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Experiments measuring the decay of positrons and orthopositronium in gases show a complicated depen-
dence of the annihilation rate on the gas density. Theoretical and experimental studies indicate that the non-
linear dependence of the decay rate on gas density is the result of local alterations in the gas density surround-
ing the decaying particle. In this paper the virial expansion of the decay rate of both free positrons and
positronium atoms in powers of the gas density is developed. The temperature-dependent coefficients in the
density expansion of the decay rate are expressed in terms of modified cluster integrals that are determined by
the interaction of the free positron or positronium atom with the host gas. Explicit expressions are given for the
decay rate through terms of orderr2 in the gas density. The term linear in the gas density is investigated
analytically for the specific case of a hard-sphere interaction and its relevance to the decay of orthopositronium
is demonstrated. Both the low- and high-temperature limits of the decay rate are determined analytically and
the lack of temperature dependence observed in most experimental measurements of the decay rate at low
density is explained. Finally, the results of path-integral Monte Carlo calculations for the decay rate over a
wide temperature range are presented.

PACS number~s!: 36.10.Dr, 31.15.2p, 05.30.Ch, 78.70.Bj

I. INTRODUCTION

Positron and positronium decay in gases is an important
experimental tool for studying the states of a quantum par-
ticle in a disordered environment. The quantum particle~QP!
can be in a localized or extended state depending on the
thermodynamic variables of the gas@1,2#. Since both the
decay rate of free positrons and the pickoff decay rate of
ortho-positronium atoms~o-Ps! are sensitive to the local
electron density, they provide information concerning the lo-
cal QP environment. Using theoretical models, this informa-
tion can be related to the local gas structure and the quantum
state of the QP, which ranges between localized and ex-
tended. Localized states are also available to an excess elec-
tron in a gas; however, their chief experimental manifestation
is a reduction in the mobility@3#. Because the mobility is a
transport property, its theoretical prediction involves the con-
struction of a two-time correlation function, which is difficult
to evaluate either analytically or computationally. In contrast,
the decay rate is an equilibrium property that can be com-
puted at a single fixed time and provides a direct connection
with the equilibrium distribution of the gas.

Because the mean de Broglie wavelength of an electron or
positron is of the order of 100 Å at room temperature, quan-
tum mechanics is required to represent these particles. This
also holds true for the positronium atom. However, the de
Broglie wavelength of an atom or molecule at these tempera-
tures is generally less than 1 Å and the translational degrees
of freedom can be treated classically. Consequently, all theo-
retical models used to date to gain understanding of the sys-
tem of an excess QP thermalized in a gas are a hybrid of both
classical and quantum mechanics. The two primary theoreti-
cal methods that have been used to study this system are
density-functional theory ~DFT! and the path-integral
method.

In DFT @4–9# the local gas density is represented as a
continuum and the QP is represented by a single quantum
state. A free-energy functional of the local density and the
wave function is constructed and the null condition of its
variation is used to obtain coupled equations for the optimal
wave function of the QP and density profile of the classical
gas. This theory is relatively easy to apply but, since it is a
mean-field theory, it ignores fluctuations in the gas density
and quantum states. It has been successfully used to study
localized states in helium and supports the concept that the
self-trapped state of the QP is dominant over a specific re-
gion of thermodynamic states@4,5#. The DFT produces an
abrupt transition between self-trapped and extended QP
states. This is consistent with the abrupt change in the decay
rate that is observed experimentally in the decay of o-Ps in
helium above its critical temperature@10#. However, experi-
ments of o-Ps and positron decay in other noble gases, such
as argon@6# and xenon@7#, which have higher critical-point
temperatures, indicate that the decay rate is a smooth con-
tinuous function of the gas density and temperature. This
suggests that the localization of the QP occurs in a continu-
ous fashion and is not consistent with the DFT results. The
discrepancy between the experiments and theory are likely
because DFT is a mean-field theory and neglects local fluc-
tuations.

