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If two separated observers are supplied with entanglement, in the formpalfrs of particles in identical
partly entangled pure states, one member of each pair being given to each observer, they can, by local actions
of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of par-
ticles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The con-
centration process asymptotically consergagopy of entanglementthe von Neumann entropy of the partial
density matrix seen by either observer—with the yield of singlets approaching, fomathe base-2 entropy
of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two
systems can be produced by two classically communicating separated observers, drawing on a supply of
singlets as their sole source of entanglement.

PACS numbe(s): 03.65.Bz, 42.50.Dv, 89.78¢c

[. INTRODUCTION fidelity, the probability that a channel output would pass a
test for being the same as the input conducted by someone
Recent results in quantum information theory have shedvho knows what the input was. If a pure statesent into a
light on the channel resources needed for faithful transmisquantum channel emerges as tfie general mixed state
sion of quantum states, and the extent to which these réepresented by density mat\¥, the fidelity of transmission
sources can be substituted for one another. The fundamentgl defined as= = (4|W/|4). A quantum channel will be con-
unit of quantum information transmission is the quantum bit Sidered faithful if in an appropriate limit the expected fidelity
or qubit[1]. A qubit is any two-state quantum system, suchOf transmission tend; to unity. .ThIS means that the outputs
as a spin particle or an arbitrary superposition of two Fock &re almost always either _|d¢nt|c_al to the inputs or e[se o)
states. If two orthogonal states of the system are used tgose that the chance of distinguishing them from the inputs
represent the classical Boolean values 0 and 1, then a quily @y quantum meausrement tends to zero. _
differs from a bit in that it can also exist in arbitrary complex ~ Note that qubits are a directed channel resource, sent in a
superpositions of 0 and 1, and it can be entangled with othe(partlcula_r direction fro_m the sender to the receiver; by con-
qubits. Schumacher’s quantum data compression theoreff@St: €bits are an undirected resousbaredbetween sender
[1,2] characterizes the number of qubits, sent through th&nd receiver. For example, if you prepare two particles in a
channel from sender to receiver, that are asymptotically necinglet state and give me one of them, the result is the same
essary and sufficient for faithfully transmitting unknown @S if I had prepared the particles and given you one of them.
pure states drawn from an arbitrary known source ensembl&Pits are a weaker resource than qubits, in the sense that
Quantum superdense codifig] and quantum teleporta- transmission Qf one qubit can, as just descr[bed, be usgd to
tion [4] consume a different quantum resource—namely, encreate one ebit of entangilement; b_ut the sharmg of an e_b|t, or
tanglement, in the form of maximally entangled pairs of par-many ebits, does not by itself suffice to transmit an arbltrary
ticles initially shared between sender and receiver—and usdate of a two-state quantum system, or qubit, in either direc-
it to assist, respectively, in the performance of faithful clas-tion- To do that, the ebits must be supplemented by directed
sical and quantum communication. Following Schumacher'§lassical bits, as in teleportation. ,
terminology, we define an ebit as the amount of entangle- One would naturally like to know w_hether, in order to be
ment between a maximally entangled pair of two-state Sysuseful for. purposes such as teleportatlon, entanglemgnt must
tems, such as two spihparticles in the singlet state, and we P€ supplied in the form of maximally entangled pairs. In
inquire how many ebits are needed for various task$4]n part!cular_, could partly entangled pure states, such as pairs of
for example, it is shown that the consumption of one share@articles in the state
ebit, together with the transmission of a two-bit classical e
message, can be substituted for the transmission of one qubit. cost|Ta)®|Ls) ~sind| | ) &[Te) @
An important concept in quantum data transmission isbe used instead, and, if so, how many such pairs would be
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needed to substitute for one maximally entangled pair? Notéheir particles, with Alice, for example, performing unitary
that by using the Schmidt decomposition, and absorbingperations and von Neumann or generalized measurements
phases into the definitions of the basis states, any entanglead the Hilbert space of her particles, and Bob performing
state can be represented by a biorthogonal expression of thigmilar operations in that of his particles. We allow Alice and
form, with positive real coefficientss] Bob to coordinate their actions through exchange of classical
messages, but not to exchange any quantum systems nor to

