂I5(
a,i

Taica
†ci1 (

a,b,i , j
Tabi jca

†cb
†cicj1•••. ~46!

Using the coupled-cluster ansatz~45!, the correlated excited
@(N21)-electron# states take on the form

uCJ
0&5ĈJexp~ T̂!uF0

N&5exp~ T̂!ĈJuF0
N&. ~47!

Note that T̂ and thus exp(T̂) commute with any physical
excitation operatorĈJ . Equation~47! also shows that the
correlated excited states result via a similarity transformation
from the complete set of HF configurations. This proves that
the set$uCJ

0&% is complete, since a similarity transformation
does not lead to linear dependencies.

Instead of orthogonalizing the statesuCJ
0& as advocated in

Sec. III B, here it is more natural to introduce the set of
biorthogonal stateŝCJ

'u obeying the relations

^C I
'uCJ

0&5d IJ . ~48!

The CC form of uCJ
0& allows one to write the bra states

^C I
'u explicitly as

^C I
'u5^F0

NuĈI
†exp~2T̂!. ~49!

The ‘‘mixed’’ representation ofĤ2E0
N defined with respect

to the biorthogonal sets of states, leads to the non-Hermitian
secular matrixM , where

MIJ5^C I
'uĤ2E0

NuCJ
0&

5^F0
NuĈI

†exp~2T̂!@Ĥ,ĈJ#exp~ T̂!uF0
N&. ~50!

The resulting secular equation

M X5X V ~51!

is used both in the CCLR and EOM-CC methods. HereV is
the diagonal matrix of ionization~excitation! energies and
X is the matrix of right-hand eigenvectors. An analogous
equation arises for the matrixY of the left-hand eigenvectors
of M reading

Y†M5V Y†, ~52!

and both equations can be combined

Y†M X5V, Y†X51. ~53!

Note that the left-hand and right-hand eigenvectors are bior-
thogonal but in general not normalized.

B. Compactness of the BCC representation

As described by Stanton and Bartlett@39# the matrix ele-
ments ofM can be obtained quite efficiently once the cluster

operatorT̂ has been determined by a CC calculation for the
N-electron ground state. The biorthogonal coupled-cluster
representation gives rise to practical approximation schemes
according to the various ways of treating theN-electron
ground state and by truncating the excitation manifold. Al-
though the resulting methods are nonperturbative, it should
be of interest to analyze the error introduced by restricting
the configuration space.

The order relations holding for the biorthogonal represen-
tationM of Ĥ2E0

N are shown in Fig. 3; their proof is given
in Appendix A. It is seen that these order relations are less
stringent than the canonical order relations~23! of the ECO
representation. The lower left triangular ofM is of the ca-
nonical form, but in the upper right triangle there are two
first-order blocks adjacent to the diagonal, as is the case in
the CI representation. The consequence for the perturbation-
theoretical consistency of the results~for the primary states!
is as follows: the consistency through order 2m21 and 2m
requires one to include the excitation classes
m51, . . . ,m11 in the configuration space. For example, if
the configuration space comprises classes 1 and 2, the de-
scription of the primary states is consistent only through sec-
ond order and not to third order as in the ECO representa-
tion. This shows that a modified compactness property
applies the biorthogonal representation, which is somewhat
weaker than that of the ECO-ISR.

FIG. 3. Order relations of the secular matrixM of the biorthogo-
nal coupled-cluster ~BCC! representation in the case of
(N21)-electron states. The numbers in the blocks ofM indicate
the ~lowest! nonvanishing perturbation theoretical order.
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Similarly one may analyze the results for the transition
moments. In the EOM-CC approach the squared transition
moments are obtained from the left-hand and right-hand
eigenvectors as

z^CnuD̂uC0
N& z25S (

I
XInFI* D S (

J
YJn* FJ

'D , ~54!

where

FI5^C0
NuD̂†ĈIexp~ T̂!uF0

N&* , ~55!

FJ
'5^F0

NuĈJ
†exp~2T̂!D̂uC0

N& ~56!

are intermediate transition moments associated with the BCC
representation. While the components ofF' fulfill the ca-
nonical order relations~25! for the transition moments~see
Appendix A!, this is not the case for the components ofF
@corresponding to the correlated excited states~15!#. For a
usual transition operator~of lowest rank! the order relations
of F areFJ5O(m) for @J#52m,2m11. This means that the
right-hand transition momentTn

(r )5( IXIn* FI is not compact.
For example,Tn

(r ) is not consistent through second order~for
primary states! if the BCC space is truncated after the first
two excitation classes~here 1h and 2h-1p). The lack of
compactness is accompanied by another deficiency, namely
the violation of size-consistency, as will be seen below. In
the CCLR method@33# the transition moments are calculated
in a size-consistent though more complicated way, which
shall not be analyzed here.