Recently, path-integral Monte Carlo~PIMC! calculations
@11–13# of the full adiabatic model have succeeded in pro-
ducing a continuous transition from an extended to a local-
ized state that is expected for a thermalized positron or pos-
itronium atom in a gas as a function of density and
temperature and accurately predicts the observed density de-
pendence of the decay rate of positrons in xenon and o-Ps in
argon and xenon. The PIMC calculations show the subtle
relation between QP localization, cluster and bubble forma-
tion, and the decay rate. However, it is more difficult to
obtain predictions from this model as its implementation
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generally requires the development of sophisticated ‘‘smart’’
Monte Carlo algorithms coupled with long runs on a super-
computer to obtain convergence. The situation is especially
problematic in the extremes of high and low density, where
convergence is slow.

The above theoretical and experimental results have dem-
onstrated the importance of the many-body interaction be-
tween the QP and the classical gas. The physical manifesta-
tion of this interaction is a local increase in the gas density,
i.e., cluster formation, around the positron and a local de-
crease in gas density, bubble formation, around the positro-
nium atom. The alteration in density that is created results in
a decay rate that is not simply a linear function of gas den-
sity. A systematic method of examining the deviation of the
decay rate from a linear dependence on the gas density
would provide important information about the effect of
cluster and bubble formation on the decay rate. In addition,
recent many-body calculations show that the anomalous rise
in the positron decay rate with xenon density@7# may be the
result of the transformation of a two-body~positron and
single xenon atom! virtual level resonance to a real bound
level for the positron in the three-body interaction~positron
and two xenon atoms! @14#. The virial expansion of the de-
cay rate in the gas density provides a framework for inves-
tigating the initial deviations from linearity and their origin.
At the present time, these are all open questions.

The virial of the positron and o-Ps pickoff decay rate can
be written as

^l̂&5A~T!r1B~T!r21C~T!r31••• , ~1!

where coefficientsA(T), B(T), andC(T) are, in general,
temperature dependent. The first coefficientA(T) describes
the two-body interaction of the QP and a single classical
atom,B(T) describes the three-body interaction of the QP
with two interacting classical atoms, etc. From the virial ex-
pansion of the decay rate the temperature dependence of the
coefficients that multiply the gas density can be calculated
independently.

There is very little available information concerning the
total potential energy of the system of a gas and a positron or
o-Ps atom. In theoretical studies to date it is standard to treat
the positron-gas interaction energy as a sum over two-body
interactions. The first term in the density expansion of the
positron decay rate depends only on the effective two-body
potentialv(r ), which describes the effective interaction be-
tween the QP and a single classical atom. Scattering experi-
ments have yielded model potentials that accurately repro-
duce the low-density decay rate of positrons in most noble
gases@15#. The situation is less clear for o-Ps@16#. If the
experimental decay rate is known with sufficient accuracy
and the onset of deviations from the linear dependence of the
decay rate with density is isolated, the applicability of using
pairwise two-body potentials could be evaluated using the
virial expansion. This is not unlike the situation that exists
for an atomic gas, where some success in determining two-
body potentials for classical gases has been achieved by us-
ing the second term of the virial expansion for the pressure
@17#, and its limitations evaluated by examining the higher
terms.

The region of density where the first deviations from lin-
earity in the decay rate occur, i.e.,B(T), has received only
modest theoretical and experimental attention. McNutt and
Sharma@18# have attempted to explain the initial nonlinear
dependence of the decay rate with a semi-phenomenological
theory that depends on fluctuations in the gas density. In their
model the QP passively samples energetically favorable
local-density fluctuations. Calculations show, however, that
fluctuations in the density of atoms in volumes of the order
of the QP thermal wavelength are insufficient to explain the
experimental results@19–21#. Deviations from the linear de-
pendence of the positron decay rate in helium were consid-
ered in detail by Nieminen@22#; however, the method does
not allow a systematic study of increasing gas density or of
the temperature-dependent quantum effects. Polischuk@20#
and Artem’ev, Polishchuk, and Khrapak@23# have used
finite-temperature Green’s functions to investigate the effects
of temperature and many-particle scattering on the deviation
from linearity, i.e.,B(T), of the decay rate. Their results are
obtained under the severe approximation of ad-function in-
teraction potential and neglects the role of feedback of the
positron on the gas. Within these approximations, their re-
sults suggest that the temperature dependence ofB(T) is
determined by the increase in the role played by the attrac-
tion between atoms as the temperature is lowered.