d perform any nonlocal operation after the initial sharing. This
\I’(A'B):El Gilai)®|Bi), 2 restriction is of course necessary to force Alice and Bob to
use the partly entangled pairs they already have, rather than
where |a1),|a,), . .. Jag) and|B1).,|B2), ... .|Bq) are or- generating perfectly entangled pads novo
thonormal states of subsystemAsand B, respectively, and
the coefficientsc; are real and positive. From the viewpoint Il. ENTANGLEMENT CONCENTRATION

of either observer, an entangled state appears as a mixed

state, described by a density matrix obtained by tracing over Inl this ?ecuon we describe Ia rr;e’;(rj\od 'Wk:ereb%( }Ihe en-
the degrees of freedom of the other observer. These densi{gng ement present in a supply of identical partially en-
ngled pairs of two-state particles can be concentrated into a

matrices are diagonal in the Schmidt basis: t . A
smaller number of perfect singlets. The generalization to

d>2 state particles is straightforward. We call the method
pa= Trg|P(AB)W(AB)|=2> c?lei)ail, (3)  Schmidt projection because its essential step is a projection
' of the joint state ofn pairs of particles onto a subspace
and similarly forpg. spanned by states having a common Schmidt coefficient.

The entanglement of a partly entangled pure state can be L&t N partly entangled pairs of two-state particles be
naturally parametrized by its entropy of entanglement, deshared between Alice and Bob, so that the initial state is
fined as the von Neumann entropy of eithey or pg, or n

equivalently as the Shannon entropy of the squares of the\P(A,B)=H [cosd] s (i) Be(i))+sind| (i) Bo())]. (5)
Schmidt coefficients. i=1

2 2 When binomially expanded, this state ha¥ t2rms, with
E= = Trpalogzpa= = Trpglogps= _Ei cilogCl. (4 only n+1 distinct coefficients, cd8,cod 1gsing, . .. si.
Let one of the partiessay Alice perform an incomplete von
Without loss of generality we choose theand 8 bases such Neumann measurement projecting the initial state into one of
that the sequence of Schmidt coefficienisc,, ... isnon- n+1 orthogonal subspaces corresponding to the power
increasing. k=0,... n to which sirg appears in the coefficient. Either

The quantityE, which we shall henceforth often call sim- party can perform this measurement locally, Alice by mea-
ply “entanglement,” ranges from zero for a product statesuring the particles she has, or Bob by measuring the ones he
(e.g.,0=0) to 1 ebit for a maximally entangled pair of two- has. Let Alice perform the measurement, obtaining some out-
state particlese.qg., 9= m/4). (More generally, a maximally comek. She then tells Bob which outcome she obtained.
entangled state of two subsystems llasqually weighted Alternatively, if Bob and Alice wish not to communicate,
terms in its Schmidt decomposition, giving logebits of ~ Bob can perform his version of the measurement locally,
entanglement, where is the Hilbert space dimension of the and, by virtue of the original entanglement, he will always
smaller subsystem. obtain the same value &f as Alice has. The probability of

If a partly entangled pair, witlE<1, is used directly for outcomes is binomially distributed, with outcorkehaving
teleportation, unfaithful transmission will result. If it is used probability
for superdense coding, the resulting classical channel will be 0
noisy. In this paper we show how, by local operations on a _ n—K/ o k
large numbem of identical partly entangled pairs, one can pk_( k)(cos’-o) (i O)". ©
concentrate their entanglement into a smaller number of
maximally entangled pairs such as singlets. This process of After some outcomé has been obtained, Alice and Bob
“entanglement concentration” is asymptotically efficient in will be left with a residual stat&, of their spins which is a
the sense that, for large, the yield of singlets approaches maximally entangled state in a known2{dimensional sub-
nE—O(log,n). Conversely, local operations can be used tospace of the original 2-dimensional space. Such states can
prepare arbitrary partly entangled state6AB) of two sub-  be used without further ado for faithful teleportation in a
systems from a starting material consisting of standard sin¢;)-dimensional or smaller Hilbert space; or they can be
glets, again in a manner which asymptotically conserves ertransformed, as described below, into a standard form such
tropy of entanglement. as singlets.

