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We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlo-
cality of the theory there igfor systems of more than one particleo obvious way to achieve such an
extension. We present a model invariant under a certain limit of Lorentz transformations, a limit retaining the
characteristic feature of relativity, the nonexistence of absolute time, i.e., of simultaneity. The analysis of this
model exemplifies an important property of any Bohmian quantum theory: the quantum equilibrium distribu-
tion p=||? cannot simultaneously be realized in all Lorentz frames of reference.

PACS numbe(s): 03.65.Bz

I. INTRODUCTION dictions, in which it is explicitly specified what the material
world is thought to be made of—be it particles or fields or
Despite the impressive and unquestioned empirical sugahat have you—and how these entities behave. We empha-
cess of quantum theory, the physical meaning of its basiize that this by no means implies a “naive realism”; on the
object, the wave function, is still controversial. The contrary, these entities—what Bell called the “beables” of
standard—or Copenhagen—interpretation of quantum theor{p€ theory—can be rather remote from our perception of the
asserts that the wave function embodies the most complei¥orld. Moreover, the performance of experiments may dis-
description possible of the state of a physical system, whildurb the behavior of the beables, so that the “observed”
connecting it with experience, and thereby assigning to iProperties of matter may be quite different from those left
physical significance, only via a set of rules for calculating Unobserved.” o
probabilities of results of “measurements.” It seems essential N nonrelat|y|st|c quantum t_heory there are two pr|nc|pa|
within the standard interpretation that “measurements” befoutes for setting up a realistic quantum theory: Either the
distinguished from other physical processes, and that atteff¥ave fgnctlon is not the complete description of the state of
tion be paid to the fact that the theory makes predictmmiy @ Physical system, but must be supplemented by some fur-
about results of “measurements”: otherwise one runs intdher quantities, commonlyand unfortunately called “hid--
the well-known measurement problem or, more pictorially,de” varlables,t’ or the unitary eyoluthn of the wave functpn
the paradox of Schithnger’s cat. In any case, the fundamen- must _be mod|_f|ed. The p_aradlgmatw example of the first
tal role of “measurements{which is sometimes shifted to "oute is Bohmian mechani¢$,6], that of the second route
“observers”) in the Copenhagen interpretation leads first ofthe theory of Ghirardi, Rimini, and WebéGRW) [7]. We
all to the theory’s not being well formulated as a fundamen-shall call a realistic quantum theory of the first kind a
tal (as opposed to phenomenologjctieory because what “Bohmlan'theory.” Our iject|ve is to flnd'a Lorentz invari-
constitutes a “measurement” is not specified. Second, wit@nt Bohmian theory which extends Bohmian mechanics, i.e.,
regard to cosmology, the necessity of invoking an outsidé’_Vh!Ch leads to Bohmian mechanics in the nonrelativistic
measurement apparatus or observer seems rather awkwalit. _ _ o
(For extraordinarily clear presentations of the problems of For systems of a single particle, a Lorentz invariant
quantum theory as well as of possible solutions [de€3].) Bohmian theory is |_mmed|ately speuﬂ_@ﬂ—l()]: the b_eables
An alternative interpretation or theory agreeing with are the wave functiogy(x*) and a particle path, which may
quantum theory or(most of its predictions which is not be specified as an integral curve of a four-vector fjéldfor
based on the notion Of “measurement” or "Observer" iS usu- examp|e, Of the current I’latura”y associated W|th the Klein'
ally called a “realistic” interpretation or theoryMore pre- ~ Gordon or Dirac wave functign
cisely, we shall understand by a “realistic quantum theory” a
theory, agreeing with quantum theory ¢most o) its pre- dl“:jﬂ(x,i) 1)
ds '

1This is a rather unfortunate term—can “realism,” i.e., the belief Multiplication of j# by a positive scalar field(x*) changes
that there is a material world the description of which is the task ofonly the parametrization, not the path, understood as the
physics, seriously be questioned in physics? See[dlso equivalence class of curvé@: R— R?, s—X*(s) differing
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only in their parametrization, or as the ima¥#(R) of a must be nonlocal. This obviously conflicts with what is often
curve X*, i.e., a one-dimensional subset®®f. If j# is ev-  considered to be the essence of Einsteinian relativity—the

erywhere timelike, i.e., if ,j*>0 with the sign convention locality of physical interactions. The requirement of the Lo-
for the metricggoe= 1 gnzng gss= — 1, a parametrization rentz invariance of a physical theory, however, does not force

; ; ; locality. Thus a nonlocal Lorentz invariant theory is certainly
by proper time may be obtained by replacin b
dB)/(/Edf: UH(XH) )\l/vith the foa/r-ve[?ocityg Eﬂl)ajy possible. This is already rather clear from the meaning of the
a:(jﬂjﬂ)_l/zl In general there is no distinguished p’ara_terms: While “Lorentz invariance” describes the behavior of

L N : . a theory under certain transformations of reference frame,
metrization, and the parametrization chosen in writing Eq

: S . the term “locality” conveys that there is no action at a dis-
(1) has no physical significance as such: all equations of th y Y

. . s fance. For an exhaustive discussion, gKEJ. An interesting
form dX*/ds=a(X*)j*(X*) with differenta are physically  ¢|assical example is the action-at-a-distance theory of

equivalent. Schwarzschild, Tetrode, Fokker, Wheeler, and Feyn(sea
The Dirac currenf”=y*y is a timelike future-oriented [13], and the references thergireplacing classical electro-
vector; thus the curves which are solutions(df run from  dynamics: In this Lorentz invariant theory the point charges
t=—x to t=+c, never backwards in time, with velocity interact directly with each otheion forward and backward
everywhere bounded by. In particular, every path crosses light coneg—in a manner unmediated by an electromagnetic
every t=const hyperplane of every Lorentz frame of field, which is not a fundamental entity here.
reference—or, indeed, every spacelike hypersurface— Bohmian mechanicfs,6] is manifestly nonlocal: the ve-
exactly once, and thus there is a one-to-one correspondentgity of a particle at timet depends in general upon the
between paths and points—their crossing points—on an aiositions of all the other particles at that time,
bitrary spacelike hypersurface.
Because the Dirac current is divergence-free, it allows, h Vii(dy, - . 00
moreover, for a straightforward introduction of a dynami- Vi(Qq, ... 0Nt =
cally distinguished measure on the set of particle paths as ¢‘(q1‘ + )
follows: In an arbitrary Lorentz frame, take=j°= ¢y as
the density of crossings throughtat, hyperplane at an In contrast to Newtonian mechanics, where for realistic in-
arbitrary timet=to.2Then the density of crossingsarising  teractions the instantaneous influence of the other particles
from (1) satisfiesp=j° at all times in this frame, i.e., decreases with increasing distance, and therefore widely
j°=y'y is an “equivariant” density. Furthermore, “quan- Separated systems afie a certain sengeapproximately in-
tum equilibrium” p=j° holds then inall Lorentz frames at dependent, for Bohmian mechanics the spatial distance be-
all times. The distributionp=j°= ¢y is hence the relativ- tween the particles is irrelevant so long as the wave function
istic generalization of the “quantum equilibrium distribu- Of the entire system has a suitably entangled form.
tion” p=||? of nonrelativistic Bohmian mechanics, which ~ For a system of many Dirac particles, Bohm and co-
is the essential tool for the derivation of the nonrelativisticworkers[14,9] have proposed the following guiding condi-

