PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996

Virial expansion of a quantum particle in a classical gas:
Application to the orthopositronium decay rate
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Experiments measuring the decay of positrons and orthopositronium in gases show a complicated depen-
dence of the annihilation rate on the gas density. Theoretical and experimental studies indicate that the non-
linear dependence of the decay rate on gas density is the result of local alterations in the gas density surround-
ing the decaying particle. In this paper the virial expansion of the decay rate of both free positrons and
positronium atoms in powers of the gas density is developed. The temperature-dependent coefficients in the
density expansion of the decay rate are expressed in terms of modified cluster integrals that are determined by
the interaction of the free positron or positronium atom with the host gas. Explicit expressions are given for the
decay rate through terms of ordgf in the gas density. The term linear in the gas density is investigated
analytically for the specific case of a hard-sphere interaction and its relevance to the decay of orthopositronium
is demonstrated. Both the low- and high-temperature limits of the decay rate are determined analytically and
the lack of temperature dependence observed in most experimental measurements of the decay rate at low
density is explained. Finally, the results of path-integral Monte Carlo calculations for the decay rate over a
wide temperature range are presented.

PACS numbe(s): 36.10.Dr, 31.15-p, 05.30.Ch, 78.70.Bj

I. INTRODUCTION In DFT [4-9] the local gas density is represented as a
continuum and the QP is represented by a single quantum
Positron and positronium decay in gases is an importargtate. A free-energy functional of the local density and the
experimental tool for studying the states of a quantum parwave function is constructed and the null condition of its
ticle in a disordered environment. The quantum partiGe) variation is.used to obtain coupled_equatit_)ns for the opti_mal
can be in a localized or extended state depending on th&ave function of the QP and density profile of the classical
thermodynamic variables of the gfi,2]. Since both the 9as. This theory is relatively easy to apply but, since it is a
decay rate of free positrons and the pickoff decay rate ofnean-field theory, it ignores fluctuations in the gas density
ortho-positronium atomsgo-P$ are sensitive to the local and quantum states. It has been successfully used to study

electron density, they provide information concerning the lo-calized states in helium and supports the concept that the

cal QP environment. Using theoretical models, this informa_sglf-trapped state of the QP is dominant over a specific re-

tion can be related to the local gas structure and the quantu jon of thermodynamic statd.5]. The DFT produces an

state of the QP, which ranges between localized and e rupt transition between self-trapped and extended QP

) . States. This is consistent with the abrupt change in the decay
tend_ed. Localized states are a!so avallz_;\ble {0 an excess ?ler%'te that is observed experimentally in the decay of o-Ps in
tron in a gas; however, their chief experimental manifestationy o jiym ahove its critical temperatuf0]. However, experi-
is a reduction in the mobility3]. Because the mobility is @ ents of 0-Ps and positron decay in other noble gases, such
transport property, its theoretical prediction involves the cong argor{6] and xenor{7], which have higher critical-point
struction of a two-time correlation function, which is difficult temperatures, indicate that the decay rate is a smooth con-
to evaluate either analytically or computationally. In contrasttinuous function of the gas density and temperature. This
the decay rate is an equilibrium property that can be comsuggests that the localization of the QP occurs in a continu-
puted at a single fixed time and provides a direct connectiosus fashion and is not consistent with the DFT results. The
with the equilibrium distribution of the gas. discrepancy between the experiments and theory are likely