We should clarify what we mean by local operations. Ini- Before describing this optional standardization process,
tially the n partly entangled pairs are shared between twove note that the measurement lofoccasionally yields a
parties(call them Alice and Bopwith Alice receiving one residual stat&, with moreentropy of entanglement than the
member of each pair, and Bob receiving the other. This noneriginal state¥. However, neither the measuremenkafor
local sharing establishes an initial entanglemeBtbetween any other local processing by one or both parties can increase
Alice and Bob. After that Alice and Bob operate locally on the expectedentropy of entanglement between Alice’s and
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Bob’s subsystems. Consider a measurement or other local lll. EFFICIENCY

'Freatment ?pp"ed by Alice, res“'“f‘g. na Cla55|ca! outcome We deal first with the efficiency of the initial concentra-
janda reS|dgaI pure sta; of the joint _system.. This treat- tion stage, which yields a binomially distributed measure-
ment cannot influence the partial density mapixseen by ant resuitk and collapses the initial state of partly en-
Bob, since if it did one would ha\{e a superluminal commu-iangied pairs into a maximally entangled state between two
hications channel based on Alice’s applying or not applyingsystems of dimensionality]Y. We show below that its effi-
the treatment and Bob measuripg. Therefore, depending cjency approaches unity for large Then we show that the

on the extent of correlation between the residual state and thgcond, or standardization, stage, which distills standard sin-
classical outcomes, the expected entanglement of the rgjets from these high-dimensional maximally entangled
sidual states lies betweeB(W)—H and E(V¥), where states, also approaches unit efficiency for lamge

E(V) is the original pure state’s entanglement and e adopt the local viewpoint of one of the observers, say
H=—Z;p,log,p; is the Shannon entropy of the measurementAlice. From her viewpoint, the initial state is a mixed state of
outcomes. All local treatment®.g., generalized or positive- entropy nE. Performing the measurement &f splits off
operator-valued measuremen®) that Alice might apply some of this entropy in the form of the entropy of the distri-
can be cast in this form, if necessary by considering hebution of outcomesk, and leaves the rest of it as concen-
operations to be performed in an appropriately enlarged Hiltrated entropy of entanglement between the two residual
bert space. In particular, unitary transformations by Alicemaximally entangled {)-dimensional subsystems. The ex-
correspond to one-outcome measurements, which cannpected amount of concentrated entropy of entanglement is
change Bob’s partial density matrpg at all, and can only given by

change the eigenvectors, but not the eigenvalues, of Alice’s. no1 0 .
By the same argument, local actions by Bob cannot increase n—k/ K

the expected entanglement between his and Alice’s sub- k; (cog))"™ (sir’6) (k Iogz(k>. ®)
systems.

Thus, though Alice and Bob cannot by local actions in-Because the entropy of the binomial distributionko¥alues
crease their expected entanglement, they can gamble with it)creases only logarithmically witm, the fraction of the
spending their initial amount on a chance of obtaining aoriginal entanglememE captured as concentrated entangle-
greater amount. ment approaches 1 in the limit of large

We now show how the entanglement in the above per- We now show that the efficiency of distilling standard
fectly entangled residual statels, can be efficiently trans- Singlets from large-dimensional fully entangled states pro-
formed into a standard form such as singlets. Fix some smafjuced by the measurements loflso tends to unity. In the
positive e, with e=0 corresponding to perfect efficiency of light pf the previous discussion, it suffices to show that for
transformation. Let the above measurementkobe per- 20y fixed batch size>1, the sequence
formed independently on a sequence of batchen pfirs