@

quantum formalisni6]. tion:
In fact, any divergence-free currejit, in particular also
the Klein-Gordon current which is, in general, not globally Wy
timelike, gives rise to a natural measure on the set of trajec- Vk:W' 3

tories which are integral curves ¢f [i.e., solutions of(1)],
in a way extending the above definition of a natural measure
for the Bohm-Dirac theory. Moreover, the fact that Klein- which is formulated with respect to a certain reference frame,
Gordon trajectories possibly “run backwards in time” may and is in fact not Lorentz invariant. Analogously to the non-
well be viewed as naturally describing pair creation and anrelativistic theory, the quantum flux equation which is a con-
nihilation. We shall discuss these topics in a subsequergequence of the many-particle Dirac equation guarantees that
work. YTy is an equivariant ensemble density for this dynamical
For systems of more than one particle, it is not at allsystemin the chosen reference framand therefore this
obvious how to construct a Lorentz invariant realistic quan-theory reproduces the quantum predictions insofar as they
tum theory, in fact it is not even clear whether this is possiblederive from the probability density'y. These predictions
at all. The problem is due to the unavoidable nonlocality ofdo not contain a trace of the preferred frame: Lorentz invari-
any realistic[or, more accurately, of any preciggl], pp.  ance holds on the observational, but not on the fundamental
171, 194] version of quantum theory: The incompletenesslevel. (The situation is similar for Bohm's quantum field
argument of Einstein, Podolsky, and Ros@&PR) [11] to- theory[5,14,9.)
gether with the analysis of B&l[1], Chap. 2 shows that There have been a number of arguments to the effect that
every theory giving the quantum mechanical predictionsa Bohmian theory must involve a preferred frame of refer-
ence, and thus must violate Lorentz invariance. The most
interesting such argument has been put forward by Hardy
2f fj°dx*dx?dx®<, we may normalize the measure by replac- [15], who by discussing an intriguing experiment—one that
ing j by aj with a=*=[j°dx*dx?dx® to obtain a probability mea- we shall discuss in this paper as well, and that has been
sure. shown to contain even more surpris¢$6,17, and in par-
3For particularly clear presentations, see gl$h Chap. 16, as ticular a nonlocality argument in a sense involving but one
well as[3,12). photon [18])—claims to have shown that every realistic
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guantum theory must possess a preferred frame of referendiaem “relative time translations” In Sec. Ill A we describe
and thus that there can be no Lorentz invariant realistic quara multitime translation invariant formulation of Schkiro
tum theory. inger’'s equation for systems composed of noninteracting
However, because it rests on an unsuitable “reality critefarts. In Sec. Ill B we present the corresponding multitime
rion” [19,20, Hardy's argument is wrong. There are eventranslation invariant Bohmian theory and discuss its statisti-
counterexamples to Hardy’s argument: the multitime translacal properties. In Sec. Il C we apply the general analysis to
tion invariant formulation of the GRW theory by Befl1],  Hardy's experiment, focusing on how this experiment illus-
Chap. 22 as well as the multitime translation invariant trates the general discussion in Sec. Il. .
Bohmian theory we present in this paper are realistic models Ve remark that there is no difficulty formulating a Lo-

for the discussed experiment without a preferred frame. Furl€NtZ invariant multitime version of the Dirac equation for a
thermore, there is an outline for a relativistic Bohmian quan-SYStem of noninteracting Dirac particlgaS]. However, the
tum field theory, in which a foliation of space-time into corresponding Lorentz invariant Bohmian theory lacks statis-

spacelike hypersurfaces is an additional bedig. Finally tical transparency. Indeed, at first sight, Lorentz invarian_ce
one can find a number of models of relativishicparticle and statistical transparency appear to be mutually exclusive.

theories with an action at a distance defined in a Lorenti‘ee Sec. IV for a bit more detail on this, as well as some

invariant manner, models that therefore have the potential ti'rther reflections on Lorentz invariance.
properly and relativistically describe quantum nonlocality as_ O Systems that consist of noninteracting subsystems,

exhibited in Hardy’s experiment. We allude to one such posBell has shown that the GRW theory can be reformulated in

sibility in Sec. IV, but shall discuss these models in a subseSUch @ way that it becomes invariant under multitime trans-
quent work. No nontrivial Lorentz invariant realistic quan- 'ation (1], Chap. 22. He regarded this as an important step
tum theory is as yet known, but there is no compellingtowards a genuinely Lorentz invariant precise formulation of
argument that this should be impossibl@n the contrary, quantum theory, declaring Fhat “And | am part_lcularly_struck
the above mentioned models are steps towards a LorenLEzV the fact that the model is as Lorentz invariant as it could

invariant realistic quantum theory. One should, however, b e in the nonrelativistic version. I.t takes away the ground_of
; gy fear that any exact formulation of quantum mechanics