The remainder of the paper is arranged as follows. A den-
sity expansion for the QP-atom correlation function in pow-
ers of the gas density is developed. We then use the corre-
lation function to directly obtain a density expansion for the
positron decay rate. The orthopositronium pickoff decay rate
is also given in the approximation of treating the positronium
atom as a composite quantum particle of mass 2me . As an
application of the viral expansion the term linear in the gas
density is evaluated for a hard-sphere interaction. The hard-
sphere interaction is a common model for the effective Ps-
atom interaction potential@1,12#. Since the dominant contri-
bution to the Ps-atom interaction is provided by fermionic
repulsion between the Ps atom’s electron and the atomic
electrons, the hard-sphere potential is expected to offer a
crude representation of this interaction. From this simple
model for the decay rate of o-Ps in gases we are able to
explain the experimentally observed temperature indepen-
dence of the term that is linear in the gas density and discuss
why this result is likely to be valid for a range of interaction
potentials.

II. DEVELOPMENT OF THE DENSITY EXPANSION

In general, the experimental conditions are such that it is
justifiable to assume that the QP’s are sufficiently dispersed
and screened by the surrounding gas that the interaction be-
tween them is negligible. Thus, we can consider a single QP
interacting with a classical gas. In order to simplify the role
played by the atomic electrons, in theoretical studies it is
common to assume effective two-body potentials. The sim-
plest microscopic Hamiltonian that contains the physics of a
single quantum particle of massm and momentump̂ inter-
acting with a gas ofN classical particles is then

H5p̂2/2m1(
i
v~r2Ri !1(

i, j
u~Ri2Rj !1(

i
P1
2/2M ,

~2!
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where the effective interaction energy between the QP atr
and the gasV~r ,RO !5(iv~r2Ri! is assumed to be pairwise
additive. The interaction between the gas atoms
U~RO !5(i, ju~Ri2Rj ! is also taken to be pairwise additive.
The set of atomic positions$R1,R2, . . . ,RN% is represented
by RO . The momentum and mass of thei th classical atom are,
respectively,Pi andM .

The thermal wavelength of the QP is of the order of 100
times larger than the thermal wavelength of a typical classi-
cal atom~say, for example, xenon! at the same temperature.
Therefore, neglecting the quantum dispersion of the rela-
tively massive classical atoms appears reasonable. The con-
sequence of this approximation is that the trace over the
atomic translational degrees of freedom in the partition func-
tion can be reduced to a classical phase-space integration
@24#. Thus the partition function for a QP interacting with a
classical gas ofN atoms is

ZN,QP5Tr@exp~2bH !#

51/~N!LCP
3N!E dRO exp@2bU~RO !#

3Tr@exp~2bH8!#. ~3!

TheN gas momenta have been integrated away producing
the factor involving the thermal wavelength of a gas atom
~classical particle! LCP5\A2pb/M . The trace in the second
expression is with respect to the QP states with
H85p̂2/2m1V~r ,RO !. The classical part consists of the inte-
gral over the translational coordinates of the gas
~*dR1•••*dRN[*dRO !, which is weighted by the classical
Gibbs factor exp@2bU~RO !#. In thermal equilibrium, the
mean value of a physical observableO~r ,p̂,RO !, which can
depend on the QP coordinate and momentum, but only on the
gas coordinates, is given by

^O&5~1/N!LCP
3NZ!E dRO exp@2bU~RO !#

3Tr@O exp~2bH8!#. ~4!

