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We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlo-
cality of the theory there is~for systems of more than one particle! no obvious way to achieve such an
extension. We present a model invariant under a certain limit of Lorentz transformations, a limit retaining the
characteristic feature of relativity, the nonexistence of absolute time, i.e., of simultaneity. The analysis of this
model exemplifies an important property of any Bohmian quantum theory: the quantum equilibrium distribu-
tion r5ucu2 cannot simultaneously be realized in all Lorentz frames of reference.

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Despite the impressive and unquestioned empirical suc-
cess of quantum theory, the physical meaning of its basic
object, the wave function, is still controversial. The
standard—or Copenhagen—interpretation of quantum theory
asserts that the wave function embodies the most complete
description possible of the state of a physical system, while
connecting it with experience, and thereby assigning to it
physical significance, only via a set of rules for calculating
probabilities of results of ‘‘measurements.’’ It seems essential
within the standard interpretation that ‘‘measurements’’ be
distinguished from other physical processes, and that atten-
tion be paid to the fact that the theory makes predictionsonly
about results of ‘‘measurements’’: otherwise one runs into
the well-known measurement problem or, more pictorially,
the paradox of Schro¨dinger’s cat. In any case, the fundamen-
tal role of ‘‘measurements’’~which is sometimes shifted to
‘‘observers’’! in the Copenhagen interpretation leads first of
all to the theory’s not being well formulated as a fundamen-
tal ~as opposed to phenomenological! theory because what
constitutes a ‘‘measurement’’ is not specified. Second, with
regard to cosmology, the necessity of invoking an outside
measurement apparatus or observer seems rather awkward.
~For extraordinarily clear presentations of the problems of
quantum theory as well as of possible solutions see@1–3#.!

An alternative interpretation or theory agreeing with
quantum theory on~most of! its predictions which is not
based on the notion of ‘‘measurement’’ or ‘‘observer’’ is usu-
ally called a ‘‘realistic’’ interpretation or theory.1 More pre-
cisely, we shall understand by a ‘‘realistic quantum theory’’ a
theory, agreeing with quantum theory on~most of! its pre-

dictions, in which it is explicitly specified what the material
world is thought to be made of—be it particles or fields or
what have you—and how these entities behave. We empha-
size that this by no means implies a ‘‘naive realism’’; on the
contrary, these entities—what Bell called the ‘‘beables’’ of
the theory—can be rather remote from our perception of the
world. Moreover, the performance of experiments may dis-
turb the behavior of the beables, so that the ‘‘observed’’
properties of matter may be quite different from those left
‘‘unobserved.’’

In nonrelativistic quantum theory there are two principal
routes for setting up a realistic quantum theory: Either the
wave function is not the complete description of the state of
a physical system, but must be supplemented by some fur-
ther quantities, commonly~and unfortunately! called ‘‘hid-
den variables,’’ or the unitary evolution of the wave function
must be modified. The paradigmatic example of the first
route is Bohmian mechanics@5,6#, that of the second route
the theory of Ghirardi, Rimini, and Weber~GRW! @7#. We
shall call a realistic quantum theory of the first kind a
‘‘Bohmian theory.’’ Our objective is to find a Lorentz invari-
ant Bohmian theory which extends Bohmian mechanics, i.e.,
which leads to Bohmian mechanics in the nonrelativistic
limit.

For systems of a single particle, a Lorentz invariant
Bohmian theory is immediately specified@8–10#: the beables
are the wave functionc(xm) and a particle path, which may
be specified as an integral curve of a four-vector fieldj m ~for
example, of the current naturally associated with the Klein-
Gordon or Dirac wave function!

dXm

ds
5 j m~Xm!. ~1!

Multiplication of j m by a positive scalar fielda(xm) changes
only the parametrization, not the path, understood as the
equivalence class of curvesXm: R→R4, s°Xm(s) differing

1This is a rather unfortunate term—can ‘‘realism,’’ i.e., the belief
that there is a material world the description of which is the task of
physics, seriously be questioned in physics? See also@4#.
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only in their parametrization, or as the imageXm(R) of a
curveXm, i.e., a one-dimensional subset ofR4. If j m is ev-
erywhere timelike, i.e., ifj m j

m.0 with the sign convention
for the metricg0051, g115g225g33521, a parametrization
by proper time may be obtained by replacing Eq.~1! by
dXm/dt5um(Xm) with the four-velocity u5a j ,
a5( j m j

m)21/2. In general there is no distinguished para-
metrization, and the parametrization chosen in writing Eq.
~1! has no physical significance as such: all equations of the
form dXm/ds5a(Xm) j m(Xm) with differenta are physically
equivalent.

The Dirac currentj m5c̄gmc is a timelike future-oriented
vector; thus the curves which are solutions of~1! run from
t52` to t51`, never backwards in time, with velocity
everywhere bounded byc. In particular, every path crosses
every t5const hyperplane of every Lorentz frame of
reference—or, indeed, every spacelike hypersurface—
exactly once, and thus there is a one-to-one correspondence
between paths and points—their crossing points—on an ar-
bitrary spacelike hypersurface.

Because the Dirac current is divergence-free, it allows,
moreover, for a straightforward introduction of a dynami-
cally distinguished measure on the set of particle paths as
follows: In an arbitrary Lorentz frame, taker5 j 05c†c as
the density of crossings through at5t0 hyperplane at an
arbitrary timet5t0 .

2 Then the density of crossingsr arising
from ~1! satisfiesr5 j 0 at all times in this frame, i.e.,
j 05c†c is an ‘‘equivariant’’ density. Furthermore, ‘‘quan-
tum equilibrium’’ r5 j 0 holds then inall Lorentz frames at
all times. The distributionr5 j 05c†c is hence the relativ-
istic generalization of the ‘‘quantum equilibrium distribu-
tion’’ r5ucu2 of nonrelativistic Bohmian mechanics, which
is the essential tool for the derivation of the nonrelativistic
quantum formalism@6#.

In fact, any divergence-free currentj m, in particular also
the Klein-Gordon current which is, in general, not globally
timelike, gives rise to a natural measure on the set of trajec-
tories which are integral curves ofj m @i.e., solutions of~1!#,
in a way extending the above definition of a natural measure
for the Bohm-Dirac theory. Moreover, the fact that Klein-
Gordon trajectories possibly ‘‘run backwards in time’’ may
well be viewed as naturally describing pair creation and an-
nihilation. We shall discuss these topics in a subsequent
work.

For systems of more than one particle, it is not at all
obvious how to construct a Lorentz invariant realistic quan-
tum theory, in fact it is not even clear whether this is possible
at all. The problem is due to the unavoidable nonlocality of
any realistic@or, more accurately, of any precise~@1#, pp.
171, 194!# version of quantum theory: The incompleteness
argument of Einstein, Podolsky, and Rosen~EPR! @11# to-
gether with the analysis of Bell3 ~@1#, Chap. 2! shows that
every theory giving the quantum mechanical predictions

must be nonlocal. This obviously conflicts with what is often
considered to be the essence of Einsteinian relativity—the
locality of physical interactions. The requirement of the Lo-
rentz invariance of a physical theory, however, does not force
locality. Thus a nonlocal Lorentz invariant theory is certainly
possible. This is already rather clear from the meaning of the
terms: While ‘‘Lorentz invariance’’ describes the behavior of
a theory under certain transformations of reference frame,
the term ‘‘locality’’ conveys that there is no action at a dis-
tance. For an exhaustive discussion, see@12#. An interesting
classical example is the action-at-a-distance theory of
Schwarzschild, Tetrode, Fokker, Wheeler, and Feynman~see
@13#, and the references therein! replacing classical electro-
dynamics: In this Lorentz invariant theory the point charges
interact directly with each other~on forward and backward
light cones!—in a manner unmediated by an electromagnetic
field, which is not a fundamental entity here.