C. Separability

Koch et al. @34,48# have shown that the excitation ener-
gies deriving from biorthogonal representation~50! are size-
consistent. Their proof may be briefly stated as follows. The
cluster operator of the separate fragment model can be writ-
ten as the sum

T̂5T̂A1T̂B ~57!

of the cluster operators of the two fragments, and, thus,
exp(T̂)5exp(T̂A)exp(T̂B). A general correlated excitation
uCJ

0& with J[(JAJB) factorizes according to

uCJ
0&5exp~ T̂A!ĈJA

uF0
A&exp~ T̂B!ĈJB

uF0
B&, ~58!

and an analogous relation holds for the biorthogonal states
uCJ

'&. It is readily seen that the matrix element of
Ĥ5ĤA1ĤB taken with respect to a nonlocal configuration
I[(I AI B) and a local configuration, say,J[JA vanishes:

^C I AIB
' uĤuCJA

0 &5E0
B^F0

BuĈI B
† uF0

B&d I AJA50. ~59!

The transposed matrix elements

^CJA
' uĤuC I AIB

0 &5^F0
Buexp~2T̂B!ĤBexp~ T̂B!ĈI B

uC0
B&d I AJA,

~60!

however, need not vanish. Thus, one arrives at the following
block structure ofM :

M5S MAA 0 MA AB

0 MBB MB AB

0 0 MAB AB

D . ~61!

Although here the local and nonlocal blocks are not strictly
decoupled, the particular structure ofM shows that the ei-
genvalues ofMAA andMBB are those of the entire matrix
M . This shows that the results for the excitation energies are
size intensive. It should be noted that the right-hand eigen-
vectorsXn are locally correct, that is, all components refer-
ring to nonlocal configurations vanish for a local solution
n. In contrast, this does not hold for the left eigenvectors
Yn .

With regard to the spectral intensities it should be noted
that the intermediate quantitiesFI @Eq. ~55!# used in the
right-hand transition moments can lack the separability prop-
erty. Indeed, for a local configurationI A one finds

FIA
5FIA

~A!1^C0
AuĈI A

uC0
A&* ^C0

BuD̂B
† uC0

B&* . ~62!

In theN-electron case~discussed below! whereĈI A
does not

change the number of electrons, the second contribution on
the right-hand side need not vanish if^C0

BuD̂B
† uC0

B& does not
vanish for symmetry reasons. ThenFIA

ÞFIA
(A) , and, as a

consequence, the squared transition moment calculated ac-
cording to Eq.~54! is not size-consistent. This was observed
already by Kochet al. @48#. The left intermediate transition
momentsFJ

' are separable, that is,FIA
' 5FIA

'(A) . Moreover,

the left form of the transition moment is size-consistent, al-
though the left eigenvectors can have nonlocal components.
As can be readily verified, the corresponding intermediate
transition momentsFJ

' vanish for these nonlocal configura-
tions.

D. The N-electron case

Finally we consider briefly the case ofN electrons. To
achieve completeness here, generally the biorthogonal ex-
pansion manifolds must be extended by the~exact! ground
stateuC0

N&5exp(T̂)uF0
N& and^F0

Nuexp(2T̂)5^F0
Nu, respec-

tively. The resulting representation ofĤ2E0
N takes on the

form

M 85S 0 v

0 M D , ~63!

whereM is as specified by Eq.~50! andv is a ~row! vector
of matrix elements

v I5^F0
Nuexp~2T̂!@Ĥ,ĈI #exp~ T̂!uF0

N&. ~64!

The secular matrixM 8 is used in the method of Stanton and
Bartlett @39# ~apart from the subtraction of the ground state
energyE0

N in the diagonal!. Obviously, for the excitation
energies the roots ofM 8 andM are identical and the left- and
right-hand eigenvectors are trivially modified by adding a
vanishing zeroth component.M 8 has an additional eigen-
value zero corresponding to the exact ground state. The
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right-hand eigenvectorX08 is trivial: XI08 5d0I ; while the cor-
responding left-hand eigenvectorY08 is given by

Y085S 1Y0
D , ~65!

whereY0 is obtained from the linear equation

Y0
†52v M21. ~66!