Physically the annihilation rate is proportional to the over-
lap of the positron and the electron density of the gas. Iff ~r !
is the quantum-averaged electron density of an atom fixed at
the origin, then the quantum stateuw& and moleculei contrib-
ute*uw~r !u2f ~r2Ri!dr to the decay rate. Thus the decay rate
is represented by the quantum-mechanical operator

l̂5 (
1< i<N

f ~r2Ri !. ~5!

The equilibrium average of the decay rate operator of a
thermalized positron is given in suitably scaled units by
@1,24#

^l̂&5E dRE dr f ~ ur2Ru!n~r ,R!, ~6!

wheren~r ,R! is the configurational probability for finding a
positron atr and a classical atom atR and f ~r ! is the distri-
bution of atomic electrons a distancer from the atomic
nucleus. It should be noted that the use of the unperturbed

electron distribution of the isolated atom forf ~r ! in ~6! may
introduce a significant error. The ability of the positron to
distort the atomic electron distribution is well documented
@15#.

Thus the virial expansion of the decay rate can be found
from the density expansion ofn~r ,R!. The density expansion
for the two-particle correlation function of a homogenous
quantum gas was obtained by De Boer@25#. A straightfor-
ward extension of this method can be used for the mixed
system of a QP in a classical gas. To obtain an expansion of
n~r ,R! in the density of the gas it is convenient to introduce
the diagonal element of the density matrix for theN atoms
and the single QP,

W~r ,RO !5LQP
3 ^r ,Nuexp@2bH8#uN,r &exp@2bU~RO !#, ~7!

where uN,r & is a complete set of orthonormal states. In the
limit of no interaction between the QP and the gas Eq.~7!
reduces to exp@2 bU~RO !#. The partition function can now be
expressed as

ZN,QP51/~N!LCP
3NLQP

3 !E dRO E dr W~r ,RO !. ~8!

In the canonical ensemble, the configurational probability
density is given by

n~r ,R1!5@1/QN,QP~N21!! #E dR2•••E dRNW~r ,RO !,

~9!

whereQN,QP5(LN
3NLQP

3 )ZN,QP. The density expansion for
n~r ,R1! can now be obtained by one of two standard meth-
ods, i.e., either by finding an expansion forn~r ,R1! in terms
of powers of the activity by introducing the grand canonical
ensemble and using series reversion to convert to a density
expansion or by introducing a sequence of Ursell functions
@26#. In either case, we obtain

n~r ,R1!5~1/V!H rW~r ,R1!1r2E dR2@W~r ,R1 ,R2!

2W~r ,R1!W~R1 ,R2!#1O~r3!1•••J ~10!

through second order inr2, whereW(R1,R2) is the classical
two-body distribution function. The decay rate can now be
written as

^l̂&5~1/V!E dR1E dr f ~ ur2R1u!H rW~r ,R1!

1r2E dR2@W~r ,R1 ,R2!2W~r ,R1!W~R1 ,R2!#J
1O~r3!. ~11!

The term linear in the gas density involves a simple inte-
gration over the functionf ~r2R1!W~r ,R1!. The two-body
termW~r ,R1! can be reduced to quadrature@27# and the in-
tegral evaluated numerically or integrated directly by PIMC
@28#. The three-body termW~r ,R1,R2! is the density matrix
for a quantum particle in an axially symmetric field created
by the two classical particles atR1 andR2. The difference
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that appears in the term quadratic in the gas density is seen to
go to zero in the limit that the gas atom atR2 is removed to
infinity, thus indicating in this limit that the density depen-
dence of the lifetime is linear. This is completely rigorous
and we can say with certainty that any nonlinearity in the
decay rate with gas density indicates the presence of a many-
body interaction, i.e., greater than one gas atom simulta-
neously interacting with the quantum particle.