these models may present a difficult problem: in fact, formust conflict with fundamental Lorentz invariancef1], p.
many models there is in general no reason that quantu Q9) Thg mu_ltltlme translation invariant Bohmian theory we
equilibrium should hold with respect to any reasonable famJiScuss in this paper may, perhaps, be regarded as showing
ily of hypersurfaces; thus the statistical analysis will be dif-that this assertion applies also to Bohmian mechanics.
ferent from that in nonrelativistic Bohmian mechanics and. FOr simplicity, we shall set all massesy=1 and
moreover, presumably, the predictions of such a theory wilft=c=1.
not agree with(all of) those of quantum theory.
Similarly Albert ([3], p. 159ff), Bohm and Hiley([9], Sec.
12.6), Ghirardiet al. [22], and Hardy and Squird23] also
argue that a Bohmian theory must violate Lorentz invariance Il. QUANTUM EQUILIBRIUM CANNOT HOLD
because a preferred frame is needed. The above mentioned IN ALL LORENTZ FRAMES
models without a preferred frameut with some “simulta-
neity” fixed in a Lorentz invariant way—note that this entails ~ We consider an arbitrary theory féli(=2) particles, i.e.,
that there always are Lorentz frames in which future event& (possibly statistical specification of all possiblél-tuples
influence the past, in contrast to assumptiong3i9,22,23)  of space-time paths for the particles(for example, as given
show that less is established than claimed. by solutions of a system of differential equatipnd/e shall
This paper is organized as follows. We show in Sec. licall each such possible “history” aN-path We assume that
that the joint distribution of the particle positions cannot in €ach spacelike hypersurface is crossed exactly once by each
general agree with the quantum mechanical distribution in alirajectory, and consider an arbitrary probability meas@re
Lorentz frames. This is in contrast to the situation for oneon theN-paths. This determines the distribution of crossings
particle—or, indeedN independent particles—as explained p>: SN R for any spacelike hypersurfade
above. We also discuss why nevertheless the quantum me- We now want the probabilistic predictions of the theory to
chanical predictions for performed measurements can be otagree as far as possible with those of quantum theory. Com-
tained. In Sec. Il we present a concrete step towards a Loplete agreement would be straightforward if for any quantum
rentz invariant Bohmian theory: a Bohmian theory invariantstates there were & such that for all spacelike hypersur-
under certain limits of Lorentz transformations, limits defin-faces 2 the distribution of crossing$>2 agrees with the
ing a symmetry that expresses the essence of relativistiguantum mechanical joint distribution of tlieeasurepipo-
space-time—the nonexistence of absolute time, i.e., of simulsitions on%,. For 3 a spacelike hyperplane, i.e., a simulta-
taneity. These transformations, which we shall call “multi- neity plane or constant-time slice of a Lorentz frarngethis
time translations,” have been discussed by Bell in connectioris given by|*|? wherey™ =y, the wave function in frame
with the GRW theory([1], Chap. 22, and24]; Bell calls  A. However, this is not in general possible.
Assertion: There does not in general exist a probability
measure P on N-paths for which the distribution of crossings
4And the history of the issue of hidden variables, i.e., of the com-p> agrees with the corresponding quantum mechanical dis-
pleteness of the description provided by the wave function, shouldribution on all spacelike hyperplanes.
strongly warn us against too readily accepting impossibility claims.  The field theoretical analog of this assertion was conjec-
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FIG. 1. Space-time diagram of the evolution of the wave func-
tion in Hardy’s experiment. In the shaded regions there are Stern- —3|-)3 )b, (7)
Gerlach magnets\,, A,, B, andB,, which split the respective
parts of the wave function into the respective eigenfunctions
(I+).]=N%z2 . Three different frames of reference are also drawn.\yhere|+), and|—), denote the eigenfunctions of, with
eigenvaluet+1 and—1, respectively, an¢h-),,| —), denote
the eigenfunctions ofr, with eigenvalue+1 and —1, re-
spectively. We havi_ used+ )= (| +),+|-),)/\2 and
. ] o = )x=(+).—1—)2/V2. Denoting by &,b) , the compo-
tured by Dur, Goldstein, and Zangfin 1990[21]. Samols Le%ts o|f si)in |in >direction( andz, respecti(veiy, of particle
discusses the equivalent result for his stochastic realistig and b, respectively, the following quantum mechanical

model of a light-cone lattice quantum field thedB6]. predictions can be read off from the form of the wave func-
The caveat “in general” refers to the fact that there aretjon:

exceptional physical situations for which sucPk @oes exist.

Consider, for example, two independent Dirac particles, i.e., a,=+1=b,=—1 [from(4)], (8)
with a wave function that is a product of one-particle wave

functionsy= y,4,, and independent evolutions given dy: b.=+1=a,=—1 [from(5)], ©)
dX/ds=j (X, jk=vy* ¥, k=a,b. Then, as explained

above, ifp*o=j2j % with respect to one spacelike hyperplane not(a,= -1 andb,= —1) [from (6)], (10)

S, thenp*=j2j? for all spacelike hyperplanes. We be-
lieve, however, that such exceptional physical situations are 1
rare. Proa,=+1 andb,=+1)= 1 [from(7)]. (11)

The assertion above is more or less an immediate conse-
guence of any of the no-hidden-variables nonlocality
theorems—Bell'd 1], that of Clauser, Horne, Shimony, and o ) ) ]
Holt [27], that of Greenberger, Horne, and Zeiling28] (see These predlctlons are clearly inconsistent for random'varl—
also[29]), or what have you—for the spin components of aables since the last one together with t_he first two then imply
multiparticle system: By means of a suitable placement ofhat{a,=—1 andb,=—1} has probability at least 1/12.
appropriate Stern-Gerlach magnets the inconsistent joint spin Now suppose that the setup is such that after the two
correlations can be transformed fthe samg inconsistent  Particles are widely separated from each other, each of them

joint spatial correlations for particles at different times. SinceUns through a Stern-Gerlach magnéy, (and B, respec-
the existence of a probability meastPeon N-paths implies ~ tively), which splits the respective parts of the wave function

; i . . ; ; b b
the existence and hence the consistency of all crossing digto the eigenfunction+ )5, |—)3 a”d.|+>x: |—)x. respec-
tributions, the assertion follows. tively. These parts are later recombined by reverse magnets

Since this is an important result, we shall provide anafter which they are led through a second Stern-Gerlach

elaboration using one of the sharpest nonlocality theoremdnagnet @, and B,, respectively, which splits the wave

that of Hardy[15]. It should be clear from our treatment of function into the eigenfunctiong+)2, |—)2 and |+)2,

this example how to arrange the magnets to deal with any—)2, respectively. Thus the spin components @nere or

other version. less perfectly correlated with the path variables as indicated
Consider the experiment described in Fig. 1, which isin Fig. 1, which therefore inherit the inconsistency of the

similar to the EPR-Bohm experiment and which is a slightspin components. The assertion follows.

modification of the experiment discussed by Haidp], We remark that the measurements to which the quantum

which we shall call “Hardy’s experiment.” A pair of par- mechanical predictions refer might well be performed in this

ticles is prepared in Hardy's stafle= ¢44qy, Which has, say way, but with the insertion of photographic plates behind the

in framel, the form(we write only the “spin” par} appropriate Stern-Gerlach magnets.
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We perhaps should be even more explicit, particularly
since we will need later to refer to some of the notation to be

developed here. Suppose that there is a theory for two pa
ticles for which the distribution of crossings' agrees with
the quantum mechanical distribution for posititmeasure-
ments, given by|4*|?, for all spacelike hyperplanés. The
hyperplanes we shall consider are simultaneity planes in th
Lorentz framesl att'=t} andth, Il att"=0, andlll at
t"=0, as shown in Fig. 1. We shall denote these b
s!(t}), 3"(0), etc. Furthermore, we shall abbreviate
=@ by gh, p¥'@ by pl, g @ by gl p>'@ by ol
etc.

