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Muonic hydrogen (mH! is a unique tool to study the low-energy properties of the proton form factors. The
energy levels ofmH are very sensitive to QED, recoil, and proton finite-size effects. We calculate the correc-
tions to the Lamb shift and also to the fine and hyperfine structures that contribute at the 0.01-meV precision
level. This result may allow for the precise determination of the proton charge radius from measurements of the
2P-2S transition energy inmH. A more accurate value for the proton radius is necessary for further improve-
ments of QED tests based on the hydrogen atom.

PACS number~s!: 31.30.Jv, 12.20.Ds, 36.10.Dr, 06.20.Jr

I. INTRODUCTION

Muonic hydrogen (mH! is a bound system of a muon and
a proton. Its finite lifetime is determined by the muon decay
tm52.197 03(4)31026 s. The energy levels of themH sys-
tem are very sensitive to the QED, recoil, and nuclear struc-
ture effects. The muon is about 200 times heavier than the
electron and therefore its wave function overlaps with the
proton (mm /me)

3'107 stronger than that of the electron in
the hydrogen atom. The effective potential that the muon
experiences is significantly modified by the proton charge
distribution. Therefore, a measurement of the 2P-2S Lamb
shift could give a precise value for the proton charge radius
r p . In fact, the current tests of QED on atomic hydrogen are
limited by the experimental uncertainty in the proton form
factors. For example, the theoretical predictions for the 2S
Lamb shift in hydrogen@1#

L~2S!51 045 003~4!~3! kHz ~1!

have an error of 4 kHz coming from the uncertainty in the
proton charge radiusr p50.862(12) fm~the second error in
an estimate for unknown higher-order corrections!. The ex-
perimental precision for the 2S Lamb shift is expected to
reach an accuracy of about 1 kHz, thus the precise knowl-
edge of the proton charge radius is very desirable for further
improvements of QED tests. Taqqu@2# is currently working
on the measurement of the 2P-2S transition frequency in
muonic hydrogen using a phase-space-compressed muon
beam technique. Recent investigations indicate that appre-
ciable fractions of the 2S state are long lived at low target
pressure. The predicted relative accuracy is of order 1024

and corresponds to about 25% of the natural linewidth of the
2P-1S transition,G50.08 meV. Such a measurement would
allow one to increase the precision of Lamb shift tests on
hydrogen by one order of magnitude.

The Lamb shift inmH was first investigated by Giacomo
in @3#. Several significant corrections have been omitted
there and in general there has been some progress in the
bound-state QED since this paper was written. The Lamb

shift in other muonic atoms has been worked out in detail by
Borie and Rinker in a series of papers summarized in a com-
prehensive review@4#. mH was also treated by Borie in@5#,
where the leading contributions were calculated. A detailed
analysis for light muonic ions such asmLi, mBe, andmB
was given by Drake and Byer in@6#. We make an attempt
here to collect the data for various corrections to the Lamb
shift in muonic hydrogen, with particular attention to its cor-
rect mass dependence. The precision level for our calculation
is determined by the unknown three-loop vacuum polariza-
tion, which is estimated to be of the order of 0.01 meV. This
correction isa2 times smaller than the leading contribution,
i.e., one-loop vacuum polarization~VP! ~the known two-loop
VP is approximatelya times smaller than the one-loop VP!.

In our calculation we use the following values for masses
and other physical constants:

mm5105.658 389~34! MeV, ~2!

mp

mm
58.880 244 4~13!, ~3!

me

mm
54.836 332 18~71!31023, ~4!

a215137.035 989 5~61!, ~5!

\

mec
5386.159 323~25! fm. ~6!