This may be used to write the exact ground state~using in-
termediate normalization! in the form

^C0
Nu5^F0

Nu1(
I

^F0
NuĈI

†exp~2T̂!YI0 . ~67!

Note that this representation has been termed^Lu in the
work of Kochet al. @33,34,48# @see Eq.~9! in @48##.

E. Relationship to the SAC-CI method

The ~nonvariational! SAC-CI method of Nakatsuji and
Hirao @27–29# is based on the mixed representation

MIJ
SAC5^F I uĤ2E0

NuCJ
0&, ~68!

where the CI configurations~12! and the correlated excited
states in the CC parametrization~47! are used on the left-
and right-hand sides, respectively. To be specific we confine
ourselves, as above, to the case of (N21)-electron states.
The overlap matrix

SIJ5^F I uCJ
0& ~69!

of the left- and right-hand basis functions is of lower trian-
gular form. The SAC-CI secular equations~right-hand form!
read

MSACX5S X V, ~70!

whereV is the diagonal matrix of excitation~ionization!
energies andX denotes the matrix of right-hand eigenvec-
tors. An analogous equation applies to the matrixY of left-
hand eigenvectors. A mutual orthonormalization is obtained
according to

Y†S X51. ~71!

Although the SAC-CI equations differ from the BCC repre-
sentation in the use of the left-hand basis states, they give
identical results for the energies, provided that the configu-
ration spaces extend to the same excitation class and the
same treatment for exp(T̂) is used. To see this, consider a
biorthogonal state of themth excitation class:

^C I
'u5^F I uexp~2T̂!, @ I #5m. ~72!

The expansion

^C I
'u5(

J
^F I uexp~2T̂!uFJ&^FJu ~73!

with respect to the CI configurationsuFJ& does not contain
configurations of higher classes thanm, because

^F I uexp(2T̂)uFJ&50 for @J#.@ I #. This shows that the sets
$^F I u,@ I #<m% and$^C I

'u,@ I #<m% differ only by a similarity
transformation. As a consequence, the BCC and SAC-CI
secular equations~truncated after a given classm) are
equivalent. In particular, the compactness properties of the
BCC representation apply as well to the SAC-CI method.
The SAC-CI equations are not separable, but, of course, the
equivalence to the BCC guarantees analogous size-
consistency properties.

V. UNITARY COUPLED-CLUSTER REPRESENTATION

An intermediate representation based on the unitary
coupled-cluster~UCC! approach has been considered by
Prasadet al. @23# and by Mukherjee and Kutzelnigg@24#.
Here theN-electron ground state is expressed in the CC form

uC0
N&5exp~ŝ!uF0

N&, ~74!

however, using an anti-Hermitian cluster operatorŝ52ŝ†.
Usually ŝ is written as

ŝ5Ŝ2Ŝ†, ~75!

where the operatorŜ ~like T̂) is given by a linear combina-
tion of physical (N-electron! excitation operators,

Ŝ5(
i51

N

Ŝi5(
a,i

Saica
†ci1 (

a,b,i , j
Sabi jca

†cb
†cicj1•••.

~76!

Then, since Ŝ† contains unphysical operators only,
Ŝ†uF0

N&50. In contrast to the normal cluster operatorT̂, ŝ
does not commute with physical excitation operators. The

intermediate statesuC5 J& considered by Mukherjee and Kut-
zelnigg~referred to in the following as unitary coupled clus-
ter states! are obtained by applying the so-called consistent
operators exp~ŝ!ĈJexp~2ŝ! to the exact ground state:

uC5 J&5exp~ŝ!ĈJexp~2ŝ!uC0
N&5exp~ŝ!ĈJuF0

N&.
~77!

Again we confine ourselves for the moment to the operators
ĈJ of the (N21)-particle case specified in Eq.~13!. By defi-
nition, the UCC states result via a unitary transformation
from the HF configurationsĈJuF0

N&, which shows that they
form a complete and orthonormal set. The UCC representa-
tion of Ĥ2E0

N is given by the matrix elements

H5 IJ2E0
Nd IJ5^C5 I uĤ2E0

NuC5 J&

5^F0
NuĈI

†@exp~2ŝ!Ĥ exp~ŝ!,ĈJ#uF0
N&.

