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The problem of reconstructing a pure quantum stateuc& from measurable quantities is considered for a
particle moving in a one-dimensional potentialV(x). Suppose that the position probability distribution
uc(x,t)u2 has been measured at timet, and let it haveM nodes. It is shown that after measuring the time
evolved distribution at a short-time intervalDt later,uc(x,t1Dt)u2, the set of wave functions compatible with
these distributions is given by a smooth manifoldM in Hilbert space. The manifoldM is isomorphic to an
M -dimensional torus,T M. Finally,M additional expectation values of appropriately chosen nonlocal operators
fix the quantum state uniquely. The method used here is the analog of an approach that has been applied
successfully to the corresponding problem for a spin system.

PACS number~s!: 03.65.Sq

I. INTRODUCTION

In this paper progress is reported concerning a deceptively
simple question known as thePauli problem: does the mea-
surement of the probability densities for position and mo-
mentum of a particle determine its quantum state? Originat-
ing from a footnote in Pauli’s article inHandbuch der Physik
@1#, this question has led, in a more general setting, to a
number of investigations over the past decades: the expecta-
tion values of which sets of operators characterize uniquely a
~pure or mixed! state of a quantum system? Apparently, one
important early motivation for dealing with this problem has
been to demystify the concept of the wave function@2#: be-
ing a complex quantity it seems impossible to directly ob-
serve it in experiments. However, if an appropriate set of
expectation values provides the same information about a
quantum system as does the wave function itself, then it is
reasonable to consider the wave function just as a particu-
larly convenient description of the system.

Various works investigating the Pauli problem have been
reviewed in@3~a!#. There are many possibilities to approach
the problem in its general form since one is free to choose
the set of operators to be measured at will. It has been shown
by various authors@2,4–6# that knowledge of position and
momentum distributions alone~being equivalent to knowl-
edge of the expectation values of all powers of position and
momentum operators, respectively! doesnot single out one
specific state. This result is obtained from explicitly con-
structing states with identical probability distributions of
both position and momentum. It is not known, in general,
how large such a set of ‘‘Pauli partners’’ actually is, and
which supplementary expectation values would allow one to
distinguish between them. For more details and a list of ref-
erences the reader is referred to@3~a!#.

A novel approach is based on tomographic methods in
order to determine the Wigner function of a quantum state
@7,8#. In its sequel, successful experimental realizations have
been reported. The quantum state of an electromagnetic field
mode has been reconstructed by using a method called ‘‘op-
tical homodyne tomography’’@9#. It relies on the possibility

of measuring probability distributions of the quadrature am-
plitude x̂w5 x̂ cosw1p̂ sinw, obtained from rotating the posi-
tion operator in the phase plane by an anglew. In a similar
vein, the vibrational quantum state of a molecule has been
determined through the measurement of a time-dependent
spectrum of fluorescence@10#. The information obtained in
this way from ‘‘molecular emission tomography’’ can be
shown to encode a quasiprobability function, and it allows
one thus to reconstruct the sought-after quantum state. A re-
lated proposal has been made to experimentally determine
the state of both a scalar light wave or a particle wave-
function @11#. It exploits the transformations induced on the
Wigner function when the state under investigation passes
through well-defined lenses while propagating along some
direction in space.

It is straightforward to pose this problem for a quantum
spin of lengths. The setting in afinite-dimensionalHilbert
space turns out to be an important modification. Using a
specific version of a Stern-Gerlach apparatus~in which indi-
vidual beams after the separation can be shielded and the
remaining ones can be brought together again! allows one to
measure directly the intensities and relative phases of the
splitted beams@12#. It is not clear, however, whether it is
actually possible to perform this experiment without destroy-
ing the phase relations. It has been shown in@3~a!# that mea-
suring the intensities of the components of a spin state along
two ~infinitesimally! close directions in space is compatible
with 22s spin states. In this setup the familiar version of the
Stern-Gerlach apparatus is sufficient. It turns out that all
Pauli partners can be exhibited explicitly, and it is sufficient
to know the expectation value of one additional well-defined
operator in order to uncover the actual quantum-mechanical
state. This procedure is not constructive:uniquenessof the
state compatible with the measurements is shown—its ex-
plicit determination is another matter.

