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How to determine a quantum state by measurements: The Pauli problem for a particle
with arbitrary potential
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(Received 13 June 1995

The problem of reconstructing a pure quantum state from measurable quantities is considered for a
particle moving in a one-dimensional potentd(x). Suppose that the position probability distribution
[#(x,t)|? has been measured at tiheand let it haveM nodes. It is shown that after measuring the time
evolved distribution at a short-time intervat later,|4(x,t+ At)|?, the set of wave functions compatible with
these distributions is given by a smooth manifold in Hilbert space. The manifold/ is isomorphic to an
M-dimensional torus7M. Finally, M additional expectation values of appropriately chosen nonlocal operators
fix the quantum state uniquely. The method used here is the analog of an approach that has been applied
successfully to the corresponding problem for a spin system.

PACS numbds): 03.65.Sq

[. INTRODUCTION of measuring probability distributions of the quadrature am-
plitude X, =X cosp+p sing, obtained from rotating the posi-

In this paper progress is reported concerning a deceptiveliion operator in the phase plane by an angleln a similar
simple question known as tHeauli problem does the mea- vein, the vibrational quantum state of a molecule has been
surement of the probability densities for position and mo-determined through the measurement of a time-dependent
mentum of a particle determine its quantum state? Originatspectrum of fluorescendd.0]. The information obtained in
ing from a footnote in Pauli’s article inlandbuch der Physik this way from “molecular emission tomography” can be
[1], this question has led, in a more general setting, to ahown to encode a quasiprobability function, and it allows
number of investigations over the past decades: the expectane thus to reconstruct the sought-after quantum state. A re-
tion values of which sets of operators characterize uniquely tated proposal has been made to experimentally determine
(pure or mixed state of a quantum system? Apparently, onethe state of both a scalar light wave or a particle wave-
important early motivation for dealing with this problem has function[11]. It exploits the transformations induced on the
been to demystify the concept of the wave functigh be-  Wigner function when the state under investigation passes
ing a complex quantity it seems impossible to directly ob-through well-defined lenses while propagating along some
serve it in experiments. However, if an appropriate set ofirection in space.
expectation values provides the same information about a It is straightforward to pose this problem for a quantum
qguantum system as does the wave function itself, then it ispin of lengths. The setting in dinite-dimensionaHilbert
reasonable to consider the wave function just as a particuspace turns out to be an important modification. Using a
larly convenient description of the system. specific version of a Stern-Gerlach appardinsvhich indi-

Various works investigating the Pauli problem have beenvidual beams after the separation can be shielded and the
reviewed in[3(a)]. There are many possibilities to approach remaining ones can be brought together agallows one to
the problem in its general form since one is free to chooseneasure directly the intensities and relative phases of the
the set of operators to be measured at will. It has been showsplitted beamg12]. It is not clear, however, whether it is
by various author$2,4—6 that knowledge of position and actually possible to perform this experiment without destroy-
momentum distributions alongeing equivalent to knowl- ing the phase relations. It has been showfBi{@)] that mea-
edge of the expectation values of all powers of position anduring the intensities of the components of a spin state along
momentum operators, respectiveljoesnot single out one two (infinitesimally) close directions in space is compatible
specific state. This result is obtained from explicitly con-with 22° spin states. In this setup the familiar version of the
structing states with identical probability distributions of Stern-Gerlach apparatus is sufficient. It turns out that all
both position and momentum. It is not known, in general,Pauli partners can be exhibited explicitly, and it is sufficient
how large such a set of “Pauli partners” actually is, andto know the expectation value of one additional well-defined
which supplementary expectation values would allow one t@perator in order to uncover the actual quantum-mechanical
distinguish between them. For more details and a list of refstate. This procedure is not constructiwgtiquenesf the
erences the reader is referred[8¢a)]. state compatible with the measurements is shown—its ex-

A novel approach is based on tomographic methods iplicit determination is another matter.
order to determine the Wigner function of a quantum state A constructive solution of the Pauli Problem has been
[7,8]. In its sequel, successful experimental realizations havebtained for a restricted set of states in a one-particle Hilbert
been reported. The quantum state of an electromagnetic fiekpace 13]. Imagine that the system is known to be prepared
mode has been reconstructed by using a method called “opn a state which is made up of a finite but arbitrarily large
tical homodyne tomographyf9]. It relies on the possibility number of energy eigenstates of a harmonic oscillator. With
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this additional information one is able to reconstruct the statéhe x axis. The measurement of the intensitigs,(z')|?
from the knowledge of position and momentum distributionsalong z' represents € more conditions on the possible
over the real line. Another propositiori4] expresses the states:
guantum state in terms of expectation values of simple pro-
jection operators, and a quantum optical realization of thig(m,z’|x(¥))
approach seems feasible.