~78!

Note that the ground state energyE0
N is no longer explicit in

the last line of Eq.~78!. Analogous to Eq.~11!, the interme-
diate transition moments for the UCC representation are de-
fined as

F5 IJ5^C5 JuD̂uC0
N&5^F0

NuĈJ
†exp~2ŝ!D̂ exp~ŝ!uF0

N&.
~79!
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The UCC statesuCM I& and ECO intermediate statesuC̃J&
considered in Sec. III are related by a unitary transformation
U,

UIJ5^C5 I uC̃J&. ~80!

As shown in Appendix B, the blocks ofU fulfill the canoni-
cal order relations:

UIJ5O~ u@ I #2@J#u!. ~81!

As one may easily convince oneself~see Appendix C!, the
canonical order relations hold for the productA B of two
matrices if they hold forA andB. Using the relation

H5 5U H̃ U† ~82!

betweenH5 and the~compact! ECO-ISR matrixH̃, one may

establish the canonical order relations ofH5 and thus the
compactness property of the UCC representation. Similarly,
we arrive at the order relations~25! for the intermediate UCC

transition momentsF5 related to the ECO-ISR moments ac-
cording to

F5 5F̃ U†. ~83!

Here the momentsF5 J (F̃J) are collected in the row vector
F5 (F̃).

As an obvious generalization of the proof given here, we
may state that the compactness property holds for any~inter-
mediate! representation differing from the ECO-ISR~or the
UCC-ISR! by a unitary transformationU if U fulfills the
canonical order relations~81!. Here the ‘‘identity’’ of the
configurationsJ in the two sets of states is reflected by the
fact that the diagonal elementsUIJ are of zeroth order.

The separability property of the UCC representation is
almost trivial. Again, the cluster operatorŝ of the separate
fragment model decomposes into the sum

ŝ5ŝA1ŝB ~84!

of the cluster operators of the fragments, and the UCC states
factorize according to

uC5 I AIB
&5uC5 I A

&uC5 I B
&. ~85!

One may readily convince oneself that the resulting block
structure forH5 is the same as the one ofH̃ given in Eq.~33!.

VI. CONCLUDING REMARKS

As a general common concept underlying diverse propa-
gator and related methods, intermediate-state representations
have been considered and analyzed. Here the expansion
manifolds ~intermediate states! are constructed from corre-
lated excited states obtained by applying~e.g., physical! ex-
citation operatorsĈJ to the exactN-electron ground state
uC0

N&. Generalized excitation energies are given as the eigen-
values of the ISR secular matrixM̃ , that is, the matrix rep-
resentation of the excitation energy operator~shifted Hamil-
tonian! Ĥ2E0

N with respect to the intermediate statesuC̃J&.

The associated transition moments can be derived from the
eigenvectors ofM̃ and the intermediate transition moments
^C̃JuD̂uC0

N&. While the excitation operatorsĈJ can be de-
fined with respect to an appropriate basis of single-particle
states~usually ground state HF orbitals!, the ISR secular ma-
trix elements and moments depend on the exact~correlated!
ground state. Thus the calculation of the latter quantities in
practical computational schemes presupposes—besides trun-
cating the configuration space—a suitable approximation for
uC0

N&.
An obvious approach to deriving approximation schemes

from the general ISR formulation is to use perturbation
theory foruC0

N&. This leads to perturbation expansions of the
ISR secular matrix elements and transition moments which
may be truncated in a systematical way at finite order. The
ADC(n) schemes for the various propagators arise in such a
way from the ECO representation considered in Sec. III. An-
other possibility is to exploit the powerful coupled-cluster
parametrization, uC0

N&5exp(T̂)uF0
N&, of the N-electron

ground state. This is the starting point for the BCC represen-
tation used in the CCLR and EOM-CC methods. The unitary
CC formulationsuC0

N&5exp(ŝ)uF0
N& of the ground state and

excitation operators of the form exp(ŝ)ĈJexp(2ŝ) are used
in the UCC representation.