A constructive solution of the Pauli Problem has been
obtained for a restricted set of states in a one-particle Hilbert
space@13#. Imagine that the system is known to be prepared
in a state which is made up of a finite but arbitrarily large
number of energy eigenstates of a harmonic oscillator. With
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this additional information one is able to reconstruct the state
from the knowledge of position and momentum distributions
over the real line. Another proposition@14# expresses the
quantum state in terms of expectation values of simple pro-
jection operators, and a quantum optical realization of this
approach seems feasible.

It is the goal of the present paper to investigate the Pauli
problem for a particle in analogy to the method developed in
@3~a!#. To do so, the method to solve the Pauli problem for a
spin is, in Sec. II, briefly reviewed, and then it is reinter-
preted in terms of particle dynamics. In Sec. III the main
result is established: it is possible to enumerate all pure
quantum states compatible with the spatial probability den-
sities at two timest and t8, separated by a short-time inter-
val, Dt. Finally, in Sec. IV it is shown how to distinguish
between these Pauli partners through appropriate additional
measurements.

II. REINTERPRETATION OF THE PAULI PROBLEM
FOR A SPIN

In this section a solution of the Pauli problem for a spin of
lengths is briefly reviewed. Then, the method of solution is
reinterpreted in such a way that an analogous treatment of
the Pauli problem for a particle becomes possible. It has been
shown in@3~a!# that the measurement of the intensities of a
spin stateux& along two neighboring axes of quantization,
z andz8, by means of a Stern-Gerlach apparatus is compat-
ible with a discrete setN (s) of states. An additional mea-
surement of the expectation value of one well-defined opera-
tor allows one to discriminate between the elements of the
setN (s).

More specifically, one proceeds as follows. It is assumed
that there is a beam of particles propagating along thex axis,
say, each of which is prepared in one and the same pure spin
stateux& in the ~2s11!-dimensional Hilbert spaceH. They
enter a Stern-Gerlach apparatus that defines the axis of quan-
tization to be along thez direction. The associated eigen-
states of thez component of the spin,$um,z&%, constitute a
basis in Hilbert space, and the quantum numberm takes on
all ~half-! integer values between6s. In a first series of
measurements all intensitiesuxm(z)u2[u^m,zux&u2 are deter-
mined with respect to thez basis. The states compatible with
these measurements are located on a 2s-dimensional mani-
fold A(s): the phase of each state with respect to the basis
um,z& is undetermined, but the overall phase of the state
uc&does not have physical meaning since a state of the sys-
tem is associated with aray in H. The set of states corre-
sponding to the elements of the manifoldA(s) will be de-
noted by ux(g)&, where the label g5(g1 , . . . ,g2s)
parameterizes the manifoldA(s). It is assumed that the
phase conventions are chosen in such a way that the actual
state of the system corresponds tog50: ux(0)&[ux&.

Consider now an infinitesimal coordinate transformation,

Û~e!5expF2
i e

\
ŜxG512

i e

\
Ŝx1O ~e2!, ~1!

corresponding to a rotation of the Stern-Gerlach apparatus by
e about thex axis. It defines a new direction of quantization,
z8, which is infinitesimally close toz and perpendicular to

the x axis. The measurement of the intensitiesuxm(z8)u2
along z8 represents 2s more conditions on the possible
states:

u^m,z8ux~g!&u25uxm~z8!u2, m52s,2s11, . . . ,1s.

~2!

It can be shown that 22s states on the 2s-dimensional mani-
fold A(s) are compatible with the measurements~2!; they
represent the discrete set of Pauli partners,N (s). Finally, by
measuring in addition the expectation value of the operator
Ŝx , one can distinguish between the individual Pauli partners
that lead to identical intensities along thez andz8 axis.