It is the goal of the present paper to investigate the Pauli 2
problem for a particle in analogy to the method developed in
[3(a)]. To do so, the method to solve the Pauli problem for alt can be shown that? states on the dimensional mani-
spin is, in Sec. Il, briefly reviewed, and then it is reinter-fold . #(s) are compatible with the measuremefi, they
preted in terms of particle dynamics. In Sec. Il the mainrepresent the discrete set of Pauli partner€s). Finally, by
result is established: it is possible to enumerate all purgneasuring in addition the expectation value of the operator
guantum states compatible with the spatial probability denS,, one can distinguish between the individual Pauli partners
sities at two timeg andt’, separated by a short-time inter- that lead to identical intensities along theandz’ axis.
val, At. Finally, in Sec. IV it is shown how to distinguish As it stands, this method to determine a quantum-
between these Pauli partners through appropriate additionatechanical state from measurements cannot be applied di-

12=|xm(z)|2, m=—s,—s+1,... +s.

measurements. rectly to perform the same task for a particle wave-function.
However, one can rephrase this procedure in such a way that

Il. REINTERPRETATION OF THE PAULI PROBLEM it becomes pOSSib'e to transfer the method to the particle

FOR A SPIN problem. Change from the passive view of the rotation to an

. . _ _ . active point of view. Then the Stern-Gerlach apparatus de-
In this section a solution of the Pauli problem for a spin offines once and for all an axis of quantization pointing along
lengths is briefly reviewed. Then, the method of solution is z; the measurements, however, are now performed with re-
reinterpreted in such a way that an analogous treatment Qfpect to the statdss) andU(—€) | ), having been rotated
the Pauli problem for a particle becomes possible. It has beegy (- ¢) about thex axis relative to the apparatus. Consider
shown in[3(a)] that the measurement of the intensities of a¢ as a time parameter, then the operaﬁloof Eq. (1) can be
spin state|x) along two neighboring axes of quantization, ¢onceived as the time evolution operator of a spin in a con-

zandz’, by means of a Stern-Gerlach apparatus is compakiant magnetic field|e, of appropriate strength, generated
ible with a discrete set/'(s) of states. An additional mea- by the Hamiltonian

surement of the expectation value of one well-defined opera-
tor allows one to discriminate between the elements of the A= —B~r“n=é,U 3)
set.J(s).

More specifically, one proceeds as follows. It is assumegh peing the magnetic moment of the spin. In other words,
that there is a beam of particles propagating alongtagis,  the measurement of the intensities along two different spatial
say, each of which is prepared in one and the same pure spifirections,z andz’, is equivalent to a measurement of the
state|) in the (2s+1)-dimensional Hilbert space”. They intensities associated with the stajet)) and its time evo-
enter a Stern-Gerlach apparatus that defines the axis of quajytion | y(t+ At)) for At= e with respect to one fixed direc-
tization to be along the direction. The associated eigen- tion, z. This point of view motivates an investigation of the
states of the component of the spir{/m,z)}, constitute & problem for a particle with Pauli data given by the position

basis in Hilbert space, and the quantum numbetakes on  probability densitiedy(x,t)|? and|#(x,t+ At)|? of a state
all (half-) integer values betweerts. In a first series of |¢) at two nearby times.

measurements all intensitigg,(z)|>=|(m,z|x)|? are deter-

mined with respect to the basis. The stat_es compatible With Ill. DETERMINATION OF PAULI PARTNERS

these 'measurements are located onsgd@nensmnal mani- FOR A PARTICLE

fold . #(s): the phase of each state with respect to the basis

|m,z) is undetermined, but the overall phase of the state A particle with massm is assumed to move in a one-

|#)does not have physical meaning since a state of the sysimensional potentiaV(X), described by the Schdinger

tem is associated with ey in .7%. The set of states corre- equation

sponding to the elements of the manifold(s) will be de-

noted by |x(7)), where the label y=(vy1, ...,¥2s)

