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Theory of the Lamb shift in muonic hydrogen

Krzysztof PachucKi
Max-Planck-Institut fu Quantenoptik, Hans-Kopfermann-Sga 1, 85748 Garching, Germany
(Received 28 August 1995

Muonic hydrogen ftH) is a unique tool to study the low-energy properties of the proton form factors. The
energy levels ojuH are very sensitive to QED, recoil, and proton finite-size effects. We calculate the correc-
tions to the Lamb shift and also to the fine and hyperfine structures that contribute at the 0.01-meV precision
level. This result may allow for the precise determination of the proton charge radius from measurements of the
2P-2S transition energy inuH. A more accurate value for the proton radius is necessary for further improve-
ments of QED tests based on the hydrogen atom.

PACS numbs(s): 31.30.Jv, 12.20.Ds, 36.10.Dr, 06.20.Jr

[. INTRODUCTION shift in other muonic atoms has been worked out in detail by
Borie and Rinker in a series of papers summarized in a com-
Muonic hydrogen ftH) is a bound system of a muon and prehensive revieW4]. uH was also treated by Borie (5],
a proton. Its finite lifetime is determined by the muon decaywhere the leading contributions were calculated. A detailed
7,=2.197 03(4 K 10 ¢ s. The energy levels of theH sys-  analysis for light muonic ions such asLi, uBe, anduB
tem are very sensitive to the QED, recoil, and nuclear strucwas given by Drake and Byer if6]. We make an attempt
ture effects. The muon is about 200 times heavier than thbere to collect the data for various corrections to the Lamb
electron and therefore its wave function overlaps with theshift in muonic hydrogen, with particular attention to its cor-
proton (mM/me)%lO7 stronger than that of the electron in rect mass dependence. The precision level for our calculation
the hydrogen atom. The effective potential that the muoris determined by the unknown three-loop vacuum polariza-
experiences is significantly modified by the proton chargdion, which is estimated to be of the order of 0.01 meV. This
distribution. Therefore, a measurement of the-2S Lamb  correction isa? times smaller than the leading contribution,
shift could give a precise value for the proton charge radius.e., one-loop vacuum polarizatigh’/P) (the known two-loop
rp. In fact, the current tests of QED on atomic hydrogen areVP is approximatelyr times smaller than the one-loop Y/P
limited by the experimental uncertainty in the proton form In our calculation we use the following values for masses
factors. For example, the theoretical predictions for ti%e 2 and other physical constants:
Lamb shift in hydrogeri1]

m,=105.658 38634) MeV, 2
L(2S)=1 045 0084)(3) kHz (1) m
: o —* =8.880 244 413), 3)
have an error of 4 kHz coming from the uncertainty in the m,
proton charge radius,=0.862(12) fm(the second error in
an estimate for unknown higher-order correctjorhe ex- Me 5
perimental precision for the 2 Lamb shift is expected to m, =4.836 332 1671)x 1077, )

reach an accuracy of about 1 kHz, thus the precise knowl-
edge of the proton charge radius is very desirable for further a~1=137.035 989 1), 5)
improvements of QED tests. Taqd#] is currently working
on the measurement of theP22S transition frequency in
muonic hydrogen using a phase-space-compressed muon
beam technique. Recent investigations indicate that appre-
ciable fractions of the @ state are long lived at low target
pressure. The predicted relative accuracy is of order*10
and corresponds to about 25% of the natural linewidth of the The Lamb shift in muonic hydrogen differs from the usual
2P-1S transition,I'=0.08 meV. Such a measurement would hydrogen in that the electron vacuum polarization gives the
allow one to increase the precision of Lamb shift tests ormost significant contribution. This can be explained by the
hydrogen by one order of magnitude. fact that the Compton wavelength of the electr@vhich
The Lamb shift inuH was first investigated by Giacomo determines the spatial distribution of the vacuum polarization
in [3]. Several significant corrections have been omitteccharge densityis of the order of the Bohr radius of muonic
there and in general there has been some progress in thgdrogen
bound-state QED since this paper was written. The Lamb

)
- =386.159 32625) fm. (6)

e

Il. CORRECTIONS TO THE LAMB SHIFT

me
B= g = 0737386, )

*Permanent address: Institute of Theoretical Physics, Warsaw
University, Hoa 69, 00-681 Warsaw, Poland. whereu is the reduced mass of the proton-muon system.
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53 THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN 2093

We first assume that the nucleus is a pointlike particle. The
finite-size effects will be considered separately later. After
the integration with respect g E is

a (=d(g?) (Ba)?
E(2P-2S9)=u(Z 2—f u(g?
was 2
. L . =——-0.026 178 $-205.006 meV. (16)
FIG. 1. Leading-order electron vacuum polarization contribu- m 3
tion.