II. CORRECTIONS TO THE LAMB SHIFT

The Lamb shift in muonic hydrogen differs from the usual
hydrogen in that the electron vacuum polarization gives the
most significant contribution. This can be explained by the
fact that the Compton wavelength of the electron~which
determines the spatial distribution of the vacuum polarization
charge density! is of the order of the Bohr radius of muonic
hydrogen

b5
me

ma
50.737 386, ~7!

wherem is the reduced mass of the proton-muon system.
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In our calculation we employ a perturbation expansion in
a and Za, whereZ51 in our case, but, in general, it is
convenient to distinguish between the charge of the lepton
and of the nucleus. It differs from previous treatments@4#,
which were based on numerical solutions of the Dirac equa-
tion in the Coulomb field modified by the presence of
vacuum polarization and finite-size effects. Our approach is
more suited for light muonic atoms and moreover allows for
the easy incorporation of the reduced mass and recoil effects.
In many cases we follow the corresponding calculations in
electronic hydrogen.

A. Electron vacuum polarization

The electron vacuum polarization modifies the photon
propagator

2
gmn

k2
→2

gmn

k2@11v̄~k2!#
. ~8!

At the one-loop levelv̄ ~in electron mass units! is given by
@7#

v̄~k2!5
a

p
k2E

4

`

d~q2!
1

q2~me
2q22k2!

u~q2!, ~9!

u~q2!5
1

3
A12

4

q2S 11
2

q2D . ~10!

The vacuum polarization potential as described by Fig. 1 is

VVP~r !52
Za

r

a

pE4
`d~q2!

q2
e2meqru~q2!. ~11!

The leading-order contribution to the energy shift is

E~2P22S!5E d3rVVP~r !r~r !, ~12!

r5r2P2r2S , ~13!

wherer2S andr2P are nonrelativistic charge densities of the
corresponding 2S and 2P states with the reduced massm.
The radial wave functions for these states are

R205
1

A2
e2mar /2S 12

mar

2 D , ~14!

R215
1

2A6
e2mar /2~mar !. ~15!

We first assume that the nucleus is a pointlike particle. The
finite-size effects will be considered separately later. After
the integration with respect tor , E is

E~2P22S!5m~Za!2
a

pE4
`d~q2!

q2
u~q2!

~bq!2

2 ~11bq!4

5
ma3

p

2

3
0.026 178 95205.006 meV. ~16!

This value will be a reference point for all other corrections.
We will neglect all corrections much smaller thana2 times
this energy, since they are smaller than the unknown three-
loop vacuum polarization.

The relativistic corrections to the VP are calculated from
the two-body Breit Hamiltonian. The external field approxi-
mation does not give an accurate result. The Breit Hamil-
tonian consists of

HB5
p2

2m1
1

p2

2m2
2

a

r
1dH1dV, ~17!

dH52
p4

8m1
3 2

p4

8m2
3 , ~18!

dV5
pa

2 S 1

m1
2 1

1

m2
2D d3~r !2

a

2m1m2r
S p21 r ~r–p!p

r 2 D
1

a

r 3 S 1

4m1
2 1

1

2m1m2
D r3p•s. ~19!

Here we neglect the nuclear spin~here the nucleus is a par-
ticle with spin 2! since we are not considering the hyperfine
structure. To include the vacuum polarization, we assume
that a photon has a massr and follow the standard derivation
of the Breit interaction

VVP52
a

r
e2rr , ~20!

dVVP5
a

8 S 1

m1
2 1

1

m2
2D S 4pd3~r !2

r2

r
e2rr D

2
ar2

4m1m2

e2rr

r S 12
rr

2 D
2

a

2m1m2
pi
e2rr

r S d i j1
r i r j
r 2

~11rr ! D pj
1

a

r 3 S 1

4m1
2 1

1

2m1m2
De2rr~11rr !r3p•s.

~21!

The relativistic correction to the energy due to the exchange
of the massive photon is given by

E~r!5^fudVVPuf&

12 K fU~dH1dV!
1

~E2H !8 S 2
a

r
e2rr D Uf L ,

~22!

FIG. 1. Leading-order electron vacuum polarization contribu-
tion.
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whereH5 (p2/2 m) 2(a/r ). In the following

G5 K r 1U 1

~H2E!8
Ur 2L

denotes the reduced Coulomb Green function. Since have not
found its explicit form for 2S and 2P states in the literature,
we have calculated it. The results are (x5mar )

G~2S!5
am2e2~x11x2!/2

4x1x2
$8 x,24 x,

2 18 x.112x,x.