Because the mean de Broglie wavelength of an electron dsecause DFT is a mean-field theory and neglects local fluc-
positron is of the order of 100 A at room temperature, quantuations.
tum mechanics is required to represent these particles. This Recently, path-integral Monte Carl®IMC) calculations
also holds true for the positronium atom. However, the dg11-13 of the full adiabatic model have succeeded in pro-
Broglie wavelength of an atom or molecule at these temperaducing a continuous transition from an extended to a local-
tures is generally less thal A and the translational degrees ized state that is expected for a thermalized positron or pos-
of freedom can be treated classically. Consequently, all thedtronium atom in a gas as a function of density and
retical models used to date to gain understanding of the sysemperature and accurately predicts the observed density de-
tem of an excess QP thermalized in a gas are a hybrid of bothendence of the decay rate of positrons in xenon and o-Ps in
classical and quantum mechanics. The two primary theoretiargon and xenon. The PIMC calculations show the subtle
cal methods that have been used to study this system arelation between QP localization, cluster and bubble forma-
density-functional theory (DFT) and the path-integral tion, and the decay rate. However, it is more difficult to
method. obtain predictions from this model as its implementation
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generally requires the development of sophisticated “smart” The region of density where the first deviations from lin-
Monte Carlo algorithms coupled with long runs on a super-earity in the decay rate occur, i.&8(T), has received only
computer to obtain convergence. The situation is especialljnodest theoretical and experimental attention. McNutt and
problematic in the extremes of high and low density, whereéSharma[18] have attempted to explain the initial nonlinear
convergence is slow. dependence of the decay rate with a semi-phenomenological
The above theoretical and experimental results have dentheory that depends on fluctuations in the gas density. In their
onstrated the importance of the many-body interaction bemodel the QP passively samples energetically favorable
tween the QP and the classical gas. The physical manifestéscal-density fluctuations. Calculations show, however, that
tion of this interaction is a local increase in the gas densityfluctuations in the density of atoms in volumes of the order
i.e., cluster formation, around the positron and a local deof the QP thermal wavelength are insufficient to explain the
crease in gas density, bubble formation, around the positrexperimental resultgl9—21]. Deviations from the linear de-
nium atom. The alteration in density that is created results ippendence of the positron decay rate in helium were consid-
a decay rate that is not simply a linear function of gas denered in detail by Nieminef22]; however, the method does
sity. A systematic method of examining the deviation of thenot allow a systematic study of increasing gas density or of
decay rate from a linear dependence on the gas densithe temperature-dependent quantum effects. Polis¢R0k
would provide important information about the effect of and Artem’ev, Polishchuk, and KhrapdRk3] have used
cluster and bubble formation on the decay rate. In additionfinite-temperature Green'’s functions to investigate the effects
recent many-body calculations show that the anomalous risef temperature and many-particle scattering on the deviation
in the positron decay rate with xenon dengity may be the from linearity, i.e.,B(T), of the decay rate. Their results are
result of the transformation of a two-bodypositron and obtained under the severe approximation af-function in-
single xenon atomnvirtual level resonance to a real bound teraction potential and neglects the role of feedback of the
level for the positron in the three-body interacti@@ositron  positron on the gas. Within these approximations, their re-
and two xenon atomg14]. The virial expansion of the de- sults suggest that the temperature dependencB(d) is
cay rate in the gas density provides a framework for invesdetermined by the increase in the role played by the attrac-
tigating the initial deviations from linearity and their origin. tion between atoms as the temperature is lowered.

At the present time, these are all open questions. The remainder of the paper is arranged as follows. A den-
The virial of the positron and o-Ps pickoff decay rate cansity expansion for the QP-atom correlation function in pow-
be written as ers of the gas density is developed. We then use the corre-

lation function to directly obtain a density expansion for the
- 5 3 positron decay rate. The orthopositronium pickoff decay rate
N)=A(Mp+B(T)p°+C(T)p +--+, (1) s also given in the approximation of treating the positronium
atom as a composite quantum particle of masg 2As an
application of the viral expansion the term linear in the gas
temperature dependent. The first coeffici&f) describes density is evaluated for a hard-sphere interaction. The hard-
§phere interaction is a common model for the effective Ps-

the two-body interaction of the QP and a single classica . ) 4l 17, Si he domi .
atom, B(T) describes the three-body interaction of the QPAOMm interaction potentidll, 12). Since the dominant contri-

with two interacting classical atoms, etc. From the virial ex-Dution to the Ps-atom interaction is provided by fermionic
pansion of the decay rate the temperature dependence of th ulsion between the Ps atom's electron and the atomic

coefficients that multiply the gas density can be calculate ectrons, the har_d-sphere_ pqtentlal IS expected to foer a
independently. crude representation of this interaction. From this simple

There is very little available information concerning the model for the decay rate of 0-Ps in gases we are able to

total potential energy of the system of a gas and a positron o(?xplam the experlmeqtal]y obs_served temperature md_e pen-
0-Ps atom. In theoretical studies to date it is standard to treéi(ence _Of the term _that is linear n the gas denS|ty_ and dIS_}CUSS
the positron-gas interaction energy as a sum over two-bod hy th_|s result is likely to be valid for a range of interaction
interactions. The first term in the density expansion of th otentials.