This value will be a reference point for all other corrections.
In our calculation we employ a perturbation expansion inWe will neglect all corrections much smaller thas times

« and Za, whereZ=1 in our case, but, in general, it is this energy, since they are smaller than the unknown three-
convenient to distinguish between the charge of the leptofP0P vacuum polarization.
and of the nucleus. It differs from previous treatmejat The relativistic corrections to the VP are calculated from
which were based on numerical solutions of the Dirac equathe two-body Breit Hamiltonian. The external field approxi-
tion in the Coulomb field modified by the presence ofMmation does not give an accurate result. The Breit Hamil-
vacuum polarization and finite-size effects. Our approach i§onian consists of

more suited for light muonic atoms and moreover allows for

2 2

the easy incorporation of the reduced mass and recoil' effegts. Hg= P n P~ E+ SH+ 6V, (17)
In many cases we follow the corresponding calculations in 2m;  2m,
electronic hydrogen.
p*  p*
A. Electron vacuum polarization oH=- 8 mi 8 m3’ (18
The electron vacuum polarization modifies the photon 1 1 (r-p)
propagator _mal 1 L o [ o, Mr-pp
N=3 mi+m§ 5%(r) 2mgmyr | P M
Guv Quv
KT K1t e(kd)] ® 22 e (19
r3lam: 2mm, p-o-

At the one-loop level» (in electron mass unitds given by )
[7] Here we neglect the nuclear spinere the nucleus is a par-

ticle with spin 2 since we are not considering the hyperfine
@ 1 5 structure. To include the vacuum polarization, we assume
w(k%)=—k f d(99) =7 —2-u(@), (9 that a photon has a massand follow the standard derivation
4 g“(mgq-—k*) S .
of the Breit interaction

1 4 @ —pr
u(q2)=§ 1—? 1+? . (10 VVP:_Fe . (20)

a 1 p? ;

The vacuum polarization potential as described by Fig. 1 is 5VVP:§ m_§+ m_§ 478%(r)— Te P

Za a (*d(g? 2 o
Virln == 22 2 [ omany(qr). ) I P
r-mla ¢ 4mm, r 2

The leading-order contribution to the energy shift is @ e AT rif | .

- p'——| dj+ = (1+pr)|p!
2mm," r |1 2
£(2P—25)= | &rVn(p(r). 12
al 1
— — |ePr .
P=pP2p~ P2s; (13 +r_3<m§+2mlm2 e P(1+pr)rxp-o.

wherep,g andp,p are nonrelativistic charge densities of the (21

corresponding 3 and 2P states with the reduced mags

The radial wave functions for these states are The relativistic correction to the energy due to the exchange

of the massive photon is given by
Rog=—e-warl 1 H W E(p)=(d|Vupld)
20 \/5 K p VP

v2( ol (oH+ov) ———[ - & Pf)

Rp= e M2 ar). (15)

1
26 (22)
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FIG. 2. Double vacuum polarization correction.

whereH= (p%/2 n) —(a/r). In the following

1
G:<r1ﬁ f2>
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FIG. 3. Two-loop vacuum polarization contribution.

two-body treatment. As a test we checked that in the limit
m,/my=0, Eq. (22) coincides with that obtained directly
from the Dirac equation.