226x,
2 x.12 x,

3 x.24 x.
2 226x,x.

2

123x,
2 x.

2 2x,
3 x.

2 12 x,x.
3 2x,

2 x.
3

14 ex,~12x,!~x.22!x.14 ~x,22!

3x,~x.22!x.@22C1Ei~x,!2 ln~x,!

2 ln~x.!#%
1

4p
, ~23!

G~2P!5
am2e2~x11x2!/2

36x1
2x2

2 $24x,
3 136x,

3 x.136x,
3 x.

2

124x.
3 136x,x.

3 136x,
2 x.

3 149x,
3 x.

3

23 x,
4 x.

3 212ex,~21x,1x,
2 !x.

3 23 x,
3 x.

4

112x,
3 x.

3 @22C1Ei~x,!2 ln~x,!2 ln~x.!#%

3S 3

4p

x1•x2
x1x2

D , ~24!

wherex,5min(x1 ,x2), x.5max(x1 ,x2), andC is the Eu-
ler constantC50.577 216.

The relevant energy shift to the 2P-2S transition using
~11! is

E~2P1/2-2S1/2!5
a

pE4
`d~r2!

r2
uS r2

me
2D @E2P1/2

~r!2E2S1/2
~r!#

50.059 meV. ~25!

If one only takes relativistic corrections to the Dirac wave
function with the reduced massm, the result would
be E5*d3rVVP(r )d(r2P1/22r2S1/2)(r )50.021 meV, which
significantly differs from~25!. It shows the importance of the

two-body treatment. As a test we checked that in the limit
mm/mp50, Eq. ~22! coincides with that obtained directly
from the Dirac equation.

The correction to the Uehling term, i.e., the vacuum po-
larization with four vertices, can be described as an addi-
tional effective potentialVrel(r ). This correction has been
analyzed in detail by Borie and Rinker in@4#. This potential
can be interpolated by a rational function as defined in@4#.
The resulting energy correction is

E5E d3rV rel~r !r~r !520.0005 meV, ~26!

which is negligible in the case of muonic hydrogen.
The next to the leading contribution is the double VP

term, presented in Fig. 2,

E5 K fUVVP

1

~E2H !8
V VPUf L . ~27!

This matrix element is calculated using~23! and ~24! with
the result

E~2P22S!5m~Za!2S a

p D 2 49 0.012450.151 meV. ~28!

Further two-loop diagrams are presented in Fig. 3. The
two-loop vacuum polarization has been calculated analyti-
cally by Källen and Sabry in@8#:

v̄~2!~2p2!5S a

p D 2~2p2!E
4

`

d~q2!
1

q2~me
2q21p2!

u~2!~q2!,

~29!

whereu(2) is given by Eq.~49! in @8#. This formula includes
also the reducible part presented in Fig. 3~c!. The energy
shift

E5E d3p

~2p!3
r~p!

4pa

p2
v̄~2!~2p2! ~30!

is calculated by analytical integration inp and numerical
integration inq. The result is

E~2P22S!5m~Za!2S a

p D 2E
4

`d~q2!

q2
u~2!~q2!

~bq!2

2 ~11bq!4

5m~Za!2S a

p D 2 0.055 266 751.508 meV.

~31!

FIG. 2. Double vacuum polarization correction.

FIG. 3. Two-loop vacuum polarization contribution.
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B. Muon self-energy, vacuum polarization,
and recoil corrections

For the calculation of muon self-energy and vacuum po-
larization we rewrite the corresponding formula known from
the electronic hydrogen@10#. It includes only one-loop cor-
rections~the two-loop is negligible, approximately equal to
20.000 06 meV!

E~2S!5
1

8
mm

a

p
~Za!4S m

mm
D 3H 109 2

4

15
2
4

3
lnk0~2S!

1
4

3
lnS mm

m~Za!2D14pZaS 139128
1

5

192
2
ln~2!