The relevance of the ISR as a means of deriving approxi-
mation schemes is due to the two basic properties referred to
as compactness and separability:

~i! Compactness means that the explicit configuration
spaces are systematically smaller than those of comparable
CI expansions. For a consistent treatment, say, of the main
excitation energies through order 2m11, the configuration
space of a compact representation can be truncated after the
classn5m11, whereas a comparable CI expansion must
extend through classn52m11. This rule applies to the
usual electronic Hamiltonian consisting of a one-body and a
two-body part. It can readily be generalized to anr -body
Hamiltonian@26#.

~ii ! Separability is a sufficient condition for size-
consistent~more specifically, size-intensive! results. An ISR
method is separable if, for a system of separate fragments,
the secular matrix of the total system decomposes into a
block-diagonal form consisting of ‘‘local’’ blocks associated
with each fragment plus an additional block corresponding to
nonlocal excitations. Moreover, a local block must be iden-
tical to the secular matrix associated with the separated frag-
ment. In a similar way, this property can be introduced in the
intermediate transition moments.

It should be emphasized once more that these two key
properties are only potentially inherent in the ISR methods.
Their validity depends critically on the procedure adopted to
orthonormalize the correlated excited states. The representa-
tions obtained from symmetrical orthonormalization are nei-
ther separable nor compact. The biorthogonal representation
used in the CCLR and EOM-CC methods exhibits a some-
what restricted compactness property, as explained in Sec.
IV. The ECO representations, arising from Gram-Schmidt
orthogonalization with respect to the excitation classes, fully
comply with these properties as do the unitary CC represen-
tations considered in Sec. V.

Another property of interest is the invariance of the ISR

53 2149ALGEBRAIC PROPAGATOR APPROACHES . . . . I . . . .



with respect to independent unitary transformations of occu-
pied and virtual orbitals. Orbital transformations of this kind
induce classwise unitary transformations of the physical ex-
citation operatorsĈJ . As an immediate conclusion, the in-
variance property holds for the ECO-ISR, BCC, and UCC
schemes, provided that the configuration space comprises all
configurations through a given excitation class~systematical
truncation!.

The proofs of compactness and separability given here
and elsewhere presuppose the use of an exact ground state
uC0

N&. Therefore the results cannot be transferred simply to
representations based on an approximate ground state wave
function. For example, in the case where the operator mani-
fold used in the ground state CC treatment is smaller than
that used in the excited state calculation, the factorization
according to Eq.~58! is valid, whereas Eq.~59! is no longer
strictly fulfilled. As should be recalled, the perturbation theo-
retical approach to the ECO representation giving rise to the
ADC(n) approximation schemes~see Sec. III B! is separable
and compact at all ordersn, as one may easily verify. This
finding applies to any separable ground state perturbation
theory.

The compactness and separability conditions do not single
out a unique representation, as the example of the ECO and
UCC representations shows. As shown in Sec. V these rep-
resentations differ by a nontrivial unitary transformationU
fulfilling the so-called canonical order relations~81!. More-
over, U adopts the separable~block-diagonal! form in the
case of the separate fragment model. Obviously any repre-
sentation differing from the ECO~or UCC! representations
by such a compact and separable unitary transformationU is
itself compact and separable. In this sense the two properties
define a class of equivalent representations. Despite this
equivalence there may be interesting differences with respect
to their use in practical computational schemes.
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APPENDIX A: PROOF OF THE ORDER RELATIONS FOR
THE BCC AND THE ECO REPRESENTATIONS

The diagrammatic perturbation theory for the cluster op-
eratorT̂5(n51

N T̂n makes it evident that thenp-nh partsT̂n

are ~at least! of the ordern21,

T̂n[O~n21!. ~A1!

For example, the double excitation partT̂2 contains only
first- and higher-order terms. Note that the relation~A1! be-
comes trivial for T̂1 ~appearing actually in second-order
Mo” ller-Plesset perturbation theory!. Let us now consider the
matrix element

^C I
'uÂ~m!uCJ

0&5^F0
NuĈI

†exp~2T̂!Â~m!exp~ T̂!ĈJuF0
N&,

~A2!

where

Â~m!5cj 1
† . . . cjm

† cl1 . . . clm ~A3!

denotes an arbitrary operator of rankm, that is, Â(m) is a
product ofm creation andm destruction operators. Accord-
ing to the Baker-Hausdorff formula we may write

exp~2T̂!Â~m! exp~ T̂!5Â~m!1@Â~m! ,T̂#1
1

2
†@Â~m! ,T̂#,T̂‡

1•••. ~A4!