parameterizes the manifoldZ(s). It is assumed that the

phase conventions are chosen in such a way that the actual

state of the system correspondsjte 0: | x(0))=|x). Suppose that the system is prepared at tiimea normalized
Consider now an infinitesimal coordinate transformation,pure statg(t)) with finite energy ¢|H|¢)<oo; a fortiori,

the expectation value of the kinetic energy

"2

p—+V<i))|¢<t>>. @

2m

. d ~ _
i 0= Fll ()=

i€n
=1-25+0(#), O

- i€~
U(e)=expg — + - R
© F{ > (W Ty = (| 2m| ) <ee, (5

corresponding to a rotation of the Stern-Gerlach apparatus b finite. R
€ about thex axis. It defines a new direction of quantization,  The HamiltonianH defined in Eq(4) generates the time
z', which is infinitesimally close t@ and perpendicular to evolution of the particle statpy) just as the Hamiltonian
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(3) did for the spin. By analogy, in this section the Pauli

partners for a particle will be determined that are compatible

with the measurement of the probability distribution of posi-
tion at timet and at a short time latet;+ At; in the mean-
time, the state is assumed to evolve accordin@4jo
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[ (2= 194 &) P 5 (Il Ot (8)

— U (E) O E)ALHA(AY). (10

In the position representation one can decompose th€he second term on the right-hand-side of this equation can

wave function as

(X)) =p(x,t)]e!?*Y, (6)
with positive modulus|#(x,t)| and a real phases(x,t),
which is assumed to be a continuous functioxoDiscon-
tinuities of the phaseb(x,t) at points where the amplitude
|4(x,t)| of the wave function vanishe@.e., at its nodes
however, arenot excluded.

Under these assumptions the measurement of the pro
ability distributions |¢(x,t)|? and |y(x,t+At)|? at two
timest andt+ At with At<1 will be seen to be compatible
with an M-dimensional manifoldZ of statesM being the

be written as
Iﬁ * * H * *
- %(‘/’taxxwt _‘/’t axxwt_2|(’;bt(?x¢t + ’zbt ﬁx’pt)gxg

—2i | lr//tlzaxxg)a

with the explicit form of the second derivative of the wave
function (&) given by
b- .
&xx¢t(§) = (axx‘/’t"_ 2i ‘9x¢'tax§+ i ‘/’taxxg_ wt( 0x§)2)el g( 2)
1

(11)

number of nodes of the wave function under consideration] N€ assumption of identical probability distributions Ofl po-
The set of Pauli partners turns out to be isomorphic to asition for the states|y) and|[4(¢)) at both timest andt

M -dimensional torus7™M.
Suppose that at time the probability distribution

requires the expressions in Eq9) and (10) to be equal,
which by using Eq(11) implies

|4(x,1)|?> has been determined experimentally. All states

compatible with this distribution can be written

YOG D)= gD =[x el et T,
Y

&(x,t) being a real function. For later convenience, the func
tion &(x,t) is defined as theeviationfrom the true(but yet
unknown phaseg(x,t); the strategy will be to eliminate the
“freedom” in the choice of the functioré by constraints
imposed by additional measurements. The relation betwe
the amplitudes of the actual stafey) at timest and
t’=t+ At follows from Schralinger’s equation, Eq4),

AP(X,1)

(At
pn At+O(At7)

P(X,t+At)= (X, 1)+

=z,b(x,t)—il;l:| H(X, DAL+ O(AL?).  (8)

Multiplying this equation with the corresponding expansion
of ¢* (x,t+At) leads to

i - .
[ [2= || >+ %(‘MH Pf — Y Hyy) At+ O(AL?)

in
= |9l? = 5o (el =97 Fyoh) AL O(AL),
9

showing that, to first order in\t, the change of the modulus

€

(‘/’t‘s’xw;k +‘/":¢ ax‘/’t)ax§+|¢t|2axx§:Oa (13)
a condition that also can be written as
(| 4|?04€)=0; (14)

this equation will be referred to as tphase equatiorEvery
solution ¢(x) of this equation defines a wave function com-
patible with the observed probability distributions at times
tnandt’, to first-order inAt. Formally, this equation is iden-
tical to the amplitude transport equation known from semi-
classical quantum mechanig¢$5]. In correspondence with
the result for the spin system only information about points
close tox is required: only first- and second-order derivatives
occur, to be compared with the occurrence of at most,
second-order differences in the corresponding equation for
the spin[Eq. (19) of 3(a)].