2 D J ,
~32!

E~2P1/2!5
1

8
mm

a

p
~Za!4S m

mm
D 3H 2

1

6

mm

m
2
4

3
lnk0~2P!J ,

~33!

where lnk0(n,l) is Bethe logarithm

lnk0~2S!52.811 769 893 120 5, ~34!

lnk0~2P!520.030 016 708 9. ~35!

The correction to the Lamb shift is

E~2P1/222S1/2!520.668 meV. ~36!

Further corrections are due to the modification of muon
self-energy by the electron vacuum polarization. They are
described by the two diagrams shown in Fig. 4. Both of these
corrections are very small, so we evaluate them only ap-
proximately. The first one is the muon self-energy in the
Coulomb fieldV and VVP. We calculate the leading term
logarithmic ina. For this we use a nonrelativistic formula
for the energy shift

E5
2 a

3pmm
2 E dv K fUp ~H2E!

H2E1v
pUf L , ~37!

whereH includesVVP. We also limit the integration range
from ma2 to mm and neglect (H2E) in the denominator:

E5
2 a

3pmm
2 lnS mm

ma2D ^fup~H2E!puf&. ~38!

Using the identity ^fup(H2E)puf&51/2̂ fuD(V
1VVP)uf& and expanding inVVP, one obtains

E5
a

3pmm
2 lnS mm

ma2D S ^fuD~VVP!uf&

12K fUVVP

1

~E2H !8
DS 2

a

r D Uf L D . ~39!

The energy shift obtained is

E~2P22S!520.005 meV. ~40!

For the second diagram in Fig. 4 we can use the on-shell
approximation for the external muon legs. The energy shift is
then given by

E5
m3

mm
2

~Za!4

n3 S 4mm
2F18~0!d l01F2~0!

cjl
2l11D , ~41!

where

cjl5d l01~12d l0!

j ~ j11!2 l ~ l11!2
3

4

l ~ l11!
~42!

andF1 andF2 are two-loop muon form factors. These form
factors have been calculated by Barbieriet al. @9#

mm
2F18~0!5S a

p D 2H 19 ln2mm

me
2

29

108
ln
mm

me
1
1

9
z~2!

1
395

1296
1OS me

mm
D J

5S a

p D 2H 2.216 561OS me

mm
D J , ~43!

F2~0!5S a

p D 2H 13 lnmm

me
2
25

36
1OS me

mm
D J

5S a

p D 2H 1.082 751OS me

mm
D J . ~44!

The correction to the Lamb shift is

E~2P-2S!520.001 meV. ~45!

The last correction from this class that we leave unevaluated
is due to the virtual Delbru¨ck scattering. We expect this cor-
rection to be below 0.001 meV, similarly to that in Eq.~26!.

The formulas~32! and ~33! do not incorporate the recoil
corrections that are beyond the reduced mass scaling. The
recoil correction@10# of order (Za)4 is obtained by taking
the matrix element of Breit interaction Eqs.~18! and ~19!

E~ l , j !5
~Za!4m3

2 n3mp
2 S 1

j1
1

2

2
1

l1
1

2
D ~12d l0!. ~46!

It gives a correction to the Lamb shift of

FIG. 4. Self-energy with the vacuum polarization corrections.
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E~2P-2S!5
a4m3

48mp
2 50.057 meV. ~47!

The recoil correction in order of (Za)5 is @10#

E~n,l !5
m3

mmmp

~Za!5

pn3 H 23 d l0lnS 1

Za D 2
8

3
lnk0~n,l !2

1

9
d l0

2
7

3
an2

2

mp
22mm

2 d l0Fmp
2lnSmm

m D 2mm
2 lnSmp

m D G J ,
~48!

where

an522 F lnS 2nD1S 11
1

2
1•••1

1

nD112
1

2 nGd l0
1

12d l0
l ~ l11!~2 l11!

. ~49!

It contributes the amount

E~2P-2S!520.045 meV. ~50!

We neglect higher-order corrections~i.e.,mm /mpa
6).

