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If two separated observers are supplied with entanglement, in the form ofn pairs of particles in identical
partly entangled pure states, one member of each pair being given to each observer, they can, by local actions
of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of par-
ticles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The con-
centration process asymptotically conservesentropy of entanglement—the von Neumann entropy of the partial
density matrix seen by either observer—with the yield of singlets approaching, for largen, the base-2 entropy
of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two
systems can be produced by two classically communicating separated observers, drawing on a supply of
singlets as their sole source of entanglement.

PACS number~s!: 03.65.Bz, 42.50.Dv, 89.70.1c

I. INTRODUCTION

Recent results in quantum information theory have shed
light on the channel resources needed for faithful transmis-
sion of quantum states, and the extent to which these re-
sources can be substituted for one another. The fundamental
unit of quantum information transmission is the quantum bit,
or qubit @1#. A qubit is any two-state quantum system, such
as a spin-12 particle or an arbitrary superposition of two Fock
states. If two orthogonal states of the system are used to
represent the classical Boolean values 0 and 1, then a qubit
differs from a bit in that it can also exist in arbitrary complex
superpositions of 0 and 1, and it can be entangled with other
qubits. Schumacher’s quantum data compression theorem
@1,2# characterizes the number of qubits, sent through the
channel from sender to receiver, that are asymptotically nec-
essary and sufficient for faithfully transmitting unknown
pure states drawn from an arbitrary known source ensemble.

Quantum superdense coding@3# and quantum teleporta-
tion @4# consume a different quantum resource—namely, en-
tanglement, in the form of maximally entangled pairs of par-
ticles initially shared between sender and receiver—and use
it to assist, respectively, in the performance of faithful clas-
sical and quantum communication. Following Schumacher’s
terminology, we define an ebit as the amount of entangle-
ment between a maximally entangled pair of two-state sys-
tems, such as two spin-1

2 particles in the singlet state, and we
inquire how many ebits are needed for various tasks. In@4#,
for example, it is shown that the consumption of one shared
ebit, together with the transmission of a two-bit classical
message, can be substituted for the transmission of one qubit.

An important concept in quantum data transmission is

fidelity, the probability that a channel output would pass a
test for being the same as the input conducted by someone
who knows what the input was. If a pure statec sent into a
quantum channel emerges as the~in general! mixed state
represented by density matrixW, the fidelity of transmission
is defined asF5^cuWuc&. A quantum channel will be con-
sidered faithful if in an appropriate limit the expected fidelity
of transmission tends to unity. This means that the outputs
are almost always either identical to the inputs or else so
close that the chance of distinguishing them from the inputs
by any quantum meausrement tends to zero.

Note that qubits are a directed channel resource, sent in a
particular direction from the sender to the receiver; by con-
trast, ebits are an undirected resourcesharedbetween sender
and receiver. For example, if you prepare two particles in a
singlet state and give me one of them, the result is the same
as if I had prepared the particles and given you one of them.
Ebits are a weaker resource than qubits, in the sense that
transmission of one qubit can, as just described, be used to
create one ebit of entanglement; but the sharing of an ebit, or
many ebits, does not by itself suffice to transmit an arbitrary
state of a two-state quantum system, or qubit, in either direc-
tion. To do that, the ebits must be supplemented by directed
classical bits, as in teleportation.

One would naturally like to know whether, in order to be
useful for purposes such as teleportation, entanglement must
be supplied in the form of maximally entangled pairs. In
particular, could partly entangled pure states, such as pairs of
particles in the state

cosuu↑A& ^ u↓B&2sinuu↓A& ^ u↑B& ~1!

be used instead, and, if so, how many such pairs would be
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needed to substitute for one maximally entangled pair? Note
that by using the Schmidt decomposition, and absorbing
phases into the definitions of the basis states, any entangled
state can be represented by a biorthogonal expression of this
form, with positive real coefficients@5#

C~A,B!5(
i51

d

ci ua i& ^ ub i&, ~2!

where ua1&,ua2&, . . . ,uad& and ub1&,ub2&, . . . ,ubd& are or-
thonormal states of subsystemsA andB, respectively, and
the coefficientsci are real and positive. From the viewpoint
of either observer, an entangled state appears as a mixed
state, described by a density matrix obtained by tracing over
the degrees of freedom of the other observer. These density
matrices are diagonal in the Schmidt basis:

rA5 TrBuC~A,B!&^C~A,B!u5(
i
ci
2ua i&^a i u, ~3!

and similarly forrB .
The entanglement of a partly entangled pure state can be

naturally parametrized by its entropy of entanglement, de-
fined as the von Neumann entropy of eitherrA or rB , or
equivalently as the Shannon entropy of the squares of the
Schmidt coefficients.