Z = = -/
each. Each performance yields anotkemlue; let the result- m= mod10g;Dp, 1) =10g;Dm—~ ©
ing sequence ok values bek; ky, ... Ky, and let of mantissas of base-2 logarithmsf,, whereD, is given
in Eq. (7), has an infimum of 0. This in turn follows from the
fact that the binomial coefficientﬁlo,(ﬂz), ... areindepen-
Dm:< n )( : ) .. ( : ) 7 dently drawn from a fixed distributiofEq. (6)]. The evolu-
ki) \ ko Km tion of Z,,, with increasingm may therefore be viewed as a

random walk on the unit intervaWith wraparoungl starting

at the origin and taking steps of sizes nflod,(y),1) and
be the product of thej values for the firstn batches. The probabilities given by Eq(6). It is elementary to show that
sequence is continued until the accumulated pro@ygcties  for any distribution of step sizes, and any positiajesuch a
between 2 and 2 (1+e€) for some power/. For any walk visits the interval[0,log,(1+€)] with probability 1,
single-pair entanglemerit and any positives, the probabil-  from which the theorem follows.
ity of failing to come this close to a power of 2 tends to zero The Schmidt projection method of entanglement concen-
with increasingm. Once a suitableD,, is found, a local tration requires at least=2 partly entangled pairs, and only
measurement is performed by Alice or Bob or both to projecbecomes efficient for largem. We now describe another
the joint system into one of two orthogonal subspaces, anethod that works, albeit inefficiently, even with a single
large space of dimension22” and a relatively small space partly entangled pair, as in E€L). We call this procedure the
of dimension 2D,,—2")<ex2x2”. In the latter case, oc- Procrustean method of entanglement concentration, because
curring with probability less tham, a failure has occurred, its goal is to cut off and discard the extra probability of the
and all or most of the entanglement will have been lost. Inarger term in Eq.(1), leaving a perfectly entangled state.
the former case, occurring with probability greater thanAssume for the moment that<=/4 so that if Alice mea-
1- ¢, the residual state is a maximally entangled state of twaures particle 1 in the up-down basis, the up outcome is more
2'-dimensional subsystems, one held by Alice and one heltlkely. Instead of performing this von Neumann measure-
by Bob. Using the Schmidt decomposition, this can be conment, she passes her particle through a polarization-
verted by local unitary operations into a product/ofstan- dependent absorber, or a polarization-dependent reflector
dard singlets. (e.g., for light, a Brewster windowwhich has no effect on
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compressior[2,1] involves projecting the state of a high-
dimensional system onto a set of orthogonal subspaces de-
pending on eigenvectors and eigenvalues of an associated
density matrix. However, the goals and means of the two

06 techniques are sufficiently different that neither can be sub-
E stituted for the other. Indeed, certain quantum data transmis-

04 sion tasks can only be accomplished efficiently by using the
two techniques together.

0.2 Quantum data compressi¢®@DC) has the goal of encod-
ing an unknown sequence of signals from a known quantum
0.0 * 02 04 06 08 0 source—i.e., an ensemble of pure statpg;} emitted with
' ’ ' ’ ' ’ specified probabilities{p;}—into a smaller Hilbert space
cos’0 than it originally occupies, while introducing negligible dis-
tortion. QDC is useful when the source has less than maxi-

FIG. 1. Yield of maximally entangled output states from partly mal entropy(permitting it to be compressed at)adéind con-
entangled input states (afig—sind|1), as a function of cd9. sists of nonorthogonal stateg;, necessitating the use of
Highest curve is entropy of entanglement of input state, equal to thgquantum operations to do the compression.
asymptotic yield of the Schmidt projection method. Successively As has previously been not¢i,8,13, a quantum source
lower smooth curves give yields of Schmidt projection applied tois not fully specified by its density matrix
n= 32, 8, 4, and 2 input pairs. The invert®dshaped curve gives pzszj|,r/,j><¢j|_ By the same token, it is also not fully
yield by the Procrustean method applied to one input pair. specified by giving an entangled stakg g of which its den-