There is an additional recoil correction that has been ne-
glected so far, but is significant for muonic hydrogen. It is
due to the proton self-energy. It has been recently analyzed
in the case of electronic hydrogen@11#. The difficulty in the
interpretation of this correction lies in the fact that it overlaps
with the nuclear finite-size effects. The conclusion from that
paper is that there is an extra logarithmic term that could not
be included in the proton radius definition

E~n,l !5
4m3~Z2a!~Za!4

3pn3mp
2 Fd l0lnS mp

m~Za!2D2 lnk0~n,l !G .
~51!

It contributes

E~2P-2S!520.010 meV. ~52!

C. Nuclear finite-size corrections

In muonic atoms finite-size effects give a large contribu-
tion to energy levels. In the leading order the nuclear size
correction is

E5
2

3 n3
m3~Za!4^r p

2&d l0 , ~53!

which is proportional to the mean-square nuclear charge ra-
dius. The main goal of this paper is to summarize various
corrections to muonic hydrogen energy levels, which would

allow one to extract the proton radius from future experi-
ments. Nevertheless, we can use here the proton radius ob-
tained from the electron scattering measurement@12#

r p50.862~12! fm ~54!

to get the approximate value

E~2P-2S!5@25.147~meV fm22!#^r p
2&

523.862~108! meV. ~55!

There are various corrections beyond this leading finite-size
contribution. We divide them into relativistic and QED cor-
rections. The relativistic corrections based on the Dirac equa-
tion and external field approximation have been studied in
detail by Friar@13#. He has calculated all the contributions in
the order of (Za)6. In the case of muonic hydrogen they
give a negligible correction to the Lamb shift~less than
0.001 meV!, therefore we consider only the (Za)5 correc-
tion. We calculate it without the external field approximation.
This is necessary because the proton mass is only 9 times
larger than the muon mass. The finite-size correction in
(Za)5 is given by Fig. 5, which describes the forward-
scattering amplitude. We use the on-mass-shell approxima-
tion for the external momenta. This amplitude is infrared
divergent and we have to extract the lower-order terms,
namely, the scattering amplitude for pointlike fermions and
the leading finite-size contribution. The proton vertices are
given by two form factorsF1 andF2 @7#

gm→Gm5gmF11
i

2mp
smnqnF2 . ~56!

After angular integration in Euclidean momentum space the
correction to energy could be written as

E~S!52
m3

pn3
d l0~Za!5E

0

`dp

p
T~p2!, ~57!

T~p2!5
2 ~F1

221!

mmmp

1
8mm@F2~0!14mp

2F18~0!#

mp~mm1mp!p

1
mm

mp~mm
22mp

2!p~p1A4mm
21p2!

3H 216F1F2mm
21

32

p2
~F1

221!mm
2mp

218 F1F2p
2

16 F2
2p21

4

mm
2

~F1
221!mp

2p2J
2

mm

mp~mm
22mp

2!p~p1A4mp
21p2!

3H 216F1F2mp
21

32

p2
~F1

221!mp
418 F1F2p

2

16 F2
2p214 ~F1

221!p2J , ~58!

FIG. 5. Finite-size correction of order (Za)5.

2096 53KRZYSZTOF PACHUCKI



where Fi5Fi(2p2). T is proportional to the forward-
scattering amplitude, with lower-order terms subtracted out.
The first term in the expansion of~58! in the mass ratio
mm /mp is simple,

T~0!5
16mm

p3
~GE

2~2p2!2112GE8 ~0!p2!. ~59!

We use here the Sachs form factorsGE andGM because the
experimental data for the proton structure are given in terms
of these functions, defined by

GE~q2!5F1~q
2!1

q2

4mp
2F2~q

2!, ~60!

GM~q2!5F1~q
2!1F2~q

2!. ~61!

For the calculation of the corresponding correction to the
~2P-2S! transition energy we use the dipole parametrization
of the proton form factors

GE~2p2!5
L4

~L21p2!2
, ~62!