Bohmian mechanics@5,6# is manifestly nonlocal: the ve-
locity of a particle at timet depends in general upon the
positions of all the other particles at that time,

vk~q1 , . . . ,qN ,t !5
\

mk
Im
“kc t~q1 , . . . ,qN!

c t~q1 , . . . ,qN!
. ~2!

In contrast to Newtonian mechanics, where for realistic in-
teractions the instantaneous influence of the other particles
decreases with increasing distance, and therefore widely
separated systems are~in a certain sense! approximately in-
dependent, for Bohmian mechanics the spatial distance be-
tween the particles is irrelevant so long as the wave function
of the entire system has a suitably entangled form.

For a system of many Dirac particles, Bohm and co-
workers @14,9# have proposed the following guiding condi-
tion:

vk5
c†akc

c†c
, ~3!

which is formulated with respect to a certain reference frame,
and is in fact not Lorentz invariant. Analogously to the non-
relativistic theory, the quantum flux equation which is a con-
sequence of the many-particle Dirac equation guarantees that
c†c is an equivariant ensemble density for this dynamical
system in the chosen reference frame, and therefore this
theory reproduces the quantum predictions insofar as they
derive from the probability densityc†c. These predictions
do not contain a trace of the preferred frame: Lorentz invari-
ance holds on the observational, but not on the fundamental
level. ~The situation is similar for Bohm’s quantum field
theory @5,14,9#.!

There have been a number of arguments to the effect that
a Bohmian theory must involve a preferred frame of refer-
ence, and thus must violate Lorentz invariance. The most
interesting such argument has been put forward by Hardy
@15#, who by discussing an intriguing experiment—one that
we shall discuss in this paper as well, and that has been
shown to contain even more surprises~@16,17#, and in par-
ticular a nonlocality argument in a sense involving but one
photon @18#!—claims to have shown that every realistic

2If * j 0dx1dx2dx3,`, we may normalize the measure by replac-
ing j by a j with a215* j 0dx1dx2dx3 to obtain a probability mea-
sure.
3For particularly clear presentations, see also@1#, Chap. 16, as

well as @3,12#.
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quantum theory must possess a preferred frame of reference,
and thus that there can be no Lorentz invariant realistic quan-
tum theory.

However, because it rests on an unsuitable ‘‘reality crite-
rion’’ @19,20#, Hardy’s argument is wrong. There are even
counterexamples to Hardy’s argument: the multitime transla-
tion invariant formulation of the GRW theory by Bell~@1#,
Chap. 22! as well as the multitime translation invariant
Bohmian theory we present in this paper are realistic models
for the discussed experiment without a preferred frame. Fur-
thermore, there is an outline for a relativistic Bohmian quan-
tum field theory, in which a foliation of space-time into
spacelike hypersurfaces is an additional beable@21#. Finally
one can find a number of models of relativisticN-particle
theories with an action at a distance defined in a Lorentz
invariant manner, models that therefore have the potential to
properly and relativistically describe quantum nonlocality as
exhibited in Hardy’s experiment. We allude to one such pos-
sibility in Sec. IV, but shall discuss these models in a subse-
quent work. No nontrivial Lorentz invariant realistic quan-
tum theory is as yet known, but there is no compelling
argument that this should be impossible.4 On the contrary,
the above mentioned models are steps towards a Lorentz
invariant realistic quantum theory. One should, however, be
aware that the determination of the empirical predictions of
these models may present a difficult problem; in fact, for
many models there is in general no reason that quantum
equilibrium should hold with respect to any reasonable fam-
ily of hypersurfaces; thus the statistical analysis will be dif-
ferent from that in nonrelativistic Bohmian mechanics and
moreover, presumably, the predictions of such a theory will
not agree with~all of! those of quantum theory.

Similarly Albert ~@3#, p. 159ff!, Bohm and Hiley~@9#, Sec.
12.6!, Ghirardiet al. @22#, and Hardy and Squires@23# also
argue that a Bohmian theory must violate Lorentz invariance
because a preferred frame is needed. The above mentioned
models without a preferred frame~but with some ‘‘simulta-
neity’’ fixed in a Lorentz invariant way—note that this entails
that there always are Lorentz frames in which future events
influence the past, in contrast to assumptions in@3,9,22,23#!
show that less is established than claimed.

This paper is organized as follows. We show in Sec. II
that the joint distribution of the particle positions cannot in
general agree with the quantum mechanical distribution in all
Lorentz frames. This is in contrast to the situation for one
particle—or, indeed,N independent particles—as explained
above. We also discuss why nevertheless the quantum me-
chanical predictions for performed measurements can be ob-
tained. In Sec. III we present a concrete step towards a Lo-
rentz invariant Bohmian theory: a Bohmian theory invariant
under certain limits of Lorentz transformations, limits defin-
ing a symmetry that expresses the essence of relativistic
space-time—the nonexistence of absolute time, i.e., of simul-
taneity. These transformations, which we shall call ‘‘multi-
time translations,’’ have been discussed by Bell in connection
with the GRW theory~@1#, Chap. 22, and@24#; Bell calls

them ‘‘relative time translations’’!. In Sec. III A we describe
a multitime translation invariant formulation of Schro¨d-
inger’s equation for systems composed of noninteracting
parts. In Sec. III B we present the corresponding multitime
translation invariant Bohmian theory and discuss its statisti-
cal properties. In Sec. III C we apply the general analysis to
Hardy’s experiment, focusing on how this experiment illus-
trates the general discussion in Sec. II.

We remark that there is no difficulty formulating a Lo-
rentz invariant multitime version of the Dirac equation for a
system of noninteracting Dirac particles@25#. However, the
corresponding Lorentz invariant Bohmian theory lacks statis-
tical transparency. Indeed, at first sight, Lorentz invariance
and statistical transparency appear to be mutually exclusive.
See Sec. IV for a bit more detail on this, as well as some
further reflections on Lorentz invariance.

For systems that consist of noninteracting subsystems,
Bell has shown that the GRW theory can be reformulated in
such a way that it becomes invariant under multitime trans-
lation ~@1#, Chap. 22!. He regarded this as an important step
towards a genuinely Lorentz invariant precise formulation of
quantum theory, declaring that ‘‘And I am particularly struck
by the fact that the model is as Lorentz invariant as it could
be in the nonrelativistic version. It takes away the ground of
my fear that any exact formulation of quantum mechanics
must conflict with fundamental Lorentz invariance.’’~@1#, p.
209.! The multitime translation invariant Bohmian theory we
discuss in this paper may, perhaps, be regarded as showing
that this assertion applies also to Bohmian mechanics.

For simplicity, we shall set all massesmk51 and
\5c51.