E52 TrrAlog2rA52 TrrBlog2rB52(
i
ci
2log2ci

2 . ~4!

Without loss of generality we choose thea andb bases such
that the sequence of Schmidt coefficientsc1 ,c2 , . . . is non-
increasing.

The quantityE, which we shall henceforth often call sim-
ply ‘‘entanglement,’’ ranges from zero for a product state
~e.g.,u50) to 1 ebit for a maximally entangled pair of two-
state particles~e.g.,u5p/4). ~More generally, a maximally
entangled state of two subsystems hasd equally weighted
terms in its Schmidt decomposition, giving log2d ebits of
entanglement, whered is the Hilbert space dimension of the
smaller subsystem.!

If a partly entangled pair, withE,1, is used directly for
teleportation, unfaithful transmission will result. If it is used
for superdense coding, the resulting classical channel will be
noisy. In this paper we show how, by local operations on a
large numbern of identical partly entangled pairs, one can
concentrate their entanglement into a smaller number of
maximally entangled pairs such as singlets. This process of
‘‘entanglement concentration’’ is asymptotically efficient in
the sense that, for largen, the yield of singlets approaches
nE2O(log2n). Conversely, local operations can be used to
prepare arbitrary partly entangled statesC(AB) of two sub-
systems from a starting material consisting of standard sin-
glets, again in a manner which asymptotically conserves en-
tropy of entanglement.

We should clarify what we mean by local operations. Ini-
tially the n partly entangled pairs are shared between two
parties~call them Alice and Bob! with Alice receiving one
member of each pair, and Bob receiving the other. This non-
local sharing establishes an initial entanglementnE between
Alice and Bob. After that Alice and Bob operate locally on

their particles, with Alice, for example, performing unitary
operations and von Neumann or generalized measurements
in the Hilbert space of her particles, and Bob performing
similar operations in that of his particles. We allow Alice and
Bob to coordinate their actions through exchange of classical
messages, but not to exchange any quantum systems nor to
perform any nonlocal operation after the initial sharing. This
restriction is of course necessary to force Alice and Bob to
use the partly entangled pairs they already have, rather than
generating perfectly entangled pairsde novo.

II. ENTANGLEMENT CONCENTRATION

In this section we describe a method whereby the en-
tanglement present in a supply of identical partially en-
tangled pairs of two-state particles can be concentrated into a
smaller number of perfect singlets. The generalization to
d.2 state particles is straightforward. We call the method
Schmidt projection because its essential step is a projection
of the joint state ofn pairs of particles onto a subspace
spanned by states having a common Schmidt coefficient.

Let n partly entangled pairs of two-state particles be
shared between Alice and Bob, so that the initial state is

C~A,B!5)
i51

n

@cosuua1~ i !b1~ i !&1sinuua2~ i !b2~ i !&]. ~5!

When binomially expanded, this state has 2n terms, with
only n11 distinct coefficients, cosnu,cosn21usinu, . . .,sinnu.
Let one of the parties~say Alice! perform an incomplete von
Neumann measurement projecting the initial state into one of
n11 orthogonal subspaces corresponding to the power
k50, . . . ,n to which sinu appears in the coefficient. Either
party can perform this measurement locally, Alice by mea-
suring the particles she has, or Bob by measuring the ones he
has. Let Alice perform the measurement, obtaining some out-
come k. She then tells Bob which outcome she obtained.
Alternatively, if Bob and Alice wish not to communicate,
Bob can perform his version of the measurement locally,
and, by virtue of the original entanglement, he will always
obtain the same value ofk as Alice has. The probability of
outcomes is binomially distributed, with outcomek having
probability

pk5S nkD ~cos2u!n2k~sin2u!k. ~6!

After some outcomek has been obtained, Alice and Bob
will be left with a residual stateCk of their spins which is a
maximally entangled state in a known 2(k

n)-dimensional sub-
space of the original 22n-dimensional space. Such states can
be used without further ado for faithful teleportation in a
(k
n)-dimensional or smaller Hilbert space; or they can be
transformed, as described below, into a standard form such
as singlets.