Consider the configurational part of the wave function in
these Lorentz frames. We shall now reg#am}i‘;? as repre-
senting the appropriate configurational part of the wave func
tion as indicated in Fig. 1, with sutxp)i;? denoting its spa-
tial support Then

I_i a b_ aj_\b_|_\a b
'pl_\/1—2(|+>x|+>x |+>x| >x | >x|+>x

~3[=)3-)D), (12
1
w'o'=%(|—>i‘|+>;’+|—>i‘|—>5—2|+>§|—>2), (13
1

G

o ==z 2210+, (19

1
tﬂ'z=ﬁ(|+>?l—>'§—|+>?|+>§’+|—>?|+>?)- (15

From the assumption that>=|4*|? in all frames, we
obtain, from(12) or (11), that for the simultaneity surface
3=3(ty)

.P1(0a,0p)d0ada

X

fsup;j+)i>< supp+)

1
>b|tﬂ'l(qa.<:1b)|2d<:1adqb=1—2- (16)

X

N fsupﬂ+ Yax supg+

For the simultaneity surfaces! (0) and='"'(0) we have
from (13) and (14), respectively[or (9) and (8), respec-
tively], that

p6(Qa,Gp) =0 for (qa,qp) € SUPR+)2X supp+)2 an
1

P4 (4a,0p)=0 for(ga,qy) e supg+)2xsupg+)?,

(18
and for2=3'(t}) from (15) or (10) that

SIt should perhaps be noted that a Dirac spinor which in fraise
a spinx/z eigenfunction will not be a spir/z eigenfunction in the
framesll or Ill which are boosted in thg direction. Our notation
here should not be construed as implying otherwise.
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p5(0a,0d,) =0 for (qa,q,) € supp—)ax supg—)° !
r_

Consider now that part of the ensemble of two-paths contain-
ing paths that cross supp)2xsupp+)2. From (16), this
Ras probability 1/12. From(17), particle a will be in
supp—)2 atth; from (18), particleb will be in supg—)® at

yt'z; thus

1
»P2(0a0b)d0ad 0= 7,

z

fsupﬂ)?x supp—)

in contradiction to(19). [This argument assumes that, say,
the crossing track of particle for E'(t'z) agrees with that for
3'"(0)—i.e., that there is no sudden change of track. By a
suitable choice of geometry the violation of this assumption
can be made as implausible as we [jKel.

We can more briefly, though somewhat imprecisely, re-
phrase the assertion by saying that “quantum equilibrium
(p=|4|? cannot hold in all Lorentz frames.” Although the
notions of the wave functiog in position representation as
well as that of a position measurement are problematical in
relativistic quantum theory, the impact of this statement is
not thereby diminished. In fact, the statemept=||? can-
not hold in all Lorentz frames” should be understood as fol-
lows: The joint distributions given by quantum theory for
position measurementfom whatever formalism they arise
cannot in general agree with the distributions of the actual
particle positions in all Lorentz frames. This is the case, as
pointed out above, already if only tHexperimentally well-
establishe predictions of the distributions of spin
measurements—spin is measured, as is any observable, cf.
[30], ultimately by measuring some position in a suitable
experiment(here with Stern-Gerlach magngtsin the sin-
glet state(which is the relevant state for the earlier versions
of the nonlocality theoremsare considered.

An immediate question is whether this leads, for a theory
with trajectories, to experimentally detectable violations of
guantum mechanical predictions. That it is not necessarily so
will be illustrated by a concrete model in a later section. But
it is already clear from{nonrelativisti¢ Bohmian mechanics
that the validity ofp=||? in just oneframe is sufficient to
derive the quantum mechanical predictions for observations
at different times: Assume that the frame corresponding to
(Newtonian absolute time—the frame in which quantum
equilibrium p=|¢|?> holds for Bohmian mechanics—
corresponds to systemin Hardy’s experiment in Fig. 1. To
derive from Bohmian mechanics the correct prediction for
the joint distribution of a measurement af and a later
measurement ob,, one has to take into account that the
actual performance of measuriag, which requires an in-
tervention such as the suitable insertion of a photographic
plate, influences the future evolution of the whole system,
and in particular, nonlocally and instantaneously, the future
path of particleb. This can be conveniently described in
terms of the effective “collapse of the wave function.” The
“unmeasured” distributions do not in general give the cor-
rect predictions for the outcomes of experiments. For a rather
detailed discussion of related matters, pgg Secs. 8—10.



53 NONLOCALITY, LORENTZ INVARIANCE, AND ... 2067

the Lorentz transformation becomes simply a translation of
relative time. Consequently, for the case of a system com-
posed of widely separated subsystems we might demand of a
nonrelativistic theory invariance with respect to independent
shifts of the zeros of the subsystems’ time scal@s sub-
system clocks The relevance of this nonrelativistic residue,
or analog, of Lorentz invariance, especially for the discus-
sion of the possibility of a Lorentz invariant realistic quan-
tum theory, has been pointed out by Bgll], Chap. 22, and
FIG. 2. @ and B are two widely separated events. In the primed[24]).
frame of reference, corresponding to a slowly moving observer, To specify the space-time transformation corresponding to
these two events are not simultaneous. this change in frame of reference, we have to introduce two
separate coordinate systems for the two widely separated

MoreOVer, it is rather clear that any two theories agreein%ubsystema andb. On Configuration_space_timE, the mul-
at all times on the spatial distribution of particles for sometitime translation is given by

frame must be empirically equivalent, though we shall not

try here to give a precise formulation of this assertion. We L.: RXR3Nax Rx R3No— Rx R3Nax Rx R3Nb,
note, however, that for a theory involving a foliation of
space-time into hypersurfaces, such as the proposal of Du
Goldstein, and ZanglR1], as well as that of Samo|&6], it

is natural to demand that “quantum equilibrium” hold on
these hypersurfaces. For the proposal in Sec. Ill B of this
paper, a theory involving particle interactions that are instan- ,
taneous with respect to a specified synchronization, one is =(ta= 7a,0a, b= 7,0p)=2"=L, 2,
led to demand “quantum equilibrium” with respect to this
synchronization. That this indeed suffices to recover tth
guantum mechanical predictions for the outcomes of all jointS
measurements is implied by the fact that the joint results for At first thought, one might not expect a quantum theory to
any family of measurements can always be transferred to Be invariant undéL because absolute time seems neces-
common place and time—and must be if these results are tgary to mediate thTe, action at a distance of Sdhmger’s

be subject to the analysis of a single individyef. [21,26]

. . . equation, not to mention the more explicit nonlocality of
and[6], p0|nt“19 on p. 90D This Sfl.JQQESt,,S that even a sult Bohmian mechanics. Indeed, for the usual Sdiwger equa-
able kind of “local quantum equilibrium” should be suffi-

: , . .. _tion as well as for the GRW model and Bohmian mechanics
cient to obtain the standard quantum mechanical predlctlon?t. would appear that the multitime translation cannot be dis-

cussed at all because time appears in the wave function only
. THE MULTITIME FORMALISM as commor(absolutg time.