It will be shown in the sequel that the nodal structure of
the wave function determines the manifold of solutions of
the phase equation. Strictly speaking, there is a number of
phase equations with solutiorggx): it is not necessary to
smoothly continue the functiongx) on the left and on the
right of a zero of the amplitude, since the phase of the wave
function is undetermined at its nodes. Therefore, it is reason-
able to consider the solutions of E{d.4) separately in each
“compartment,” defined as a region between two zeros of
the amplitude|,(x)|2. Suppose that there afd nodes,
apart from those at= + . Label the zeros of the amplitude
|(X)|? from the left to the right byx_ X1, . .. Xy, X4,
starting with 0 atx_=-—« and ending atM+1 at
Xy =+, The uth compartmentZ, is defined as that one
on theright of the zerox,, ; the compartment extending to

of the wave function does not depend on the potentia will be referred to as%,. A wave function withM

V(x). From now on, the time argument of the wave function
will be given as a lower index, and the dependence as
suppressed; furthermoré,=d/dx, etc. The corresponding
relation for the states given in E¢7) reads

nodes define$1 +1 compartments; in particular, for a state
without a node there is just one single compartmeny,

The general solution of the phase equation in compart-
ment?,,u=0,1,...,M is given by
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x dy ) more and more rapidly oscillating phase fac#y(x). Such
Eu(X)= aﬂf oTo(y)I2 By Xe€,, a,,BueR, oscillations correspond to large values of the energy. Conse-
Xl V1LY 15 quently, the constants,, are necessarily equal to zero for all
(19 compartments?,,, and the resulting dependence of the

where x° is an arbitrary but fixed point in compartment phase¢ on x is strongly limited: it has to beonstantwithin

¢ .. Since the denominator approaches the value zero at tr?eaCh compartmert’, :

boundaries of the compartmerit,, nonzero valuesx, M
would imply that the solutiong(x) go to infinity at the EX)=B(x)= 2 Buxu(X), B=(Bo.B1, - - Bwm),
nodes of the wave function. Such a behavior of the phase, =0

however, is not compatible with the assumption of &, as

will be shown momentarily: a finite expectation value of the B.el0,2m), (21)
kinetic energy,T, can be ensured only by all constantg
being equal to zero.

First, the behavior of the integral in EqL5) stemming
from points close to a node is calculated approximately
Then, the expectation value of the kinetic energy will be
shown to diverge whenever, is different from zero. Con-
sider, for definiteness, the left endpoirf, of the region
¢ .., the following argument can be repeated analogously fo
right endpoints. The expansion of the amplitude
P(x)=|¢(x)| in the neighborhood to the right of the point
X, yields

where the characteristic function of the compartménthas
been introducedy ,(x)=1 ifxeZ,, and 0 else. A simi-
lar argument also applies to compartmeng or, equiva-
lently, to a state without any zero, such as the ground state of
the potentialV(x); in this case the point_ = —o0 is consid-
ered to be the node. In retrospect, it is now obvious that the
§ituati0n does not change qualitatively if the first nonzero
derivative of the expansion of the wave functiaf|? in Eq.
(17) were of higher order: the oscillations would become
even stronger.
Thus, after having measured the probability densities of
_ _ v V2@l BX) position at timeg andt’, one is able to define the underlying
PO={AP X))+ AXX)DFE, - (16) state up to {1+ 1) constant phases in th&i(+ 1) compart-
using P(x,)=0, and the termy,P(x) in this expansion is ments. The absolute value of the phase of the wave function
assumed to be different from zero. It turns out that its vaniS arbitrary so that there remains Bhdimensional manifold
ishing, corresponding to a nongeneric coincidence of a node” Of states that is compatible with the experimentally de-
and and an extremum of the modulus, would make thingd€'mined data. Since the valugs are restricted to the inter-
even worse(cf. below). Therefore, the probability density Val[0,2m) the manifold of Pauli partners is seen to to coin-

L : - ide wi _dimensi =M,
|(¥)|2= (3,P(X,) (X=X ,) )2+ A(x—x,)%).  (17) IV, TELLING PAULI PARTNERS APART

ON THE TORUS 7™M
Consider now a wave functiouxto(x) with phaseé, (x),
obtained from usingl15) in (17); the expectation value of the
kinetic energy in a small interveD () =(X,+ 6,X,+ &),
with 0< 8, 6p<1 and g, fixed, is given by

The measurement of the probability distributions
|p(x,1)|? and | (x,t+At)|? is sufficient to determine the
wave functiong(x,t) up to M relative phases, wherd is
the number of nodes of the wave function under consider-
ation. This set of states is conveniently described in the form

<¢(f)|:r|¢(§)>o(5)

_hz X, + 8o . M .