Before describing this optional standardization process,
we note that the measurement ofk occasionally yields a
residual stateCk with moreentropy of entanglement than the
original stateC. However, neither the measurement ofk nor
any other local processing by one or both parties can increase
the expectedentropy of entanglement between Alice’s and
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Bob’s subsystems. Consider a measurement or other local
treatment applied by Alice, resulting in a classical outcome
j and a residual pure stateC j of the joint system. This treat-
ment cannot influence the partial density matrixrB seen by
Bob, since if it did one would have a superluminal commu-
nications channel based on Alice’s applying or not applying
the treatment and Bob measuringrB . Therefore, depending
on the extent of correlation between the residual state and the
classical outcomes, the expected entanglement of the re-
sidual states lies betweenE(C)2H and E(C), where
E(C) is the original pure state’s entanglement and
H52( j pj log2pj is the Shannon entropy of the measurement
outcomes. All local treatments~e.g., generalized or positive-
operator-valued measurements@6#! that Alice might apply
can be cast in this form, if necessary by considering her
operations to be performed in an appropriately enlarged Hil-
bert space. In particular, unitary transformations by Alice
correspond to one-outcome measurements, which cannot
change Bob’s partial density matrixrB at all, and can only
change the eigenvectors, but not the eigenvalues, of Alice’s.
By the same argument, local actions by Bob cannot increase
the expected entanglement between his and Alice’s sub-
systems.

Thus, though Alice and Bob cannot by local actions in-
crease their expected entanglement, they can gamble with it,
spending their initial amount on a chance of obtaining a
greater amount.

We now show how the entanglement in the above per-
fectly entangled residual statesCk can be efficiently trans-
formed into a standard form such as singlets. Fix some small
positivee, with e50 corresponding to perfect efficiency of
transformation. Let the above measurement ofk be per-
formed independently on a sequence of batches ofn pairs
each. Each performance yields anotherk value; let the result-
ing sequence ofk values bek1 ,k2 , . . . ,km , and let

Dm5S nk1D S nk2D •••S nkmD ~7!

be the product of the (k
n) values for the firstm batches. The

sequence is continued until the accumulated productDm lies
between 2l and 2l (11e) for some powerl . For any
single-pair entanglementE and any positivee, the probabil-
ity of failing to come this close to a power of 2 tends to zero
with increasingm. Once a suitableDm is found, a local
measurement is performed by Alice or Bob or both to project
the joint system into one of two orthogonal subspaces, a
large space of dimension 232l and a relatively small space
of dimension 2(Dm22l ),e3232l . In the latter case, oc-
curring with probability less thane, a failure has occurred,
and all or most of the entanglement will have been lost. In
the former case, occurring with probability greater than
12e, the residual state is a maximally entangled state of two
2l-dimensional subsystems, one held by Alice and one held
by Bob. Using the Schmidt decomposition, this can be con-
verted by local unitary operations into a product ofl stan-
dard singlets.

III. EFFICIENCY

We deal first with the efficiency of the initial concentra-
tion stage, which yields a binomially distributed measure-
ment resultk and collapses the initial state ofn partly en-
tangled pairs into a maximally entangled state between two
systems of dimensionality (k

n). We show below that its effi-
ciency approaches unity for largen. Then we show that the
second, or standardization, stage, which distills standard sin-
glets from these high-dimensional maximally entangled
states, also approaches unit efficiency for largem.

We adopt the local viewpoint of one of the observers, say
Alice. From her viewpoint, the initial state is a mixed state of
entropy nE. Performing the measurement ofk splits off
some of this entropy in the form of the entropy of the distri-
bution of outcomesk, and leaves the rest of it as concen-
trated entropy of entanglement between the two residual
maximally entangled (k

n)-dimensional subsystems. The ex-
pected amount of concentrated entropy of entanglement is
given by

(
k51

n21

~cos2u!n2k~sin2u!kS nkD log2S nkD . ~8!

Because the entropy of the binomial distribution ofk values
increases only logarithmically withn, the fraction of the
original entanglementnE captured as concentrated entangle-
ment approaches 1 in the limit of largen.