The correction to the Uehling term, i.e., the vacuum po-
larization with four vertices, can be described as an addi-
tional effective potentiaV(r). This correction has been
analyzed in detail by Borie and Rinker @]. This potential
can be mterpolated by a ratlonal function as definef4in

found its explicit form for 5 and 2P states in the literature,

we have calculated it. The results are(uar)

aMZef (X1 +Xxp)/2

G(29)= 4X1X5

{8Xx.—4X2+8X-+12X_X-

2 3 2 2
—26XEXs+2XIXs —4 XS —26X XS

+23x2 x2—x3x2+2x.x3—x2x3
+4e*<(1-X)(X>=—2)X>+4 (X —2)
—2)X-[—2C+Ei(x.)—

XX (X In(x<)

1
n(x>)]}ﬂ, (23

a,l,Lze_(X1+X2)/2
G(2P):W{24X<+36X X>+36X<X>
+24x3 +36x.x3+36x2x3 +49x3x3

-3x4x3 —12e*<(2+x +x3)x2 —-3x3x2

+12x3x3[— 2 C+Ei(x-)—In(x2) —In(x=)1}

X ixl'xz) (24)
47T X1X2 ’

wherex.=min(Xy,Xs), X=.=
ler constantC=0.577 216.

The relevant energy shift to theP22S transition using

11 is

a (=d(p?)
E(2P1725,p) = ;L

2
U( Hg) [Ezp,(p)—Ezs (p)]

=0.059 meV. (25

If one only takes relativistic corrections to the Dirac wave
the result would
be E=[d%Vyp(r) 8(pzp,,— p2s,,) (1) =0.021 meV, which

significantly differs from(25). It shows the importance of the

function with the reduced masg,

max(xy,X,), andC is the Eu-

E:f d3rV (1) p(r)=—0.0005 meV, (26)

which is negligible in the case of muonic hydrogen.
The next to the leading contribution is the double VP
term, presented in Fig. 2,

1
E:<¢‘VVP(E_—H)1VVP ¢>- (27)
This matrix element is calculated usiig3) and (24) with
the result

a\?4
E(2P—2S)=u(Za)? ;) 50.0124:0.151 meV. (29

Further two-loop diagrams are presented in Fig. 3. The
two-loop vacuum polarization has been calculated analyti-
cally by Kdlen and Sabry irf8]:

(— p)f

whereu® is given by Eq.(49) in [8]. This formula includes
also the reducible part presented in Figc)3 The energy
shift

u®(g?),
(29

(2)( _n2
(=P)= ( 2(meqw)

47a

d3
E=f(2:)3p(p) o7 @?(=p°) (30)

is calculated by analytical integration im and numerical
integration ing. The result is

d 2 2
(9°) 2(¢P) (Bq)

cop-25=wzer{ | [ oo

2
o
—M(Za)z(;) 0.055 266 % 1.508 meV.

(31)
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B. Muon self-energy, vacuum polarization,
and recoil corrections
For the calculation of muon self-energy and vacuum po-
larization we rewrite the corresponding formula known from §

the electronic hydrogefilQ]. It includes only one-loop cor-
rections(the two-loop is negligible, approximately equal to
—0.000 06 meY

e28)- m. Lz 2] [0 2 4 ikas
(25)=gm, —(Za) m, 9 ~ 15 3/Mke(29)
4 m, 139 5 In(2) FIG. 4. Self-energy with the vacuum polarization corrections.
+3lIn +4nZa| — _ o
3 M(Za) 128" 192 2 For the second diagram in Fig. 4 we can use the on-shell
(32) approximation for the external muon legs. The energy shift is
then given by
1 « w\3 1m, 4
- —m — 4 Ty TR (Za)
E(2P12) = gMu 7 (20) (m ) { 6 u 3'”k0(2p)}' = AM2F{(0) S0+ Fo(0) 5|, (41)
w m> nd 2I +1
(33 ©
where Irky(n,l) is Bethe logarithm where
3
Inky(2S)=2.811 769 893 120 5, (34 G+ —=I1(+1)— 2
C'|:5| +(1_5| ) (42)
Inky(2P) = —0.030 016 708 9. (35) e ° 1(1+1)
. s andF,; andF, are two-loop muon form factors. These form
The correction to the Lamb shift is factors have been calculated by Barbietrial. [9]