II. QUANTUM EQUILIBRIUM CANNOT HOLD
IN ALL LORENTZ FRAMES

We consider an arbitrary theory forN(>2) particles, i.e.,
a ~possibly statistical! specification of all possibleN-tuples
of space-time paths for theN particles~for example, as given
by solutions of a system of differential equations!. We shall
call each such possible ‘‘history’’ anN-path. We assume that
each spacelike hypersurface is crossed exactly once by each
trajectory, and consider an arbitrary probability measureP
on theN-paths. This determines the distribution of crossings
rS: SN→ R for any spacelike hypersurfaceS.

We now want the probabilistic predictions of the theory to
agree as far as possible with those of quantum theory. Com-
plete agreement would be straightforward if for any quantum
statec there were aP such that for all spacelike hypersur-
facesS the distribution of crossingsrS agrees with the
quantum mechanical joint distribution of the~measured! po-
sitions onS. For S a spacelike hyperplane, i.e., a simulta-
neity plane or constant-time slice of a Lorentz frameL, this
is given byucSu2 wherecS5cL, the wave function in frame
L. However, this is not in general possible.

Assertion: There does not in general exist a probability
measure P on N-paths for which the distribution of crossings
rS agrees with the corresponding quantum mechanical dis-
tribution on all spacelike hyperplanesS.

The field theoretical analog of this assertion was conjec-

4And the history of the issue of hidden variables, i.e., of the com-
pleteness of the description provided by the wave function, should
strongly warn us against too readily accepting impossibility claims.
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tured by Dürr, Goldstein, and Zanghı` in 1990 @21#. Samols
discusses the equivalent result for his stochastic realistic
model of a light-cone lattice quantum field theory@26#.

The caveat ‘‘in general’’ refers to the fact that there are
exceptional physical situations for which such aP does exist.
Consider, for example, two independent Dirac particles, i.e.,
with a wave function that is a product of one-particle wave
functionsc5cacb and independent evolutions given by~1!:
dXk/ds5 j k(Xk), j k

m5c̄kg
mck , k5a,b. Then, as explained

above, ifrS05 j a
0 j b

0 with respect to one spacelike hyperplane
S0 , thenrS5 j a

0 j b
0 for all spacelike hyperplanesS. We be-

lieve, however, that such exceptional physical situations are
rare.

The assertion above is more or less an immediate conse-
quence of any of the no-hidden-variables nonlocality
theorems—Bell’s@1#, that of Clauser, Horne, Shimony, and
Holt @27#, that of Greenberger, Horne, and Zeilinger@28# ~see
also @29#!, or what have you—for the spin components of a
multiparticle system: By means of a suitable placement of
appropriate Stern-Gerlach magnets the inconsistent joint spin
correlations can be transformed to~the same! inconsistent
joint spatial correlations for particles at different times. Since
the existence of a probability measureP onN-paths implies
the existence and hence the consistency of all crossing dis-
tributions, the assertion follows.

Since this is an important result, we shall provide an
elaboration using one of the sharpest nonlocality theorems,
that of Hardy@15#. It should be clear from our treatment of
this example how to arrange the magnets to deal with any
other version.

Consider the experiment described in Fig. 1, which is
similar to the EPR-Bohm experiment and which is a slight
modification of the experiment discussed by Hardy@15#,
which we shall call ‘‘Hardy’s experiment.’’ A pair of par-
ticles is prepared in Hardy’s statec5cHardy, which has, say
in frame I, the form~we write only the ‘‘spin’’ part!

cHardy5
1

A3
~ u1&z

au2&z
b2A2u2&x

au1&z
b) ~4!

5
1

A3
~ u2&z

au1&z
b2A2u1&z

au2&x
b) ~5!

5
1

A3
~ u1&z

au2&z
b2u1&z

au1&z
b1u2&z

au1&z
b)

~6!

5
1

A12
~ u1&x

au1&x
b2u1&x

au2&x
b2u2&x

au1&x
b

23u2&x
au2&x

b), ~7!

where u1&x and u2&x denote the eigenfunctions ofsx with
eigenvalue11 and21, respectively, andu1&z ,u2&z denote
the eigenfunctions ofsz with eigenvalue11 and21, re-
spectively. We have usedu1&x5(u1&z1u2&z)/A2 and
u2&x5(u1&z2u2&z)/A2. Denoting by (a,b)(x,z) the compo-
nents of spin in directionx and z, respectively, of particle
a and b, respectively, the following quantum mechanical
predictions can be read off from the form of the wave func-
tion:

ax511⇒bz521 @ from ~4!#, ~8!

bx511⇒az521 @ from ~5!#, ~9!

not ~az521 and bz521! @ from ~6!#, ~10!

Prob~ax511 and bx511!5
1

12
@ from ~7!#. ~11!

These predictions are clearly inconsistent for random vari-
ables since the last one together with the first two then imply
that $az521 andbz521% has probability at least 1/12.

Now suppose that the setup is such that after the two
particles are widely separated from each other, each of them
runs through a Stern-Gerlach magnet (Ax and Bx , respec-
tively!, which splits the respective parts of the wave function
into the eigenfunctionsu1&x

a , u2&x
a andu1&x

b , u2&x
b , respec-

tively. These parts are later recombined by reverse magnets
after which they are led through a second Stern-Gerlach
magnet (Az and Bz , respectively!, which splits the wave
function into the eigenfunctionsu1&z

a , u2&z
a and u1&z

b ,
u2&z

b , respectively. Thus the spin components are~more or
less! perfectly correlated with the path variables as indicated
in Fig. 1, which therefore inherit the inconsistency of the
spin components. The assertion follows.

We remark that the measurements to which the quantum
mechanical predictions refer might well be performed in this
way, but with the insertion of photographic plates behind the
appropriate Stern-Gerlach magnets.

FIG. 1. Space-time diagram of the evolution of the wave func-
tion in Hardy’s experiment. In the shaded regions there are Stern-
Gerlach magnetsAx , Az , Bx , andBz , which split the respective
parts of the wave function into the respective eigenfunctions
(u1&,u2&)x,z

a,b . Three different frames of reference are also drawn.
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We perhaps should be even more explicit, particularly
since we will need later to refer to some of the notation to be
developed here. Suppose that there is a theory for two par-
ticles for which the distribution of crossingsrS agrees with
the quantum mechanical distribution for position~measure-
ments!, given byucSu2, for all spacelike hyperplanesS. The
hyperplanes we shall consider are simultaneity planes in the
Lorentz framesI at t I5t1

I and t2
I , II at t II50, and III at

t III50, as shown in Fig. 1. We shall denote these by
S I(t1

I ), S II (0), etc. Furthermore, we shall abbreviate

cS I (t1
I ) by c1

I , rS I (t1
I ) by r1

I , cS II (0) by c0
II , rS II (0) by r0

II ,
etc.

Consider the configurational part of the wave function in
these Lorentz frames. We shall now regardu6&x,z

a,b as repre-
senting the appropriate configurational part of the wave func-
tion as indicated in Fig. 1, with suppu6&x,z

a,b denoting its spa-
tial support.5 Then

c1
I 5

1

A12
~ u1&x

au1&x
b2u1&x

au2&x
b2u2&x

au1&x
b

23u2&x
au2&x

b), ~12!

c0
II5

1

A6
~ u2&z

au1&x
b1u2&z

au2&x
b22u1&z

au2&x
b), ~13!

c0
III 5

1

A6
~ u1&x

au2&z
b1u2&x

au2&z
b22u2&x

au1&z
b), ~14!

c2
I 5

1

A3
~ u1&z

au2&z
b2u1&z

au1&z
b1u2&z

au1&z
b). ~15!