We now show that the efficiency of distilling standard
singlets from large-dimensional fully entangled states pro-
duced by the measurements ofk also tends to unity. In the
light of the previous discussion, it suffices to show that for
any fixed batch sizen.1, the sequence

Zm5 mod~ log2Dm,1!5 log2Dm2l ~9!

of mantissas of base-2 logarithms ofDm , whereDm is given
in Eq. ~7!, has an infimum of 0. This in turn follows from the
fact that the binomial coefficients (k1

n ),(k2
n ), . . . areindepen-

dently drawn from a fixed distribution@Eq. ~6!#. The evolu-
tion of Zm with increasingm may therefore be viewed as a
random walk on the unit interval~with wraparound!, starting
at the origin and taking steps of sizes mod„log2(k

n),1… and
probabilities given by Eq.~6!. It is elementary to show that
for any distribution of step sizes, and any positivee, such a
walk visits the interval@0,log2(11e)# with probability 1,
from which the theorem follows.

The Schmidt projection method of entanglement concen-
tration requires at leastn52 partly entangled pairs, and only
becomes efficient for largen. We now describe another
method that works, albeit inefficiently, even with a single
partly entangled pair, as in Eq.~1!. We call this procedure the
Procrustean method of entanglement concentration, because
its goal is to cut off and discard the extra probability of the
larger term in Eq.~1!, leaving a perfectly entangled state.
Assume for the moment thatu,p/4 so that if Alice mea-
sures particle 1 in the up-down basis, the up outcome is more
likely. Instead of performing this von Neumann measure-
ment, she passes her particle through a polarization-
dependent absorber, or a polarization-dependent reflector
~e.g., for light, a Brewster window!, which has no effect on

2048 53BENNETT, BERNSTEIN, POPESCU, AND SCHUMACHER



down spins but absorbs, or deflects into a different beam, a
fraction tan2u of the up spins. If the particle is absorbed or
deflected, it is rejected; otherwise it is kept. This treatment
does not correspond to any von Neumann measurement in
the original two-dimensional spin space, but rather to a two-
outcome generalized measurement or POVM~positive-
operator-valued measurement! @6,7#. If the particle is not ab-
sorbed or deflected, its residual state after this treatment will
be a maximally mixed state of spin up and spin down. Now
suppose Alice tells Bob the result of her generalized mea-
surement, and suppose that he does not measure his particle
at all, but simply discards it if Alice has discarded hers. The
result will be a perfectly entangled state of two particles. The
Procrustean method is especially suitable for the type of
gambling mentioned earlier: when it works, it always yields
more entanglement than the parties started out with.

Both the Schmidt projection and the Procrustean method
can be generalized to work on larger Hilbert spaces. Like
von Neumann’s method for obtaining unbiased random bits
from a coin of unknown but time-independent head-to-tail
ratio @setting HT51, TH50, and TT5HH5~do over!#,
Schmidt projection works even when Alice and Bob do not
know how entangled their partly entangled pairs are, pro-
vided all n pairs have equal biasesu. The Procrustean
method, on the other hand, requires the bias to be known in
advance.

Figure 1 plots the yield of perfectly entangled pairs as a
function of cos2u obtained by the Schmidt projection method
with n52, 4, 8, and 32~lower four curves!, in comparison
with the entropy of entanglement~top curve!, and the yield
from the Procrustean method~inverted-V-shaped curve!.
Note that forn,5 Schmidt projection is absolutely less ef-
ficient than the Procrustean method.

IV. RELATION OF ENTANGLEMENT CONCENTRATION
TO QUANTUM DATA COMPRESSION

Like the Schmidt projection method of entanglement con-
centration described above, the technique ofquantum data

compression@2,1# involves projecting the state of a high-
dimensional system onto a set of orthogonal subspaces de-
pending on eigenvectors and eigenvalues of an associated
density matrix. However, the goals and means of the two
techniques are sufficiently different that neither can be sub-
stituted for the other. Indeed, certain quantum data transmis-
sion tasks can only be accomplished efficiently by using the
two techniques together.

Quantum data compression~QDC! has the goal of encod-
ing an unknown sequence of signals from a known quantum
source—i.e., an ensemble of pure states$c j% emitted with
specified probabilities$pj%—into a smaller Hilbert space
than it originally occupies, while introducing negligible dis-
tortion. QDC is useful when the source has less than maxi-
mal entropy~permitting it to be compressed at all! and con-
sists of nonorthogonal statesc j , necessitating the use of
quantum operations to do the compression.