positron decay rate depends only on the effective two-body
potentialv(r), which describes the effective interaction be-
tween the QP and a single classical atom. Scattering experi- In general, the experimental conditions are such that it is
ments have yielded model potentials that accurately reprgustifiable to assume that the QP’s are sufficiently dispersed
duce the low-density decay rate of positrons in most nobleind screened by the surrounding gas that the interaction be-
gases[15]. The situation is less clear for o-FP%6]. If the  tween them is negligible. Thus, we can consider a single QP
experimental decay rate is known with sufficient accuracyinteracting with a classical gas. In order to simplify the role
and the onset of deviations from the linear dependence of thglayed by the atomic electrons, in theoretical studies it is
decay rate with density is isolated, the applicability of usingcommon to assume effective two-body potentials. The sim-
pairwise two-body potentials could be evaluated using theplest microscopic Hamiltonian that contains the physics of a
virial expansion. This is not unlike the situation that existssingle quantum particle of mass and momentunp inter-

for an atomic gas, where some success in determining twaacting with a gas oN classical particles is then

body potentials for classical gases has been achieved by us-

ing the second term of the virial expansion for the pressure ,_ 2 n D 2

[17], and its limitations evaluated by examining the higher H=p /2m+§i: o(r RI)+i§<:j uR RJHZ Pi/2M,

terms. 2

where coefficientsA(T), B(T), and C(T) are, in general,

IIl. DEVELOPMENT OF THE DENSITY EXPANSION
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where the effective interaction energy between the QP at electron distribution of the isolated atom fbfr) in (6) may
and the gas/(r,R)=Zv(r—R;) is assumed to be pairwise introduce a significant error. The ability of the positron to
additive. The interaction between the gas atomdistort the atomic electron distribution is well documented
U(R)=2i-ju(Ri—R)) is also taken to be pairwise additive. [15].

The set of atomic positionfR;,R,, ... Ry} is represented Thus the virial expansion of the decay rate can be found
by R. The momentum and mass of ttth classical atom are, from the density expansion of(r,R). The density expansion
respectivelyP; andM. for the two-particle correlation function of a homogenous

The thermal wavelength of the QP is of the order of 100quantum gas was obtained by De B¢&6]. A straightfor-
times larger than the thermal wavelength of a typical classiward extension of this method can be used for the mixed
cal atom(say, for example, xengrat the same temperature. system of a QP in a classical gas. To obtain an expansion of
Therefore, neglecting the quantum dispersion of the relan(r,R) in the density of the gas it is convenient to introduce
tively massive classical atoms appears reasonable. The cotie diagonal element of the density matrix for tNeatoms
sequence of this approximation is that the trace over thand the single QP,
atomic translational degrees of freedom in the partition func-
tion can be reduced to a classical phase-space integratioM(r,R)=AgKr,Nlexd — BH']IN,r)exd — BU(R)],  (7)

[24]. Thus the partition function for a QP interacting with a

classical gas oN atoms is where |N,r) is a complete set of orthonormal states. In the

limit of no interaction between the QP and the gas &j.
Z.op=Tr exp(— BH)] (raex(:)urgggetg 2);{& BU(R)]. The partition function can now be

=1/<N!A%§>f dR exd — BU(R)]
zN,Qp=1/(N1AgR,‘AgP)f dF_Qf dr W(r,R). (8)

X Trlexp(—BH')]. (3
_ _In the canonical ensemble, the configurational probability
TheN gas momenta have been integrated away producingensity is given by

the factor involving the thermal wavelength of a gas atom

(classical particleA cp=# 27 B/M. The trace in the second _

expression is with respect to the QP states with n(r’Rl)_[llQN'QF(N_l)!]f dRZ”'J dRAWI(r,R),
H’=p%2m+V(r,R). The classical part consists of the inte- 9)
gral over the translational coordinates of the gas N3 ) )
(JdRy+-fdRy=[dR), which is weighted by the classical Where Qn,qp=(AN"Agp)Zn,qp- The density expansion for
Gibbs factor exp-BU(R)]. In thermal equilibrium, the n(r,R_l) can now be_ob_talned by one of two star_ldard meth-
mean value of a physical observaldr p,R), which can ods, i.e., either by finding an expansion fur,R;) in terms

depend on the QP coordinate and momentum, but only on th¢f Powers of the activity by introducing the grand canonical
gas coordinates, is given by ensemble and using series reversion to convert to a density

expansion or by introducing a sequence of Ursell functions

aN [26]. In either case, we obtain
<0)=(1/N!AcpZ)J dR exd —BU(R)]

XTI O exp— BHN)]. @) n(r,Rl):(lN)[pW(r,Rl)—irpzf dR,[W(r,R;,R,)
Physically the annihilation rate is proportional to the over-

lap of the positron and the electron density of the gas(rif

is the quantum-averaged electron density of an atom fixed at ] ) )

the origin, then the quantum stat® and moleculé contrib-  through second order ipf, whereW(Ry,Ry) is the classical

utef|(p(r)|2f(r_Ri)dr to the decay rate. Thus the decay ratetwo-body distribution function. The decay rate can now be