=——| " Tdx g e i petn) (18) Y, B)=P(x)PNV =3y, (x)ePr, (22)
2m X+ 8 u=0
— 12 [x,+8 where,,(x) = x ,(X) #(X) is a function identical tas(x) in

0

~“om < 45 dx( ﬁxx‘r”t_|‘/’t|2(‘7x§u)2 the compartment’, and equal to zero elsewhere. Note that

~ both, modulug¢,(x)| and phasep,(x), have already been
determined, at least implicitly: for the time beingnly the
(M +1) real numbers8 remain unknowr{or, equivalently,
the piecewise constant functigt(x) in (21)]. Thus, the mea-
surement oM appropriate expectation values is expected to
allow one to single out the actual state of the system.

+i|‘r//t|2‘9xx§,u+2il/’raxl/ftaxg,u)- (19)

In the limit — 0 the main contribution is due to the second
term on the right-hand side being proportional to

.45 dx 2 ‘Xlﬁ S Measuring quantities that refer to one single point in con-
a2f w0 5~ s figuration space only, i.e., measurilegal operators, will not
Flx,+s (X=X,) X—XM|XM+5 provide the required information, since all unknown phases

drop out immediately. Being the generator of spatial transla-
tions, the momentum operatgr will be involved in any
nonlocal quantity, in one way or another. For example, imag-
ine shifting the wave function/(x, 8) by a (finite) amount
The origin of the divergence is obvious: if the ph@segoes ~ Ax and consider the scalar product of the original state and
to infinity for — 0, then the wave functiog(x) acquires a the shifted oney(x+ Ax,B). Close to each node there will

] if 6—0. (20
= ) s N
a, 5 50 | . ( )
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be a region where the multiplication of the wave functionsprobability distribution and its time derivative at one instant

(originating from the compartments,, andZ,_,, respec- of time; the resulting three-dimensional version of the phase
tively) produces a factor exiB,, 1], with B,, 1  equation(14) is contained in Kemble’'s book. According to a
=pB,— B,.-1. Repeating this proceduid times with differ-  critical evaluation given in Appendix A of19], Kemble’s
ent shiftsA ,x, one obtains a system &1 linear equations claim that these quantities would determine uniquely a quan-
for the phase differences that, in general, will allow one totum state is not correct. In other words, the analysis of the
determine the unknowng,,, ;. In the following, a differ- ~ solutions of the phase equation is erroneous. Furthermore, in
ent approach is proposed, that does not require one to methese works the form of the manifold”, i.e., the manifold
sure the(real or imaginary part of theranslation operator. ~ of Pauli partners, has not been stated.

Consider the self-adjoint operators The original Pauli problem, namely, determination of the

guantum state from enunciating the position and momentum

KxgnglzKMwl:%(|X2><X271|+|X271>(X2|), (23 distributions,|¢/(x)|> and|i(p)|?, has not yet been solved.
The result of the present work, however, makes it plausible
where, as beforegz denotes a point in compartmeft,, ; that the knowledge of two continuous functions over the real
similar operators have been introduced16]. TheM equa- line might actually be sufficient, again except for an ambi-
tions guity corresponding to points on a finite-dimensional torus.
. _ . Known sets of Pauli partners usually require tfreal-
(W(BK | (B =X ) (X, —1)|COL By 1 valued state under consideration to possess specific discrete
) ) _1 M symmetries. For examp_le, an antisymmetric state with one
pu=1) KT single node at the origin and the state that is obtained by

(29 flipping the sign of the wave function in one of the two
_ ) _ compartments are known to have the same position and mo-
With ¢, -1=¢,— ¢,—1, can be solved immediately for the mentum probability distribution§s]; in this case, the Pauli
known quantities and the expectation values ofkhepera- The result of the present work may actually provide a step
tors: towards the solution of the original Pauli problem. If the
_ potentialVV(x) were chosen to be harmonic, then the role of
|¢(XM)||¢(M—1)| (25) position and momentum operators would be exchanged