As it stands, this method to determine a quantum-
mechanical state from measurements cannot be applied di-
rectly to perform the same task for a particle wave-function.
However, one can rephrase this procedure in such a way that
it becomes possible to transfer the method to the particle
problem. Change from the passive view of the rotation to an
active point of view. Then the Stern-Gerlach apparatus de-
fines once and for all an axis of quantization pointing along
z; the measurements, however, are now performed with re-
spect to the statesuc& andÛ(2e) uc&, having been rotated
by (2e) about thex axis relative to the apparatus. Consider
e as a time parameter, then the operatorÛ of Eq. ~1! can be
conceived as the time evolution operator of a spin in a con-
stant magnetic fieldBiex of appropriate strength, generated
by the Hamiltonian

Ĥ52B•m̂5Ŝx , ~3!

m̂ being the magnetic moment of the spin. In other words,
the measurement of the intensities along two different spatial
directions,z and z8, is equivalent to a measurement of the
intensities associated with the stateux(t)& and its time evo-
lution ux(t1 Dt)& for Dt5e with respect to one fixed direc-
tion, z. This point of view motivates an investigation of the
problem for a particle with Pauli data given by the position
probability densitiesuc(x,t)u2 and uc(x,t1 Dt)u2 of a state
uc& at two nearby times.

III. DETERMINATION OF PAULI PARTNERS
FOR A PARTICLE

A particle with massm is assumed to move in a one-
dimensional potentialV( x̂), described by the Schro¨dinger
equation

i\
d

dt
uc~ t !&5Ĥuc~ t !&[S p̂22m1V~ x̂! D uc~ t !&. ~4!

Suppose that the system is prepared at timet in a normalized
pure stateuc(t)& with finite energy,̂ cuĤuc&,`; a fortiori,
the expectation value of the kinetic energyT̂

^cuT̂uc&5^cu p̂2/2muc&,`, ~5!

is finite.
The HamiltonianĤ defined in Eq.~4! generates the time

evolution of the particle stateuc& just as the Hamiltonian
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~3! did for the spin. By analogy, in this section the Pauli
partners for a particle will be determined that are compatible
with the measurement of the probability distribution of posi-
tion at timet and at a short time later,t1Dt; in the mean-
time, the state is assumed to evolve according to~4!.

In the position representation one can decompose the
wave function as

^xuc~ t !&5uc~x,t !ueif~x,t !, ~6!

with positive modulusuc(x,t)u and a real phasef(x,t),
which is assumed to be a continuous function ofx. Discon-
tinuities of the phasef(x,t) at points where the amplitude
uc(x,t)u of the wave function vanishes~i.e., at its nodes!,
however, arenot excluded.

Under these assumptions the measurement of the prob-
ability distributions uc(x,t)u2 and uc(x,t1Dt)u2 at two
times t and t1Dt with Dt!1 will be seen to be compatible
with anM -dimensional manifoldM of states,M being the
number of nodes of the wave function under consideration.
The set of Pauli partners turns out to be isomorphic to an
M -dimensional torus,T M.

Suppose that at timet the probability distribution
uc(x,t)u2 has been determined experimentally. All states
compatible with this distribution can be written

c„x,t;j~x,t !…[c~x,t !ei j~x,t !5uc~x,t !uei @f~x,t !1j~x,t !#,
~7!

j(x,t) being a real function. For later convenience, the func-
tion j(x,t) is defined as thedeviationfrom the true~but yet
unknown! phasef(x,t); the strategy will be to eliminate the
‘‘freedom’’ in the choice of the functionj by constraints
imposed by additional measurements. The relation between
the amplitudes of the actual stateuc& at times t and
t85t1Dt follows from Schro¨dinger’s equation, Eq.~4!,

c~x,t1Dt !5c~x,t !1
]c~x,t !

]t
Dt1O ~Dt2!

5c~x,t !2
i

\
Ĥc~x,t !Dt1O ~Dt2!. ~8!

Multiplying this equation with the corresponding expansion
of c* (x,t1Dt) leads to

uc t8u
25uc tu21

i

\
~c tĤc t*2c t* Ĥc t!Dt1O ~Dt2!