_W(raRl)W(Rl,Rz)]+O(P3)+"'] (10

is represented by the quantum-mechanical operator written as
=S iR §  Q=am) [ or [ flr-RiD| iR
1<i<N
The equilibrium average of the decay rate operator of a +p2j dR,[W(r,R1,R,) —W(r,R))W(R{,R5)]
thermalized positron is given in suitably scaled units by
[1,24] +0(p3). (11)

~ The term linear in the gas density involves a simple inte-
<}‘>:f de dr f(Jr—=R))n(r,R), (6)  gration over the functiorf (r—R)W(r,R,). The two-body
term W(r,R;) can be reduced to quadraty7] and the in-
wheren(r,R) is the configurational probability for finding a tegral evaluated numerically or integrated directly by PIMC
positron atr and a classical atom & andf(r) is the distri-  [28]. The three-body termiV(r,R;,R,) is the density matrix
bution of atomic electrons a distaneefrom the atomic for a quantum particle in an axially symmetric field created
nucleus. It should be noted that the use of the unperturbebly the two classical particles &; and R,. The difference
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that appears in the term quadratic in the gas density is seen to -

go to zero in the limit that the gas atomRyj is removed to (K>=[p/(wa8)]f dr exg —2r/ag]Wy(r). (13
infinity, thus indicating in this limit that the density depen-
dence of the lifetime is linear. This is completely rigorous
and we can say with certainty that any nonlinearity in the
decay rate with gas density indicates the presence of a man
body interaction, i.e., greater than one gas atom simult
neously interacting with the quantum patrticle.

For a hard-sphere interaction the diagonal density-matrix el-
ementW,(r)=A%r|exd—BH']r) has been calculated nu-
Kierically by Larsen[27]. As expected, the function is a
aﬁwonotonically increasing function of temperature for any
given value ofr and approaches the classical result of a step
function aso/A—0, whereo is the hard-sphere diameter.
11l. APPLICATION TO POSITRONIUM DECAY Therefore, we expect thét3) is a monotonically increasing
function of temperature, since it is essentially a measure of

The pickoff decay of the positronium atom in a gas rep-the overlap of the diagonal density-matrix element and the
resents a complex many-body problem of two quantum parexponential term representing the positron probability den-
ticles, the electron and positron of the Ps atom, interactingity. This is not in agreement with the majority of experi-
with a classical gas. The hard-sphere interaction is frequentlyhents, where it is found that the decay rate is independent of
used in theoretical studies of Ps decay in gdse$2 to  temperaturd7,10,1§. The absence of a temperature depen-
represent an effective interaction between the classical gafence for the o-Ps decay in the region that is linear with the
atoms and Ps atom. The Ps atom is represented as a singjgs density can be explained with the simple hard-sphere
composite quantum-mechanical particle of masg Bcated  interaction. Below we will show that it results from the lack
at the Ps center of mass. This severe approximation is prof temperature dependenceWf, at low temperature for val-
marily motivated by the considerable complexity created byues ofr close to the hard-sphere diameter, where the major
two quantum particles interacting with each other and a clascontribution to the decay rate occurs.
sical gas and the general lack of scattering data. The domi- |n the following analysis the pickoff decay rate is reduced
nance of the short-range repulsion due to the Pauli exclusiofy quadrature and an exact result is obtained forSheave
between the Ps atom electron and the gas electrons is ap=0) contribution to the decay rate. For a hard-sphere inter-
proximated by a hard-sphere interaction. In spite of the overaction the square of the eigenfunctionstof for r=o, the
all charge neutrality of the Ps atom, ignoring long-range poard-sphere diameter, [87]
larization effects of the Ps is more difficult to justify.