A. Multitime translation invariance But if the subsystems. and b are independent, i.e., if
there is no interaction potential between the subsystems

r=(7a,1) € R

Z:=(24,2p): = (3,94t ,0b)

(20

hereN, andN,, are the particle numbers of the respective
ubsystems.

Consider a system composed of—we setn=2 for
simplicity—widely separated subsystems. Even observers V(Qa,0s) = Va(da) + Va(db),
who are slowly (“nonrelativistically”) moving relative to
each other need not agree on the simultaneity of events in the 1
separated subsystems: ldt, (x,), (tg,Xg) be the coordi- H=H,+H,, He==—=A+V,, k=ab
nates of the events and B, respectively, for observer 1. We 2
may sett,=0, x,=0. The two events are simultaneous,
t,=tgz, and widely separated from each othes> 1. A sec-
ond observer, slowly moving in thedirection relative to the
first observer, will describe the same events by the followin
primed coordinates, cf. Fig. 2:

that the HamiltoniansH, and H, commute, the
Schralinger evolution may be reformulated so that it be-
gomes multitime translation invariant. From the ordinary
one-time wave functiony,=e ""'yy=U, we define a
two-time wave function y(t,,t,) € L2(R3Na) @ L2(R3Nb)

t;:ta: O' X;:Xa: O, ELZ(RS(N3+Nb)),

tp=y(tg—vXg)~—19, Y(ta ty) =€ Malae™ Moloyo=UR UP o,

Xp=y(Xg—vlg)~Xg, satisfying two separate Schiimger equations
wherev~0, so thaty=1/J1—-v?~1. It is further assumed '%—H '%—H 21
thatx is sufficiently large thabx ;= is of order unity. For 'ata =Hag, 1 oty bt @D

observer 2, the eventa and 8 are not simultaneoug,,
#t;;, not even approximately. More precisely, in the limit in This system of partial differential equations, wightrans-
which xz— andv—0 in such a manner thatxz=9+0,  forming in the obvious way,
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W(2)=o o|_;1(|_T 2)=:4'(z), space oﬂ\/l"l ande, respectively, corresponding to the ei-
genvaluea or 8, respectively. We introduce the Heisenberg
is invariant undet_ .. In particular, the unitary representation operators

of the group of multitime translations is given by
U.=uduy® - W?a(ta) Uat’ﬂ Ua,
T Ta Tp' !

y'=e Mame Moy=U UD y=U. . (22 ) pltp):=U2 7 gUL

Note that in any frame of reference given by a particularwhich, by (23), agree with the usual ones involving the ful
synchronization of the subsystem times, i.e., whgres is  €volutionU,=U2U?. The joint probability for obtammg the
simultaneous witht,=s+h, the wave function in “frame m%\asurement resultsMi= ay,...Mg=ay, =P
h,” which is given by y!'=y(t,t+h) and recognized as M/= B, is given by
w{‘zzﬁ’(t,t) for a multitime shift by r=(0,h) from the b
unprimed frame, satisfies the one-time Sclimger equation. P(Mi=ar, ... M{=aMi=B1, ... MP=B)

It is also easy to see that the transition to a two-time wave b b b (tby._a (ia a (i 2

\ = to). .. t t3). .. t .
function transforms the usual quantum measurement formal- 17706, (1) 71, () i (10 T (D) |
ism into a multitime translation invariant form. We shall use (24)
here the Heisenberg picture for convenience as well as fatonsidering that under a multitime translation the Heisen-
analogy with relativistic quantum theory. Lety=4o perg operators transform as
=(0,0) be the Heisenberg state of the system, and consider

a sequence of observabIeM?)1<J<k and (M )1<J<,, wia(ta’)=Uit,wianFUiawf"a(ta)Ui

which are measured at timeg<- - - <t? andtb<...<tP, ? :

respectively. Here Ma acts only on systema, i.e., =U7Wia(ta)u;1,

M%=0%w1 with observable@a on L%(R*N), andM? acts

only on systenb, i.e., MP= 1®Ob with observable@b on w}’ﬂ(tb')=u’it,w}{ﬁuf’, P B(tb)U,Tb
L?(R3Nb). Thus the observables and the unitary evolution of b b

systema, M and Ua =e Hala’ commute with the observ- = Um,b,,g(tb)U;l

ables and the unltary evolution of systel Mb and

Ub — e Huto: for all | j/ 1, .ty and the state transforms according(#2), one sees that the

formula(24) is in fact multitime translation invariant. In par-

ticular, the predictions of the quantum measurement formal-
ism are independent of the frame of reference. Thus the
guantum mechanical measurement formalism for a system

[M2,M?]=0, [M?,UP]=0,

[M] U 1=0, [Uaa,U?b]ZO- (23)  which consists of independent widely separated subsystems
is multitime translation invariant.
We shaII assume for simplicity that all the observaties Note aIso that the probability of obtaining the results
and M have discrete spectrum and denote hj, and M?=q;, M =B glven the resultsM{=ay,... M2
Jﬁ’ respectlvely, the projection operator onto the eigen=q;_1, M1 Bl, J 1=Bj-1,

|75 g, (1) 1 g (E) . (8) - o (4D |12
B B B b
||7Tj_11:8j—]_(tj_1). sy (DT, ()l (D

can be conveniently expressed as
b b
|70 (E) 72 () e 2

with the “collapsed wave function”

b b

y ijl,ﬂj,l(tjfl)' Wlﬁ(tl)ﬂ'l La; 1(t “) 'Wi,al(ti)l//
= .
¢ ”77]!)71,5]-_1(':1!)71)’ : ‘771,,31(t1)77i71,a (ty)-- 'Wi,al(t?)lﬁ |
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(We find an analogous formula if we condition on a smaller dT, dT,
initial segmen. ds 1, gs 1,

Within this framework an EPR experiment can be
described—the subsystems, while not explicitly interacting, Q d0
are coupled by their common wave functight, ,t,)—and a =0v¥(2), —b:vgf(z), (25)
one can explicitly see, for this two-time yet orthodox model, ds ds
thatthe EPR-Bell nonlocality does not demand the existence . v v
of a preferred frame of reference. with vz andvy given as usual by

Despite the presence of EPR correlations, these do not y v
permit the transmission of “signals”: From the results of Ve | 92" w_ %