GM~2p2!5~11k!GE~2p2!, ~63!

where k is the proton anomalous magnetic moment
k51.792 847. The dipole parametrization is known to de-
scribe the proton form factors well in a wide momentum
range @14#. The parametrization withL50.898mp5842.6
MeV was used previously by Bodwin and Yennie@15# in the
calculation of finite-size effects in the hyperfine structure of
hydrogen. We use the parametrization from@14# L5848.5
MeV and obtain the value

E~2P-2S!50.018 meV. ~64!

If instead ofT one usesT(0), the result would beE(2P-
2S)50.021 meV.

The QED corrections to the leading finite-size contribu-
tion are due to vacuum polarization effects. They are de-
scribed by two diagrams in Fig. 6. The analogous modifica-
tion of muon self-energy due to finite-size effects is
negligible. The expression corresponding to the first diagram
is

E~2P-2S!52S 23pZar p
2D E d3q

~2p!3
v̄~2q2!r~q!

520.008 meV, ~65!

wherev̄ was defined in~9! andr in ~13!. This is the only
nuclear finite-size correction that is significant for the 2P
state.

The expression corresponding to the second diagram is

E522S 23pZar p
2D E d3rf~r !VVP~r !G~r ,0!f~0!, ~66!

whereG is a reduced Coulomb Green function for the 2S
state given in Eq.~23!. It gives a correction to the 2P-2S
Lamb shift of

E~2P-2S!520.013 meV. ~67!

III. FINE AND HYPERFINE STRUCTURE

For the determination of the Lamb shift from the 2P-2S
frequency measurement, one needs the precise values for the
fine and hyperfine structures of then52 energy shell. This
requires the study of the vacuum polarization effects in the
fine structure~fs! and hyperfine structure~hfs! and also of the
nuclear finite-size effect to the 2S hfs. The hfs in the muonic
hydrogen is more complicated due to the 2P1/2 and 2P3/2
mixing @16#; therefore there is an extra correction to the en-
ergy of P levels that has to be taken into account for the
determination of absolute energy levels.

A. Hyperfine structure of 2S1/2

The hyperfine structure inmH is described by the Fermi
splitting

Ehfs~2S!5
1

3
a4

m3

mmmp
~11k!~11am!522.832 meV, ~68!

wheream is the anomalous magnetic moment of the muon,
am50.001 166. There are two kinds of corrections that con-
tribute at the 0.01-meV precision level: the vacuum polariza-
tion and the bindingO(a) nuclear-structure-dependent cor-
rection. The relativistic corrections of orderO(a2) are
negligible ('0.0004 meV!.

The vacuum polarization effect is calculated in a way
similar to ~25!. The spin-spin interaction (am is neglected!

V5
8

3

a

mmmp
pd3~r !~11k!

smsp

4
~69!

in the case of a massive photon takes the form

VVP5
8

3

a

mmmp
~11k!

smsp

4 S pd3~r !2
1

4

e2rr

r 3
~rr !2D .

~70!

The correction to hfs splitting is given by

dEhfs~r!5^fuVVPuf&12 K fUV 1

~E2H !8 S 2
a

r De2rrUf L .
~71!

The r integral is the same as in~25!. The result is

dEhfs~2S!5
1

3
a4

m3

mmmp
~11k!0.002550.058 meV. ~72!

FIG. 6. Finite size with vacuum polarization correction.
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The calculation of the bindingO(a) nuclear-structure-
dependent correction hfs is performed in a way similar to the
Lamb shift. One considers the on-shell spin-dependent part
of the scattering amplitude as presented in Fig. 5. The cor-
rection to the hfs could then be written as

dEhfs52
1

3

a5m3

pn3
d l0

^smsp&
4 E dp

p
Thfs~p

2!, ~73!

Thfs~p
2!5

2 F2
2p2

mm
2mp

2
1
64 @11F2~0!#

~mm1mp!p

1
1

~mm
22mp

2!p~p1A4mm
21p2!

S 2128F1
2mm

2

2128F1F2mm
2116F1

2p2164F1F2p
2116F2

2p2

1
32F2

2mm
2p2

mp
2

1
4 F2

2p4

mm
2

2
4 F2

2p4

mp
2 D

1
1

~mm
22mp

2!p~p1A4mp
21p2!