(apart from a minus signafter a quarter of the oscillator’s
period, T=27/w. In other words, a measurement of the spa-
Fixing, for example, the value g8,=0, one can determine tial probability distribution at two timeg,andt’ =t+T/4, is
the value ofB; from Eg. (25 for u=1; then, 8, follows closely related to the measurement of position and momen-
from considering(25) for w=2; etc. In this way, one sees tum distributions at one given instant of tim@ccording to
that the wave functions(x,t) is indeed completely specified [20] it is possible to extract the unknown phases of the wave
by the measurement of the expectation values of the operddnction from these measurements by means of a known al-
tors K . gorithm) In order to exploit this observation in the presence
o . . .
of a general potential, one has to extend the considerations to
V. DISCUSSION measurements separated by a finite time interval, which, for
the time being, is not obvious. As it stands, the present ap-
In summary, it has been shown that the measurement Qfroach is, effectively, not sensitive to the potential since the
two position probability densities at subsequent tihesd  short-time evolution of the wave function is governed com-
t+ At plus the expectation values of a finite number of non-pletely by the kinetic energy, but for longer times the poten-
local operators is equivalent to the knowledge of the puraial will intervene in a nontrivial manner.
state(ray) in Hilbert space. Just as in the case of a spin, the
method is not constructive; theniquenessf the determined

Bup-1=—buu-1+ arcco{

state, however, is ensured. _ ACKNOWLEDGMENT
These results have to be compared to earlier ones ob-
tained along similar lines by Feenbdi/], and to their gen- This work was supported by the Swiss National Science

eralization to three spatial dimensions given in Kemble'sFoundation and the Freiwillige Akademische Gesellschaft
book[18]. The basic idea has been to measure the positiofBase).

[1] W. Pauli, inHandbuch der Physijledited by H. Geiger and K. study of the Pauli problem for a spin—not quoted in this
Scheel,(Springer, Berlin, 1938 Vol. 24, Pt. 1, p. 98. reference—has been performed by R. G. Newton and B.-L.
[2] H. ReichenbachPhilosophical Foundations of Quantum Me- Young, Ann. Phys(N.Y.) 49, 393(1968. (c) Another related
chanics(University of California Press, Berkeley, 194 6&ec. contribution has been given by I. D. lvanovic, J. Phys2@\
20. L579 (1993.

[3] (@) St. Weigert, Phys. Rev. A5, 7688(1992. (b) A careful [4] H.-W. Wiesbrock, Int. J. Theor. Phy26, 1175(1987).



53 HOW TO DETERMINE A QUANTUM STATE BY ... 2083

[5] C. N. Friedman, J. Austral. Math. So80B, 298 (1987). [14] O. Steuernagel and J. A. Vaccaro, Phys. Rev. [ #§f.3201

[6] W. Stulpe and M. Singer, Found. Phys. Ledt.153 (1990). (1995.

[7] K. Vogel and H. Risken, Phys. Rev. 40, 2847 (1989). [15] L. D. Landau and E. M. LifshitzKlassische MechanikAkad-

[8] K. Vogel and W. Schleich, Phys. Rev.44, 7642 (1991). emie Verlag, Berlin, 1979

[9] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. [16] B. d’EspagnatConceptual Foundations of Quantum Mechan-
Rev. Lett.70, 1244 (1993). ics (W. A. Benjamin, Reading, MA, 1976Sec. 7.1.

[10] T. J. Dunn, I. A. Walmsley, and S. Mukamel, Phys. Rev. Lett.[17] E. Feenberg, Ph. D. thesis, Harvard University, 19&3ub-
74, 884 (1995). lished. This work is known to me only indirectly throudt8].

[11] M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. [18] E. C. Kemble Fundamental Principles of Quantum Mechanics
72, 1137 (1994). (McGraw-Hill, New York, 1937.

[12] W. Gale, E. Guth, and G. T. Trammell, Phys. R&65 1414  [19] A. Royer, Phys. Rev. Letb5, 2745(1985.
(1968). [20] R. W. Gerchberg and W. O. Saxton, OptiRtuttgarj 35, 237

[13] A. Orlowski and H. Paul, Phys. Rev. B0, R921 (1994). (1972.