1
2/ _| Y -
m,F1(0)= g’ m. 108"m, T 942

a>2 ( 1 oM, 29 m,
Further corrections are due to the modification of muon

self-energy by the electron vacuum polarization. They are 395 Me
described by the two diagrams shown in Fig. 4. Both of these 1296 ( )]
corrections are very small, so we evaluate them only ap-

proximately. The first one is the muon self-energy in the

Coulomb fieldV and Vyp. We calculate the leading term =
logarithmic in «. For this we use a nonrelativistic formula

for the energy shift a\?(1 25
o=z {5

m
—In——=+0
£l 2a J’d (H-E)
_37Tmi @ ¢pH—E+wp

/.L

o 2 m
—) 12.216 56+ o(—e) ] , (43)
w mM

ol

3" m, 36

¢> ) 37

a\? Me
whereH includesV,p. We also limit the integration range . o g
from wa® to m, and neglect i —E) in the denominator: ~ The correction to the Lamb shift is
E(2P-2S)=—0.001 meV. (45)

m,

3 Wmi In(Ma2)<¢|p(H E)ple). 38 The last correction from this class that we leave unevaluated
is due to the virtual Delbiek scattering. We expect this cor-
Using the identity (¢|p(H—E)p|¢)=1/%¢|A(V  rection to be below 0.001 meV, similarly to that in Eg6).
+Vyp)| ) and expanding iv/yp, one obtains The formulas(32) and(33) do not incorporate the recoil

corrections that are beyond the reduced mass scaling. The

recoil correction[10] of order Za)* is obtained by taking

E=3 mz ln(,ua )(<¢|A(va)|¢> the matrix element of Breit interaction Eq4.8) and (19)
Wiy Al T -  (Za)*u® 1 1
(E—- H) r _ _ _
E(LD) =5 me | 1 7| (1= 80).  (46)
The energy shift obtained is I*t35 I+ 2

E(2P—-2S)=-0.005 meV. (40 It gives a correction to the Lamb shift of
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X1

FIG. 5. Finite-size correction of ordeZ)°®.

o
E(2P-2S)= 28

>=0.057 meV. (47)
p

The recoil correction in order ofZ(a)® is [10]

ud (Za)® 1)\ 8
E(n,I)= 77— 35|0In Za §Ink0(n,l)—§5|o

m,my

7 m m
—=a,— ——=d0 mzln(—“)—mzln(—p)ﬂ,
37 mp—my, P W
(48)
where
=—-2|I 1 ! ! 1 ! 1)
an=— nﬁ+ +§+'~~+ﬁ+ —ﬁ 10
L 17 49
I(I+1)(21+1)° (49
It contributes the amount
E(2P-2S)=—0.045 meV. (50

We neglect higher-order correctiofise., m /mpaﬁ)

There is an additional recoll correctlon that has been ne-
glected so far, but is significant for muonic hydrogen. It is
due to the proton self-energy. It has been recently analyzed E(S)=-
in the case of electronic hydrogéhl]. The difficulty in the
interpretation of this correction lies in the fact that it overlaps
with the nuclear finite-size effects. The conclusion from that (p?)=
paper is that there is an extra logarithmic term that could not

be included in the proton radius definition

4 u3(Z%a)(Za)? m,
E(n,l) Tmp 5|0In m —Inko(n,l) .
(51)
It contributes
E(2P-2S)=—0.010 meV. (52)

C. Nuclear finite-size corrections

In muonic atoms finite-size effects give a large contribu-
tion to energy levels. In the leading order the nuclear size

correction is

2
E= e ZaX(r5)do, (53)

allow one to extract the proton radius from future experi-
ments. Nevertheless, we can use here the proton radius ob-
tained from the electron scattering measuren&gt

r,=0.86212) fm (59
to get the approximate value
E(2P-28)=[—5.14TmeV fm 2)(r})
=—3.862108 meV. (55

There are various corrections beyond this leading finite-size
contribution. We divide them into relativistic and QED cor-
rections. The relativistic corrections based on the Dirac equa-
tion and external field approximation have been studied in
detail by Friaf13]. He has calculated all the contributions in
the order of Z«)®. In the case of muonic hydrogen they
give a negligible correction to the Lamb shifiess than
0.001 meV, therefore we consider only th& &)° correc-
tion. We calculate it without the external field approximation.
This is necessary because the proton mass is only 9 times
larger than the muon mass. The finite-size correction in
(Za)® is given by Fig. 5, which describes the forward-
scattering amplitude. We use the on-mass-shell approxima-
tion for the external momenta. This amplitude is infrared
divergent and we have to extract the lower-order terms,
namely, the scattering amplitude for pointlike fermions and
the leading finite-size contribution. The proton vertices are
given by two form factord=, andF, [7]

Yo Th=yF it 5 a'q,Fy. (56)
p

After angular integration in Euclidean momentum space the
correction to energy could be written as

35|0(Za f—T(p (57
2(Fi-1) 8m,[F,(0)+4miFi(0)]
+
My my(m,+mg)p
+ s
Mp(M2 —m3) p(p+ V4 m: +p?)