III. APPLICATION TO POSITRONIUM DECAY

The pickoff decay of the positronium atom in a gas rep-
resents a complex many-body problem of two quantum par-
ticles, the electron and positron of the Ps atom, interacting
with a classical gas. The hard-sphere interaction is frequently
used in theoretical studies of Ps decay in gases@1,12# to
represent an effective interaction between the classical gas
atoms and Ps atom. The Ps atom is represented as a single
composite quantum-mechanical particle of mass 2me located
at the Ps center of mass. This severe approximation is pri-
marily motivated by the considerable complexity created by
two quantum particles interacting with each other and a clas-
sical gas and the general lack of scattering data. The domi-
nance of the short-range repulsion due to the Pauli exclusion
between the Ps atom electron and the gas electrons is ap-
proximated by a hard-sphere interaction. In spite of the over-
all charge neutrality of the Ps atom, ignoring long-range po-
larization effects of the Ps is more difficult to justify.

However, some agreement with experiment has been ob-
tained for Ps decay in noble gases by treating the Ps as a
composite quantum particle@1,12#. Reese and Miller@12#
have recently used the path-integral Monte Carlo technique
to model the decay of positronium in xenon and argon. They
were successful in roughly fitting the decay rate over a wide
range of densities using a simple hard-sphere interaction be-
tween the positronium atom and the classical gas. The hard-
sphere parameter characterizing the interaction was deter-
mined by looking for self-trapping near the critical point. In
the following we will obtain an analytic expression for the
positronium decay rate in the region linear in the gas density.
This result can be used for determining potential parameters
at low temperature and density and also demonstrates why
the term is essentially temperature independent.

Reese and Miller@12# have shown that the pickoff decay
rate of Ps in a gas can be expressed as

^l̂&5@1/~pa0
3!#E dr exp@22r /a0#n~r !, ~12!

wherer is now the relative coordinate~r2R! anda0 is the
Bohr radius. This expression is obtained by assuming that the
internal state of the Ps atom is undisturbed by the presence of
the gas molecules. In this approximation the electron distri-
bution of the classical atom is represented as ad function.
The exponential term in the integrand simply represents the
spread of the quantum-mechanical positron with respect to
the Ps center of mass, i.e., it is the ground-state probability of
the positron around the Ps center of mass.

The first term in~11! can be used to obtain the decay-rate
linear in the gas density, i.e., the two-body term

^l̂&5@r/~pa0
3!#E dr exp@22r /a0#W2~r !. ~13!

For a hard-sphere interaction the diagonal density-matrix el-
ementW2~r !5L3^r uexp@2bH8#ur & has been calculated nu-
merically by Larsen@27#. As expected, the function is a
monotonically increasing function of temperature for any
given value ofr and approaches the classical result of a step
function ass/L→0, wheres is the hard-sphere diameter.
Therefore, we expect that~13! is a monotonically increasing
function of temperature, since it is essentially a measure of
the overlap of the diagonal density-matrix element and the
exponential term representing the positron probability den-
sity. This is not in agreement with the majority of experi-
ments, where it is found that the decay rate is independent of
temperature@7,10,18#. The absence of a temperature depen-
dence for the o-Ps decay in the region that is linear with the
gas density can be explained with the simple hard-sphere
interaction. Below we will show that it results from the lack
of temperature dependence ofW2 at low temperature for val-
ues ofr close to the hard-sphere diameter, where the major
contribution to the decay rate occurs.

In the following analysis the pickoff decay rate is reduced
to quadrature and an exact result is obtained for theS wave
~l50! contribution to the decay rate. For a hard-sphere inter-
action the square of the eigenfunctions ofH8 for r>s, the
hard-sphere diameter, is@27#

C l ,k
2 ~r !52$ j l~ks!nl~kr !2nl~ks! j l~kr !%

2/pk2@nl~ks!