_However, some agreement with experlment has been ob- \Ifﬁk(r)=2{j|(kcr)n|(kr)—n|(ka)j|(kr)}2/wk2[n|(kcr)
tained for Ps decay in noble gases by treating the Ps as a
composite quantum particlgl,12]. Reese and Millef12] +ji(ka)], (149
have recently used the path-integral Monte Carlo technique

to model the decay of positronium in xenon and argon. Theyyhere ¢ is the hard-sphere diameter. The phase shifts are
were successful in roughly fitting the decay rate over a wides=tan Y[ j,(ko)/n,(ko)]. The wave numbek is related to
range of densities using a simple hard-sphere interaction bghe energy byE,=#2k?/2m and j,(kr) andn,(kr) are the
tween the positronium atom and the classical gas. The harépherical Bessel and Neumann functions, respectively. The
sphere parameter characterizing the interaction was detefyo-particle density matrix for the composite Ps atom and a

mined by looking for self-trapping near the critical point. In single classical atom can now be expressed as
the following we will obtain an analytic expression for the

positronium decay rate in the region linear in the gas density. o

This result can be used for determining potential parameters Wz(r)=(2<r\/;/q8)2 (2l +1)f dk ‘Pﬁk(r)

at low temperature and density and also demonstrates why ! 0

the term is essentially temperature independent. « exq — BE r= 15
Reese and Millef12] have shown that the pickoff decay = BB, o 9

rate of Ps in a gas can be expressed as .
g P where Aps=f+7B/m is the Ps-atom thermal wavelength

and q3=4m(a/Apd?. ThusW,(r) is reduced to quadrature.
Unfortunately, even for this simple system an analytic solu-
tion is not possible.

The decay rate is determined by the overlap of the atomic

wherer is now the relative coordinaté —R) anday is the charge distribution and the positron wave function. From

Bohr radius. This expression is obtained by assuming that thF'g' 1, which shows the range of the probability density of

internal state of the Ps atom is undisturbed by the presence éeeigssvs;%?éicaq é)e \zﬁzg mgt tg;?tgcnc?;ieﬁgmz'IyC:gstge
the gas molecules. In this approximation the electron distri;mgthe hard s h;e.'l'.herefore thre): largbehavior of\Ny(r)
bution of the classical atom is represented a8 fanction. P ) ’ 9 2

The exponential term in the integrand simply represents trﬁs irrelevant for determining the decay rate. The absence of a

<X>=[1/(wag)]f dr exg — 2r/ag]n(r), (12)

spread of the quantum-mechanical positron with respect tlen;p;e;;a]tctjvrve]dbepgir:g(etrllci)to;tnh deindgeczza(yr)ra:ta)c())ljttrh: Pisnc:n eas-
the Ps center of mass, i.e., itis the ground-state probability 3; lor series v>\//hich izegzg] Lk 7
the positron around the Ps center of mass. y ' 9

The first term in(11) can be used to obtain the decay-rate 5 3 o 2 5.4
linear in the gas density, i.e., the two-body term Wo(r) ={(x=1)*=(x=1)"H{1+305— Fdo+ "} (16)
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FIG. 2. Dependence of the coefficient of the linear term in the
density expansion of the decay rate @h\ over nearly the com-

FIG. 1. QP-atom radial distribution functiow,(r) plotted for ~ Plete temperature range. The QP mass was chosemgastlle mass
different values ob/A. The solid curve gives the complete function ©f positronium, ands=2.25 A corresponding to xenon gas. The
(including all angular-momentum stajeshereas the dashed curves computations were performed using path-integral Monte Carlo
give thel =0 contribution. The dotted curve is the radial probability theory. The computations are consistent with both the high-
density of the positron wave function. It is seen that, where signifi(6/A—%) and low- (¢/A—0) temperature limits determined from
cant overlap occurs, all of the distributions are approximately equatthe analytical result29). The smallest plotted value generated by
resulting in a temperature-independent annihilation rate. PIMC at o/A=0.1 is very close to the asymptotic=0 limit ob-
tained analytically.

in terms of the dimensionless coordinate-r/o=1. This  Wa(")i-o is independent of temperature over a large range.
demonstrates that at sufficiently sma}j the largest contri- O]:)(r:r?;r:tsjr’ntgltsagsn?:togtt:ﬁ)::ot(ra Iav:/%‘iaéP;Nigeg\a/iglegr?te;r_gr%g?rﬁr_cje-
bution to the decay rate is temperature independent. The ’

) \ : viation of thel =0 term from the exact result shown in Fig. 1.
above Expression als_o shows that the first correciion 1o th@ut, since the decay rate is determined by the behavior of
decay rate is linear with temperature.