From the assumption thatrS5ucSu2 in all frames, we
obtain, from ~12! or ~11!, that for the simultaneity surface
S5S I(t1

I )

E
suppu1&x

a
3 suppu1&x

b
r1
I ~qa ,qb!dqadqb

5E
suppu1&x

a
3suppu1&x

b
uc1

I ~qa ,qb!u2dqadqb5
1

12
. ~16!

For the simultaneity surfacesS II (0) andS III (0) we have
from ~13! and ~14!, respectively@or ~9! and ~8!, respec-
tively#, that

r0
II ~qa ,qb!50 for ~qa ,qb!Psuppu1&z

a3suppu1&x
b ,

~17!

r0
III ~qa ,qb!50 for ~qa ,qb!P suppu1&x

a3suppu1&z
b ,

~18!

and forS5S I(t2
I ) from ~15! or ~10! that

r2
I ~qa ,qb!50 for ~qa ,qb!Psuppu2&z

a3suppu2&z
b .

~19!

Consider now that part of the ensemble of two-paths contain-
ing paths that cross suppu1&x

a3suppu1&x
b . From ~16!, this

has probability 1/12. From~17!, particle a will be in
suppu2&z

a at t2
I ; from ~18!, particleb will be in suppu2&z

b at
t2
I ; thus

E
suppu2&z

a
3suppu2&z

b
r2
I ~qa ,qb!dqadqb>

1

12
,

in contradiction to~19!. @This argument assumes that, say,
the crossing track of particlea for S I(t2

I ) agrees with that for
S II (0)—i.e., that there is no sudden change of track. By a
suitable choice of geometry the violation of this assumption
can be made as implausible as we like.# h

We can more briefly, though somewhat imprecisely, re-
phrase the assertion by saying that ‘‘quantum equilibrium
(r5ucu2) cannot hold in all Lorentz frames.’’ Although the
notions of the wave functionc in position representation as
well as that of a position measurement are problematical in
relativistic quantum theory, the impact of this statement is
not thereby diminished. In fact, the statement ‘‘r5ucu2 can-
not hold in all Lorentz frames’’ should be understood as fol-
lows: The joint distributions given by quantum theory for
position measurements~from whatever formalism they arise!
cannot in general agree with the distributions of the actual
particle positions in all Lorentz frames. This is the case, as
pointed out above, already if only the~experimentally well-
established! predictions of the distributions of spin
measurements—spin is measured, as is any observable, cf.
@30#, ultimately by measuring some position in a suitable
experiment~here with Stern-Gerlach magnets!—in the sin-
glet state~which is the relevant state for the earlier versions
of the nonlocality theorems! are considered.

An immediate question is whether this leads, for a theory
with trajectories, to experimentally detectable violations of
quantum mechanical predictions. That it is not necessarily so
will be illustrated by a concrete model in a later section. But
it is already clear from~nonrelativistic! Bohmian mechanics
that the validity ofr5ucu2 in just one frame is sufficient to
derive the quantum mechanical predictions for observations
at different times: Assume that the frame corresponding to
~Newtonian! absolute time—the frame in which quantum
equilibrium r5ucu2 holds for Bohmian mechanics—
corresponds to systemI in Hardy’s experiment in Fig. 1. To
derive from Bohmian mechanics the correct prediction for
the joint distribution of a measurement ofax and a later
measurement ofbz , one has to take into account that the
actual performance of measuringax , which requires an in-
tervention such as the suitable insertion of a photographic
plate, influences the future evolution of the whole system,
and in particular, nonlocally and instantaneously, the future
path of particleb. This can be conveniently described in
terms of the effective ‘‘collapse of the wave function.’’ The
‘‘unmeasured’’ distributions do not in general give the cor-
rect predictions for the outcomes of experiments. For a rather
detailed discussion of related matters, see@6#, Secs. 8–10.

5It should perhaps be noted that a Dirac spinor which in frameI is
a spinx/z eigenfunction will not be a spinx/z eigenfunction in the
framesII or III which are boosted in they direction. Our notation
here should not be construed as implying otherwise.
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Moreover, it is rather clear that any two theories agreeing
at all times on the spatial distribution of particles for some
frame must be empirically equivalent, though we shall not
try here to give a precise formulation of this assertion. We
note, however, that for a theory involving a foliation of
space-time into hypersurfaces, such as the proposal of Du¨rr,
Goldstein, and Zanghı` @21#, as well as that of Samols@26#, it
is natural to demand that ‘‘quantum equilibrium’’ hold on
these hypersurfaces. For the proposal in Sec. III B of this
paper, a theory involving particle interactions that are instan-
taneous with respect to a specified synchronization, one is
led to demand ‘‘quantum equilibrium’’ with respect to this
synchronization. That this indeed suffices to recover the
quantum mechanical predictions for the outcomes of all joint
measurements is implied by the fact that the joint results for
any family of measurements can always be transferred to a
common place and time—and must be if these results are to
be subject to the analysis of a single individual~cf. @21,26#
and @6#, point 19 on p. 900!. This suggests that even a suit-
able kind of ‘‘local quantum equilibrium’’ should be suffi-
cient to obtain the standard quantum mechanical predictions.

III. THE MULTITIME FORMALISM

A. Multitime translation invariance

Consider a system composed ofn—we set n52 for
simplicity—widely separated subsystems. Even observers
who are slowly ~‘‘nonrelativistically’’ ! moving relative to
each other need not agree on the simultaneity of events in the
separated subsystems: let (ta ,xa), (tb ,xb) be the coordi-
nates of the eventsa andb, respectively, for observer 1. We
may set ta50, xa50. The two events are simultaneous,
ta5tb , and widely separated from each other,xb@1. A sec-
ond observer, slowly moving in thex direction relative to the
first observer, will describe the same events by the following
primed coordinates, cf. Fig. 2:

ta85ta50, xa85xa50,

tb85g~ tb2vxb!'2q,

xb85g~xb2vtb!'xb ,

wherev'0, so thatg51/A12v2'1. It is further assumed
thatxb is sufficiently large thatvxb5q is of order unity. For
observer 2, the eventsa and b are not simultaneous,ta8
Þtb8 , not even approximately. More precisely, in the limit in
which xb→` andv→0 in such a manner thatvxb5qÞ0,

the Lorentz transformation becomes simply a translation of
relative time. Consequently, for the case of a system com-
posed of widely separated subsystems we might demand of a
nonrelativistic theory invariance with respect to independent
shifts of the zeros of the subsystems’ time scales~on sub-
system clocks!. The relevance of this nonrelativistic residue,
or analog, of Lorentz invariance, especially for the discus-
sion of the possibility of a Lorentz invariant realistic quan-
tum theory, has been pointed out by Bell~@1#, Chap. 22, and
@24#!.