As has previously been noted@1,8,12#, a quantum source
is not fully specified by its density matrix
r5( j pj uc j&^c j u. By the same token, it is also not fully
specified by giving an entangled stateCAB of which its den-
sity matrix is the partial trace, e.g., r5rA
5 TrBuCAB&^CABu. A quantum source can, however, be
fully specified by giving both such an entangled stateCAB
and a von Neumann or generalized measurement to be per-
formed by Bob, who holds subsystemB. This is done in
such a way that each of Bob’s possible measurement out-
comes projects Alice’s subsystem into one of the statesc j ,
and the outcomes occur with the required probabilities
$pj%. Then each of Bob’s measurements tells him which state
Alice received from the source at that instant. For example,
depending on the measurement performed by Bob, the en-
tangled state of Eq.~1! can be used to generate either of the
following two sources for Alice, one classical, the other dis-
tinctively quantum:~1! SourceQ, consisting of orthogonal
statesu↑& and u↓& emitted with unequal probabilities cos2u
and sin2u, respectively; and~2! sourceQ8 consisting
of nonorthogonal statesc05(cosuu↑&1sinuu↓&) and c1

5(cosuu↑&2sinuu↓&) emitted with equal probabilities.
The first source,Q, is purely classical in the sense that it

could be faithfully compressed by making a complete von
Neumann measurement in the up-down basis, and applying
conventional data compression~e.g., Huffman coding! to the
resulting classical data.

Although the other source,Q8, would yield statistically
similar data when measured in the up-down basis, the result-
ing data would be useless for reliably encoding a sequence of
n states from the source, because the data would be utterly
uncorrelated with which of the 2n equiprobable nonorthogo-
nal spin sequences the source had emitted.

At this point some notation is helpful. Letx denote an
arbitraryn-bit sequence, wheren.2, and letCx denote the
n-spin product state resulting when sourceQ8 emits a se-
quence of states indexed by the bits ofx. For example, tak-
ing x5011, we haveC0115c0

^ c1
^ c1.

In order to transmit such sequences faithfully and eco-
nomically, one uses quantum data compression@2,1#. This
consists of performing a very gentle, incomplete measure-
ment on the joint stateCx of the spins, which projects the
state into one of two complementary subspaces:~1! a
‘‘likely’’ subspace of dimensionality 2n@H(r)1d# spanned by

FIG. 1. Yield of maximally entangled output states from partly
entangled input states (cosu↑↓2sinu↓↑), as a function of cos2u.
Highest curve is entropy of entanglement of input state, equal to the
asymptotic yield of the Schmidt projection method. Successively
lower smooth curves give yields of Schmidt projection applied to
n5 32, 8, 4, and 2 input pairs. The inverted-V-shaped curve gives
yield by the Procrustean method applied to one input pair.
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the eigenvectors of the largest eigenvalues of the joint den-
sity matrixr (n), defined as the tensor product ofn copies of
r; and~2! the ‘‘unlikely’’ subspace spanned by the remaining
eigenvectors. If the joint state projects into the likely sub-
space, one transmits the resulting projected state; if the pro-
jection fails, one transmits an arbitrary state. UsingWx to
denote the~slightly mixed! state resulting from applying
quantum data compression to a source sequenceCx from the
sourceQ8, it can be shown that for any positived and e
there exists ann0 such that for alln.n0 , the fidelity of the
quantum data compression, i.e., the probability

F5(
x

p~x!^CxuWxuCx& ~10!

that its output would pass a test for being the same as the
input sequenceCx, conducted by someone who knew what
the input sequence was, is greater than 12e. Infidelity can
be thought of as resulting from two causes: failure to project
into the likely subspace, and failure of even a successful
projection into that subspace to agree with the original state
when subsequently tested. Both kinds of infidelity become
negligible in the limit of largen.1