sity matrix is the partial trace, e.g., p=pa
down spins but absorbs, or deflects into a different beam, & Trg| W 5)(Wag|. A quantum source can, however, be
fraction tarf@ of the up spins. If the particle is absorbed or fully specified by giving both such an entangled stdtgg
deflected, it is rejected; otherwise it is kept. This treatmentnd a von Neumann or generalized measurement to be per-
does not correspond to any von Neumann measurement formed by Bob, who holds subsysteBr This is done in
the original two-dimensional spin space, but rather to a twosuch a way that each of Bob’s possible measurement out-
outcome generalized measurement or POVpbsitive-  comes projects Alice’s subsystem into one of the states
operator-valued measuremgf®,7]. If the particle is not ab- and the outcomes occur with the required probabilities
sorbed or deflected, its residual state after this treatment willp;}. Then each of Bob’s measurements tells him which state
be a maximally mixed state of spin up and spin down. NowAlice received from the source at that instant. For example,
suppose Alice tells Bob the result of her generalized meadepending on the measurement performed by Bob, the en-
surement, and suppose that he does not measure his partigdgled state of Eq1) can be used to generate either of the
at all, but simply discards it if Alice has discarded hers. Thefollowing two sources for Alice, one classical, the other dis-
result will be a perfectly entangled state of two particles. Theinctively quantum:(1) SourceQ, consisting of orthogonal
Procrustean method is especially suitable for the type oétates|1) and||) emitted with unequal probabilities cas
gambling mentioned earlier: when it works, it always yieldsand  sifd, respectively; and(2) source Q' consisting
more entanglement than the parties started out with. of nonorthogonal statesy®=(cosd|1)+sind||)) and '

Both the Schmidt projection and the Procrustean method: (coss|1)—sin||)) emitted with equal probabilities.
can be generalized to work on larger Hilbert spaces. Like The first sourceQ, is purely classical in the sense that it
von Neumann's method for obtaining unbiased random bitgould be faithfully compressed by making a complete von
from a coin of unknown but time-independent head-to-ta”Neumann measurement in the up-down basisy and app|y|ng
ratio [setting HT=1, TH=0, and TT=HH=(do ovej],  conventional data compressiéag., Huffman codingto the
Schmidt projection works even when Alice and Bob do notresulting classical data.
know how entangled their partly entangled pairs are, pro- Although the other sourc&’, would yield statistically
vided all n pairs have equal biase8. The Procrustean similar data when measured in the up-down basis, the result-
method, on the other hand, requires the bias to be known ifhg data would be useless for reliably encoding a sequence of
advance. n states from the source, because the data would be utterly

Figure 1 plots the yield of perfectly entangled pairs as a ncorrelated with which of the™equiprobable nonorthogo-
function of cod6 obtained by the Schmidt projection method pg| spin sequences the source had emitted.
with n=2, 4, 8, and 32lower four curves in comparison At this point some notation is helpful. Let denote an
with the entropy of entanglemeftop curve, and the yield  arbitraryn-bit sequence, whene>2, and let¥* denote the
from the Procrustean metho@nvertedV-shaped curve  n-spin product state resulting when sou@é emits a se-
Note that forn<<5 Schmidt projection is absolutely less ef- quence of states indexed by the bitsxofFor example, tak-
ficient than the Procrustean method. ing x=011, we havel'!= 40 y'w yt.

In order to transmit such sequences faithfully and eco-
nomically, one uses quantum data compress$i]. This
consists of performing a very gentle, incomplete measure-
ment on the joint statd* of the spins, which projects the

Like the Schmidt projection method of entanglement con-state into one of two complementary subspacél: a
centration described above, the techniquegoéntum data “likely” subspace of dimensionality 27"+ spanned by

1.0

0.8

IV. RELATION OF ENTANGLEMENT CONCENTRATION
TO QUANTUM DATA COMPRESSION
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the eigenvectors of the largest eigenvalues of the joint denahich it would work in teleporting a random state in a Hil-
sity matrix p(", defined as the tensor productotopies of  bert space of dimensionality equal to that of one of its two
p; and(2) the “unlikely” subspace spanned by the remaining parts.
eigenvectors. If the joint state projects into the likely sub- We have just shown that two-sided quantum data com-
space, one transmits the resulting projected state; if the prsression does not work as a method of entanglement concen-
jection fails, one transmits an arbitrary state. UsiMj to  tration. Conversely, because any mixed state can be regarded
denote the(slightly mixed state resulting from applying as the partial trace of an appropriate entangled state, one can
quantum data compression to a source sequdtideom the  jmagine attempting to use the Schmidt projection method of
sourceQ’, it can be shown that for any positiv® ande  entanglement concentration in a one-sided manner as a way
there exists am, such that for aln>n,, the fidelity of the  of performing quantum data compression. As we will show
quantum data compression, i.e., the probability presently, this also does not work. To use Schmidt projection
in a one-sided manner would mean making a more aggres-
sive projection than that used in conventional quantum data
F=>, POX) (XWX W) (100  compression, into subspaces spanned by each distinct eigen-
X value of p(™, rather than into a single subspace spanned by
all the likely eigenvalues and a residual unlikely subspace.