32

x[ —16F,F,m: + E(Fi— 1)mimj+8F;F,p?

4
+6F3p7+ —2<F§—1>m§p2]
m,

m,

Mp(M%,—m3)p(p+ V4 mj+p?)

32

S(Fi=1)mg+8F F,p?

which is proportional to the mean-square nuclear charge ra-
dius. The main goal of this paper is to summarize various
corrections to muonic hydrogen energy levels, which would

[ 16 F;Fom2+ —
p

+6F3p%+4(F2-1)p ] (58
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where F;=F;(—p?. T is proportional to the forward-
scattering amplitude, with lower-order terms subtracted out.
The first term in the expansion @b8) in the mass ratio
m, /m, is simple,

16 m,

TO) = p3

(GE(—p*)—1+2GL(0)p?). (59

We use here the Sachs form fact@gs andG,, because the

experimental data for the proton structure are given in terms b
: . a

of these functions, defined by

q2 FIG. 6. Finite size with vacuum polarization correction.
2\ _ 2 2
Ce(a)=Fu(a))+ 7 mng(q ), (60 IIl. FINE AND HYPERFINE STRUCTURE
Gu(a?) =F1(q2)+F(q?). (61) For the determination of the Lamb shift from th&2S

frequency measurement, one needs the precise values for the

For the calculation of the corresponding correction to thefine and hyperfine structures of tine=2 energy shell. This
(2P-29) transition energy we use the dipole parametrizationf€quires the study of the vacuum polarization effects in the

of the proton form factors fine structurgfs) and hyperfine structur@fs) and also of the
A% nuclear finite-size effect to thehfs. The hfs in the muonic
Ge(—pY)= 57, (62) hydrogen is more complicated due to th®.2 and 2P,
(A“+p9) mixing [16]; therefore there is an extra correction to the en-
Gu(—p?)=(1+k)Ge(—p?), (63  ergy of P levels that has to be taken into account for the

determination of absolute energy levels.
where k is the proton anomalous magnetic moment
xk=1.792 847. The dipole parametrization is known to de- A. Hyperfine structure of 2S,,,
scribe the proton form factors well in a wide momentum
range[14]. The parametrization with\ =0.898n,=2842.6
MeV was used previously by Bodwin and Yenhib] in the
calculation of finite-size effects in the hyperfine structure of 1 u®
hydrogen. We use the parametrization froi#] A=848.5 E(2S)=-a*
MeV and obtain the value 3 m,my

The hyperfine structure ipH is described by the Fermi
splitting

(1+x)(1+a,)=22.832 meV, (69)
"

E(2P-2S)=0.018 meV. (64) wherea,, is the anomalous magnetic moment of the muon,
a,=0.001 166. There are two kinds of corrections that con-
If instead of T one usesT(?), the result would beE(2P-  tribute at the 0.01-meV precision level: the vacuum polariza-
25)=0.021 meV. tion and the bindingO(«) nuclear-structure-dependent cor-
The QED corrections to the leading finite-size contribu-rection. The relativistic corrections of orded(a®) are

tion are due to vacuum polarization effects. They are denhegligible (~0.0004 meV.
scribed by two diagrams in Fig. 6. The analogous modifica- The vacuum polarization effect is calculated in a way
tion of muon self-energy due to finite-size effects isSimilar to(25). The spin-spin interactiona(, is neglectegl
negligible. The expression corresponding to the first diagram

8 « o0
is V=— m83(r)(1+ k) L2 (69)
5 o 3 m,m, 4
E(2P-29)=—|Z7Z Zf—‘—z : :
( ) (3 m arp) (2 w)sw( a9p(a) in the case of a massive photon takes the form