3~128F1
2mp

21128F1F2mp
2216F1

2p2

264F1F2p
2248F2

2p2!. ~74!

In the limit of largemp

Thfs5
64

pmp
@GM~0!GE~0!2GM~2p2!GE~2p2!#. ~75!

Thfs coincides with the result obtained by Zemach@10#, and
for the pointlike proton, i.e.,F151, F250, dEhfs becomes a
known recoil correction

dEhfs528
a5m3

pn3
mmmp

~mp
22mm

2 !
lnSmp

mm
D ^smsp&

4
. ~76!

Having done these checks, we integrate Eq.~74! numerically
and obtain the value

dEhfs~2S!52
1

3

a5m3

pn3
d l0

^smsp&
4

6.893 96 meV22

520.145 meV. ~77!

If we take the Zemach part only, we get the value
dEhfs(2S)520.183 meV.

The effects of proton polarizability are very difficult in the
evaluation. There exists in the literature the upper bounds for
the hfs in electronic hydrogen. It is of the order of 10% of the
elastic correction. Since this effect only weakly depends on
the lepton mass, we assume the same estimate formH,
namely, 0.015 meV. We obtain for the final result for the hfs
splitting

Ehfs~2S!522.745~15! meV. ~78!

This relatively large error suggests that the proton radius
determination will be more reliable when the hfs for 2S or
1S is measured experimentally.

B. Fine structure of 2P

The fine structure is mostly accounted for by the relevant
term from the Breit Hamiltonian

V5
a

r 3 S 112 am

4mm
2 1

11am

2mmmp
DLsm . ~79!

The energy splitting is

Efs5E~2P3/2!2E~2P1/2!

5
1

32

m3

mm
2 a4S 112 am1~11am!

2mm

mp
D ^Lsm&

3

58.347 meV. ~80!

There is a small correction due to the vacuum polariza-
tion. It is calculated from the massive photon analog of~79!,

V5
a

r 3 S 112 am

4mm
2 1

11am

2mmmp
De2rr~11rr !Lsm ~81!

and gives a correction

dE5
1

32

m3

mm
2 a4S 112 am1~11am!

2mm

mp
D ^Lsm&

3
0.0006

50.005 meV. ~82!

The final value for the fine structure inmH is

Efs58.352 meV. ~83!

C. Hyperfine structure of 2P1/2 and 2P3/2

The relevant operator from Breit Hamiltonian is

V5
a

2mmmp
S 11k1

mm

2mp
~112 k! D spL

r 3

2
a

4mmmp
~11k!~11am!

sm
i sp

j

r 3 S d i j23
r i r j

r 2 D .
~84!

Since this operator does not commute withJ5L1 1
2sm , the

statesP1/2 andP3/2 are mixed and the hyperfine structure is
more complicated. The off-diagonal matrix element reads
(am is neglected!

^3P1/2uVu3P3/2&

5
1

3
a4

m3

mmmp
~11k!S 11

mm

mp

112 k

11k D S 2
A2
48D ~85!

and the diagonal ones are

Ehfs~P1/2!5
1

3
a4

m3

mmmp
~11k!S 131

am

6
1

1

12

mm

mp

112 k

11k D ,
~86!

2098 53KRZYSZTOF PACHUCKI



Ehfs~P3/2!5
1

3
a4

m3

mmmp
~11k!S 2152

am

30
1

1

12

mm

mp

112 k

11k D .
~87!

There also is a small correction coming from the vacuum
polarization. The extension of~84! to a massive photon is

VVP5
a

2mmmp
S 11k1

mm

2mp
~112 k! D e2rr

r 3
~11rr !

spL

r 3

2
a

4mmmp
~11k!~11am!sm

i sp
j e

2rr

r 3

3F ~rr !2S d i j2
r i r j

r 2 D1~11rr !S d i j23
r i r j

r 2 D G . ~88!