that its output would pass a test for being the same as thIé|owever, this projection is too aggressive for the purposes of

. X reliable data transmission. Because the entropy of the distri-
input sequenc&*, conducted by someone who knew what, ™ . . . .

. . o bution of the eigenvalues increases absolutely witlfal-
the input sequence was, is greater thanel Infidelity can

: e : %hough it decreases as a fractionrgf the fidelity of trans-
be thought of as resulting from two causes: failure to prOJecmiSSion of typical sequences from a source sucl agends
into the likely subspace, and failure of even a successful0 2ero withyiFr)1 creasig
projection into that subspace to agree with the original staté Q.

when subsequently tested. Both kinds of infidelity becomemc Inu;?](t);;d(f;?;'cgﬁ ?g%g?;fdwiggg]'ﬁég{to]i;:gzr]egr(ir?g_
negligible in the limit of largen.t q P ’ y

. t rr nds in th f th to an incom-
Because a less-than-maximally entangled pure state ag)%eetécgezsss:)emd(int inew%?;? c())ne gbss(éﬁi ?hae nur(i:qc::mr
pears as a less-than-maximally random mixed state to its twg Wn spins in am s in block. leaving a residual quantum
separate observers, one could imagine using quantum da P P ’ 9 d

compression as an approximate means of entanglement copate equal to th? tre:]hormatl)lzed projection O:;.thet otrrllglnal
centration. In other words, by separately compressing theifurce sequence into the subspace corresponding 1o the mea-

respective subsystems, Alice and Bob could squeeze ghEirement outcome. We shall show that this codzaginot

original entanglement into a smaller number of shared pair ar}sn:l;_jeﬁtuences f]rcotrrr: the sour@é W'tth a?yorggtotlcacljly
of qubits. Applying this two-sided compression rioshared pertect fidetity, even it the measurement outcokns made

pairs of entanglemerE, Alice’s and Bob's projections into available, as classical information, to help in the decoding

the likely subspace would be isomorpliihis can be seen by process at the receiving end of the channel. Such a dual
considering the Schmidt representation of the original enplassmal-quantum channel setup is certa|n!y no weaker than
tangled statg and the result would be to leave each observef pL::jely qulan:)um dphangeﬂé\/hedre_ the cllassmal touttﬁon:je |
with slightly more thannE qubits having slightly less than would simply be discardedand is analogous to the dua

NE bits entropy of entanglement with an equal number Ofchannel used in teleportation, in which the quantum channel

qubits held by the other observer. However, the entangle UtPUt.iS postpracessed in a way depending_on p!assical in-
states produced by such two-sided quantum data compre ormation ge.nerated at the sendmg end. The inability of even
sion are never maximally entangled, and in an importan is strong kind of Schmidt coding to approach perfect fidel-

sense they beconmmorer approximations of maximally en- ity for sourceQ’ f_ollovys fr_om the fact, to b? demonst_ra_ted
tangled states asincreases. A perfectly entangled state mustpresently, that with significant probability it maps distinct
have all its Schmidt coefficients equal, but the compresseﬁ]plgt selthitrxlen:ets tcimrgoir:tr:e dsamg ourtlgi)urt \‘j‘\}atggé to denot
bipartite state¥ .(A,B), resulting from applying two-sided ecalling notatio oduced earlier, we 0 denote

guantum data compression to a state such a¥'tt#, B) of the n-spin pfrodtutct s;aéle rezuilatln?hwhbgp scfxuﬁé ;amns a
Eq. (5), describing a set of partly entangled pairs, has a sequence of states indexed by the bits of bit stang=or