5uc tu22
i\

2m
~c t]xxc t*2c t* ]xxc t!Dt1O ~Dt2!,

~9!

showing that, to first order inDt, the change of the modulus
of the wave function does not depend on the potential
V(x). From now on, the time argument of the wave function
will be given as a lower index, and the dependence onx is
suppressed; furthermore,]x[]/]x, etc. The corresponding
relation for the states given in Eq.~7! reads

uc t8~j!u25uc t~j!u22
i\

2m
„c t~j!]xxc t* ~j!

2c t* ~j!]xxc t~j!…Dt1O ~Dt2!. ~10!

The second term on the right-hand-side of this equation can
be written as

2
i\

2m
„c t]xxc t*2c t* ]xxc t22i ~c t]xc t*1c t* ]xc t!]xj

22i uc tu2]xxj…, ~11!

with the explicit form of the second derivative of the wave
functionc t(j) given by

]xxc t~j!5„]xxc t12i ]xc t]xj1 ic t]xxj2c t~]xj!2…ei j.
~12!

The assumption of identical probability distributions of po-
sition for the statesuc& and uc(j)& at both timest and t8
requires the expressions in Eqs.~9! and ~10! to be equal,
which by using Eq.~11! implies

~c t]xc t*1c t* ]xc t!]xj1uc tu2]xxj50, ~13!

a condition that also can be written as

]x~ uc tu2]xj!50; ~14!

this equation will be referred to as thephase equation. Every
solutionj(x) of this equation defines a wave function com-
patible with the observed probability distributions at times
t andt8, to first-order inDt. Formally, this equation is iden-
tical to the amplitude transport equation known from semi-
classical quantum mechanics@15#. In correspondence with
the result for the spin system only information about points
close tox is required: only first- and second-order derivatives
occur, to be compared with the occurrence of at most,
second-order differences in the corresponding equation for
the spin@Eq. ~19! of 3~a!#.

It will be shown in the sequel that the nodal structure of
the wave function determines the manifold of solutions of
the phase equation. Strictly speaking, there is a number of
phase equations with solutionsj(x): it is not necessary to
smoothly continue the functionsj(x) on the left and on the
right of a zero of the amplitude, since the phase of the wave
function is undetermined at its nodes. Therefore, it is reason-
able to consider the solutions of Eq.~14! separately in each
‘‘compartment,’’ defined as a region between two zeros of
the amplitudeuc t(x)u2. Suppose that there areM nodes,
apart from those atx56`. Label the zeros of the amplitude
uc t(x)u2 from the left to the right byx2 ,x1 , . . . ,xM ,x1 ,
starting with 0 at x252` and ending atM11 at
x151`. Themth compartmentC m is defined as that one
on the right of the zeroxm ; the compartment extending to
2` will be referred to asC 0 . A wave function withM
nodes definesM11 compartments; in particular, for a state
without a node there is just one single compartment,C 0 .

The general solution of the phase equation in compart-
mentC m ,m50,1, . . . ,M is given by
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jm~x!5amE
xm
0

x dy

uc t~y!u2
1bm , xPC m , am ,bmPR,

~15!

where xm
0 is an arbitrary but fixed point in compartment

C m . Since the denominator approaches the value zero at the
boundaries of the compartmentC m , nonzero valuesam
would imply that the solutionsj(x) go to infinity at the
nodes of the wave function. Such a behavior of the phase,
however, is not compatible with the assumption of Eq.~5!, as
will be shown momentarily: a finite expectation value of the
kinetic energy,T̂, can be ensured only by all constantsam
being equal to zero.

First, the behavior of the integral in Eq.~15! stemming
from points close to a node is calculated approximately.
Then, the expectation value of the kinetic energy will be
shown to diverge wheneveram is different from zero. Con-
sider, for definiteness, the left endpointxm of the region
C m ; the following argument can be repeated analogously for
right endpoints. The expansion of the amplitude
P(x)[uc t(x)u in the neighborhood to the right of the point
xm yields

c t~x!5$]xP~xm!~x2xm!1O „~x2xm!2…%eif~x!, ~16!

using P(xm)50, and the term]xP(x) in this expansion is
assumed to be different from zero. It turns out that its van-
ishing, corresponding to a nongeneric coincidence of a node
and and an extremum of the modulus, would make things
even worse~cf. below!. Therefore, the probability density
near the pointxm is approximately given by

uc t~x!u25„]xP~xm!~x2xm!…21O „~x2xm!3…. ~17!