Obviously the commutator@Â(m) ,T̂n# is an operator of rank
m1n21. Similarly, †@Â(m) ,T̂n#,T̂r‡ is an operator of rank
m1n1r22, etc. This means that commutation withT̂1 does
not increase the rank; commutation withT̂2 increases the
rank by 1, but also increases due to~A1! the perturbation
theoretical order of the resulting operator by 1; generally, the
commutation withT̂n enhances both the rank and the order
by n21. Inserting the Baker-Hausdorff expansion~A4! in
the matrix element~A2!, we see that all contributions must
vanish for which the rank of† . . . @Â(m) ,T̂i #, . . . T̂j‡ is
smaller than the residual ranku@ I #2@J#u of the respective
excitation operatorsĈI ,ĈJ . The rank of physical excitation
operatorsĈI is given by the respective class,@ I #. This allows
us to conclude the order relation

^C I
'uÂmuCJ

0&5O~ u@ I #2@J#u2m! for u@ I #2@J#u>m.
~A5!

This result may readily be applied to the matrix elements of
the HamiltonianĤ5Ĥ01ĤI . While being an operator of
rankm52, ĤI itself is of first order of perturbation theory;
hence

^C I
'uĤuCJ

0&5O~ u@ I #2@J#u21! for @ I #2@J#>2.
~A6!

We note that the diagonal matrix elements are of the order
zero, while foru@ I #2@J#u51 the matrix elements are of or-
der 1.

For the matrix elements with@ I #>@J# ~lower left triangle!
the more stringent canonical order relations~as shown in Fig.
3! can be deduced. To see this we consider a matrix element
of Ĥ2E0

N ,

^C I
'uĤ2E0

NuCJ
0&5^F0

NuĈI
†exp~2T̂!@Ĥ,ĈJ# exp~ T̂!uF0

N&.
~A7!

The commutator@Ĥ,ĈJ# has a contribution that is of rank
@J#11 and is of first order of perturbation theory. As above
we may conclude that

^C I
'uĤ2E0

NuCJ
0&5O~@ I #2@J# ! for @ I #>@J#. ~A8!

Since ^C I
'uE0

NuCJ
0&5E0

Nd IJ , this result also holds for the
representation ofĤ itself.

With the help of this result for the biorthogonal represen-
tation one may easily prove the canonical order relations~23!
for the ECO intermediate states. For this purpose we decom-
pose an arbitrary matrix elementH̃IJ as follows by inserting
twice the biorthogonal resolution of the identity:
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^C̃I uĤuC̃J&5(
K,L

^C̃I uCK
0 &^CK

'uĤuCL
0&^CL

'uC̃J&.

~A9!

SinceH̃ is a Hermitian matrix we may confine ourselves to
the case@ I #>@J#. By construction, the intermediate states
uC̃J& are orthogonal to the correlated excited statesuCJ

0& of
lower classes,@K#,@ I #. Thus the summation overK on the
right-hand side of Eq.~A9! is restricted by@K#>@ I #. Simi-
larly, we may conclude a restriction@L#<@J# for the sum-
mation overL. This follows from

^CL
'uC̃J&5^F0

NuĈL
†exp~2T̂!C̃JuC0

N& ~A10!

5^F0
NuĈL

†C̃JuF0
N&. ~A11!

Since C̃J is a linear combination of excitation operators of
classesm<@J#, this matrix element vanishes if@L#.@J#.
Altogether, the summation on the right-hand side of Eq.~A9!
is restricted according to@K#>@ I #>@J#>@L#. Using the or-
der relations~A8! for ^CK

'uĤuCL
0& we may conclude that

every summation term and thus the hole sum is at least of the
order @ I #2@J#. We note that the minimum value is indeed
adopted, since for@K#5@ I # and@L#5@J# the overlap matrix
elementŝ C̃I uCK

0 & and ^CL
'uC̃J& are of zeroth order.

APPENDIX B: COMPACTNESS OF THE UNITARY
TRANSFORMATION RELATING THE ECO

AND THE UCC REPRESENTATIONS

Let us consider an arbitrary matrix element of the unitary
matrix U with @ I #>@J#:

UIJ5^F0
NuĈI

†exp~2ŝ!C̃Jexp~ŝ!uF0
N&. ~B1!