It gives the corrections

dEhfs~P1/2!5
1

3
a4

m3

mmmp
~11k!0.000 22, ~89!

dEhfs~P3/2!5
1

3
a4

m3

mmmp
~11k!0.000 08. ~90!

To calculate the energy levels we form a matrix for an
effective Hamiltonian in the basis of the states
1P1/2,

3P1/2,
3P3/2, and

5P3/2,

H53
2
3

4
b1

1

4
b1 b2

b2 2
5

8
b31g

3

8
b31g

4 , ~91!

where

b15Ehfs~P1/2!57.963 meV,

b25^3P1/2uVu3P3/2&520.796 meV,
~92!

b35Ehfs~P3/2!53.393 meV,

g5Efs58.352 meV.

The mixing termb2 shifts the energy levels, as shown in
Fig. 7, by the amount

D50.145 meV. ~93!

A similar calculation in the usual~electronic! hydrogen atom
gives a shift ofD52.5 kHz. This effect should be taken into
account when the Lamb shift is determined experimentally
from 2S-2P splitting.

IV. SUMMARY

We have calculated all contributions to the Lamb shift that
could enter at the 0.01-meV precision level, except for the
three-loop vacuum polarization. The results are presented in
Table I. The theoretical predictions for the Lamb shift in
muonic hydrogen are

EL5E~2P1/2-2S1/2!5205.932~10! meV

2@5.197~meV fm22!#r p
25202.070~108! meV. ~94!

The three-loop vacuum polarization is the most difficult in
the evaluation and limits the precision of our result. There
are also other corrections that should be considered for the
improvements of theoretical predictions. One of them is re-
lated to the general problem of how well the proton can be
described by the elastic form factors. We have already in-
cluded radiative corrections~the proton self-energy!, but
there also could be further effects.

Once the Lamb shift inmH has been measured, the ob-
tained result may allow for a tenfold improvement in the
precision of the proton charge radius, as given by Eq.~54!.
There also is an older experiment@17# that predicted a dif-
ferent value for the proton charge radiusr p50.805(11) fm.
The recent calculation of two-loop corrections to the Lamb
shift @18,19# in hydrogen suggest that the more recent mea-
surement is correct. Otherwise there would be a large dis-
agreement between theoretical predictions and several Lamb
shift measurements@20#.

TABLE I. Summary of results for corrections to the Lamb shift in muonic hydrogen.

Correction Value~in meV! Equation

leading order VP 205.006 ~16!
relativistic correction to VP 0.059 ~25!
double VP 0.151 ~28!
two-loop VP 1.508 ~31!
muon self-energy and VP 20.668 ~36!
muon self-energy with electron VP 20.006 ~40! and ~45!
recoil of ordera4 0.057 ~47!
recoil of ordera5 20.045 ~50!
proton self energy 20.010 ~52!
leading finite size of ordera4 2r p

25.1975 23.862~108! ~55!
finite size of ordera5 0.018 ~64!
VP with finite size 20.021 ~65! and ~67!
sum of corrections to the Lamb shift 205.932~10! 2 r p

25.197
in muonic hydrogen 5 202.070~108! ~94!

53 2099THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN



Although the charge radius is well defined for a noninter-
acting particle, its precise definition for a charged, interacting
particle is not unique. The radiative corrections to elastic
form factorsGE andGM are infrared divergent, which means
that they depend logarithmically on the artificial photon mass

m. It is not possible to simply subtract out the radiative cor-
rections because the effective QED vertices are modified by
finite-size effects and moreover QED for higher spins is not
renormalizable. In a recent paper on radiative recoil correc-
tions to the Lamb shift in hydrogen@11#, we made an attempt
to propose one definition of the charge radius using the in-
elastic form factors. We use that definition here to identify
the proton self-energy correction. A possible difference in the
definition of charge radii does not matter at the current pre-
cision level, but in view of recent progress in the precision of
Lamb shift@20# and isotope shift measurements in hydrogen
@21# and helium@22#, the reanalysis of nuclear structure ef-
fects could soon be necessary.
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