H _ 011_ ;0 1 1
distribution of values of Schmidt coefficents whose variancegxample’ taking«=011, we havel ™=y @y @ . Let

increases witm. In consequence, the fidelity with which * dénote the Boolean complement xf In our examplex
¥ (A,B) approximates any maximally entangled state apVould be 100, and correspondingly}” would _be
ith i i delity with V1= yl® %2 y°. By expanding the stateg> and WX in

proaches zero with increasing as does the fidelity with . By expanding and ™
the up-down basis, and grouping terms accordini, tib can
readily be seen that the statd#s and ¥* differ only by a

1Although one is usually more interested in data compression, it iginiform sign change in all terms of odd This difference is
also possible to perform classical or quantum datpansionin  Obliterated by the Schmidt encoding process, which by mea-
other words, to encode the output of a nonredundant source into $Uringk randomizes the relative phases of terms of differing
larger number of redundant bits or qubits. For example, all states df- Thus, for anyx, the encoding process, even if the classical
two qubits can be encoded into the majority-up subspace of thre@Utcomek is made available at the receiving end, maps input
qubits, each of which has a single-particle density matrix with ei-states¥* and ¥* onto the same output state or distribution
genvalues 3/4 and 1/4 and entropy of approximately 0.811 bits. Of output states. This precludes the achievement of asymp-
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totically perfect fidelity, which by definition requires that concentrated and diluted, its positive definiteness and the
with probability approaching unity a typical channel input be nonincrease of its expecation under local operations repre-
mapped onto a pure or mixed output state arbitrarily close tsent theonly limitation on the asymptotic ability of two sepa-
the input in Hilbert space. Here, on the contrary, we haveated observers to prepare a final pure sttg, given an
distinct inputs¥* and ¥*, which for largen are nearly inital one, ¥z, by local operations and classical communi-
orthogonal, being mapped onto the same output. cation. Thus if* andV' have equal entanglement, they can
In summary, two-sided quantum data compression is tobe interconverted with efficiency approaching unity in the
faithful to the original nonmaximally entangled state to pro-limit of large n; if they have unequal entanglement, the as-
vide good entanglement concentratiowhose goal is a ymptotic yield isE(¥’)/E(¥). On the other hand, if the
maximally entangled state rather than a good approximatioimitial state is unentangled, the positive definiteness of en-
to the initial statg Conversely, entanglement concentrationtanglement and the nonincrease of its expectation under local
by the Schmidt projection method necessarily sacrifices fioperations together imply that there is no way of locally
delity to the original state in order to produce a maximally preparing an entangled final state’, even with low yield.
entangled output. We have argued that entropy of entanglement is a good
Despite these differences, the two techniques can somentanglement measure for pure states because local opera-
times be fruitfully combined. Suppose Alice has a long setions cannot increase its expectation, but can, with asympoti-
quence oh spins from a nonrandom quantum source such asally perfect efficiency, interconvert states of equal entropy
Q' which she wishes to faithfully teleport to Bob with a of entanglement. No similarly simple entanglement measure
minimal usage of entanglement. Suppose further that the eiis known for mixed states. For a mixed state, the subsystem
tanglement Alice and Bob have at their disposal for teleporentropiesH , andHg need not be equal, and neither they nor
tation purposes is supplied not in the form of standard sinany other simple function afi 5, Hg, and the total entropy
glets but rather as pure but less-than-maximally entangle#i ,; can be clearly identified with the degree of entangle-
statesyg. An economical procedure would then d¢ use  ment. For example, entropies Bfa,=Hg=H,g=2 can be
quantum data compression to compress the input sequencertgalized by two very different mixed statéb two indepen-
a bulk of slightly greater thanH(p(Q")) spins,(2) use en-  dent pairs of classically correlated spins, (@ one singlet
tanglement concentration to prepare standard singlets fromnd a pair of uncorrelated spins. The former mixed state is
the supply of imperfectly entangled pairs, a8l teleport naturally regarded as unentangled, since it can be made by
each compressed spin using one of the standard singlets. mixing unentangled pure states; the latter should be regarded
as entangled, since it can be converted into a maximally
V. DISCUSSION entangled state by discarding the second pair of spins. _
Two possible measures of entanglement for the mixed bi-