Here we use the form of Eqs.~20,21! for uC̃J& and the UCC
ground state~74!. Similar to the considerations in Appendix
A, we may now argue as follows: The unitary coupled cluster
operator is given by a sumŝ5(n51

N ŝn of np-nh contribu-
tions ŝn ~also referred to as contributions of rankn). As in
the case of the usual CC operatorT̂ @see Eq.~A1!#, one may
show by perturbation theory that the order relation

ŝn5O~n21! ~B2!

holds for these parts. Using the Baker-Hausdorff formula we
obtain

exp~2ŝ!ĈJexp~ŝ!5ĈJ1@ĈJ ,ŝ#1
1

2
†@ĈJ ,ŝ#,ŝ‡1•••.

~B3!

A commutator@B̂,ŝn# increases both the rank of a given
operatorB̂ and its perturbation theoretical order~at least! by
n21 ~see Appendix A!. For example, each commutator in-
volving ŝ2 increases the rank by 1, concomittantly adding
one order of perturbation theory. In the overlap matrix ele-
ment UIJ only those terms from the expansion~B3!, for
which the rank increment is at least@ I #2@J#, may contrib-
ute. This means that the nonvanishing contributions are at
least of the order@ I #2@J#. Thus we have shown the rela-

tions ~80! for the lower left triangle (@ I #>@J#) of U. Since
U is unitary they must also hold for the remaining part
@ I #,@J#, as shown in Appendix C.

APPENDIX C: ORDER RELATIONS IN A UNITARY
MATRIX

Let us consider a unitary matrixU with a block structure
Um,n , m,n51,2 . . . , andassume that the block of the lower
left triangle fulfills the canonical order relations~81!:

Um,n[O~m2n! for m>n. ~C1!

We will prove that, as a consequence of unitarity, the canoni-
cal order relations hold for the entire matrix:

Um,n[O~ um2nu!. ~C2!

Let Uk , k51,2, . . . , denote the columns of blocks ofU.
From the orthogonality ofU1 andU2 one may readily con-
clude thatU1,2[O(1). This means that the canonical order
relations hold for the first two columnsU1 andU2 . Now
their orthogonality to U3 can only be fulfilled if
U1,3[O(2) andU2,3[O(1). Proceeding in such a way one
may successively show the canonical order relations for all
columns ofU. The proof can be completed in a formally
correct manner as follows. Assume thatj refers to the first
column for which the canonical order relation is violated,
that is,

Ui j5O~ j2 i2d! for i, j ~C3!

and leti be a row for which the deviationd, 0,d< j2 i is
maximal. If the maximal deviation occurs in more than one
column, theni is assumed to be the largest row index. Now
consider the product of the columnsUi andUj :

Ui
†Uj5(

k
Uki
† Ukj ~C4!

5Uii
†Ui j1(

k, j
kÞ i

Uki
† Ukj

1(
k> j

Uki
† Ukj . ~C5!

The first term ~T1! on the right-hand side is of order
j2 i2d @sinceUii511O(1)]. The last term ~T3! on the
right-hand side is of the orderj2 i , since all blocks involved
fulfill the canonical order relations; the minimal order is
adopted fork5 j . The order analysis of the second term~T2!
on the right-hand side is easily performed by partitioning the
summation into two contributions corresponding tok, i and
k. i , respectively:

~T2![(
k, i
k, j

O~ i2k!O~ j2k2djk!1(
k. i
k, j

O~k2 i !

3O~ j2k2djk!. ~C6!

Heredjk< j2k denotes the deviation of the blockUkj from
the canonical order relation. In the first contribution thedjk
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may assume the valued; the lowest possible order would
arise fromk5 i21 anddji215d. By assumption,djk,d for
the second contribution. Thus we arrive at the following re-
sult for the order of~T2!:

~T2!5O~1!O~ j2 i112d!1O~ j2 i2d8!

5O~ j2 i122d!1O~ j2 i2d8!, ~C7!

where d8,d. This shows that neither~T2! nor ~T3! can
compensate for the lowest-order contribution of~T1!. From
the orthogonality ofUi andUj we must conclude thatUi j is
at least of the orderj2 i2d11 in contradiction to the as-
sumption~C3!.

The proof given here can be readily generalized to the
following assertion. LetU andV be two~quadratic! matrices
with a block structure as considered above for which the
orthogonality relation

U†V5V†U51 ~C8!

holds. If the canonical order relations are fulfilled for the
lower left triangle of blocks ofU andV they hold for the
entire matrices.
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