Because a less-than-maximally entangled pure state ap-
pears as a less-than-maximally random mixed state to its two
separate observers, one could imagine using quantum data
compression as an approximate means of entanglement con-
centration. In other words, by separately compressing their
respective subsystems, Alice and Bob could squeeze the
original entanglement into a smaller number of shared pairs
of qubits. Applying this two-sided compression ton shared
pairs of entanglementE, Alice’s and Bob’s projections into
the likely subspace would be isomorphic~this can be seen by
considering the Schmidt representation of the original en-
tangled state!, and the result would be to leave each observer
with slightly more thannE qubits having slightly less than
nE bits entropy of entanglement with an equal number of
qubits held by the other observer. However, the entangled
states produced by such two-sided quantum data compres-
sion are never maximally entangled, and in an important
sense they becomepoorerapproximations of maximally en-
tangled states asn increases. A perfectly entangled state must
have all its Schmidt coefficients equal, but the compressed
bipartite stateCc(A,B), resulting from applying two-sided
quantum data compression to a state such as theC(A,B) of
Eq. ~5!, describing a set ofn partly entangled pairs, has a
distribution of values of Schmidt coefficents whose variance
increases withn. In consequence, the fidelity with which
Cc(A,B) approximates any maximally entangled state ap-
proaches zero with increasingn, as does the fidelity with

which it would work in teleporting a random state in a Hil-
bert space of dimensionality equal to that of one of its two
parts.

We have just shown that two-sided quantum data com-
pression does not work as a method of entanglement concen-
tration. Conversely, because any mixed state can be regarded
as the partial trace of an appropriate entangled state, one can
imagine attempting to use the Schmidt projection method of
entanglement concentration in a one-sided manner as a way
of performing quantum data compression. As we will show
presently, this also does not work. To use Schmidt projection
in a one-sided manner would mean making a more aggres-
sive projection than that used in conventional quantum data
compression, into subspaces spanned by each distinct eigen-
value ofr (n), rather than into a single subspace spanned by
all the likely eigenvalues and a residual unlikely subspace.
However, this projection is too aggressive for the purposes of
reliable data transmission. Because the entropy of the distri-
bution of the eigenvalues increases absolutely withn ~al-
though it decreases as a fraction ofn), the fidelity of trans-
mission of typical sequences from a source such asQ8 tends
to zero with increasingn.

In more detail, the proposed Schmidt projection method
of quantum data compression, whose fidelity we seek to re-
fute, corresponds in the case of the sourceQ8 to an incom-
plete measurement, in which one observes the numberk of
down spins in ann-spin block, leaving a residual quantum
state equal to the renormalized projection of the original
source sequence into the subspace corresponding to the mea-
surement outcome. We shall show that this codingcannot
transmit sequences from the sourceQ8 with asymptotically
perfect fidelity, even if the measurement outcomek is made
available, as classical information, to help in the decoding
process at the receiving end of the channel. Such a dual
classical-quantum channel setup is certainly no weaker than
a purely quantum channel~where the classical outcomek
would simply be discarded! and is analogous to the dual
channel used in teleportation, in which the quantum channel
output is postprocessed in a way depending on classical in-
formation generated at the sending end. The inability of even
this strong kind of Schmidt coding to approach perfect fidel-
ity for sourceQ8 follows from the fact, to be demonstrated
presently, that with significant probability it maps distinct
input sequences onto the same output state.

Recalling notation introduced earlier, we useCx to denote
the n-spin product state resulting when sourceQ8 emits a
sequence of states indexed by the bits of bit stringx. For
example, takingx5011, we haveC0115c0

^ c1
^ c1. Let

x̄ denote the Boolean complement ofx. In our examplex̄
would be 100, and correspondinglyC x̄ would be
C1005c1

^ c0
^ c0. By expanding the statesCx andC x̄ in

the up-down basis, and grouping terms according tok, it can
readily be seen that the statesCx andC x̄ differ only by a
uniform sign change in all terms of oddk. This difference is
obliterated by the Schmidt encoding process, which by mea-
suringk randomizes the relative phases of terms of differing
k. Thus, for anyx, the encoding process, even if the classical
outcomek is made available at the receiving end, maps input
statesCx andC x̄ onto the same output state or distribution
of output states. This precludes the achievement of asymp-

1Although one is usually more interested in data compression, it is
also possible to perform classical or quantum dataexpansion, in
other words, to encode the output of a nonredundant source into a
larger number of redundant bits or qubits. For example, all states of
two qubits can be encoded into the majority-up subspace of three
qubits, each of which has a single-particle density matrix with ei-
genvalues 3/4 and 1/4 and entropy of approximately 0.811 bits.
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totically perfect fidelity, which by definition requires that
with probability approaching unity a typical channel input be
mapped onto a pure or mixed output state arbitrarily close to
the input in Hilbert space. Here, on the contrary, we have
distinct inputsCx and C x̄, which for largen are nearly
orthogonal, being mapped onto the same output.