1 j l~ks!#, ~14!

wheres is the hard-sphere diameter. The phase shifts are
dl5tan21[ j l(ks)/nl(ks)]. The wave numberk is related to
the energy byEk5\2k2/2m and j l(kr) and nl(kr) are the
spherical Bessel and Neumann functions, respectively. The
two-particle density matrix for the composite Ps atom and a
single classical atom can now be expressed as

W2~r !5~2sAp/q0
3!(

l
~2l11!E

0

`

dk C l ,k
2 ~r !

3exp~2bEk!, r>s, ~15!

where LPs5\Apb/m is the Ps-atom thermal wavelength
and q0

254p~s/LPs!
2. ThusW2(r ) is reduced to quadrature.

Unfortunately, even for this simple system an analytic solu-
tion is not possible.

The decay rate is determined by the overlap of the atomic
charge distribution and the positron wave function. From
Fig. 1, which shows the range of the probability density of
the positron, it can be seen that this occurs primarily in the
region wherer's, i.e., when the positron is relatively close
to the hard sphere. Therefore, the large-r behavior ofW2(r )
is irrelevant for determining the decay rate. The absence of a
temperature dependence for the decay rate of the Ps can eas-
ily be shown by directly expandingC l ,k

2 (r ) aboutr's in a
Taylor series, which gives@27#

W2~r !5$~x21!22~x21!3%$11 9
2q0

22 55
6 q0

41•••% ~16!
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in terms of the dimensionless coordinatex5r /s>1. This
demonstrates that at sufficiently smallq0 the largest contri-
bution to the decay rate is temperature independent. The
above expression also shows that the first correction to the
decay rate is linear with temperature.

At thermal energies, whenr's a back of the envelope
estimate easily givesL/\'q0 , whereL is the orbital angular
momentum of Ps. Thus, for the temperatures at which the
majority of the experiments have been performed, corre-
sponding toq0 ranging from roughly 0.01 to 0.1,L/\!1 and
we are justified in using only thel50 term in ~15!. The
S-wave~l50! term can be evaluated analytically@27# and is
given by

W2~r ! l505~1/q0
2x2!$12exp@2q0

2~x21!2#%, x5r /s>1.
~17!

TheS-wave contribution to the decay rate can now be writ-
ten as

^l̂& l505@4rs3/~a0
3q0

2!#E
1

`

dx exp~22xs/a0!

3$12exp@2q0
2~x21!2#%

52r~s/a0q0!
2 exp~22s/a0!x

3@12~sAp/q0a0!exp@~s/q0a0!
2erfc~s/q0a0!#,

~18!

where erfc(x) is the complimentary error function@29#. This
expression gives the experimentally observed temperature
independence of the decay rate for smallq0.

This result is easily understood by examining Fig. 1,
where it is seen that forr's ~i.e., x'1! the function

W2(r ) l50 is independent of temperature over a large range.
Of course, this is not true for largerr , where higher-angular-
momentum states contribute, which is evident from the de-
viation of thel50 term from the exact result shown in Fig. 1.
But, since the decay rate is determined by the behavior of
W2(r ) near the hard-sphere diameter, the higher-order terms,
i.e., lÞ0, have a negligible contribution to the decay rate.

To explore the behavior of̂l̂& at higher temperatures,
where the restriction tol50 no longer applies, we have
evaluatedW2(r ) using path-integral Monte Carlo. This is a
useful technique for more structured interaction potentials
that generally do not possess analytical solutions forW2(r ).
We will describe this approach in detail later when we report
our results on positron annihilation. For the sake of compari-
son with the low-temperature calculations given above, in
Fig. 2 we simply provide the complete dependence of the
decay rate ons/LPs. This shows both the asymptotic behav-
ior at long wavelength seen in most experiments and the
approach to the classical limit at short wavelengths. In each
extreme bothW2(r ) and^l̂& can be evaluated analytically: In
the classical limit,W2(r )5u(r2s), whereu is the usual
step function, while in the quantum~zero-temperature! limit
we see from~17! thatW2(r )5(r2s)2u(r2s)/r 2. Substitu-
tion of these forms in~13! yields

^l̂&5 Hexp~22s/a0! ~T→0!