Consider now a wave functionc t0
(x) with phasejm(x),

obtained from using~15! in ~17!; the expectation value of the
kinetic energy in a small intervalD(d)5(xm1d,xm1d0),
with 0,d,d0!1 andd0 fixed, is given by

^c~j!uT̂uc~j!&D~d!

5
2\2

2m E
xm1d

xm1d0
dx c t* e

2 i jm]xx~c te
i jm!

5
2\2

2m E
xm1d

xm1d0
dx„c t* ]xxc t2uc tu2~]xjm!2

~18!

1 i uc tu2]xxjm12ic t* ]xc t]xjm…. ~19!

In the limit d→0 the main contribution is due to the second
term on the right-hand side being proportional to

am
2 E

xm1d

xm1d0 dx

~x2xm!2
;

2am
2

x2xm
U
xm1d

xm1d0

5am
2 S 1d 2

1

d0
D→` if d→0. ~20!

The origin of the divergence is obvious: if the phasejm goes
to infinity for d→0, then the wave functionc(x) acquires a

more and more rapidly oscillating phase factor,jm(x). Such
oscillations correspond to large values of the energy. Conse-
quently, the constantsam are necessarily equal to zero for all
compartmentsC m , and the resulting dependence of the
phasej on x is strongly limited: it has to beconstantwithin
each compartmentC m :

j~x!5b~x![ (
m50

M

bmxm~x!, b5~b0 ,b1 , . . . ,bM !,

bmP@0,2p!, ~21!

where the characteristic function of the compartmentC m has
been introduced:xm(x)51 if xPC m , and 0 else. A simi-
lar argument also applies to compartmentC 0 or, equiva-
lently, to a state without any zero, such as the ground state of
the potentialV(x); in this case the pointx252` is consid-
ered to be the node. In retrospect, it is now obvious that the
situation does not change qualitatively if the first nonzero
derivative of the expansion of the wave functionuc tu2 in Eq.
~17! were of higher order: the oscillations would become
even stronger.

Thus, after having measured the probability densities of
position at timest andt8, one is able to define the underlying
state up to (M11) constant phases in the (M11) compart-
ments. The absolute value of the phase of the wave function
is arbitrary so that there remains anM -dimensional manifold
M of states that is compatible with the experimentally de-
termined data. Since the valuesbm are restricted to the inter-
val @0,2p) the manifold of Pauli partners is seen to to coin-
cide with anM -dimensional torus:M5T M.

IV. TELLING PAULI PARTNERS APART
ON THE TORUS T M

The measurement of the probability distributions
uc(x,t)u2 and uc(x,t1Dt)u2 is sufficient to determine the
wave functionc(x,t) up toM relative phases, whereM is
the number of nodes of the wave function under consider-
ation. This set of states is conveniently described in the form

c~x,b!5c~x!eib~x!5 (
m50

M

cm~x!eibm, ~22!

wherecm(x)5xm(x)c(x) is a function identical toc(x) in
the compartmentC m and equal to zero elsewhere. Note that
both, modulusucm(x)u and phasefm(x), have already been
determined, at least implicitly: for the time being,only the
(M11) real numbersb remain unknown@or, equivalently,
the piecewise constant functionb(x) in ~21!#. Thus, the mea-
surement ofM appropriate expectation values is expected to
allow one to single out the actual state of the system.

Measuring quantities that refer to one single point in con-
figuration space only, i.e., measuringlocal operators, will not
provide the required information, since all unknown phases
drop out immediately. Being the generator of spatial transla-
tions, the momentum operatorp̂ will be involved in any
nonlocal quantity, in one way or another. For example, imag-
ine shifting the wave functionc(x,b) by a ~finite! amount
Dx and consider the scalar product of the original state and
the shifted one,c(x1Dx,b). Close to each node there will
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be a region where the multiplication of the wave functions
~originating from the compartmentsC m andC m21 , respec-
tively! produces a factor exp@ibmm21#, with bmm21
[bm2bm21 . Repeating this procedureM times with differ-
ent shiftsDmx, one obtains a system ofM linear equations
for the phase differences that, in general, will allow one to
determine the unknownsbmm21 . In the following, a differ-
ent approach is proposed, that does not require one to mea-
sure the~real or imaginary part of the! translation operator.