. vg=1Im . vp=1Im (26)

measurements on systaralone, one can draw no inference Y 4

about the possible interventions on systbmthe kinds of _ _
experiments performed on systédmThe crucial assumption The Bohmian theory given by Egs. (21), (25), and (26) does
responsible for this property is the commutativi@d). In  Not have a preferred “frame of reference,” and is obviously
axiomatic quantum field theory the analog of thisinvariant under L, i.e., if (4,Z) is a solution of(21) and
assumption, namely, the commutativity of Heisenberg operai5), then so is ¢//,Z')=(y°L;*,L,°Z). The parametes
tors corresponding to measurements in spacelike separattbels the synchronization with respect to which the nonlocal
regions, is one of the fundamental postulates, sometimggteraction is mediated: The velocity of systemat the pa-
called “local commutativity” or “microscopic causality” rameter value depends, throughi(t,,qa.,t,,0p), upon the
(see, for example[[31]). It conveys that experiments in configuration of systema at time T,(s)—more precisely,
spacelike separated regions do not disturb each other, so th#on Q,(s) and T,(s)—as well as on the configuration
relativistic causality is not violated. However, it is important Qp(s) and the timeT,(s) of systemb corresponding to pa-
(as well as all too rapeto recognize that EPR and Bell have rameter values. In particular, the velocity “field” is a func-
shown that the quantum correlations between observables ftional of the two-time wave function at the appropriate times.
which “local commutativity” holds cannot in general be ex- Physical significance pertains only to the synchronized
plained by a local theory. N-path Z(R)CR?"3N, not to the particular parametrization
Bell has shown that the GRW model can also be formu-determined by25). Thus, just as with Eq.1), (25) is physi-
lated in a multitime translation invariant mann§t], Chap. cally equivalent to all equations of the form
22). Bell's result is sometimes regarded as indicating that thelZ/ds= A(Z)(l,vg(Z),l,v;f(Z)) with arbitrary positive
GRW theory is superior to Bohmian mechanics with respecfunctionsA on R2*3N,
to the problem of finding a Lorentz invariant extension. In  For the statistical analysis of this theory, it is natural to
the next section we show that such a conclusion is perhageok for a distinguished measure. As a consequend@bf

unfounded. we have the two identities which have the form of continuity
equations
B. A multitime translation invariant Bohmian theory > . )
- _ o +divy jZ=0 or div, J¥=0 (27
We formulate a multitime Bohmian theory that is invari- oty @ a

ant under multitime translation. Consider a system consisting
of n widely separated subsystems, as described in Sec. 11l &N
with ann-time wave function satisfyin¢he analog of (21). 3l g2
As usual, we shall for simplicity set=2. We shall denote

again byN, and Ny the particle numbers in the subsystems My
and seN=N_+ N, . The beables of the multitime Bohmian with Jk¢=(|¢|2,1|‘f) andjf=|¢//|2vk‘”=lm(¢//*vkz,0), keab.

theory are first of all the usual beables of a Bohmian theory, i k™ ; i
namely, the wave function, here the two-time wave function Y @nalogy with the statistical analysis of the usual Bohmian
and the trajectories of the particle configuration in the twoMechanics, it might at first glance seem appropriate to seek a
subsytemsQ,(t) and Qu(t). The straightforward way to stationary measure for, i.e., for t.he_dynamlgal system
given by Egs(25) and(26). The continuity equation for this

formulate a multitime translation invariant Bohmian theory . . - . h
for the evolution of these paths is to introduce as an addidynamlgillszystem, for econtinuously differentiabledensity
f: RXR —R,

tional beable a synchronization: a path in two-tiftg i.e.,
an equivalence class of maps T,(T,): R—R2 of
s—>(T4(8),Tp(s)) differing only in their parametrization. — +div, (fw?)+div, (fw})=0, (29
The synchronization together with the subsystem trajectories dJs @ b

defines asynchronized N-patlin configuration-space-time ) o
parametrized b, with wf:=(10}), is, by (27) and(28), solved(trivially) by

f=|4|?, which is stationary with respect to the synchroniza-
(Ta(8),Qals), Ty(S),Qp(s))=:Z(s), tion parametes.
Hence||? is certainly a distinguished measure on the
spaceR?"3N of initial values for Egs.(25). But it is not
with Q4(8)=Q.(T4(3)),Qu(s)=Q(Ty(s)). We prescribe normalizableby unitarity); moreover, for the dynamical sys-
for the synchronizedN-path the guiding equation tem given by Eqs(25) and (26) there can be no density,

+divg,jp=0 or div, J§=0, (28
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normalizable oriR?*3N, that is stationary with respect to the
evolution parametes—since a stationary measure far la Iy
yields a stationary marginal measure fgy, and by the first
of Egs.(25) all stationary measures fdr, must be propor- ¢
tional to the Lebesgue measure®nin this regard it is also
important to recognize that a general probability density
f(s) satisfying(29), while defining a probability measure on
N-paths, does not itself directly correspond to any clear sta-
tistical property of this ensemble df-paths, such as the
distributions of crossings discussed in Sec. Il.

Recall now thas labels the synchronization, and recall as
well the suggestion that “quantum equilibrium” should hold
on “simultaneity surfaces21]. Thus we proceed as fol- 294
lows: We first fix initial values for the subsystem times
Ta(0)=:s5 and T,(0):=sp+h. Then the evolution equa-
tions for T, and T,, may be solved to obtaiit ,(S)=sy+S
and T,(s)=sp+h+s. The constant of motiorh=T,(0) ) )
—T,(0)[=Tp(s)—Ta(s) for all s] defines the synchron- gach other, we perform Hardy’s experlmgnt, cf. Flg._l, focus-
ization—the velocity of systera at a timet, depends upon NG 0N the part of the experiment in which thg particles run
the configurationQ,, at timet,=t,+h. [As it happens, to through the Stern-Gerlach magnés, B, cf. Fig. 3.

FIG. 3. Hardy's experiment in multitime formalism.

this fixed synchronization we may associate(Lrent2 First we describe the development of the synchronized
frame of reference in which the interaction between the sysPaths for initial values of the subsystem timeg(0)=—19
tems is “instantaneous.” However, this associated frame i€NdTp(0)=h"=—24 for a9>0, not too large, referring to
merely a convenience, one that for more than four subScales for the subsystem timgsandt, as defined in Fig. 3.
systems would typically be impossible to retain. This gives a synchronization corresponding to the fraine
Now the subsystem times in E(5) may be eliminated: Fig. 1. Consider those two-paths for which at the value
With s=0 of the synchronization parameter, partielés located
in supg+)2 and particleb is located in supjpr)2. De-
Y"(8,9a,0p): = $(Ta(S).0a, To(S),0p) mandingp" (0)=|4" (0)|2, these are 1/12 of all two-paths.

After particlea has gone through the appara#s, it must

= P(so+ +ht
¥(SotS,0a:So $:o) be located in sugp-)? since, e.g. p" (39/2)

one obtains =|y""(39/12)|2, cf. Eq. (13. After particle b has run
4o through the apparatuB,, it must be located in sud)ﬁ)?