@112~s/a0!12~s/a0!
2#exp~22s/a0! ~T→`!,

~19!

which gives the exact high-temperature to low-temperature
ratio of the decay rates for this model. Note that the Monte
Carlo results are consistent with these limits.

IV. CONCLUSIONS

We have developed a virial expansion for the properties of
a quantum particle that has thermalized in a disordered en-

FIG. 1. QP-atom radial distribution functionW2(r ) plotted for
different values ofs/L. The solid curve gives the complete function
~including all angular-momentum states! whereas the dashed curves
give thel50 contribution. The dotted curve is the radial probability
density of the positron wave function. It is seen that, where signifi-
cant overlap occurs, all of the distributions are approximately equal,
resulting in a temperature-independent annihilation rate.

FIG. 2. Dependence of the coefficient of the linear term in the
density expansion of the decay rate ons/L over nearly the com-
plete temperature range. The QPmass was chosen as 2me , the mass
of positronium, ands52.25 Å corresponding to xenon gas. The
computations were performed using path-integral Monte Carlo
theory. The computations are consistent with both the high-
~s/L→`! and low- ~s/L→0! temperature limits determined from
the analytical results~29!. The smallest plotted value generated by
PIMC at s/L50.1 is very close to the asymptoticT50 limit ob-
tained analytically.
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vironment consisting of particles~atoms or molecules! hav-
ing translational degrees of freedom that can be modeled
classically. The method was applied to the problem of the
QP-atom correlation function under circumstances where all
the interactions are determined by pairwise additive
coordinate-dependent interaction potentials. For the particu-
lar case where the QP-atom interaction can be approximated
by a hard-sphere potential, the term of the correlation func-
tion linear in the density~the first term of the series! can be
determined analytically. We have used the result to explicitly
evaluate the temperature dependence of the annihilation rate
of positronium in gases at low density. By investigating the
contributions from different angular-momentum states we
have verified and explained the apparent lack of temperature
dependence in most experimental measurements of the decay
rate in low-density gases. Although this was carried out for
the explicit case of a hard-sphere interaction, the arguments
for theS-wave dominance are general, so we expect that this
result is generic to a wide variety of potentials. The results
appear to be valid even for molecular gases, such as meth-
ane, but fails for ethane@30#.

Although a hard-sphere interaction represents the crudest
approximation of the interaction between the Ps atom and the
atomic gas, this result is likely generic to a variety of inter-
action potentials, i.e., the decay rate is independent of tem-
perature at low density. At higher density, where the onset of
three-body effects become significant, we anticipate impor-

tant qualitative differences in the decay rate depending on
the form of the interaction potential. For instance, in xenon it
is believed that a weak bound state exists for the three-body
system@14#. In future work we will investigate more realistic
potentials using the path-integral method, where analytic re-
sults are not available. We have also exhibited the results of
a path-integral Monte Carlo calculation for the behavior of
the linear contribution over the entire temperature range. The
latter demonstrates the large variation in^l̂& that occurs
when going from the extreme quantum to the classical limit.

When coupled with the path-integral representation of the
QP, the virial expansion provides a powerful tool to investi-
gate a number of interesting phenomena. The advantage is
that Monte Carlo techniques can be employed to consider
interaction potentials of arbitrary shape: The analytic solu-
tion for W2(r ) is no longer required. Specific questions we
can address concern the influence of the binding of the pos-
itron to small atomic clusters, the effect of virtual scattering
resonances, and the role of the induced atomic polarization
charge density on the decay rate of a thermalized positron.
Some of this work is currently in progress.
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