At thermal energies, when~o a back of the envelope W,(r) near the hard-sphere diameter, the higher-order terms,

. L g , i.e.,1#0, have a negligible contribution to the decay rate.
estimate easily givels/f~qg, whereL is the orbital angular To explore the behavior of\) at higher temperatures,

mo_me_ntum of Ps. Thl_Js, for the temperatures at which thg,here the restriction td =0 no longer applies, we have
majority of the experiments have been performed, correayaluatedw,(r) using path-integral Monte Carlo. This is a
sponding tog, ranging from roughly 0.01 to 0.1/A<1 and  yseful technique for more structured interaction potentials
we are justified in using only thé=0 term in (15). The  that generally do not possess analytical solutions/iy¢r).
S-wave (I =0) term can be evaluated analytically7] and is  We will describe this approach in detail later when we report
given by our results on positron annihilation. For the sake of compari-
2 5 ) 5 son with the low-temperature calculations given above, in
Wo(r)i—o=(Laox){1—exd —ag(x—1)“]}, x=rlo=1.  Fig. 2 we simply provide the complete dependence of the
(170 decay rate ow/Apg. This shows both the asymptotic behav-
ior at long wavelength seen in most experiments and the
approach to the classical limit at short wavelengths. In each
extreme bottW,(r) and{\) can be evaluated analytically: In
" the classical limit,W,(r)=6(r — o), where 6 is the usual
N _a=[4pc3(a3g? J dx exg — 2xa/a step function, while in the quantuzero-temperatupdimit
(Mi-o=l4pa/(a50o)] 1 X o we see fron(17) thatW,(r) = (r — o) 26(r — o)/r2. Substitu-
tion of these forms i(13) yields

- exp(—2o0/ay) (T—0)

The S-wave contribution to the decay rate can now be writ-
ten as

x{1—exf —g5(x—1)2]}

=2p(0lagdo)® exp —207/ag)x = [1+2(alag)+2(alag)?lexp(—2alay)  (T—o),
X[1— (o7l qeag)ex (a/goao) 2erfo a/goao) ], (19

(18) wh.ich gives the exact high—temperature to low-temperature
ratio of the decay rates for this model. Note that the Monte
where erfck) is the complimentary error functid9]. This ~ Carlo results are consistent with these limits.
expression gives the experimentally observed temperature
independence of the decay rate for snigll IV. CONCLUSIONS
This result is easily understood by examining Fig. 1, We have developed a virial expansion for the properties of
where it is seen that for=~o (i.e., x~1) the function a quantum particle that has thermalized in a disordered en-
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vironment consisting of particle@toms or moleculgshav-  tant qualitative differences in the decay rate depending on
ing translational degrees of freedom that can be modelethe form of the interaction potential. For instance, in xenon it
classically. The method was applied to the problem of theas believed that a weak bound state exists for the three-body
QP-atom correlation function under circumstances where allystem 14]. In future work we will investigate more realistic
the interactions are determined by pairwise additivepotentials using the path-integral method, where analytic re-
coordinate-dependent interaction potentials. For the particusults are not available. We have also exhibited the results of
lar case where the QP-atom interaction can be approximatesl path-integral Monte Carlo calculation for the behavior of
by a hard-sphere potential, the term of the correlation functhe linear contribution over the entire temperature range. The
tion linear in the densitythe first term of the serigzan be latter demonstrates the large variation (in) that occurs
determined analytically. We have used the result to explicitiywhen going from the extreme quantum to the classical limit.
evaluate the temperature dependence of the annihilation rate When coupled with the path-integral representation of the
of positronium in gases at low density. By investigating theQP, the virial expansion provides a powerful tool to investi-
contributions from different angular-momentum states wegate a number of interesting phenomena. The advantage is
have verified and explained the apparent lack of temperaturinat Monte Carlo techniques can be employed to consider
dependence in most experimental measurements of the deceneraction potentials of arbitrary shape: The analytic solu-
rate in low-density gases. Although this was carried out fortion for W,(r) is no longer required. Specific questions we
the explicit case of a hard-sphere interaction, the argumentsan address concern the influence of the binding of the pos-
for the S- wave dominance are general, so we expect that thigron to small atomic clusters, the effect of virtual scattering
result is generic to a wide variety of potentials. The resultgesonances, and the role of the induced atomic polarization
appear to be valid even for molecular gases, such as metleharge density on the decay rate of a thermalized positron.
ane, but fails for ethani30]. Some of this work is currently in progress.

Although a hard-sphere interaction represents the crudest
approximation of the interaction between the Ps atom and the
atomic gas, this result is likely generic to a variety of inter-
action potentials, i.e., the decay rate is independent of tem- The authors are grateful for the support of the Research
perature at low density. At higher density, where the onset oFoundation of Texas Christian University and the NSF Pitts-
three-body effects become significant, we anticipate imporburgh Supercomputer Center.
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