To specify the space-time transformation corresponding to
this change in frame of reference, we have to introduce two
separate coordinate systems for the two widely separated
subsystemsa andb. On configuration-space-time, the mul-
titime translation is given by

Lt : R3R3Na3R3R3Nb→R3R3Na3R3R3Nb,

t5~ta ,tb!PR2

z:5~za ,zb!:5~ ta ,qa ,tb ,qb!

°~ ta2ta ,qa ,tb2tb ,qb!5z85Lt z,
~20!

whereNa andNb are the particle numbers of the respective
subsystems.

At first thought, one might not expect a quantum theory to
be invariant underLt , because absolute time seems neces-
sary to mediate the action at a distance of Schro¨dinger’s
equation, not to mention the more explicit nonlocality of
Bohmian mechanics. Indeed, for the usual Schro¨dinger equa-
tion as well as for the GRW model and Bohmian mechanics
it would appear that the multitime translation cannot be dis-
cussed at all because time appears in the wave function only
as common~absolute! time.

But if the subsystemsa and b are independent, i.e., if
there is no interaction potential between the subsystems

V~qa ,qb!5Va~qa!1Vb~qb!,

H5Ha1Hb , Hk52
1

2
Dk1Vk , k5a,b

so that the HamiltoniansHa and Hb commute, the
Schrödinger evolution may be reformulated so that it be-
comes multitime translation invariant: From the ordinary
one-time wave functionc t5e2 iHtc05Utc0 we define a
two-time wave function c(ta ,tb)PL2(R3Na)^L2(R3Nb)
>L2(R3(Na1Nb)),

c~ ta ,tb!5e2 iHatae2 iHbtbc05Uta
a Utb

b c0 ,

satisfying two separate Schro¨dinger equations

i
]c

]ta
5Hac, i

]c

]tb
5Hbc. ~21!

This system of partial differential equations, withc trans-
forming in the obvious way,

FIG. 2. a andb are two widely separated events. In the primed
frame of reference, corresponding to a slowly moving observer,
these two events are not simultaneous.
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c~z!5c +Lt
21~Lt z!5:c8~z8!,

is invariant underLt . In particular, the unitary representation
of the group of multitime translations is given by
Ut5Uta

a Utb
b :

c85e2 iHatae2 iHbtbc5Uta
a Utb

b c5Ut c. ~22!

Note that in any frame of reference given by a particular
synchronization of the subsystem times, i.e., whereta5s is
simultaneous withtb5s1h, the wave function in ‘‘frame
h, ’’ which is given by c t

h5c(t,t1h) and recognized as
c t
h5c8(t,t) for a multitime shift by t5(0,h) from the

unprimed frame, satisfies the one-time Schro¨dinger equation.
It is also easy to see that the transition to a two-time wave

function transforms the usual quantum measurement formal-
ism into a multitime translation invariant form. We shall use
here the Heisenberg picture for convenience as well as for
analogy with relativistic quantum theory. Letc5c0
5c(0,0) be the Heisenberg state of the system, and consider
a sequence of observables (M j

a)1< j<k and (M j
b)1< j< l ,

which are measured at timest1
a,•••,tk

a and t1
b,•••,t l

b ,
respectively. HereM j

a acts only on systema, i.e.,
M j

a5Oj
a

^ 1 with observablesOj
a on L2(R3Na), andM j

b acts
only on systemb, i.e.,M j

b51^Oj
b with observablesOj

b on
L2(R3Nb). Thus the observables and the unitary evolution of
systema, M j

a andUta
a 5e2 iHata, commute with the observ-

ables and the unitary evolution of systemb, M j
b and

Utb
b 5e2 iHbtb: for all j , j 8,ta ,tb ,

@M j
a ,M j 8

b
#50, @M j

a ,Utb
b #50,

@M j
b ,Uta

a #50, @Uta
a ,Utb

b #50. ~23!

We shall assume for simplicity that all the observablesM j
a

and M j
b have discrete spectrum and denote byp j ,a

a and
p j ,b
b , respectively, the projection operator onto the eigen-

space ofM j
a andM j

b , respectively, corresponding to the ei-
genvaluea or b, respectively. We introduce the Heisenberg
operators

p j ,a
a ~ ta!:5U2ta

a p j ,a
a Uta

a ,

p j ,b
b ~ tb!:5U2tb

b p j ,b
b Utb

b ,

which, by ~23!, agree with the usual ones involving the full
evolutionUt5Ut

aUt
b . The joint probability for obtaining the

measurement resultsM1
a5a1,. . .,Mk

a5ak , M1
b5b1 ,. . .,

Ml
b5b l is given by

P~M1
a5a1 , . . . ,Mk

a5ak ,M1
b5b1 , . . . ,Ml

b5b l !

5ip l ,b l
b ~ t l

b!•••p1,b1
b ~ t1

b!pk,ak
a ~ tk

a!•••p1,a1
a ~ t1

a!c i2.
~24!

Considering that under a multitime translation the Heisen-
berg operators transform as

p j ,a
a ~ ta8!5U

2t
a8

a
p j ,a
a Ut

a8
a

5Uta
a p j ,a

a ~ ta!U2ta
a

5Utp j ,a
a ~ ta!Ut

21 ,

p j ,b
b ~ tb8!5U

2t
b8

b
p j ,b
b Ut

b8
b

5Utb
b p j ,b

b ~ tb!U2tb
b

5Utp j ,b
b ~ tb!Ut

21

and the state transforms according to~22!, one sees that the
formula ~24! is in fact multitime translation invariant. In par-
ticular, the predictions of the quantum measurement formal-
ism are independent of the frame of reference. Thus the
quantum mechanical measurement formalism for a system
which consists of independent widely separated subsystems
is multitime translation invariant.

Note also that the probability of obtaining the results
Mi

a5a i , M j
b5b j given the resultsM1

a5a1 , . . . ,Mi21
a

5a i21 , M1
b5b1 , . . . ,M j21

b 5b j21 ,

ip j ,b j

b ~ t j
b!•••p1,b1

b ~ t1
b!p i ,a i

a ~ t i
a!•••p1,a1

a ~ t1
a!c i2

ip j21,b j21

b ~ t j21
b !•••p1,b1

b ~ t1
b!p i21,a i21

a ~ t i21
a !•••p1,a1

a ~ t1
a!c i2

can be conveniently expressed as

ip j ,b j

b ~ t j
b!p i ,a i

a ~ t i
a!ceff i2

with the ‘‘collapsed wave function’’

ceff5
p j21,b j21

b ~ t j21
b !•••p1,b1

b ~ t1
b!p i21,a i21

a ~ t i21
a !•••p1,a1

a ~ t1
a!c

ip j21,b j21

b ~ t j21
b !•••p1,b1

b ~ t1
b!p i21,a i21

a ~ t i21
a !•••p1,a1

a ~ t1
a!c i

.
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~We find an analogous formula if we condition on a smaller
initial segment.!

Within this framework an EPR experiment can be
described—the subsystems, while not explicitly interacting,
are coupled by their common wave functionc(ta ,tb)—and
one can explicitly see, for this two-time yet orthodox model,
that the EPR-Bell nonlocality does not demand the existence
of a preferred frame of reference.