=—0.008 meV, (65 8 le
Vo= o (1) Ta2 ()= 5 - (pr)?).
_ 3m,m 4 4 r3
where w was defined in(9) andp in (13). This is the only wop (70)
nuclear finite-size correction that is significant for the 2
state. . , _ _ The correction to hfs splitting is given by
The expression corresponding to the second diagram is
1 a
2 oE =(o|V +2 V—(——) G .
E:—Z(ngarf])f d3r p(r)Vyp(r)G(r,00¢(0),  (66) i) = (Al Vel ) <¢ E-m| )¢
(7D

where G is a reduced Coulomb Green function for thg 2
state given in Eq(23). It gives a correction to the P-2S
Lamb shift of 1 3
4 M
OEn(25)= g

m,mp

The p integral is the same as 25). The result is

(1+ k)0.0025=0.058 meV. (72
E(2P-2S)=—0.013 meV. (67)
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The calculation of the binding(«) nuclear-structure-
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This relatively large error suggests that the proton radius

dependent correction hfs is performed in a way similar to thaletermination will be more reliable when the hfs fos &r
Lamb shift. One considers the on-shell spin-dependent pafS is measured experimentally.
of the scattering amplitude as presented in Fig. 5. The cor-

rection to the hfs could then be written as B. Fine structure of 2P
The fine structure is mostly accounted for by the relevant
1a’u®  (o,0p) (dp . e
SBpts=— 3 3 o /2 FThfs(pz)y (73 term from the Breit Hamiltonian
o« 1+2a, 1+a, L 29
2F3p?  64[1+F,(0)] S amZ T 2m,m, Tu (79
Ths(P)=— 5+
m,m, (M, +my)p The energy splitting is
1 Eq=E(2P3, —E(2P
. ( 108Fan? s=E(2P3) —E(2Pyp)
(m2—m?)p(p+ V4 m2+p?) 1u, 2m,|(Lo,)
M p H :3_25261/ 1+2aM+(1+aM)m— 3
—128F;F,m’ + 16 Fip?+ 64 F,F,p?+ 16 F5p? # P
=8.347 meV. 80
32Fsm2p? 4F5p* 4FZp (80)
+ 2 + 2 2 There is a small correction due to the vacuum polariza-
My My My tion. It is calculated from the massive photon analog7®,
. ! vo (12 e e
=3 2 € prto
(M} —m3)p(p+ V4 m3+p?) rLAmL 2mmg g
X (128 Fim[23+ 128F1F2m,2)— 16 F2p? and gives a correction
—64FF,p?—48F2p?). 74 1w’ 2m,\ (Lo
1F2p 2P T e L e 1v2a,+ (14220 %) 5 6006
32m;, m ~my 3
In the limit of largem,
=0.005 meV. (82
64
Thfs=p?[GM(0)GE(O) —Gu(—p?)Ge(—pH)]. (75  The final value for the fine structure jaH is
P E(=8.352 meV. (83
This Ccoincides with the result obtained by Zemddl®], and
for the pointlike proton, i.ekF,=1, F,=0, 5E; becomes a C. Hyperfine structure of 2P, and 2P,
known recoil correction The relevant operator from Breit Hamiltonian is
a5/,L3 m,m m <0' O'> @ My 9p
—_g—" P 4P| P V= 1+k+ (1+2k)| —5
OEps=—8 3 (mg_ mi) ( m#) 7 (76) 2m,m, 2m, r3
ool i
Having done these checks, we integrate &4) numerically - (1+ K)(1+a“)“—3p( S —3—2) .
and obtain the value 4m,m, r r
5 3 (84)
1a’u®  (o,0p) ) . : 1
OEn(2S)=— 3 W% 7 6.893 96 meV Since this operator does not commute WitaL + 30, , the

statesP,,, and P, are mixed and the hyperfine structure is
more complicated. The off-diagonal matrix element reads
(a, is neglectedl

(*P1AlVI®P3)

=—0.145 meV. (77
If we take the Zemach part only, we get the value
O0Et(2S)=—0.183 meV.

The effects of proton polarizability are very difficult in the

evaluation. There exists in the literature the upper bounds for _ 1014 3 (14| 1+ m, 1+2«\[ \/_5) 5

the hfs in electronic hydrogen. It is of the order of 10% of the 3~ m,m, m, l+«k 48

elastic correction. Since this effect only weakly depends on

the lepton mass, we assume the same estimateuféy and the diagonal ones are

namely, 0.015 meV. We obtain for the final result for the hfs 1 3 1 a 1m 142

splitting En(P1p) =7 a* = (1+K)(_+_M Bm 5.,

3 m,mg 3 6 12 m, 1+«

Ens(2S)=22.74515) meV. (79 (86)
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3

E (P _1 4 14 aﬂ+1mﬂl+2f<
sl Pad) = 3o (I 157 30 Tam, 17w
(87

2099

B3=Enis(P32) =3.393 meV,

y=E{=8.352 meV.