. 1 1 .

dsa=v§h(S,Qa(S),Qb(S)): since, e.g.,p" (59/2)=|y" (59/2)|%, cf. Eq. (15). This

course of the particle paths is displayed in Fig. 4, top.
do Now consider the same experiment with different initial
b h i -—
—=vl‘f (5,Q4(5),Qu(5)). values for the subsylsltlem tlmesTa(O)—_ 2_19 and
T,(0)=—19, so thath=h"" =4, a synchronization corre-
. . . . sponding to the frame IIl in Fig. 1. Again consider those
This is the usual Bohmian mechanics relative to the Symhrot'wo-paths for which at the valug=0 of the synchronization

hization given byh; we have the continuity equation parameter, particla is located in supjpt )3 and particleb is

aph o o located in suppt)2. Demanding p"" (0)=|4"" (0)|2,
g Tdivg (pTvg ) +divg (pvp ) =0, (30 these are 1/12 of all two-paths. After partidtehas gone
through B,, it must be located in suﬂ)p}'z’ since, e.g.,
and the density"=|y"|? is “equivariant,” i.e., if p"(s))  p" (39/2)=|y"" (39/2)|2, cf. Eq. (14). After particle a
=|¢h(So)rl2 for some =S, then ph(S_)=|lﬂh(S)!2 for all  has run through the apparatds, it must be located in
s. For ¢"(s) e L7(R*"), this density is normalizable, and supp+)? since, e_g.,ph”'(Sﬂlz):|{/lh”'(519/2)|z, cf. Eq.

gives the distribution of crossings of any hypersurface COITer15) This course of the particle paths is displayed in Fig. 4,
sponding to the time3,(s) andTy(s) for the ensemble of 5iiom.

N-paths defined by". In neither case does the distribution of crossings by the
two-paths of a hypersurface corresponding to the other syn-
C. Hardy’s experiment in multitime translation invariant chronization agree for all parameter valisewith the corre-
Bohmian theory sponding|"(s)|. In the first caseh=h""=— 9, the two-

We describe now the particle trajectories in Hardy's ex-Paths run through supp )3 supf+)? when they cross a
periment for the multitime translation invariant Bohmian suitable hypersurface corresponding to frartie, even
theory given by Egs(21), (25), and (26) (with N;=N,=1 though the wave functiog" is orthogonal td +)2|+)?, cf.
and the Stern-Gerlach magnets treated, as usual, as exterfl. (14). Analogously, in the second cadesh'"'= 9, the
fields). We prepare a system of two particles in the quantumtwo-paths run through supp)2xsupg+)2 when they
stateyyargy (4). After the particles are widely separated from cross a suitable hypersurface corresponding to franeven
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and the future evolution of particle changes drastically
from what it would have been like had there been no mea-
surement or collapse: after having gone through apparatus
B, it no longer runs into th¢+>§’ channel, but rather into the
|—)'ZJ channel. Analogous things happen with the synchroni-
zationlll and the opposite measurements.

t, 173

| T, T,(39) |

() 2%

IV. REFLECTIONS ON LORENTZ INVARIANCE AND
STATISTICAL TRANSPARENCY

L T,(0) B(®)
Concerning the model of Sec. Il B, we have just alluded
to the fact that, just as for ordinary Bohmian mechanics,
17,0 from the quantum equilibrium hypothesis that the actual dis-

tribution of crossings"=|4"|2, one can derive the quantum
mechanical measurement formalism—which, as shown in
Sec. Il A, is multitime translation invariant and moreover
does not even depend upon the quantityWe thus have,
with regard to our multitime Bohmian model, three levels of
description: the microscopic dynamical level, given(y),
(25), which is multitime translation invariant; the statistical
mechanical level, given by the quantum equilibrium hypo-
thesis, which is, in precisely the same way, also multitime
translation invariant—despite the results of Sec. II; and the

2 L 1,60 B20) |

T,20) 5, |

1T, T,0) | observational level given by the quantum measurement for-
[ malism, which is also apparently multitime translation in-
variant.
7,0 \ / There is, however, an important difference between the
relativistic characters of these levels: the latter level might be

_ ) regarded as more fully relativistic than the first two, which
FIG. 4. Course of some synchronized two-paths according to thgchjeve their invariance through the incorporation of the ad-
multitime _trgnslatlon invariant Bohmlan_ theory in Hardy’_s experi- gitional structure provided by the synchronization. It might
ment for initial values of subsystem fimes corresponding to the,q grqued that such a structure violates the spirit of relativity
synchronizatiorl| (top) andlll (bottom, respectively. [4,12], and regardless of whether or not we agree with this, it
must be admitted that achieving relativistic invariance in a
though the wave functio" is orthogonal td+)3|+)?, cf.  realistic(i.e., precisgversion of quantum theory without the
Eqg. (13). invocation of such structure seems much more difficult;
Finally we explain why, despite the fact that the two-pathshence Bell's excitement about his version of the model of
(occasionally are in regions where the wave function van- GRW ([1], Chap. 22. (It must also be admitted that a some-
ishes, no violations of the quantum mechanical predictiongvhat unpleasant implication of the situation just described is
would be experimentally observed. If an actual experiment—that this synchronization structure—which after all com-
involving, for example, the insertion of photographic platesPrises a radical addition to physics—is, in the model under
into the paths of the particles—were performed, the influencéonsideration here, completely unobservable. See[dlsp
of this apparatus on the future evolution of the complete Indeed, any theory can be made trivially Lorentz invariant
system would have to be taken into account. This can conOr invariant under any other space-time symmeby the
veniently be accomplished, in a manner analogous to what iguitable incorporation of additional structure, for example, as
done in ordinary Bohmian mechanics, by suitably collapsingdiven by the specification of a Lorentz framg as part of
the wave functiony” upon measurement. Suppose, for ex-the state descriptiohlt seems rather clear that this example,
ample, that we attempt to detect what quantum mechanicallyhile Lorentz invariant, does not possess what Bell has
should be impossible, namely, the two-paths running through
supp+)2Xx supp+)?, which we have just seen has positive
probability for synchronizatioii, at least when no detection ~ °Consider a theory specifying the séf (the law of possible
is attempted. We might do this by inserting a detector in thedecorations: of space-time and assume that the Lorentz group acts
path corresponding to supp)?, say at a position corre- natprally on anyé and_ thus_ onZ‘. This theory, demanding that
sponding tos=0, as well as in the path corresponding to € #, will be Lorentz invariant ifA %= for any Lorentz trans-

supp+)2. Then with the synchronizatiolh, the wave func- ~ formation A. Suppose this is not true. We may then enlarge the

tion y" collapses at the synchronization parameter valué)rlglnall theory by replacing by £=(¢,A0) and the law’ by -~

o 0‘/’ A PS s £ é’_ lon p defined by stipulating thaté(Ao)=£e Ze £e Ao . (The original

s=0, when particlea is found in supp+)g, to theory thus corresponds thy=1.) Then ¥ is trivially Lorentz