Despite the presence of EPR correlations, these do not
permit the transmission of ‘‘signals’’: From the results of
measurements on systema alone, one can draw no inference
about the possible interventions on systemb—the kinds of
experiments performed on systemb. The crucial assumption
responsible for this property is the commutativity~23!. In
axiomatic quantum field theory the analog of this
assumption, namely, the commutativity of Heisenberg opera-
tors corresponding to measurements in spacelike separated
regions, is one of the fundamental postulates, sometimes
called ‘‘local commutativity’’ or ‘‘microscopic causality’’
~see, for example,@@31#!. It conveys that experiments in
spacelike separated regions do not disturb each other, so that
relativistic causality is not violated. However, it is important
~as well as all too rare! to recognize that EPR and Bell have
shown that the quantum correlations between observables for
which ‘‘local commutativity’’ holds cannot in general be ex-
plained by a local theory.

Bell has shown that the GRW model can also be formu-
lated in a multitime translation invariant manner~@1#, Chap.
22!. Bell’s result is sometimes regarded as indicating that the
GRW theory is superior to Bohmian mechanics with respect
to the problem of finding a Lorentz invariant extension. In
the next section we show that such a conclusion is perhaps
unfounded.

B. A multitime translation invariant Bohmian theory

We formulate a multitime Bohmian theory that is invari-
ant under multitime translation. Consider a system consisting
of n widely separated subsystems, as described in Sec. III A,
with ann-time wave function satisfying~the analog of! ~21!.
As usual, we shall for simplicity setn52. We shall denote
again byNa andNb the particle numbers in the subsystems
and setN5Na1Nb . The beables of the multitime Bohmian
theory are first of all the usual beables of a Bohmian theory,
namely, the wave function, here the two-time wave function,
and the trajectories of the particle configuration in the two
subsytems,Qa(t) and Qb(t). The straightforward way to
formulate a multitime translation invariant Bohmian theory
for the evolution of these paths is to introduce as an addi-
tional beable a synchronization: a path in two-timeR2, i.e.,
an equivalence class of maps (Ta ,Tb): R→R2,
s°„Ta(s),Tb(s)… differing only in their parametrization.
The synchronization together with the subsystem trajectories
defines asynchronized N-pathin configuration-space-time
parametrized bys,

„Ta~s!,Qa~s!,Tb~s!,Qb~s!…5:Z~s!,

with Qa(s)[Qa„Ta(s)…,Qb(s)[Qb„Tb(s)…. We prescribe
for the synchronizedN-path the guiding equation

dTa
ds

51,
dTb
ds

51,

dQa

ds
5va

c~Z!,
dQb

ds
5vb

c~Z!, ~25!

with va
c andvb

c given as usual by

va
c5 Im

“qa
c

c
, vb

c5 Im
“qb

c

c
. ~26!

The Bohmian theory given by Eqs. (21), (25), and (26) does
not have a preferred ‘‘frame of reference,’’ and is obviously
invariant under Lt , i.e., if (c,Z) is a solution of~21! and
~25!, then so is (c8,Z8)5(c+Lt

21 ,Lt+Z). The parameters
labels the synchronization with respect to which the nonlocal
interaction is mediated: The velocity of systema at the pa-
rameter values depends, throughc(ta ,qa ,tb ,qb), upon the
configuration of systema at time Ta(s)—more precisely,
upon Qa(s) and Ta(s)—as well as on the configuration
Qb(s) and the timeTb(s) of systemb corresponding to pa-
rameter values. In particular, the velocity ‘‘field’’ is a func-
tional of the two-time wave function at the appropriate times.
Physical significance pertains only to the synchronized
N-pathZ(R),R213N, not to the particular parametrization
determined by~25!. Thus, just as with Eq.~1!, ~25! is physi-
cally equivalent to all equations of the form
dZ/ds5A(Z)„1,va

c(Z),1,vb
c(Z)… with arbitrary positive

functionsA on R213N.
For the statistical analysis of this theory, it is natural to

look for a distinguished measure. As a consequence of~21!,
we have the two identities which have the form of continuity
equations

]ucu2

]ta
1divqaj a

c50 or divzaJa
c50 ~27!

and

]ucu2

]tb
1divqbj b

c50 or divzbJb
c50, ~28!

with Jk
c5(ucu2, j k

c) and j k
c5ucu2vk

c5Im(c*“kc), k5a,b.
By analogy with the statistical analysis of the usual Bohmian
mechanics, it might at first glance seem appropriate to seek a
stationary measure forZ, i.e., for the dynamical system
given by Eqs.~25! and~26!. The continuity equation for this
dynamical system, for a~continuously differentiable! density
f : R3R213N→R,

] f

]s
1divza~ fwa

c!1divzb~ fwb
c!50, ~29!

with wk
c :5(1,vk

c), is, by ~27! and~28!, solved~trivially ! by
f5ucu2, which is stationary with respect to the synchroniza-
tion parameters.

Hence ucu2 is certainly a distinguished measure on the
spaceR213N of initial values for Eqs.~25!. But it is not
normalizable~by unitarity!; moreover, for the dynamical sys-
tem given by Eqs.~25! and ~26! there can be no density,
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normalizable onR213N, that is stationary with respect to the
evolution parameters—since a stationary measure forZ
yields a stationary marginal measure forTa , and by the first
of Eqs. ~25! all stationary measures forTa must be propor-
tional to the Lebesgue measure onR. In this regard it is also
important to recognize that a general probability density
f (s) satisfying~29!, while defining a probability measure on
N-paths, does not itself directly correspond to any clear sta-
tistical property of this ensemble ofN-paths, such as the
distributions of crossings discussed in Sec. II.

Recall now thats labels the synchronization, and recall as
well the suggestion that ‘‘quantum equilibrium’’ should hold
on ‘‘simultaneity surfaces’’@21#. Thus we proceed as fol-
lows: We first fix initial values for the subsystem times
Ta(0)5:s0 and Tb(0):5s01h. Then the evolution equa-
tions for Ta andTb may be solved to obtainTa(s)5s01s
and Tb(s)5s01h1s. The constant of motionh5Tb(0)
2Ta(0)@5Tb(s)2Ta(s) for all s# defines the synchron-
ization—the velocity of systema at a timeta depends upon
the configurationQb at time tb5ta1h. @As it happens, to
this fixed synchronization we may associate a~Lorentz!
frame of reference in which the interaction between the sys-
tems is ‘‘instantaneous.’’ However, this associated frame is
merely a convenience, one that for more than four sub-
systems would typically be impossible to retain.#

Now the subsystem times in Eq.~25! may be eliminated:
With

ch~s,qa ,qb!:5c„Ta~s!,qa ,Tb~s!,qb…

5c~s01s,qa ,s01h1s,qb!

one obtains

dQa

ds
5va

ch
„s,Qa~s!,Qb~s!…,

dQb

ds
5vb

ch
„s,Qa~s!,Qb~s!….

This is the usual Bohmian mechanics relative to the synchro-
nization given byh; we have the continuity equation

]rh

]s
1divqa~rhva

ch!1divqb~rhvb
ch!50, ~30!

and the densityrh5uchu2 is ‘‘equivariant,’’ i.e., if rh(s0)
5uch(s0)u2 for some s5s0 , then rh(s)5uch(s)u2 for all
s. For ch(s)PL2(R3N), this density is normalizable, and
gives the distribution of crossings of any hypersurface corre-
sponding to the timesTa(s) andTb(s) for the ensemble of
N-paths defined bych.