In summary, two-sided quantum data compression is too
faithful to the original nonmaximally entangled state to pro-
vide good entanglement concentration~whose goal is a
maximally entangled state rather than a good approximation
to the initial state!. Conversely, entanglement concentration
by the Schmidt projection method necessarily sacrifices fi-
delity to the original state in order to produce a maximally
entangled output.

Despite these differences, the two techniques can some-
times be fruitfully combined. Suppose Alice has a long se-
quence ofn spins from a nonrandom quantum source such as
Q8 which she wishes to faithfully teleport to Bob with a
minimal usage of entanglement. Suppose further that the en-
tanglement Alice and Bob have at their disposal for telepor-
tation purposes is supplied not in the form of standard sin-
glets but rather as pure but less-than-maximally entangled
statescAB . An economical procedure would then be~1! use
quantum data compression to compress the input sequence to
a bulk of slightly greater thannH„r(Q8)… spins,~2! use en-
tanglement concentration to prepare standard singlets from
the supply of imperfectly entangled pairs, and~3! teleport
each compressed spin using one of the standard singlets.

V. DISCUSSION

We have shown that the entanglement in any pure state of
a bipartite system can be concentrated by local operations
and classical communication into maximally entangled states
such as singlets. Here we note that, conversely, an arbitrary
partly entangled stateC(A,B) of a bipartite system can be
prepared by local operations and classical communication
using standard singlets as the only source of entanglement.
One way to do this is for Alice first to prepare a copy
C(A,C) of the entangled state she wishes to share with Bob,
using two systems in her laboratory,A andC. HereA is the
system she wishes to entangle with Bob’s systemB, andC is
a system similar toB but located in Alice’s laboratory in-
stead of Bob’s. BecauseA andC are in the same location,
C(A,C) can be prepared by purely local operations. Next
Alice uses a supply of standard singlets, in conjunction with
classical communication, to teleport the state of her local
systemC into Bob’s systemB. This has the effect@4# of
destroying the entanglement betweenA andC while creating
the desired entangled stateC(A,B) shared remotely between
Alice and Bob. The teleportation consumes log2d singlets
and requires 2log2d classical bits of communication, where
d is the dimension of the Hilbert space of systemB, regard-
less of the entanglementE of the state being teleported,
which is rather inefficient ifE is small. To reduce the con-
sumption of singlets toward the theoretical minimum, Alice
need only use Schumacher coding to compress herC sys-
tems before teleporting them to Bob, who then applies the
inverse decoding operation to reexpand the teleportedB sys-
tems to their original dimensions.

Because entropy of entanglement can be thus efficiently

concentrated and diluted, its positive definiteness and the
nonincrease of its expecation under local operations repre-
sent theonly limitation on the asymptotic ability of two sepa-
rated observers to prepare a final pure stateCAB8 given an
inital one,CAB , by local operations and classical communi-
cation. Thus ifC andC8 have equal entanglement, they can
be interconverted with efficiency approaching unity in the
limit of large n; if they have unequal entanglement, the as-
ymptotic yield isE(C8)/E(C). On the other hand, if the
initial state is unentangled, the positive definiteness of en-
tanglement and the nonincrease of its expectation under local
operations together imply that there is no way of locally
preparing an entangled final stateC8, even with low yield.

We have argued that entropy of entanglement is a good
entanglement measure for pure states because local opera-
tions cannot increase its expectation, but can, with asympoti-
cally perfect efficiency, interconvert states of equal entropy
of entanglement. No similarly simple entanglement measure
is known for mixed states. For a mixed state, the subsystem
entropiesHA andHB need not be equal, and neither they nor
any other simple function ofHA , HB , and the total entropy
HAB can be clearly identified with the degree of entangle-
ment. For example, entropies ofHA5HB5HAB52 can be
realized by two very different mixed states~1! two indepen-
dent pairs of classically correlated spins, or~2! one singlet
and a pair of uncorrelated spins. The former mixed state is
naturally regarded as unentangled, since it can be made by
mixing unentangled pure states; the latter should be regarded
as entangled, since it can be converted into a maximally
entangled state by discarding the second pair of spins.