There also is a small correction coming from the vacuum The mixing termg, shifts the energy levels, as shown in

polarization. The extension @84) to a massive photon is

Thrt 40 e ” 1+ il
Kt g (1420 | S (140 75

Vvp

=2m,me(

(1+ K)(1+a#)0'1u0'1p—r?

o
4m,m,

) rir] rir)
(pr) (5ij_r_2

X +(1+pr) 5ii—3r—2”. (89

It gives the corrections

1 3
OEhs(P12) = §a“ mﬂm (1+«)0.00022, (89
©np
1, Wl
5Ehfs(P3/2)=§a'4m —(1+x)0.00008.  (90)
w't'p

To calculate the energy levels we form a matrix for an
the states

effective Hamiltonian in the basis of
1P1/21 3P1/2, 3P3/2, and5P3,2,

3
— 7k
1
Z,Bl B>
H= 5 , (91

B2 - ghBsty
3
5,334'7

where
ﬂ]_: Ehfs( P1/2) =7.963 meV,

B2= <3P1/2|V|3P3/2> =—0.796 meV,

Fig. 7, by the amount
A=0.145 meV. (93

A similar calculation in the usudklectronig hydrogen atom
gives a shift ofA=2.5 kHz. This effect should be taken into
account when the Lamb shift is determined experimentally
from 2S-2P splitting.

IV. SUMMARY

We have calculated all contributions to the Lamb shift that
could enter at the 0.01-meV precision level, except for the
three-loop vacuum polarization. The results are presented in
Table |. The theoretical predictions for the Lamb shift in
muonic hydrogen are

E. =E(2P1,-2S,),) =205.93210) meV
—[5.197meV fm ?)]r2=202.070108) meV.  (94)

The three-loop vacuum polarization is the most difficult in
the evaluation and limits the precision of our result. There
are also other corrections that should be considered for the
improvements of theoretical predictions. One of them is re-
lated to the general problem of how well the proton can be
described by the elastic form factors. We have already in-
cluded radiative correctiongthe proton self-energy but
there also could be further effects.

Once the Lamb shift inuH has been measured, the ob-
tained result may allow for a tenfold improvement in the
precision of the proton charge radius, as given by &¢).
There also is an older experimdrit7] that predicted a dif-
ferent value for the proton charge radiys=0.805(11) fm.

The recent calculation of two-loop corrections to the Lamb
shift [18,19 in hydrogen suggest that the more recent mea-
surement is correct. Otherwise there would be a large dis-
agreement between theoretical predictions and several Lamb
shift measuremen{20].

92

TABLE |. Summary of resultg fo)r corrections to the Lamb shift in muonic hydrogen.
Correction Valug(in meV) Equation
leading order VP 205.006 (16)
relativistic correction to VP 0.059 (25
double VP 0.151 (29
two-loop VP 1.508 (31
muon self-energy and VP —0.668 (36)
muon self-energy with electron VP —0.006 (40) and (45
recoil of ordera* 0.057 47
recoil of ordera® —0.045 (50)
proton self energy —0.010 (52
leading finite size of ordes* —r25.197= —3.862108) (59
finite size of ordera® 0.018 (64)
VP with finite size —-0.021 (65) and(67)

sum of corrections to the Lamb shift
in muonic hydrogen

205.93210) — r35.197
= 202.07Q108) (94
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FIG. 7. Level scheme of muonic hydrogen for the 2 shell.
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. Itis not possible to simply subtract out the radiative cor-
rections because the effective QED vertices are modified by
finite-size effects and moreover QED for higher spins is not
renormalizable. In a recent paper on radiative recoil correc-
tions to the Lamb shift in hydrogdi 1], we made an attempt
to propose one definition of the charge radius using the in-
elastic form factors. We use that definition here to identify
the proton self-energy correction. A possible difference in the
definition of charge radii does not matter at the current pre-
cision level, but in view of recent progress in the precision of
Lamb shift[20] and isotope shift measurements in hydrogen
[21] and helium[22], the reanalysis of nuclear structure ef-
fects could soon be necessary.
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