C. Hardy’s experiment in multitime translation invariant
Bohmian theory

We describe now the particle trajectories in Hardy’s ex-
periment for the multitime translation invariant Bohmian
theory given by Eqs.~21!, ~25!, and ~26! ~with Na5Nb51
and the Stern-Gerlach magnets treated, as usual, as external
fields!. We prepare a system of two particles in the quantum
statecHardy ~4!. After the particles are widely separated from

each other, we perform Hardy’s experiment, cf. Fig. 1, focus-
ing on the part of the experiment in which the particles run
through the Stern-Gerlach magnetsAz , Bz , cf. Fig. 3.

First we describe the development of the synchronized
paths for initial values of the subsystem timesTa(0)52q
andTb(0)5hII522q for aq.0, not too large, referring to
scales for the subsystem timesta andtb as defined in Fig. 3.
This gives a synchronization corresponding to the frameII in
Fig. 1. Consider those two-paths for which at the value
s50 of the synchronization parameter, particlea is located
in suppu1&x

a and particleb is located in suppu1&x
b . De-

mandingrh
II
(0)5uchII (0)u2, these are 1/12 of all two-paths.

After particlea has gone through the apparatusAz , it must
be located in suppu2&z

a since, e.g., rh
II
(3q/2)

5uchII (3q/2)u2, cf. Eq. ~13!. After particle b has run
through the apparatusBz , it must be located in suppu1&z

b

since, e.g.,rh
II
(5q/2)5uchII (5q/2)u2, cf. Eq. ~15!. This

course of the particle paths is displayed in Fig. 4, top.
Now consider the same experiment with different initial

values for the subsystem times:Ta(0)522q and
Tb(0)52q, so thath5hIII 5q, a synchronization corre-
sponding to the frame III in Fig. 1. Again consider those
two-paths for which at the values50 of the synchronization
parameter, particlea is located in suppu1&x

a and particleb is

located in suppu1&x
b . Demanding rh

III
(0)5uchIII (0)u2,

these are 1/12 of all two-paths. After particleb has gone
through Bz , it must be located in suppu2&z

b since, e.g.,

rh
III
(3q/2)5uchIII (3q/2)u2, cf. Eq. ~14!. After particle a

has run through the apparatusAz , it must be located in
suppu1&z

a since, e.g.,rh
III
(5q/2)5uchIII (5q/2)u2, cf. Eq.

~15!. This course of the particle paths is displayed in Fig. 4,
bottom.

In neither case does the distribution of crossings by the
two-paths of a hypersurface corresponding to the other syn-
chronization agree for all parameter valuess with the corre-
spondinguch(s)u2. In the first case,h5hII52q, the two-
paths run through suppu1&x

a3suppu1&z
b when they cross a

suitable hypersurface corresponding to frameIII , even
though the wave functionch is orthogonal tou1&x

au1&z
b , cf.

Eq. ~14!. Analogously, in the second case,h5hIII 5q, the
two-paths run through suppu1&z

a3suppu1&x
b when they

cross a suitable hypersurface corresponding to frameII , even

FIG. 3. Hardy’s experiment in multitime formalism.
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though the wave functionch is orthogonal tou1&z
au1&x

b , cf.
Eq. ~13!.

Finally we explain why, despite the fact that the two-paths
~occasionally! are in regions where the wave function van-
ishes, no violations of the quantum mechanical predictions
would be experimentally observed. If an actual experiment—
involving, for example, the insertion of photographic plates
into the paths of the particles—were performed, the influence
of this apparatus on the future evolution of the complete
system would have to be taken into account. This can con-
veniently be accomplished, in a manner analogous to what is
done in ordinary Bohmian mechanics, by suitably collapsing
the wave functionch upon measurement. Suppose, for ex-
ample, that we attempt to detect what quantum mechanically
should be impossible, namely, the two-paths running through
suppu1&x

a3suppu1&z
b , which we have just seen has positive

probability for synchronizationII , at least when no detection
is attempted. We might do this by inserting a detector in the
path corresponding to suppu1&x

a , say at a position corre-
sponding tos50, as well as in the path corresponding to
suppu1&z

b . Then with the synchronizationII , the wave func-

tion chII collapses at the synchronization parameter value
s50, when particlea is found in suppu1&x

a , to

cax511
hII ~s50!5

1

A2
u1&x

a~ u1&x
b2u2&x

b) →
U5q/2

u1&x
au2&z

b ,

and the future evolution of particleb changes drastically
from what it would have been like had there been no mea-
surement or collapse: after having gone through apparatus
Bz it no longer runs into theu1&z

b channel, but rather into the
u2&z

b channel. Analogous things happen with the synchroni-
zation III and the opposite measurements.

IV. REFLECTIONS ON LORENTZ INVARIANCE AND
STATISTICAL TRANSPARENCY

Concerning the model of Sec. III B, we have just alluded
to the fact that, just as for ordinary Bohmian mechanics,
from the quantum equilibrium hypothesis that the actual dis-
tribution of crossingsrh5uchu2, one can derive the quantum
mechanical measurement formalism—which, as shown in
Sec. III A, is multitime translation invariant and moreover
does not even depend upon the quantityh. We thus have,
with regard to our multitime Bohmian model, three levels of
description: the microscopic dynamical level, given by~21!,
~25!, which is multitime translation invariant; the statistical
mechanical level, given by the quantum equilibrium hypo-
thesis, which is, in precisely the same way, also multitime
translation invariant—despite the results of Sec. II; and the
observational level given by the quantum measurement for-
malism, which is also apparently multitime translation in-
variant.

There is, however, an important difference between the
relativistic characters of these levels: the latter level might be
regarded as more fully relativistic than the first two, which
achieve their invariance through the incorporation of the ad-
ditional structure provided by the synchronization. It might
be argued that such a structure violates the spirit of relativity
@4,12#, and regardless of whether or not we agree with this, it
must be admitted that achieving relativistic invariance in a
realistic~i.e., precise! version of quantum theory without the
invocation of such structure seems much more difficult;
hence Bell’s excitement about his version of the model of
GRW ~@1#, Chap. 22!. ~It must also be admitted that a some-
what unpleasant implication of the situation just described is
that this synchronization structure—which after all com-
prises a radical addition to physics—is, in the model under
consideration here, completely unobservable. See also@4#.!

Indeed, any theory can be made trivially Lorentz invariant
~or invariant under any other space-time symmetry! by the
suitable incorporation of additional structure, for example, as
given by the specification of a Lorentz frameL0 as part of
the state description.6 It seems rather clear that this example,
while Lorentz invariant, does not possess what Bell has

6Consider a theory specifying the setL ~the law! of possible
decorationsj of space-time and assume that the Lorentz group acts
naturally on anyj and thus onL. This theory, demanding thatj
PL, will be Lorentz invariant ifLL5L for any Lorentz trans-
formationL. Suppose this is not true. We may then enlarge the
original theory by replacingj by ĵ[(j,L0) and the lawL by L̂
defined by stipulating that (j,L0)5 ĵPL̂⇔jPL0L. ~The original
theory thus corresponds toL05I .) Then L̂ is trivially Lorentz
invariant: For any Lorentz transformationL we have that
Lĵ5(Lj,LL0)[(j8,L08)[ĵ8, so that ĵPL̂⇒LjPLL0L

⇒j8 PL08L⇒ ĵ8PL̂.