Two possible measures of entanglement for the mixed bi-
partite staterAB , each of which reduces to entropy of en-
tanglement whenrAB is pure, are~1! ‘‘entanglement of for-
mation’’ defined as the least number of shared singlets
asymptotically required to preparerAB by local operations
and classical communication, and~2! ‘‘distillable entangle-
ment’’ defined as the greatest number of pure singlets that
can asymptotically be prepared fromrAB by local operations
and classical communication. These entanglement measures
have the desirable feature that their expectations cannot be
increased by local operations, but the disadvantage of being
hard to evaluate in particular cases because of the implied
optimizations over local procedures.

Since any mixed state can be regarded as a pure state over
a larger, and partly unseen, Hilbert space, it might seem more
elegant~cf. @9#! to define the entanglement of a bipartite
mixed staterAB as the minimum entanglement of any pure
stateC(ABCD) of a four-part system, from whichrAB can
be obtained by tracing over states ofC andD, and where the
entanglement ofC(ABCD) is computed by partitioning it
into subsystemsAC andBD. Unfortunately, this prescription
is unsatisfactory because it would assign positive entangle-
ment to classically correlated mixed states such as
r5 1

2(u↑↑&^↑↑u1u↓↓&^↓↓u), which can be generated from
unentangled initial conditions by local actions~random
choice! and exchange of classical messages.

A nontrivial example of an entangled mixed state is pro-
vided by the Werner state@10#, whose density matrix is

W5
1

8
I1

1

2
uC2&^C2u, ~11!
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whereI is the 434 identity matrix andC2 is a singlet. This
state may be viewed as a 50%-50% mixture of totally mixed
states~density matrix14I ) and singlets; and indeed, since to-
tally mixed states can be manufactured by purely local
means, this description constitutes a local probabilistic pro-
cedure for generatingn Werner states from an expectedn/2
singlets. Recently it has been shown@11# that the Werner
state can be constructed much more economically, as a mix-
ture of pure states each containing only about 0.1176 ebits of
entanglement. Moreover, a small yield>0.000 125 8 of ar-
bitrarily pure singlets can be distilled from Werner states by
local actions and classical communication@11#. Thus impure
Werner states can be both created from and converted into
pure singlets. This two-way conversion is a rough mixed-
state analog of the processes of pure-state entanglement con-

centration and dilution which have been the principal subject
of the present paper. However, it is not known whether the
interconversion is asymptotically reversible for mixed states,
as it is for pure states. In other words, it is not known
whether the Werner state’s distillable entanglement is equal
to, or far less than, its entanglement of formation.

ACKNOWLEDGMENTS

We wish to thank William Wootters for advice on Schmidt
decompositions and many other subjects, and John Smolin
for pointing out how to use teleportation to prepare arbitrary
entangled states. H.J.B. was supported in part by NSF Grant
No. PH92-13964. S.P. acknowledges support by NSF Grant
No. PHY 93-21992.

@1# B. Schumacher, Phys. Rev. A51, 2738~1995!.
@2# R. Jozsa and B. Schumacher, J. Mod. Opt.41, 2343~1994!.
@3# C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett.69, 2881

~1992!.
@4# C. H. Bennett, G. Brassard, C. Cre´peau, R. Jozsa, A. Peres, and

W. K. Wootters, Phys. Rev. Lett.70, 1895~1993!.
@5# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,

Dordrecht, 1993!, pp. 131–133.
@6# C. W. Helstrom,Quantum Detection and Estimation Theory

~Academic Press, New York, 1976!, pp. 74–83.
@7# N. Gisin ~private communication! noted that POVMs can be

simply implemented in polarization space by using a

polarization-dependent absorber.
@8# C. H. Bennett, G. Brassard, R. Jozsa, D. Mayers, A. Peres, B.

Schumacher, and W. K. Wootters, J. Mod. Opt.41, 2307
~1994!.

@9# R. Jozsa, J. Mod. Opt.41, 2315~1994!.
@10# R. F. Werner, Phys. Rev. A40, 4227~1989!; S. Popescu, Phys.

Rev. Lett.72, 797 ~1994!.
@11# C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.

Smolin, and W. K. Wootters, Phys. Rev. Lett.76, 722 ~1996!.
@12# G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A51, 54

~1995!.

2052 53BENNETT, BERNSTEIN, POPESCU, AND SCHUMACHER