Consider the self-adjoint operators

K̂x
m
0 x

m21
0 [K̂mm215

1
2 ~ uxm

0 &^xm21
0 u1uxm21

0 &^xm
0 u!, ~23!

where, as before,xm
0 denotes a point in compartmentC m ;

similar operators have been introduced in@16#. TheM equa-
tions

^c~b!uK̂mm21uc~b!&5uc~ x̄m!uuc~ x̄m21!ucos~bmm21

1fmm21!, m51, . . . ,M ,

~24!

with fmm21[fm2fm21 , can be solved immediately for the
unknowns bmm21 , expressing them in terms of already
known quantities and the expectation values of theK̂ opera-
tors:

bmm2152fmm211arccosS uc~ x̄m!uuc~m21!u

^c~b!uK̂mm21uc~b!&
D . ~25!

Fixing, for example, the value ofb050, one can determine
the value ofb1 from Eq. ~25! for m51; then,b2 follows
from considering~25! for m52; etc. In this way, one sees
that the wave functionc(x,t) is indeed completely specified
by the measurement of the expectation values of the opera-
tors K̂mm21 .

V. DISCUSSION

In summary, it has been shown that the measurement of
two position probability densities at subsequent timest and
t1 Dt plus the expectation values of a finite number of non-
local operators is equivalent to the knowledge of the pure
state~ray! in Hilbert space. Just as in the case of a spin, the
method is not constructive; theuniquenessof the determined
state, however, is ensured.

These results have to be compared to earlier ones ob-
tained along similar lines by Feenberg@17#, and to their gen-
eralization to three spatial dimensions given in Kemble’s
book @18#. The basic idea has been to measure the position

probability distribution and its time derivative at one instant
of time; the resulting three-dimensional version of the phase
equation~14! is contained in Kemble’s book. According to a
critical evaluation given in Appendix A of@19#, Kemble’s
claim that these quantities would determine uniquely a quan-
tum state is not correct. In other words, the analysis of the
solutions of the phase equation is erroneous. Furthermore, in
these works the form of the manifoldM, i.e., the manifold
of Pauli partners, has not been stated.

The original Pauli problem, namely, determination of the
quantum state from enunciating the position and momentum
distributions,uc(x)u2 and uc(p)u2, has not yet been solved.
The result of the present work, however, makes it plausible
that the knowledge of two continuous functions over the real
line might actually be sufficient, again except for an ambi-
guity corresponding to points on a finite-dimensional torus.
Known sets of Pauli partners usually require the~real-
valued! state under consideration to possess specific discrete
symmetries. For example, an antisymmetric state with one
single node at the origin and the state that is obtained by
flipping the sign of the wave function in one of the two
compartments are known to have the same position and mo-
mentum probability distributions@6#; in this case, the Pauli
partners are finite in number.

The result of the present work may actually provide a step
towards the solution of the original Pauli problem. If the
potentialV(x) were chosen to be harmonic, then the role of
position and momentum operators would be exchanged
~apart from a minus sign! after a quarter of the oscillator’s
period,T52p/v. In other words, a measurement of the spa-
tial probability distribution at two times,t andt85t1T/4, is
closely related to the measurement of position and momen-
tum distributions at one given instant of time.~According to
@20# it is possible to extract the unknown phases of the wave
function from these measurements by means of a known al-
gorithm.! In order to exploit this observation in the presence
of a general potential, one has to extend the considerations to
measurements separated by a finite time interval, which, for
the time being, is not obvious. As it stands, the present ap-
proach is, effectively, not sensitive to the potential since the
short-time evolution of the wave function is governed com-
pletely by the kinetic energy, but for longer times the poten-
tial will intervene in a nontrivial manner.
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