We have shown that the entanglement in any pure state @fartite statep,g, each of which reduces to entropy of en-
a bipartite system can be concentrated by local operationginglement whem,g is pure, arg1) “entanglement of for-
and classical communication into maximally entangled statemation” defined as the least number of shared singlets
such as singlets. Here we note that, conversely, an arbitragysymptotically required to prepage,g by local operations
partly entangled stat@ (A,B) of a bipartite system can be and classical communication, ar2) “distillable entangle-
prepared by local operations and classical communicatioment” defined as the greatest number of pure singlets that
using standard singlets as the only source of entanglemergan asymptotically be prepared frgmg by local operations
One way to do this is for Alice first to prepare a copy and classical communication. These entanglement measures
W (A,C) of the entangled state she wishes to share with Bobhave the desirable feature that their expectations cannot be
using two systems in her laborato#y,andC. HereA is the  increased by local operations, but the disadvantage of being
system she wishes to entangle with Bob’s sysBsrandC is  hard to evaluate in particular cases because of the implied
a system similar td but located in Alice’s laboratory in- optimizations over local procedures.
stead of Bob’s. Becaus& andC are in the same location, Since any mixed state can be regarded as a pure state over
¥ (A,C) can be prepared by purely local operations. Nexta larger, and partly unseen, Hilbert space, it might seem more
Alice uses a supply of standard singlets, in conjunction withelegant(cf. [9]) to define the entanglement of a bipartite
classical communication, to teleport the state of her locamixed statep,g as the minimum entanglement of any pure
systemC into Bob’s systemB. This has the effecf4] of  stateW(ABCD) of a four-part system, from which,g can
destroying the entanglement betwefeandC while creating  be obtained by tracing over states®fndD, and where the
the desired entangled stalq A,B) shared remotely between entanglement ofP (ABCD) is computed by partitioning it
Alice and Bob. The teleportation consumes jJbginglets into subsystemAC andBD. Unfortunately, this prescription
and requires 2logl classical bits of communication, where is unsatisfactory because it would assign positive entangle-
d is the dimension of the Hilbert space of systBmregard- ment to classically correlated mixed states such as
less of the entanglemer of the state being teleported, p= 3(|T1){17]+|l1){]]]), which can be generated from
which is rather inefficient ifE is small. To reduce the con- unentangled initial conditions by local actionsandom
sumption of singlets toward the theoretical minimum, Alice choice and exchange of classical messages.
need only use Schumacher coding to compresstheys- A nontrivial example of an entangled mixed state is pro-
tems before teleporting them to Bob, who then applies thevided by the Werner stafed 0], whose density matrix is
inverse decoding operation to reexpand the telepdstegs- 11
tenés to their original dimensions. N W= =1+ 2wy (W], (11)
ecause entropy of entanglement can be thus efficiently 8 2
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wherel is the 4x 4 identity matrix and¥ ™ is a singlet. This  centration and dilution which have been the principal subject
state may be viewed as a 50%-50% mixture of totally mixedof the present paper. However, it is not known whether the
states(density matrix;l) and singlets; and indeed, since to- interconversion is asymptotically reversible for mixed states,
tally mixed states can be manufactured by purely locabs it is for pure states. In other words, it is not known
means, this description constitutes a local probabilistic prowhether the Werner state’s distillable entanglement is equal
cedure for generating Werner states from an expecta®  to, or far less than, its entanglement of formation.

singlets. Recently it has been shoptil] that the Werner
state can be constructed much more economically, as a mix-
ture of pure states each containing only about 0.1176 ebits of
entanglement. Moreover, a small yietl0.000 125 8 of ar- We wish to thank William Wootters for advice on Schmidt
bitrarily pure singlets can be distilled from Werner states bydecompositions and many other subjects, and John Smolin
local actions and classical communicat{dd]. Thus impure for pointing out how to use teleportation to prepare arbitrary
Werner states can be both created from and converted intentangled states. H.J.B. was supported in part by NSF Grant
pure singlets. This two-way conversion is a rough mixed-No. PH92-13964. S.P. acknowledges support by NSF Grant
state analog of the processes of pure-state entanglement cdve. PHY 93-21992.
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