1 Us g inyariant: For any Lorentz transformatiAomA we have that

Vo a(s=0)= )M+ 0R=1-)D) = [H)i-)p, AEAEAMI=(EAY=E, so that fe/=AfcAho”
X =¢ eNgP=¢E e 2
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called “serious Lorentz invariance,” a notion, however, thatthe formj,/p for N> 1. Thus for the Lorentz invariant model

it is extremely difficult to make precise in an adequate way(31), (32) equivariance does not hold in any obvious way and

[1]. hence, since there is in general no reason that quantum equi-
The Bohmian mode(25) immediately suggests a genu- Jibrium should hold with respect to any reasonable family of

inely (though perhaps not seriouslyLorentz invariant hypersurfaces, the canonical statistical analysis cannot be

Bohmian theory: FON particles, the beables are a multitime performed and the question of the extent of its agreement

wave function and a synchronized-path, i.e., an equiva- with standard quantum theory becomes rather delicate.

lence class of maps Xg,...Xp): R—RM, There is another important difference betweg@ad) and
s—>(X1(S), . .. Xn(s)) differing only in their parametriza- (33). To appreciate this consider the system
tion. The synchronizetl-path satisfies the guiding equation g g
Tk Qxk
ka E: 11 E:Vk(xl(s)! CRC va(s))! (34)

E:U"(Xl(s)’ o XN(S), k=1,...N (31

with vi= (T aqp)/(47). Here (T, (s)) is entirely deter-
where thev, are suitable four-vector fields, di*N, deter- mined by (T,(0)) and the statistical analysis of this theory
mined by the multitime wave function. As wiil) and(25), may be developed as in Sec. Il B for the multitime Bohmian
the fact that only the synchronized-path and not the pa- theory, merely replacingy|? by ¢'. With (32), however,
rametrization determined by a particutar has beable status the equations for the evolution of the synchronized particle
implies that all equations of the formdX,/ds times
=a(Xy, ... Xn)ve(Xy, ..., XN) with an arbitrary positive
functiona on R*N are physically equivalent. o ﬂ:(lzyw)(xl(s), L Xn(S)

More concretely, one may consider a Lorentz invariant ds

multitime Bohm-Dirac theory: the wave function
=ip(Xq, ... Xy) satisfiesN Dirac equations analogous to
(21), andv, may, for example, be chosen to be

imply that in generalT,(s)) depends upon thénitial) po-
sitions of the particles as well as @ (0)), and it is diffi-
cult to see how one could begin any statistical analysis even

o= lzyﬂl// (32) if the velocity field were otherwise somehow of a suitable
K kA form. Now it might appear that we should have the same
with g=y¢'(y°® - ®99)=y1y2- .- 9% and yi=1® - difficulty with (33); however, the theory33) is equivalent to

(34) since the respective vector fields differ by a real-valued

ley*®I1lx---®1, the y* at thekth of theN places. We X . .
I 4 P nction on R*N and hence define the same synchronized

plan to discuss such a model in a subsequent work. Just hs. Th . hat33) i isticall
with the model of Sec. lll, models of the forB81), because -paths. us it Iturns ou_t .t ?I( ) ISI statlst{/cva yh I
of the nonlocal interaction along the synchronization, havérinsparehnt—or at 'east Stat'Stt')Cﬁ y translucent. We sha
the possibility of properly describing quantum nonlocality ast@ke up these qugstlons In a subsequent paper. .
exhibited, for example, by an EPR experiment. This is in Observe that if the fo_ur-\_/ect(_)rsk_ are four-vel_ocm_es
contrast with the local model of Squirg&2], which is based ~ (Vkuvk=1), the synchronization implied b{g1), which in
on what might be called a local light-cone synchronization this case is according to proper time parametrization, reduces
While Squires formulates his model for the nonrelativistic!n the nonrelativistic limit to the first set of Eq&25).” What-
Schralinger equation, he could as well have considered &£Ver reservations we may have concerning models such as
multitime Dirac model with a local light-cone synchroniza- We have been discussing, a synchronization by proper time
tion to obtain a model that is completely Lorentz invariant—
and completely local.

Some readers may be wondering why we have analyzed7Thi5 absence of statistical transparency is similarly also the case
the nonrelativistic multitime Bohmian theory in detail in Sec. for the local model of Squiref32].

[l instead of starting right away witli31), (32) or with the ®Note thatysy{ ¢ need not in general be everywhere timelike and

multitime Bohm-Dirac theory thus vy (32) cannot in general be normalized. However, one can
find a simple reparametrization,= (¢ yc)/ () such that the

dTy dQy v are approximate four-velocities for “large’: Writing

E = lpTd/v E = wTak'J/! (33)

WX, - - XN)=Z ARIXIXT s+ v e X1 X 10 -+ - XN)

with X =(Ty,QW), k=1,...N, and =1®- - ®] and noting that in the nonrelativistic limit the last two components
®a'®l®---®l=1yyy,. This theory arises from Bohm's of ¢, in the standard representation become much smaller than the
theory (3) for N Dirac particlesv,= (¢ a )/ (4 ) =]/ p first two, one sees that in the nonrelativistic limit
by introducing a dynamical synchronization, and it agrees fod T, /ds= (y2y)/(4)~1 and the space components wf be-
N=1 with (31), (32). These models might suggest that the come small. Thus in the nonrelativistic limit the thed8p) implies
reconciliation of statistical transparency and Lorentz invari-a synchronization that can Heg)expressed in the forr25) (first
ance is at hand. However, fof>1 (33) is not Lorentz in-  equations (Concerning the reparametrization by [and that by
variant, because—unlike82)—( ¢,y ayap) is not a four- Ty for the relation betweeri33) and (34)], one may convince
vector. On the other han@32) is not statistically transparent oneself that not only the multiplication of the velocity field by a
because—unlike (33)—the (reparametrization invariant positive function, but typically even by a function that has zeros or
configuration space velocityk/v(k’ arising from(32) is not of  changes sign will yield an equivalent thegry.
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seems to us entirely compatible with serious Lorentz invarithan the families of wave functions we normally consider for
ance, at least for a pair of particles having a common origirthe set of possible initial states of a quantum system. How-
in a single event. ever, if, as is widely believed, we accept that from a cosmo-
The requirement that a Bohmian theory be Lorentz invari{ogical perspective there should be a unique wave function
ant without the incorporation of such additional structure as dfor example, the Wheeler—de Witt wave function or the
dynamical synchronization places a very strong constraintartle-Hawking wave functionof the universe, this very
on, say, the vector field defining the law of motigim a  fact might well be a virtue rather than a vice.
particular framg or, what amounts to pretty much the same
thing, on the wave function of the system—and might be
expressed via a suitable fixed-point equation for this wave
function. It seems extremely likely that the set of wave func- This work was supported in part by the DFG, by NSF
tions satisfying such an equation is very small, far smalleiGrant No. DMS-9504556, and by the INFN.
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