FIG. 4. Course of some synchronized two-paths according to the
multitime translation invariant Bohmian theory in Hardy’s experi-
ment for initial values of subsystem times corresponding to the
synchronizationII ~top! and III ~bottom!, respectively.
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called ‘‘serious Lorentz invariance,’’ a notion, however, that
it is extremely difficult to make precise in an adequate way
@1#.

The Bohmian model~25! immediately suggests a genu-
inely ~though perhaps not seriously! Lorentz invariant
Bohmian theory: ForN particles, the beables are a multitime
wave function and a synchronizedN-path, i.e., an equiva-
lence class of maps (X1 , . . . ,XN): R→R4N,
s°„X1(s), . . . ,XN(s)… differing only in their parametriza-
tion. The synchronizedN-path satisfies the guiding equation

dXk
ds

5vk„X1~s!, . . . ,XN~s!…, k51, . . . ,N ~31!

where thevk are suitable four-vector fields, onR4N, deter-
mined by the multitime wave function. As with~1! and~25!,
the fact that only the synchronizedN-path and not the pa-
rametrization determined by a particularvk has beable status
implies that all equations of the formdXk /ds
5a(X1 , . . . ,XN)vk(X1 , . . . ,XN) with an arbitrary positive
functiona on R4N are physically equivalent.

More concretely, one may consider a Lorentz invariant
multitime Bohm-Dirac theory: the wave function
c5c(x1 , . . . ,xN) satisfiesN Dirac equations analogous to
~21!, andvk may, for example, be chosen to be

vk
m5c̄gk

mc, ~32!

with c̄5c†(g0
^ •••^ g0)5c†g1

0
•••gN

0 and gk
m51^ •••

^ 1^ gm
^ 1^ •••^ 1, thegm at thekth of theN places. We

plan to discuss such a model in a subsequent work. Just as
with the model of Sec. III, models of the form~31!, because
of the nonlocal interaction along the synchronization, have
the possibility of properly describing quantum nonlocality as
exhibited, for example, by an EPR experiment. This is in
contrast with the local model of Squires@32#, which is based
on what might be called a local light-cone synchronization.
While Squires formulates his model for the nonrelativistic
Schrödinger equation, he could as well have considered a
multitime Dirac model with a local light-cone synchroniza-
tion to obtain a model that is completely Lorentz invariant—
and completely local.

Some readers may be wondering why we have analyzed
the nonrelativistic multitime Bohmian theory in detail in Sec.
III instead of starting right away with~31!, ~32! or with the
multitime Bohm-Dirac theory

dTk
ds

5c†c,
dQk

ds
5c†akc, ~33!

with Xk5(Tk ,Qk), k51,. . .,N, and ak
i 51^ •••^ 1

^ a i
^ 1^ •••^ 15gk

0gk
i . This theory arises from Bohm’s

theory ~3! for N Dirac particlesvk5(c†akc)/(c
†c)5 j k /r

by introducing a dynamical synchronization, and it agrees for
N51 with ~31!, ~32!. These models might suggest that the
reconciliation of statistical transparency and Lorentz invari-
ance is at hand. However, forN.1 ~33! is not Lorentz in-
variant, because—unlike~32!—(c†c,c†akc) is not a four-
vector. On the other hand,~32! is not statistically transparent
because—unlike ~33!—the ~reparametrization invariant!
configuration space velocityvk

i /vk
0 arising from~32! is not of

the formj k /r for N.1. Thus for the Lorentz invariant model
~31!, ~32! equivariance does not hold in any obvious way and
hence, since there is in general no reason that quantum equi-
librium should hold with respect to any reasonable family of
hypersurfaces, the canonical statistical analysis cannot be
performed and the question of the extent of its agreement
with standard quantum theory becomes rather delicate.7

There is another important difference between~32! and
~33!. To appreciate this consider the system

dTk
ds

51,
dQk

ds
5vk„X1~s!, . . . ,XN~s!…, ~34!

with vk5(c†akc)/(c
†c). Here „Tk(s)… is entirely deter-

mined by„Tk(0)… and the statistical analysis of this theory
may be developed as in Sec. III B for the multitime Bohmian
theory, merely replacingucu2 by c†c. With ~32!, however,
the equations for the evolution of the synchronized particle
times

dTk
ds

5~ c̄gk
0c!„X1~s!, . . . ,XN~s!…

imply that in general„Tk(s)… depends upon the~initial! po-
sitions of the particles as well as on„Tk(0)…, and it is diffi-
cult to see how one could begin any statistical analysis even
if the velocity field were otherwise somehow of a suitable
form. Now it might appear that we should have the same
difficulty with ~33!; however, the theory~33! is equivalent to
~34! since the respective vector fields differ by a real-valued
function onR4N and hence define the same synchronized
N-paths. Thus it turns out that~33! is statistically
transparent—or at least statistically translucent. We shall
take up these questions in a subsequent paper.

Observe that if the four-vectorsvk are four-velocities
(vkmvk

m51), the synchronization implied by~31!, which in
this case is according to proper time parametrization, reduces
in the nonrelativistic limit to the first set of Eqs.~25!.8 What-
ever reservations we may have concerning models such as
we have been discussing, a synchronization by proper time

7This absence of statistical transparency is similarly also the case
for the local model of Squires@32#.
8Note thatc̄gk

mc need not in general be everywhere timelike and
thus vk ~32! cannot in general be normalized. However, one can
find a simple reparametrizationvk5(c̄gkc)/(c̄c) such that the
vk are approximate four-velocities for ‘‘largec’’: Writing

c~x1, . . . ,xN!5(
i

wi~xk!xi~x1, . . . ,xk21,xk11, . . . ,xN!

and noting that in the nonrelativistic limit the last two components
of w i in the standard representation become much smaller than the
first two, one sees that in the nonrelativistic limit
dTk /ds5(c̄gk

0c)/(c̄c)'1 and the space components ofvk be-
come small. Thus in the nonrelativistic limit the theory~32! implies
a synchronization that can be~re!expressed in the form~25! ~first
equations!. „Concerning the reparametrization byc̄c @and that by
c†c for the relation between~33! and ~34!#, one may convince
oneself that not only the multiplication of the velocity field by a
positive function, but typically even by a function that has zeros or
changes sign will yield an equivalent theory.…
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seems to us entirely compatible with serious Lorentz invari-
ance, at least for a pair of particles having a common origin
in a single event.

The requirement that a Bohmian theory be Lorentz invari-
ant without the incorporation of such additional structure as a
dynamical synchronization places a very strong constraint
on, say, the vector field defining the law of motion~in a
particular frame!, or, what amounts to pretty much the same
thing, on the wave function of the system—and might be
expressed via a suitable fixed-point equation for this wave
function. It seems extremely likely that the set of wave func-
tions satisfying such an equation is very small, far smaller

than the families of wave functions we normally consider for
the set of possible initial states of a quantum system. How-
ever, if, as is widely believed, we accept that from a cosmo-
logical perspective there should be a unique wave function
~for example, the Wheeler–de Witt wave function or the
Hartle-Hawking wave function! of the universe, this very
fact might well be a virtue rather than a vice.
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